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SOME ERROR PROBABILITIES FOR THE ASSOCIATION OF

PASSIVE DF MEASUREMENTS WITH RADAR RETURNS

INTRODUCTION

A great deal of attention is currently focused on multiple-sensor surveillance systems.
One important aspect of such systems is the correct association of data from different
sensors with the same target. Of particular interest here is the problem of associating a set of
measurements from a passive direction-finding (DF) system with the correct target in a
surveillance radar system. This can be viewed as a problem in statistical pattern recognition
in which a set of fF mensiirurements is to he assigned to a class whose characteristics are
determined from measurements of a radar target. This classification is performed by
choosing the radar target that will minimize a discriminant which is a function of the DF
data and the data on the radar target.

One difficulty inherent in this problem is due to the asynchronous operation of the
radar and DF systems. Because the targets may be in motion, it is necessary to smooth or
extrapolate in time the DF measurements, the radar data, or both in order that informa-
tion from both sensors refer to the same set of target positions. It is not immediately
obvious, however, which set of data should be smoothed. Gerlach [1] assumed simultaneous
measurements and used no smoothing. Coleman [2] smoothed the radar data only. Bath
[3] smoothed both the radar and DF data to some extent. No claim was made by any of
these authors that his choice was optimum, and in fact the question of which data to
smooth was not explicitly addressed. The purpose of this report is to bound the perfor-
manre ohtainable under each of the four possible smoothing ontions listed in Table 1. In the
interest of conciseness the mnemonic abbreviations shown in Table 1 for these options will
be used freely. Using some simplifying and unifying assumptions outlined subsequently,
exact expressions for the probability of classification error are obtained for three of the
options: RDS, RS, and NS. The probability of error with DS is evaluated with an
importance-sampling simulation. Due uu ie S-a-uUe u usle ausxuuu;! - he- e error probabil-

Table 1 - Mnemonic Abbreviations for
the Smoothing Options

Mnemonic Smoothing Option

RDS Radar and DF smoothing
RS Radar smoothing only
DS DF smoothing only
NS No smoothing

ManUuscript suUm-IeU Suty 16, . O0.
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J. 0. COLEMAN

ities represent lower bounds on realistically obtainable performance, These results for the
RDS and RS options have been described previously [2] but are reviewed here in somewhat
more detail. The results for the remaining options are new.

ASSUMPTIONS

A number of assumptions about the problem are made. Those based on earlier work
[2] include the following:

* Starting with a set of passive measurements and asking which set of radar detections
it, should be paired with. This assumption assures that each DF target is associated with only
one radar target (with the implicit requirement that radar data on the appropriate target be
available). Several DF targets are allowed to be paired with a single radar target; for ex-
ample, paired with an aircraft target may be separate sets of DF measurements to each of
several transmitters on board.

* Associating an entire passive measurement set as a unit (rather than measurement by
measurement). This assumption implies an ability to correctly associate a new DF measure-
ment with existing OF measurements of the same target. It should allow more accurate DF-
to-radar association than if the association proceeded on a single DF measurement.

* Basing the association decision on minimizing a sum of squared passive-to-radar
bearing differences. This assumption is based on a generalized likelihood classifier for
Gaussian random variables 14] and has been implicit in all of the radar/OF association
schemes known to this author.

Further assumptions are made to simplify the problem. There are two targets, and
both are stationary. This allows classification without smoothing to be a viable option.
Target 1 is under both radar and DF observation, while target 2 is observed only by radar.
Due to the symmetry in the problem this assumption can be made without loss of gener-
ality. Radar and DF equipments are colocated. Therefore the only radar measurement of
interest is azimuth. The targets are separated in azimuth by pa (defined as the azimuth of
target 2 minus the azimuth of target 1). The set of DF measurements and the two sets of
rchar meas=urtem~en.tsi1 1t1 in 11.1¶.A ~ts each Al^ fl -t-Asfls41 t 11tia tt a..
independent. The measurement errors are Gaussian, with the DF errors having variance
02F and the radar errors having variance u2 . Since there are only two targets, the decision
procedure is to evaluate the discriminant function for each, form the difference, and
compare to zero. Specifically, the procedure is to compute

d[-Z (6 ti)] -[±] (1)

and associate the DF measurements with target I if d > 0 (correct decision) and with
target 2 if d < 0 (incorrect decision). In this equation 0 DFi is the ith DF-based azimuth

2
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estimate. If DF smoothing is not used (RS and NS), 0 DFi is just ODFi' the ith DF measure-
ment. If DF smoothing is used (RDS and DS),

n

ODFi =DF O > 6 DFkg
k=1

the average of the DF measurements. Similarly 6^1 is the ith radar-based estimate of the
azimuth of target 1. With no radar smoothing Olj is 0 the ith radar azimuth measure-
ment of target 1. With radar smoothing

n

el 1 nE ol k,n
k=1

the average of the radar azimuth measurements of target 1. Similar relationships hold
between 6 2i, 02, 0 2i and the smoothing options.

Because the sign of d in Eq. (1) is unaffected by a scale change in azimuth, the means
and standard deviations of the densities are normalized by aD F throughout the subsequent
development except where noted. The notation

A = Ia/ 1 DF

and

* = OR/gDF

will be used.

In the next four sections the probability of classification error Pe is evaluated for the
four smoothing options under the assumptions just outlined.

Pe WITH RADAR AND DF SMOOTHING (RDS)

When both the radar data and the DF data are smoothed, the estimates 0DFi, 6 1 i and
6 2i are all independent of i. Equation (1) can therefore be rewritten as

d = (0DF- 02 )2 - ODF 1)2

= 2 0 10 DF - 2 0 20 DF + 02 al2 (2)

=(2 O1) l(2 +01) 2 ODF]V

3
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Both of the factors in this expression are linear combinations of Gaussian random variables
and are therefore Gaussian. The mean of the first factor is

n
2 E (92i - Old 

i= I

= /1.

Similarly

E(62- ODF} 

and

E({I - 0DF .

These last two equations imply

El j2 + I1') - DF M -A.
The variances are just as simply calculated.

var{02- i1) = O n var i 2- O}2 2 L.d 2
i=1

20r2

n=

and

222
var{(0 2 +OI)- 20 0 FV -+4var{ODFO

n

2a2 4

n n

4
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From independence of the 0 DFi, 61i, and 02i it follows that the (0 2i - O1i) and (02i + 01)
are independent. Consequently, the two factors in Eq. (2) are independent, and the product
d is less than zero if and only if its two independent Gaussian factors are of opposite sign.
The probability of error can therefore be expressed as

Pe = Prob (d < 0 = Prob (0a 2 01 < O) Prob [(0 2 + 01) - 2ODF ŽO l

+ Prob (O2 2 01 > 0) Prob [(0 2 + 1 - 20 DF < o]-

Or, if 'T(x) is defined as the cumulative distribution function for a zero-mean unit-variance
Gaussian random variable,

Pe ( 2 n

+ [1- 4k f 12

This result can be more concisely expressed by using (from Ref. 5)

<)(x) =2 erfc /-X ,

where

erfc {x) = 1- erf {x) .

to obtain

1 (- erf 2ln )erf
\2a/

2

(2j0 2)
(3)

5
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This function is plotted in Fig. I versus pu¶ with a as a parameter.

