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Fig. 1 — Double-ended backward-wave Yagi hybrid antenna
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DOUBLE-ENDED BACKWARD-WAVE YAGI HYBRID ANTENNA

This report describes a novel dipole endfire array configuration on which the currents
inherently tend to taper as required for low sideiobes [1]. In the conventional traveling-
wave array designed for endfire, excitation is provided at one end of the array. The currents
on a uniform array of elements tend to taper away from that end; other current distribu-
tions are obtained by changing the elements themselves or their coupling to the traveling-
wave structure, In the proposed configuration (Fig. 1) excitation enters at a more medial
point of the array, and conceptually the new antenna combines a backward-wave segment
[2] with a forward-wave Yagi segment [3]. Currents on the medial element and elements
adjoining this element (which is excited directly from the source) are enhanced by com-
ponents usually lumped as (unavoidable) “feed radiation.” An array of 16 dipoles chosen in
accordance with this idea was computed to have a sidelobe level better than -20 dB at the
design frequericy and -16 dB over an 8% band. A conventional Yagi produces sidelobe levels

ririmarinaatale 14 A

n tha Ao
of approximately -14 dB at the design ucqut:ut..y l_‘:t]

ANALYSIS

An equivalent circuit for the backward-wave Yagi hybrid antenna is shown in Fig. 2.
The N-port feed network is shown at the left. Port 1 is the input. Ports 2 to K + 1 represent
terminal pairs at which a backward-wave structure is connected to K dipole radiators. At
ports K + 2 to K + L + 1, reactive terminations are connected to L Yagi director elements.
The network at the rlght with M = K + L ports represents radiation and mutual coupling of
the array elements. Conditions at the nth port will be described by a voltage V,, and a
current I, directed as shown on the diagram.

It will be convenient to group the currents 7, in two distinet ways, leading to two
thltign"ngs of the total currents matrix:
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Fig. 2 -- Equivalent circuit for a backward-wave
Vagi hyhrid antenna
~ . I
_{ﬁ = [IZ 13,..IN] , dimension 1 by M,

L= [t I, ] dimenson1by K +1,

oy
|

;f}“ = [IK+2 IK+3...IN:| , dimension 1 by L,

with ~ denoting the transposed matrix. Voltage and impedance matrices are partitioned
conformably.
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The relation between voltages and currents of the feed network is governed by the
impedance matrix Z:

Ve=zI (2a)
or vl Tz V2107
R :_Z_"E _-I_"_ , (2b}
Y. va: B | =u

wherein the impedance matrix Z,,, which characterizes the backward-wave circuit will be
taken up in the next paragraph, Zy, = Zyy=0,and Z,, isa diagonal matrix. The entries on
the principal diagonal of Z uy are reactive terminations, jX 49, ...,JXg+p+1, 2t the ports of
the Yagi directors. Equation (2a) may now be rewritten (using a different grouping of the
elements) as

Val| _ _Z_“”‘_!_Z_‘E‘.’. Ja (3)
Y5 Zgo | Zpp | |15

Radiation and mutual coupling of the dipoles give the relation
l’ﬁ = ZA(-_Iﬂ)a (4)

where the elements of Z, are known [5,6]. Substituting in (3) yields

ZA(-!ﬁ) = Zpodo * Zgglg (5a)
or

~Ig = (Zgg+ Z,)" 2,1, . (5b)

The (input) impedance of the array is obtained by eliminating I; from the first constituent
of (3):

Va = [Zace" aﬁ(zﬁﬁ"'ZA)‘l zﬁa} Ia : (6)

The radiation pattern is determined by the relative values of the antenna currents -Ig,
which can be found from (5b) by arbitrarily setting I, = 1. It is obviously independent of
any source impedance or precise value of input impedance.