Several observations call C e maaue IDgaruing nn n;brUx. r ad >{C GUIv JX 'Af v --S-

performance with perfect radar measurements and, in effect, is obtained using true positions
instead of estimates for the 0 1i and 0 2i in Eq. (1). Therefore this curve gives the perfor-
mance of an idealized maximum-liklihood detector. As a increases, the probability of error
increases slowly until a approaches unity. This suggests that the accuracy of the radar (a2t)
is not important as long as it is significantly better than the accuracy of the DF equipment
(492

(DF ?

Further insight can be gained into the behavior of this function by using a different
normalization. After substituting the definitions

Aa

aDF

and

a-
uDF

0a:

ui
IL'
0
co
-J

4
0
a-

IA -4f fn

Fig. 1 -Performance with radar and DF smoothing (RDS)
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into Eq. (3), the probability of error becomes

1/2

1 -erf ( 1/2 "erfI 2D

( °,i /( I 11a 1, j) / (\ ,,, )X\ \lav 
+ ( R 2

\av -I
2

after some manipulation*. Figure 2 shows contours of constant log 10 Pe plotted versus
1og10 IuDF/(Gsavi)I and log1 0 IR /OIax/i)I.t It can be thought of as a log-log-log plot of Pe
versus the two standard deviations 0 DF and OR witn Ip. Iy¶ fixed to unity. It is apparent
from this plot that not only is 0R unimportant when OR < GDF but 0DF is unimportant
when G ni << UR-

The question of which variance is more important can be considered more rigorously
using sensitivities. The sensitivity of the function P1 with respect to OR is defined as

P DR
se R-

Similarly

PS e

CrDF

anV - e

Pe aCDF

*As (from Ref. 5) erf (-x) = -erf (x), Eq. (3) shows Pe to be an even function of p. In the manipulation to
arrive at Eq. (4) the sign of p is lost as it is brought under the radical and the symmetry of P. with respect
to p is destroyed. This situation was corrected by replacing p6 by lu, I in Eq. (4).

tFiaure 2 was produced with the aid of MACSYMA. a large symbolic manipulation orogram develonped at
the MIT Laboratory for Computer Science and supported by the National Aeronautics and Space Admin-
istration under grant MSG 1323, by the Office of Naval Research under grant N00014-77-C-0841, by the
U.S. Department of Energy under grant ET-78-C-02-4687, and by the U.S. Air Force under grant
F49620-79-C-020.

7
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It is not difficult to show that these can be defined equivalently as

P a(logl 0Pe)

a' @ig 10 aR)

a3(loglo P)
0 DF 3(log 10

0 DF

These two quantities are equal in Fig. 2 wherever the contours are at 45° with respect to
the axis. The locus of such points is shown in Fig. 2 and represents the boundary between
the region where a small percentage change in CR is more significant than the same per-
centage change in 0 DF and the region where the opposite is true.

LOG10 IOF ET a 0' )
-1 -0.5 0

s~~~. >5P* SP

07, 5F -0.5
- / Bra a~~~~~f \ _0F5 At~~~

I 'e!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

Fig. 2- RDS contours of constant log1 0 (Pe)
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P. WITH RADAR SMOOTHING ONLY (RS)

When only the radar data are smoothed, Eq. (1) becomes

d = - 0 -2 0 + 
nD DiDE Di0

=1 E (2=1 -2 ] [-
=nE (1OD Fi 620DFi 2

=(2 -a1)

E= (DFi
= 1

[(2 +0) Z-o-DFi]
i = I

_ _ l
(02 01)[& 2 + 01) -O 2DFJ.

This discriminant is identical to Eq. (2). The performace is therefore exactly the same as
when both radar and DF data are smoothed. This equivalence is shown under a rather
restrictive set of assumptions and is not expected to hold in a more general case such as
when the target is in motion.

P, WITH DF SMOOTHING ONLY (DS)

With DF smoothing only, Eq. (1) becomes

d= F e (bDF- 02/)1 - ft (8DF -i) 1
L i=' i L i=' J

(5)

(6)

After an unsuccessful attempt to determine analytically the probability that this quantity is
less than zero, a Monte Carlo simulation was conducted using importance sampling to re-
duce the number of trials required. (Importance sampling is briefly described in Appendix
A.) To make effective use of the importance-sampling method, it seemed best to use one
approach for a < 1 and another for a > 1. For a < 1 the parameter modified by importance
sampling was a, F. This led to an estimate of probability of error of the form

9
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A1 TnFp onk/11\
Pe =N_ 2; ~ exp| 2 2i O-2 IU-d') (7)

k= 1D L ' JDF _DF)

where DFkis the sample value of DFon the kth trial, NT is the number of trials, obE is
the modified DF (the value actually used in the simulation), and the function U(x) is de-
fined by

U(x) = 1, ifxŽ> 0,

= 0, otherwise.

The variable d' is the computed discriminant with 0 D F drawn from the modified density.
The value of 0R was set to unity with no loss of generality other than the OR = 0 case
treated separately below. Based on only the assumption that Pe curves with DF smoothing
would not be drastically different from Fig. 1 (which turned out to be correct), OSF was
chosen to bring (pgoa )Nfrn to a value (constant for each value ot ODF and chosen by
hand) such that Fig. 1 indicated a Pe in the range 0.15 to 0.25. The results of this simulation
for NT = 10,000 are shown in Figs. 3a, 3b, and 3c. Figures 3d, 3e and 3f are the results of a
different simulation; the reasons for and description of this simulation are as follows.

As u is increased to values above unity, it becomes impractical to obtain an increase in
simulated errors by varying ODF. To see this, first note that o K 1 implies oDF > OR as
sketched in Fig. 4a. Most errors occur when DF falls above 02i- Increasing OD F by a modest
amount will increase the probability of this type of error significantly. Figure 4b shows the
type of situation implied by a > I or OR > D F. Here errors are usually due to 0 1 f failing
above 2ij Increasing OD F by a modest factor will have very little effect on the probability
of error. Increasing 0 DF enough to significantly affect Pe would in fact lead to the nonzero
terms in Eq. (7) (ratio of the true to the modified probability density function for OD F)
being usually very small but occasionally very large. This implies an undesirably large vari-
ance for P. (This was in fact demonstrated.)

For the special case in which a = oR = 0 the simulation is not necessary, because RDS
and DS become identical. (it is immaterial whether or not radar measurements are smoothed
when they are exact.) From examination of Eq. (3) in Tne limit as a goes to 0

P -~erfc e 2 / (-v-)

or

P __Ad

e r 2 /

10
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CaX

coil,

0~

0

0.01

0.01 -- 

0.005 _ _ _ _ _

0,5 g lo 50

/lu AnF

Fig. 3a -Performance with DF smoothing only (DS): 10,000 trials with (aa/oJF} )N/ set to 2 and
a = 0.25, with the four curves being for n = 1, 2, 4, and B
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0.1

CO

0.5 1 5 10 50

Fig. 3b - Peyformanee with DF smoothing only: 10,000 trials with (ANF) /vset to 2 and o = 0.5,
with n = 1, 2, 4, and 8
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0 - Ad1 - - - -

0 _ 
I. I I I

0
a. 0.01 z - _ _ _ _ _ _ 

0.005 

0.001 - - - - - _ _ _ _ _ _- - - - - - _ _ _ _ _ _ _ _ _

0.5 1 5 10 50

Fig. 3c - Performance with DF smoothing only: 10,000 trials with (p/aF )n set to 2.75 and a = 1,
with n = 1, 2, 4, and 8

13



J. 0. COLEMAN

0.5

z _ u = =T _ _ _ k -

eoo1, _ ___ I__

0.0

0.5 5 10 50

Fig, 3d -Performance with DF smoothing only: 10,000 trials with X'set to 2.75 and U 

with n= 1,2, 4,and 8
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0.5
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0.0

0.001
0.5 

0

Fig- 3e -. Performnace with DF Smoothing only: 10,00 trswt Kstt . and Ca 2,with nt = 1, 2, 4,1 and tras wihXeto38
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Fig 3f - Performance with.D F smoothing only, 10,000 trials with X'set to 7 and 0 4,
with n = 1, 2, 4, and 8
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P( 11)

Fig. 4a - Situation in which aDF >> ,R I causing errors when 0 1F > 02i
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For a > I the quantity varied in the importance-sampling formulation was pA, the true
separation in azimuth of the two radar targets. The primary type of classification error for
a > 1 is, as described earlier, that for which 61i > 62i It should be apparent from Fig. 4b
that the frequency of this type of error should increase significantly as p0a becomes smaller.
Also, for a < 1 as in Fig. 4a changing pt, enough to significantly effect P, would result in the
ratio of the true to the modified probability density function becoming usually very small
but occasionally very large. Therefore, to hold down the variance of the estimate of P-,
varying pa is restricted to a > 1.

A significant amount of computation was saved by transforming Eq. (6) to an equiv-
alent form

(z 2 n~ E (Z Z2'k ) ' (8)

k=2

where

'7 C2

and where the z. are independent and Gaussian with unity variance. All the zk except z1
and zn+ i have zero mean, and

E(z1 ) Xm1

and

E(zn+l } =Xn2}

where

PF

I' 

2+ y

l 2ry

18
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and

1-7
= 2Cy

The quantity X is the quantity against which P. was plotted in Figs. 1 and 3. This equivalent
formulation is derived in Appendix B. Varying Ha in Eq. (6) is equivalent to varying X
(which is proportional to pua) here. The computational advantage is obtained because only
two random variables are affected now, whereas varying p0l in Eq. (6) affected 2n random
variables.

The error-rate estimate is now

P =-t; exp, {-2 Z - XMl)2 + (Znl I Xm2 )1 T 2 l ~
k=1

- (z1 - X'm1)2 - (znl - X'rm2)2} U(-d')

where X' is the modified value of X.

The results of this simulation are shown in Figs. 3d, 3e, and 3f. The C = 1 case was in-
cluded to allow a comparison of the two simulations. The smoothness of the curves in Figs.
3d, 3e, and 3f does not reflect superior accuracy compared to Figs. 3a, 3b, and 3c, but in-
stead reflects the fact that the points on the curves are not independent. Because the param-
eter modified in the importance-sampling procedure is the parameter used as the indepen-
dent variable in the plots, and because the value to which it is modified (selected as before
for an actual error rate of 0.15 to 0.25) depends only on a, the actual set of NT trials was
carried out only once for each combination of n and a and was not repeated for different
vwUcc tn fX. iTh uoly Uticgs thaLt Uuangeu WILLI A were the wteghts given to the Outcomes of
the trials. In fact when a calculation of d' at a higher value of n followed a calculation using
a smaller n (but with other parameters unchanged), only those terms of d' corresponding to
the difference between the two n values needed to be calculated. These observations greatly
reduced the amount of computation from that required with all points on the curves in-
dependently calculated. They also imply that both the points within a curve and the curves
within a plot in Figs. 3d, 3e, and 3f are dependent. For example, comparison with the
curves for other values of a indicates that Fig. 3c may be a better representation of true P,
than Fig. 3d, even though Fig. 3d appears neater.

19
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PeWITH NO SMOOTHING (NS)

When no smoothing is used, Eq. (1) becomes

d. \ r- v (0/ F' 2i)d \ -- 
Lij=1 r~i-=

- 61A

n Lj \'DFi2i --UVFV1i
i=1

)IA (21+o1- 2O)DFiJ'

With definition of the variables

o i -ol
u . =

z va

and

02i i C2 0 DFi
w. =j-VC-2

Z av24+ 

d becomes

2n- /02 +2 n-a
d =~ Y- uWi I

n L
1=1

It is easily shown that vi and Wj are independent Gaussian random variables with unit vari-
ance. The calculation of their means is postponed until needed. After the substitutions

yi -i
V. = --rA

20

+n2.- 2iA)
2i 11it/

n
i=1

I
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and

3 i +Xi

wi = lf

d becomes

2 [(t~2) (tx2 )]n~~ 

Solving for xi and yi in terms of vi and w1 results in

Wi.- u

x1 --- r-

-- anlu

w. + Vi
yi -= I 1/

It is readily seen that the xi and y, are Gaussian variables independent of each other with
unit variance. The parenthesized terms in Eq. (9) are therefore the independent noncentral
chi-squared [6] variates defined by

n
X2 = Ex

i=1

and

n
y2= £y2

i=1

21
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with noncentrality parameters a2 and b2 respectively, where

a2 = E (E~x,)

i=1

and

b2 = z(E(y;9)2
i=1

Substituting for xi and yj yields

n2 = n( E(w{}- EVi) 2

1=1

and

= n(E(w i+E(vd; )2

1=1

where

Efvu) = P
%/2-u

and

E{ w1 } = 

22
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Consequently

a = - 2 /
a t 6o,2+ 2

and

bfl- /1 +2 )
2 U2-:: )

The probability density functions for X2 and y 2 are [6]

2)=- ( (n 2 )) 2

yP2(Y 2 ( b )

xa2
exp t( 2-

exp (2 - 2 ) Ita2-1(by) -
( 2 2,

Rewriting Eq. (9) as

d = ¶Zy 2 _ X2)
n

shows the probability that d < 0 is the same as the probability that y 2 < x2 , or

00

Pe f f Px2(X2 } d(x2)
0

x2

4 p 2(Y2 )d(y2).
p

23
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2 )In 2- (ax)



J. 0. COLEMAN

Substituting for the density functions and carrying out achange of variables results in

c x

Pe (ab) Jfx+Iei(x 2+a2)/2IV(aX)dXfyV+ -eY2+b2)/2IV(by)riy
0 0

where v = (n - 2)/2 and n is assumed even. This integral was evaluated by Price in Appendix C
of Ref. 7, which is reproduced in this report as Appendix C (with comments and errata for
Appendix C being given in Appendix D). From Eqs. (C-37) and (C-50) the probability of
error is

__(a2+b2)14 S9iKP
r = d~v ,4)T e n +b}/IL m m 2 )

m =M

2 L\V \a/ Jtmdvm/

This result is expressed in terms of the Marcum Q-function, defined in Eq. (C-4), and I,,,
the modified Bessel function of the first kind. The factor bO is the Kronecker delta func-
tion, which is equal to one when its subscripts are equal and is otherwise equal to zero. P,
can be derived in closed form for odd n by expressing it in terms of the doubly noncentral
F distribution [8], but the resulting expression is so complex as to make its evaluation in
the Dresent context unjustified. For the special case n = 1 the resulting P0 is identical with
that for the other smoothing options.

P, was evaluated with the aid of the techniques outlined in Ref. 9 for the evaluation f
the Q-function and Ref. 10 for the Bessel functions. The results are plotted in Figs. 5a
mirough 0f. loUb Surp ililgiy, M4 LuIns out to blVe pioruLCst jCLLUIIImer of L U1 Ithe f sm

ing options.