We now return to the evaluation of Z,,,,, the open-circuit impedance matrix of the
backward-wave feed-line network. This network is shown in Fig. 3a, with Figs. 3b and 3¢
defining the circuit symbols used. The dipole elements are connected in shunt, forming a
shunt three-port T junction at the terminal pairs marked 2, 3, ..., K + 1. Figure 3b represents
a lossless transmission line of length £, characteristic resistance R, and propagation
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Fig. 3a — Backward-wave feed-line network
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Fig. 3b — Transmission line Fig, 8¢ — Phage-reversal network

schematized in two ways

constant kg . For TEM lines, xy would be proportional to frequency. In the antenna diagram
(Fig. 1) the dipoles are shown atfached {o alternate conductors of the two-wire transmission
line. This produces a reversal in excitation phase which can also be schematized in the {wo
alternative ways shown in Fig. 3¢: transposition of conductors and a length of transmission
7 electrical radians in length (independent of frequency) [7]. The two-port connecting the
input (1) with the (K + 1)th terminal pair merely alters the internal impedance of the source
and does not alter the patterns. Although shown arbitrary, a (dummy) section of the
Thanlrerramnad 1s Al Fomtrn Amrrrat i ave ma Ml o
ua.\..nwcu.u-w avt: llllc WGO b.l].UDGll ilul bUllVClllUllbc. J.J.l': UPCJ\I'L’LI.\JU.JU uuycuaubv IIIGU&JA l—all

now be calculated via a number of circuit techniques all leading to relative values of V, and
I:Z..=V,/, whenl, = (0foralir+s.

A 16-ELEMENT ARRAY

As an illustration of these ideas the performance of a sixteen-element backward-wave

Va AVEaTy WTa6 v rridnd Tha awwar ard o laalreerawd wroara cbmiadiiwa Af fivn Ainala
1051 GLLIAY Wil \.,ulu}_.lu.wu LIS array \.uu;h.u.xucu 4 GACEKWaAIhG-Wave Siruciule OL 1ive Luyuu:o

spaced 0.260 m apart and eleven Yagi director dipoles spaced 0.4 m apart. The TEM two-
wire transmission line of the backward-wave circuit had a characteristic resistance Rg = 300,
Each dipole rod had radius 0.024 m. The lengths of the dipoles are given in Table 1 (in order
from the backward-wave end to the front of the Yagi).

The computations were carried out using the formulas for mutual coupling among
canonical minimum-scattering (CMS) antennas supplemented by a (separately evaluated)
antenna impedance [6,8]. The equivalent circuit for implementing this calculation is shown

i Wi A A+ tnwminnle hh! #ha mabiinl § ndannng urara talran +n ha tha samn nc v ahwt
Ll L. X, fav WErminass 55 08 mMivtual L.ulycuu..u\.cﬂ wWore tadén o oe Loe 8aMe a5 10T Saolv

dipoles [5]. This approximation is justified by the slow change in pattern characteristics
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Table 1 — Dipole Lengths in a 16-Element Backward Wave

Yagi Array
Backward-Wave Dipoles Yagi Director Dipoles
Element Length (m) Element Length (m)
1 0,780 6 0.340
2 0.660 1 0.380
3 0.680 8 0.340
4 0.650 9 0.340
b 0.560 10 ' 0.340
11 0.340
12 0.300
13 0.300
14 0.300
15 0.290
16 0.280
EQUIVALENT ACTUAL
ANTENNA TERMINALS
ACTUAL ANTENNA
CMS ANTENNA TERMINALS

TERMINALS |

TO ACTUAL LOAD

——
EQUIVALENT LOAD
FOR CMS ANTENNA

Fig. 4 — Equivalent circuit for dipole calculations

for dipole antennas less than 1 wavelength in overall length [4]. The dimensions of the

dipole then enter the calculations only through their effect on the individual dipole input
impedance. ‘

H-plane antenna patterns were computed

a
1.060 m. Patterns in the 8% band from 0.960 to

e wavalonoth
e “'Dl\lllsul

are shown in Figs. 5
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Fig. 5a — H-plane radiation patterns for the
16-element antenna of Table 1 computed at the
free-space wavelengths indicated
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Fig. 5b — H-plane radiation paiterns for the
16-element antenns of Table 1 computed at
the free-space wavelengths indicated

Within this band, sidelobes remain below -16.6 dB. The sidelobe level deteriorates to -14 dB
at the edges of a 10% band. The dipole element pattern assures that E-plane patterns have
sidelobes at least 2.5 dB lower than the corresponding H-plane patterns, Radiation for
negative angles (backward lobes) was not computed explicitly.
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