BOUNDING PERFORMANCE AS RESTRICTIONS ARE REMOVED

Under the assumptions outlined at the beginning of this report the best performance is
obtained (Fig. 1) when the radar measurements are smoothed prior to their use in a discrim-
inant. As long as the radar measurements are smoothed, performance is not affected by
snmoothinn the fF eQu'siOrelnentfs. This is znmPwhnt suirnrisin hbecause in the absence of
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1 10

Fig. 5b - Performance with no smoothing: a = 0.25, with n = 1, 2, 4, 8, and 16
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Fig. Sc -Performance with no smoothing: a = 0.5, with n = 1, 2, 4, 8, and 16
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smoothing of the radar data performance is improved by smoothing the DF measurements
(Figs. 3 and 5). Although the probability of error derivations given earlier do not generalize
pngilvT tn muniltinle (more than twrol rnaldr targets, thesp samp nnonlminng are eynxoptod to
hold.

With nonstationary targets the situation is expected to be somewhat different. The
simple averaging used for smoothing with stationary targets would have to be replaced by a
significantly more complex procedure. Examples of suitable procedures are a-f0 tracking
[11] and Kalman filtering [121 . Suppose the radar and DF systems are synchronized in
time so that when a DF measurement is made, the radar system simultaneously measures
the positions (in two or three dimensions for best smoothing performance) of all of the
targets. Even under these rather ideal conditions, the quality of a smoothed estimate would
be reduced from the stationary target case, and hence the remaining performance gain due
to smoothing would be diminished. The amount of the remaining performance gain would
depend on the number of degrees of freedom in the motion of the targets. If the targets
were constrained to move in a straight line (two degrees of freedom if the motion is con-
finprl fn a n enn), nPrfnrrnnnrp miaht hp expnacte +n apnnroncrh that nf +he nnnd-ciinnrn-r7

case (with a large number of measurements). At the other extreme, if no constraints what-
ever were placed on the motion of the targets, positions at different instances in time would
be completely independent and smoothing would contribute nothing (fortunately this is not
realistic). The probability-of-error curves in Figs. 1 and 5 therefore represent lower and
upper bounds respectively on the probability of error with target motion, synchronous mea-
surements, and radar smoothing only. With DF smoothing only and conditions otherwise as
just described the probability of error would be bounded by Figs. 3 as the lower bound and
Figs. 5 as the upper bound. (The assumption of independent unbiased Baussian measure-
ment errors remains in force throughout this discussion.)

If the radar and DF measurements were made asynchronously and target motion were
still permitted (there being no need to synchronize the measurements if targets are guaran-
teed stationary), additional difficulties would be introduced. Subtracting an estimated azi-
mutih (no is dnen iiuncdr twon f +h-iA fniir options discussed) is meaningful only when the
estimate refers to the time the measurement was made. Comparing radar and DF measure-
ments directly in this context is not possible, and some sort of smoothing or extrapolating
procedure would be necessary. If only the radar data were smoothed, they would have to be
extrapolated to the times of the DF measurements. This type of extrapolation introduces
additional error, as it must be based on inexact velocity estimates. Due to this additional
error, the error rate can never be expected to equal the lower bound given by Fig. 1. No
upper bound on the probability of error in this situation is available.

With asynchronous operation and target motion, smoothing the DF data without
smoothing the radar data introduces problems. With radar measurements of different targets
taken at different times, to what time should the DF data be extrapolated? To extrapolate
to the time of each radar measurement in turn could require an unrealistic amount of com-
putation. Realistic or not, Figs. 3 provide the lower bound on error rate. No upper bound is
a-ailoble.

Table 2 identifies the figures representing the bounds described in this section.
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Table 2- Summary of Figures Bounding the Probability of Error

Figure Numbers of P. Bounds
Target Synchronous DS RDS
Alowed? Measurements RSAllowed? _.__.._

Lower Upper Lower Upper Lower Upper

No Irrelevant 1,2 1,2 3 3 1,2 1,2
Yes Yes 1,2 5 3 5 1,2 NA
Yes No 1,2 NA 3 NA 1,2 NA

CONCLUSIONS

From the discussion thus far it is apparent that in the general target-motion-with-
asynchronous-operation environment, smoothing of the radar data should be used. As dis-
cussed earlier in this report, the use of DF smoothing in addition to radar-data smoothing
does not necessarily improve performance. (Equation (5) showed that with stationary targets
no improvement is obtained.) DF smoothing can be used in a limited way, however, to reduce
the total computational burden in certain types of environments. For example, the DF data
can be preprocessed by breaking up the data into batches in such a way that all measure-
ments within a batch are taken over a short enough time interval that they can be averaged
together and submitted to further processing as a single measurement. If the environment is
such that several independent DF measurements can be made in a time interval in which
total angular motion of a target would never approach the standard deviation of the result-
ing average, error-rate performance should not be degraded. This can be understood (at least
in terms of the stationary-target case) by noting that if DF measurements are batched into
groups of nb in the manner described, then in Eq. (4) CDF must be replaced by CDF/x/dj
(the standard deviation of the average) and n must be replaced by nfln b To prevent this
change of n from inappropriately raising the variance of 01 and 02 by nb, CR must be re-
placed by a0 R ./nb. The effects of these substitutions exactly cancel. The reduction of n in
Eq. (5) will more than compensate for the computing time required for the preprocessing.

Now that the desirability of smoothing the radar data has been established, how much
(or what method of) smoothing is appropriate? Comparison of Eqs. (1), (3), and (5) shows
that the performance difference between the best options (RDS or RS) and each of the other
is zero if a = 0 or n = 1 and increases as either a or n becomes greater. This is consistent with
the intuitively satisfying notion that the details of the smoothing technique will not signifi-
cantly affect performance as long as the variance of the smoothed radar data is less than the
variance of the DF bearing against which it is compared. Both because of radar data smooth-
ing and because this DF bearing may be the result of averaging together a number of DF
measurements, the relationship of these two variances may be significantly different than
the relationship between the variances of the measurements themselves.
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Appendix A

IMPORTANCE SAMPLING

Accuracy in probability estimation by Monte Carlo simulation is obtained by making
the number of experimental trials sufficiently high that the event whose probability is being
estimated occurs many times. For low probability events, the number of trials required for a
desired accuracy can be impractically large. importance sampling [Al, A2] is a simulation
technique which can often reduce the number of trials required by modifying the probabil-
ity density of the random variable(s) in the simulation to increase the number of occur-
rences of the event of interest. The estimate is then adjusted in such a way as to remove the
bias this would otherwise induce in the estimate. The explanation which follows is patterned
after Mitchell [Al] .

First consider the ordinary Monte Carlo simulation procedure depicted in Fig. Al. For
each trial a Bernoulli random variable y representing the event of interest is generated as a
function of an input random vector x characterized by a density function px)J. T hat is,
y = F(x). The variable y is equal to one if the event of interest occurred and zero if it did
not. The probability estimate is obtained as the average of y over many trials.

For the simulation using importance sampling shown in Fig. A2 the density p(x) is re-
placed with a modified density pa (x) which will cause the event of interest to occur more

INPUT AN-NIJ

VARIABLE' X PROCESSOR BERNOULLI RANDOM VARIABLE' _AVERAGE OVER PROBABiLITY
DENSIT v X J )A IL STIMATE

Fig, Al -Ordinary Monte Carlo simulation

INPUT RANDOM BERNOULLI RANDOM AEAEOE RBBLT
VARIABLE: X PROCESSOR ESRIMLTE

DENSITY 1i () ~ F4XJ IMANY TRIALS ESTIMATE

ig. i

Fig. A2 -Simulation with importance sampling
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frequently. The processor output is multiplied by a weighting function w(x) to compensate
for the change from p(x) topm (x). The weighting function must be chosen so that
E(y } E (w(x)ym} or

I'- J F(x)p(x) dx FJ F(x)w(x)p (x) dx.

Therefore the weighting function must be

WW ) = p(x)
Pm(X)

The weight to be applied for a particular trial is just the ratio of the original to the modified
density function evaluated at the specific value of x used for that trial.

The variance of the estimate can be expressed in terms of the first and second moments
of the estimate. Because the estimate has been designed to be unbiased, the first moment is
equal to the probability being estimated. Obviously in any case of real interest this will not
be available in a suitable mathematical fonn or there would be no need to perform the simu-
lation. The second moment tends to be at least as elusive. In the absence of analysis of the
variance of the estimate, the choice of a modified density Pm (x) becomes heuristic. It can
be shown, however, that in cases involving simple (analytically tractable) functions p(x) and
F(x), importance sampling can dramatically improve estimation accuracy [Al, A2].
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Appendix B

DERIVATION OF EQ. f(8

Equation (6) can be rewritten using vectors rather than summations as

d = - 022 1- - 0 121

by defining the n-vectors

0 DF

ODF

ODF

ODF

011

012

i1n

021

022

0 2n

The vectors 0 DF' O, and 02 are independent Gaussian-distributed random vectors with
covariances M, o 21, and C2! respectively, where M is an n-by-n matrix with every element
equal to l/n andI is the n-by-n identity matrix.

By defining (for this appendix only) a partitioned vector

D(9F - 62)1
q =

I(e-DF -el

and a partitioned matrix

I = 

the discriminant equation can be written as

nd = xTQx .
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The Gaussian random vector x has a mean

Ex

where c is defined to be an n-vector whose elements are all unity. The covariance of x,
denoted byK, is found to be

a2I[+ M M
XK= ----M U2;+Mj

M oI +M

From this point on, linear transformations on x are used to proceed toward the desired dis-
criminant form.

It is simple so demonstrate Utha w.i maUniA KI is positve Ueuzixie Ub long i s U lb nunzero.
Because it is both positive definite and symmetric, it can be factored into symmetric posi-
tive-definite square roots:

K = SS.

It is straightforward to verify that S is given by

( 2 )2-

( 2 -)

( 2 )

CI+( CV + 2- C

Because S is positive definite, its inverse must exist and is obtained as

s-2I ( I 2( 2+2)
L - 1 _ ) M Ia 2 ( a

37

S=



J. 0. COLEMAN

and used to transform x to a new variable

Y =Slx.

The covariance of y is

E(y Eey>) (y - Ety) T }=S- 1E j (x - EAx) )(,x - ESx) ) T S_1

=J- 'KS-~~~~~~~~~~

and the mean of y is

Ejyj =S f A 1-
N E L u J

# tf 2 1 ) 71
E~~~j4- 

2 ( 0+20) 

The discriminant equation can now be written in terms of the transformed variable y as

nd = XTQX = yTSQSy = yTTy

where

T = SQS.

Performing the multiplications and simplifying yields

02 +2-0g)M C)MT=a ( ---- )--- 
I~~~~~~~U T - ( - a )M2 I 

L -J
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The next step in the derivation requires.that T first be diagonalized. Matrices U and D
are required such that

T= UTDU,

where U is orthogonal (UT = U- 1) and D is diagonal (all off-diagonal elements are zero).
The matrix U satisfying these requirements is in this case of the form

0 1F

where F is any n-hy-n orthogonarl matrix whnose first row is composed of identical elements.
It is not necessary to specify F further in order to complete the derivation. For convenience
the value in the first row will be assumed positive, which implies a value of 1/Vr/i. A familiar
example of such an F matrix is a discrete-Fourier-transform (DFT) matrix.

Solving for the diagonal matrix D results in

F 1+2/02 oo1 - ' 

0 01 0 ... 0

0 0 01 
=2

V/1+ 2/-2 0 1" 0
I 0 -1 0 0- 0

0 I 0 0-1 . -

I0

A new random vector can now be defined as

Z = [y,

and the discriminant equation becomes

nd = yTTy = (UTZ)T(UTDU)(UTz) = ZTDZ.
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The covariance of the new variable is the same as the old:

cov Z}c = Cov (U = U coV { y} UT = UIUT = I.

The mean of z is

E(zE = UE(y)

or

E z} = 2

(

r I

C02 + 2

1
a)

0

0

( a
2

21 1

V/g2 

0

If z is expanded to

Z=

z1

Z2
2.2

Z2n

the discriminant equation can be written in nonmatrix form as

nd
2C g C1 +-Z2 -

40
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where the zk are independent Gaussian random variables with unit variance. Defining

I ndd =-I
C2

and noting that the means of the z values here match those in the text completes the
derivation.
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APPENDIX C

APPENDIX C [Reproduction of Appendix C of Ref. 7]
REDUCTION OF A DOUBLE INTEGRAL INVOLVING BESSEL FUNCTIONS*

R. Price, MIT Lincoln Laboratory

I. INTRODUCTION

Maximon ?9 has studied the following integral, which for V = 0 arises in trying to find the
probability that the envelope y of a sine-wave-plus-narrow-band-noise process is less than r
times the envelope x of another such process, the noises being assumed independent and both of
unit variance.

p-(abr) = a 3b-v x) exp[-(x +ta )/2j I (ax) dx

g yx exp [-(y 2 + b z)/] I (by) dy (C-1)

Here I V)z) is the modified Bessel function of nonnegative integral order P, and a and b are
parameters which, for v 0, are respectively equal to the amplitudes of the sine waves in the
processes whose envelopes are x and y. {See Rice ° for the derivation of the envelope proba-
bility density functions contained in Eq. (C-I), with V = 0.) Maximon obtains P in terms of a
Neumann series of modified Bessel functions:

P_ =abr a b) exp [-z-(a r /+ b i/( + r 2 in nm b ')v+m Z) (C-Z)
m=O

where

Ir + r2) (if m - 0)

= 1 (if m > 0) (v an integer >}0) {C-31

The series (C-2) can be considered in closed form in terms of Lornmelt s functions of two vari-
ables, but tabulations by which the series may be evaluated exist chiefly in terms of the
"Q-function" examined by Marcum.3 2 This function is the cumulative probability distribution of
the envelope of a sine-wave-plus-narrow-band-noise process:

qu.'v) = x expf- (x + uWi/2] Io (ux) dx

= I- expj-(u 2 + v2 /2] £ ) I (uv)

m= 

= expj-(u2 + v)/2] (U (UVi Im luy) (C-4)
m=0

* Jones 3 3 hos recently and independently reduced the double integral [Eq . (C-6)] for v = 1 = r, obtaining the par-
tcular case of the sol ution lEq.(C-35)] where mn = v = I [given also by EqIC-41I].
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The first series is due to Bennett, and the second, which is connected with the reciprocation
properties of Lommel's functions of two variables, 3 1 is quoted by Helstrom. 2 3

In this Appendix we deal with a double integral similar to Eq. (C-i), which arises in finding
the probability that the sum Y of a number (v + i) of squared envelopes of sine-wave-plus-
narrow-band-noise processes is less than r times another such sum X where all the noises are
independent and have unit variance. The probability density function of X is -4

p(X) = + (X/a)/ expL-(X + a)/21 <X (C-5)

and that of Y is identical to Eq. (C-5) with X3 in place of a. Here a and ji are proportional to
the sums of the sine-wave powers (squared amplitudes) in the processes yielding X and Y, re-
spectively. The double integral for the probability that Y is less than r times X is thus, after
making the changes of variables X = x Y y and a =a , :

Pta.h,r) = (ab S x exp t-f(x - a 5 /2] I (ax) dx

2xyr exp I-(y * b2 )/Zj IV (by) dy . (C-6)

HI. DEVELOPMENT OF A RECURSION RELATION FOR P. (a, b,r)

The first step in attacking Eq. (C-6) is to integrate by parts:

2 2 2 r ~ xr 1
exp [(a + b )/Z} (ab) P,(a,b,r) =-exp [-x /2] Ix IjVax) V ( ) dyj |

"0 10

fl -x2 f ax + eA 2+ e o dx tX Ix (ax) 5 yP+{ eI /2 Ip(by) dy] dx (C-7)

where, for v > 1, the first term on the right of Eq. (C-7) vanishes. We now make use of the
Bessel-function property3 4

i d [Z VI (Z) ] (C-8)

.vhich yields

d [X"I (cx)] = CXVI x) (C-9)

Expanding the derivative in Eq. (C-7) and applying Eq. (C-9), we obtain

2 2 prxrp~ exp[(a +b )/Z](ab) PV(a,b,r)=a x exp -x'/2]I (ax) I y /21I (bywdy] dx

+ rV+z C xZV+A expf-x 2z( + r )/Z]I,,(ax) I.(brx) dx . (C-I1)

Again integrating by parts in the inner integral of Eq. (C-to), and using Eq. (C-9),

* In terms of classical statistics, this is equivalent to finding the probability distribution function of the ratio of
the lengths of two (2 p+ 2)-dimensional random vectors, all of whose components are mutually independent and
Gaussian with unit variance, and whose two mean vectors are of specified lengths. It appears that the method
of solution followed here could be generalized to vectors of different dimensionolities.
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gr xr + exp(-y 2 /Za I (by) dy = -exp[-yZ2/] y"l(by) |xr

0~~~~~1
+ b S yv exp[-y /z1 IV- (~by) dy (C-11)

which, when substituted into Eq. (C-iC) yields, for v Ž i,

2 a i a,1 ~ ~ riaexpf(a +b )/Z fab) P (a,b, r) = ab x exp[- x I/211 (ax) dx x expf-y?/2]1I(by) dy

+ r 3 x - expT-x 1i + r-)/ZJlP(ax)I (brx) dx

-art S xV expf-x (i + r )/Z0lpV (ax)Il(brx) dx . (C-1a)

In order to cast Eq. (C-i2) in a more symmetric form for later convenience, we note that, inte-

grating by parts and using Eq. (C-9) once again, with v > I,

V+2 2V+1 z 2 r V+2 ZrV a
r x itexpi -x [(i+r )/JIV (ax)I V(brx) dx= expr-X (I+r )/2]I (ax)I,(brx)

0 ~~~~~~~~~~~~~1 + r it

+ r~i-5;! Sexp(-x 2 i+r 2 )/Z] d. {4xt'l<ax)] f tbrx)]} dx

a rt'i- ? JI(a)]1Xr br ] d

_ xr f X~v exp[-x (I+r )/2]Iv (ax)IV(brx) dx

+ hr y t expf-x 2{i+r 2 _)/ZI1 (ax)I 1 (brx) dx . 7C-13)

Combining Eqs. (C-1Z) and (C-i3), we have

P (a,br) = (ab) xt expl-xz/2 i(ax) dxj yt exp[-y /Zll (by) dy

LI Y,~ ~ h2 /a "± 1 00Z 2 r/aI,(x

+ exp- za +r - b X rEX b + r )/1I+ y 1ax) iv1(brx) dx

-r~at~Pb v .xv exp iA 'I /a r fZIp . Ta 1~-% dx}
1+ r Jo 3 _

thus giving the recursion

P~ja bar) P 1(v {ab~r) + exp -(a +b )/2Z

{r v- a' Vbt i xZV expr-x2. ( + r 2 )/2411(ax) Ip (brx) dx

-r alt'b 50Y x 2v exp)-X2(I 4 r 2 )/ZJ -1(ax)ljbrx) dx} . P2-14)
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Equation (C-14) is a reduction formula by which we can obtain the general result if we know
P2(a, b, r) as given by Maximon.Z9 It is necessary, however, to evaluate the pair of integrals
in Eq. (C-I4), and this is where the complication lies.* The integrals are solved by using another
Bessel-function property that is similar to Eq. (C-8fl

(z dz Im(z)= z m I v+m(z) (C-I5)

which leads to

I v (cx) Im(CX) = xV m c V Im i-cx (C-I6)

and as a special case

(A d)I 0 (cx) = x Vc- I (cx) (C-)7)

Therefore,

I-V 2V 2 2 ,d'(di-a(br)j x exp[-x (I + r Z]I^(ax)I>(brx) d = Ia da br d(br)

x exp[-x 2(i + r2 )/Zjl (ax)l (brx) dx (C-i8)
0~~~~~~ 

and similarly for the other integral in Eq. (C-14), a and (br) simply being interchanged.
The integral in the right memaber of Eq. (C-I8) is *

S x exp[-x (I + r 2 )/Z] I0(ax) I (brx) dx = (i + r I exp |i J 10 JI r 2J * (C-19)

Combining Eqs. (C-14), (C-18) and (C-19),

P (abr)= P ib) + exp-(a +b1)/2] [I d V-i1 ri d li-i_I (a, ,(I+ r z) ad br d(br)

* f V+z r d,-1 V ) d] exp r| ,,d 2 12 o abrCLr a da -r 1 br dbr 1I tr
2 2~~~~~~~~~~~~~~1 

-F (abr)~+ r aV -y (a2 +b)/ZI I d1 v- I d v-1=Pv-I (a (I r )3 La da' 11FT-r 
ira +b~~~~~r2 I\( 3 1

2 + ( -r Il fabrj }br a 1 da] [r
(exp ([r- + If- a r il Ir ) (C+20)

so long as v > i.

ml. 1! IlL 90JLU I OIJJN FR Irv (a, b, r)

Iterating the recursion formula [Eq. (C-20)] and reverting to the variables a = a, P = b,
we obtain

* Such integrals are treated by Watson (Ref. 31, pp. 395-396) in connection with Weber's second exponential in-
tegral, of which Eq. (C-19) is on example; with regard to integrals of the type appearing in Eq. (C-14) Watson
seems unduly pessimistic.
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P (T, a, r) = 0 e& , r) + exp -(a + ) v~~~~~~~~V ~~~~~~~~4(r + -r>

* S Z2i ( da i-1i ( dd4 4J-_ (expj a + 3r 1
j=1 d d92 (I - r

- f(r - •} r1 Tr/(I + rZ)] i {r7- -rJJ r r (C-2I)

which, expanding according to the binomial formula for the derivative of a product, differentiating
exp[(Ya +ir )/2U1 + r )], and returning to the variables a, b, yields

a zr2 + b 21exp I- 2 3 j1 jb 2J - i-1i ~+-2 j2
ItV (a, 12, r) = P0(a, b, r) + 21i) 5 E(1 + 2 kit-2 r -z-

(r - r ) j=1 k=° t2=

* (i-i) (3-ij ( d b jr 1 d l ab 

+ [r2 (+ )-r 2 (tb)) 11ijI 1 , (C -ZI

where

(m nm (n-m) (if m < 0 or m > n, (n)= 0) (C-23)

is the binomial coefficient.
We now need to find the result of operating on the term in the braces of Eq, PC-Z). Using

Eq. (C-16) with c = b, x = ar/(I + r ), Y =I and mn = 0 or -i (note: Im(z) I m(Z)], leads to

b db1 {a i br 1 } ( + rZ) ba + r l

(IAd)t I abrj ( (b )-2 1 abrjC2)lb db) Fo ±+ -r= I ar 21 rJ

and further application, this time with c = a, x = br/(1 + r ), P = k, and m = I-2 or -I yields

ad L) d 2 A-,Jb l1abr 1l = (r kt(b/a) k-flI I abr ((C-Z5)
a da b db) {a _Ii |- -l k+1 kbJ -21 I--- z(4.4.jk ~~ a& {aII ir~iJ 2j I1 + r,

d k I d1 I 1 f1 abrf /1 r k+i- k-I { abriC26
ia da- b db' a ol 2] = \ 2) 2b/a) I k | (C-26)-) I~~r l~r (b/a) k-ir + r I

Similarly, we find

I d I d )$ fa ____2,b 'r' Ik+I ____

a ia b db) Ib 1t 1 2 abr - ( k) (a/b) 1 (!k+l ab (C-a?)i+?b ~ ir~ I +b

Substituting Eqs, (C-Z5) through (C-27) in Eq. (C-22), and interchanging the dummy variables
k and I in the part of Eq. (C-22) corresponding to the term r 2 (a/b) I [abr/(l + r )], we are
led to
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P (a,br) =P (a, b, r) +
exp 1- a r+b I

2( + r1 ) '
(r + r ij

V j-1 j-1
Z (r + r8 ) j E Z (i-1) (ij-)
j=1 k=O 1=0

- {r -r 1 ( bark- Ik iabr + [rl br k-I+1 _ r-1 I a k-+ti I

X Ikf 1 abE_.] I (C(-28)

Letting m = k - + 1, and noting that k and hence m can range from - to + -o without changing
the value of Eq. (C-28) because of the benavior of (J11) as defined by Eq. (C-Z3),

P tn h r) =P In b r +it - I -0 - -

exp I[ a2 + b2 I +-
Z(1 + r j V

Ir + I(r + r1 ) m :1cc
f r-a 1brim _-1 , a m1 7 [ abr IIet' a' -± 'EF'-z tml [T -+

+ (r-r ti 1br m-im-1 I +r 21} (r + -1)-2j
j=1

j-i
2 (i -) (0 i ) lC Z9j

E=O

We now inquire about the final sum in Eq. (C-29). We have

2j-2
Z (Sia ) q = (i + i )- j-2

q=O

= (i + X)i-1 (I + X) -i

j-1 j-1
= V v (j-tIij-1aiXij-i-n

L I \ e J In/A
1=0 n=O

Comparing powers of x, with n = m + f-1, we deduce

1=(0 - j( J i ) ( 6 )
1=

By Eq. (C-31j and the behavior of ( jJ ) as defined by Eq. (C-23), Eq. (C-29) now becomes

exp --- I V

P V(a, b, r) = Po(ap b, r) + a j (rl d- r t2it *~~~~1 ~( r i -V ) = (Z-2)
m -j j-2 m

m= -j+Z

{[rSm a r t (ar)m] Im [abiZ|+(r-r 1 brm abr 1

exp- a - Ib2 I (br _ abrj
P (a, b, r) + L t +i r br'4 tI i + r 

r+r ) I (ri4-r
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Ir-r b + r I ( I (im)
(r + I ) I + r m= r--ji-2

j-1
*lfrlbar~m r (a) im 21r +A-(r-r )a |- br ml brb

1 + r- t n=|ji+±

a2( r ) a- br ? 1 h
P' (a, b, r)=P (a, br)i- exp i-a r2 b (b r-1it ~ 0(r + V ) (r r1

it

( Z-2 ) (br)n I abr )

+ r - r- ') -I -zjR_ -i h+ I[ (r + r S (rGIr) V( ) (r( - r > In

+ Z (r + r 1) iz E ( |r(i-m) -r1 (Z i-m2 br a
3=z nst

- 'r~t (2J mi)- r(,j{,-)] Iabrf)l) Imthi

+ (r - V1) 5 (r + r-t Fzi (zi-) I [h]

+ (r-r 1 (r- 1 )-35Qi- )JlrO l-n
j=Z

+ (r -r E Y r+ri~il ( i-Z-) Vbn+ a br n] h
j=Z n-1

where we have used the fact that I (z) = I (z), and h = abr/(l + r ). Gathering terms,
-I m

P (a, b, r) = P(a, b, r) +
2(1 + r )

Jr + r -I
I (r r )I - i (2 Z (r -r ) I [h] J 12

I 3=j1 (ri+ -r Iz

+ (r-- r -)- (bLr - -) I11h]a br 

i i-i
*+(r-r i) 5 (ri+Vr 5 (21 z-) [(br)n + (lar)n] I[h]

j=Z n=i

i i+ 5 (r + r1I) 5z l
j~z m=l

-|r' (j j-) -r ir( ) (-b-) ) [h] j j-m i \ji-m br jI M

48

((C- 32)

Zi-2 r -I (Zj-2)](br)M
(14j-M) - j+m -a



NRL REPORT 8443

exp[ a2 rZ + bZI

=P 1 br)- 2(1 + r)o , (ri-r ) Ir -r- 1
I,- -

V r

+ Z (r + r-I)_d zj

j=t m-t

- 1r-' (4jim) - r(Zji-)1 (gr) )ma h]

Rearranging the double summation in Eq. (C-33) so that summing on m occurs first, we have,
finally,

P (a, b, r) = P (a, b, r) + exp |-)r )+ b | J(r- r-) I[obr 9 (|Z|11)
2(l + r ) i 1 ~~~~(r +r

+ E Ijm I ibrZ (a)

(am 5m(br) z
j=m

[r(Qit)- r l('.i44)I (r + r-I)-2j-1

|r 1 (j-m) r(Zj-)I (r + r ) )z j

= P (a, b, r) + exp a r2 Ib f(r -r) brm + arr I I)mbr

/ 2j-6 mo, - 2
V ( +~m ) (r + r ') i?_* 5 ( jM r

j=mi-6 mon

V V

+ 5 m[( ar)m_ (a)m] I I abr z
m= r mi j=r m

(2i - f)l Cr + r ) |1
(ji- m.!( )

Equation (C-34) is valid for v 1 i, a t 0, and b # 0, and dmo is the Kronecker delta-function,
6mo = i for m = 0, 6 mo = 0 otherwise. When r = 1, Eq. (C-34) reduces to

P (a, b, t) =P (a, b, b) + exp [-(az + b)/4]

V V

* 5 m[a)m - (a)m] I (ab/2) 5
m=i j=m

(21 - )! Z-2j
(j + m)! (-} - (C-35)

There is an alternate expression for the final summation in Eq. (C-35) that may sometimes
be preferable. Using the identity

(2 -)!2Zi _ (2 m
j- ! j -ml ) v +m)!

j=m j=m

(V + Io, Zj (m. > i)(i + i~)!
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we obtain in lieu of Eq. (C-35)

P (a b, 1) =P (a, b, 1) * Z exp L- (a + bt)/4]V 0

L i [(b)m _ (a)m- I (ab/a) 5 (r+i!l 2 (C-37)
4,(it inM)! a -b~ 1 m ( - mI!'

m=i 1=rn

To prove Eq, {C-36), it suffices to establish that it is true for v = m, which can be seen im-
mediately because the summations of Eq. (C-36) are then just single terms, and that the difference
in the right side between the summation for P i M + 1 and that for V = M is equal to a like differ-
ence in the ieft side. Taking these differences, we have to prove

2ZM + * !ZŽM-2 M + 2)Z-3
CM + i + m)! (M + in m) = m(M +I i+ m)! (M + i-I '

M -~
2-M_-2 V (M + ')! V ¾ - M - zm - i) C38)

m - ( M~9 + i + m)" ~j ,f- X)!
j=m

which becomes, multiplying Eq. (C-38) through by 2M+2 m(M + i + m)! and taking the difference
UbLetweIi L1Lt SLIlgl LsCfLilems

M -M
v us r2 C(M + i + Zm -j) - (2M + 1)Y2 C-39)

-j=m

The left member of Eq. {C-39) may be written

MI M

(M in)! [(M + j + i1)-Z(j-m)= L(M i-m I), 

- M (M +

L (M + J)! - -j (C(-40)

j=m+i

and changing the subscript j to j5 = 5 - I in the second summation of the right-hand side of
Eq. (C-40), we obtain a sum identical to the first sum on the right-hand side, except that it reaches
only to M - i rather than M. Thus Eq. (C-40) is equal to (M + j + 1) I2 J/(1 - m)! for j = M, and
Eq. (C-39) is thereby proved, substantiating Eq. (C-36).

A.thtiugit rqs. (C-33) axed IC-37.) aIe general foLualuas, it nlmay on occasion be pr-eiert-ace to
express the solution in terms of P (a,b, 1) and a single pair of Bessel functions, by reducing
the sum of Bessel functions through Bessel-function recursion relations. We have done
this for i of 1 through 5, inclusive, and find that the minimum number of algebraic terms
is obtained when reduction is made in terms of I (ab/2) and Iv ilab/Z)' However- the number
of algebraic terms appears to grow like i + fv(v - I}]/Z, so that it is difficult to go much beyond
v = 5:

P (ab, i) = P (a,b, 1) + 2 (b Za ) exp[-(a + b 2)/4] q_1 Ii(q) (C-41)
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P2 (a, b, 1) = P (a, b, 4) + Z 7(b -a% exp [-(la + b2)/4]

* [f2q 1t 11(q) + q( 1(q) (s)J (C-42)
1 222

P3 (a, 1, 1) = P (a, b, 1) + I ° (b2 - a ) exp [-(a2 + bZ)/4]

* [16q I2(q) (129 + s) + q 3 I3(q) (28p + s2)] (C-43)

P4 (a,b, I) = P (a, b, i- + C 13 (b -a )exp[-(a + b )/4]

* [4q(3 I3 (q) (195 . 25 + 69 2 s + 6Op i5s 2

+ q 4 14 (q) (65 24 p * 44 ps + 53)] (C-44)

P5(a, b, 1) = P0(a, b, i) + 2 16 (b2 - a ) exp[- (a + b )/4j

. [8q 4 I4(q) (843 28 + 87 27s + 3104p + 268sz + 5Zps + 3s 3

+ q5 15 q) (843 2 p + 87 25ps + 64psz + 4 96 p2 + S4)4 (C-45)

where p = a b, q = ab/2, and s = a + b.

IV. SIMPLE DERIVATION OF P0 (a, b, r)

For completeness we present here a short derivation * of the relation between P (a, b, r)
and Marcum's Q-functlon, which is quoted in Eqs. (36) and (37) and which can be obtained from
Maximon's result [Eqs. (C-2) and (C-3)] and the second series of Eq. (C-4) of this appendix. The
following derivation given here appears to be considerably less complicated than that employed
by Maximon.

Referring to Eq. (C-6) of this appendix and to Eqs. (2B) and (32) of the text (generalized from
r = i), with a = a2 p = 2

W ~~~~~~Xr2

P( NJc, 4ff1.r) = 3 exp f-(X + )/2 ] Io(4 X) dX exp [-(Y + ±)/2 I I Yg dY (C-46)
0 4 ~ ~0 ~o0

The Laplace transform of P(IT , r) with respect to p is

L(a, r, s) 5 P (4W, N, r) eG sdf
0

- A-S exp(-(X+a)/2 JIJf dX exp[-Y/2] dY exp [-P(s i- I KYIW) dOo 0~~~~~~~~~~~~~~~~Y 

~~gGO p~r 2 r~~ +2)

--j-j expr-(x+<a)/21JI(N/) dX exp Y/2 + Y/(4s + Y)l dy
~~~~~ o

* The Laploce transform method given here was apparently anticipated by J. E. Storer in unpublished work performed
in 1960. (See the remarks of Jones 3 3 which introduce his Appendix B.)
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i y.c e / I 10 4 I-| exp[-sXr /(i + 2s)1J dX
0

exp {_ = } expt - ar}s 4 ~~22 
L~a,r~s) = 2j f+ r)} exP 41 2 +1£)2L +iZ{1t (+ r2 V 1(i + r s + 2 1 + r -

exp-{ or Z} P {4(r2 + s) + ri)s I C
ep 2( +r) ep4r 12 -a1 r t 2 
2(1 + r2

-1 2 -i(2-I2 I~~~~t-2( + r )C47

where we have used the Laplace transform formula 3 7

5 expf-yU] I (adh) dU = y-' exp¼?/y) (C(-48)

Examining Eq. (C-47), we see that it is the Laplace transform of a sum of three terms; the
first is unity, the second is, by Eq. (C -48),

exP-{ i +2 
2z xp {2 0

(1 + r ) L2(1 r)> 

and the third is

r2
exp o

2(- + rZ) \ S exp I. } 21I [r r/(± + r2 )] dP . (C-49)
2(1 r2z) 'o k (t + r )~

If the upper limit of the integral in Eq. (C-49) were infinity, the entire expression would be unity,
again by Eq. (C-48), so that we conclude

(%I-l, r) - 3 exp | r + r cl df
+ r 2 ,+ r

-- z exp |_ ar /|I[,r/(h + r2)]

Sba Ib/;i) exp {_ (ar/f; + (b/fl z } 

o (b 1r) i(bb/ ) I db/rT))
exp|- azr _b j b { abr j

(1 + r2 ) F 2(t ± r J i- r
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Therefore,

P 0(a, b, r = _)( ar 12p 2(I +1221C_50_
where bar} = Q~i+r ± )+ - (1 + r2 ) ep ta + rZl I ° [i.::r1 (C-SO)

where we have returned to the parameters a = X, b = 4 and have referred to Eq. (C-4). Max-
imon's result [Eqs. (C(-2) and (C -3)1 for i = 0 is checked by substituting the second series of
Eq. (C-4) in Eq. (C-50).
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Appendix D

COMMENTS AND ERRATA FOR APPENDIX C

Appendix C has been reproduced in its entirety from Price [7]. It contains the neces-
sary derivation to complete the analysis begun in the present report's text of probability of
error with no smoothing of the data.

The mathematics in Appendix C was checked and found correct with the following
exceptions:

* In the equation which follows Eq. (C-13) the exp [-(a2 + b2 )/2J factor in the
second line should be multiplying the entire right-hand side of the equation rather than just
the second and third lines as shown.

* In Eq. (C-21) the exp t- (a *3)] factor in the first line should be exp (- (a + 1)2].

In neither of these cases does the error propagate to tht equations which follow.
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