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DOUBLE-ENDED BACKWARD-WAVE YAGI HYBRID ANTENNA

TTrmn flfT 7rTnTfL& T
11,L ±a'JVtL~ I IwJN

This report describes a novel dipole endfire array configuration on which the currents
inherently tend to taper as required for low sidelobes [1]. In the conventional traveling-
wave array designed for endfire, excitation is provided at one end of the array. The currents
on a uniform array of elements tend to taper away from that end; other current distribu-
tions are obtained by changing the elements themselves or their coupling to the traveling-
wave structure. In the proposed configuration (Fig. 1) excitation enters at a more medial
point of the array, and conceptually the new antenna combines a backward-wave segment
[2] with a forward-wave Yaai segment [3l . Currents on the medial element and elements
adjoining this element (which is excited directly from the source) are enhanced by com-
ponents usually lumped as (unavoidable) "feed radiation." An array of 16 dipoles chosen in
accordance with this idea was computed to have a sidelobe level better than -20 dB at the
design frequency and -16 dB over an 8% band. A conventional Yagi produces sidelobe levels
of approx~imladt _Lt 4A dB at, Vile des_~ frqec A4 til. OfFJ9ItJJ~~~~~~~~~~~~~~~~~~~~~~~~~flu~~~~~~~~aL~~~~~~i3 .L± LII-) Gb LIIC ueoi~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii I~~~~~~~~~t~~~~4Utflht.23/ L'14~~~~~~~~~~~~1r11L MI CLU L±

ANALYSIS

An equivalent circuit for the backward-wave Yagi hybrid antenna is shown in Fig. 2.
The N-port feed network is shown at the left. Port 1 is the input. Ports 2 to K + 1 represent
terminal pairs at which a backward-wave structure is connected to K dipole radiators. At
ports K + 2 to K + L + 1, reactive terminations are connected to L Yagi director elements.
The network at the right with X = K + L ports represents radiation and mutual counling of
the array elements. Conditions at the nth port will be described by a voltage V, and a
current In directed as shown on the diagram.

It will be convenient to group the currents In in two distinct ways, leading to two
nnrl-iti;nningcr nf +ho +tl n Ivancnn-u.p-Mtitmonin of the total srn .ax

where

[1i] ,dimension 1 by 1,

rvanuscript submitted October 30, 1 979.
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Fig. 2- Equivalent circuit for a backward-wave
Yagi hybrid antenna

4 = [ I.~.IN] X | diension lby M,

4 [11 I aIK+ j] 1 dimension 1 by K + I,

.4 = [' lc+2 IK+ 3 ... I] dimension1byI,

with - denoting the transposed matrix. Voltage and impedance matrices are partitioned
conformably.
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The relation between voltages and currents of the feed network is governed by the
impedance matrix Z:

V ZI (2a)

or r r i2
__ =~ _ _l__ ___,(b[tJ = z :J LtJ ~~~~~~~(2b)

-Y~fP I P zpl_-

wherein the impedance matrix Zv, which characterizes the backward-wave circuit will be
taken up in the next paragraph, Za = Z = 0 and Z is a diagonal matrix. The entries on
the principal diagonal of Z.P are reactive terminations, jXK + 2' IK + L + 1, at the ports of
the Yagi directors. Equation (2a) may now be rewritten (using a different grouping of the
elements) as

rva trzaa" $#2 pza1 (3)

Radiation and mutual coupling of the dipoles give the relation

P = ZA (-10), (4)

where the elements of ZA are known [5,6]. Substituting in (3) yields

ZA(-IP) = Zoa-la + ZAi 0 (5a)
or

-4P = (ZOOp+ ZA)' ZOa-I (5b)

The (input) impedance of the array is obtained by eliminating l4 from the first constituent
of (3):

V. = [Z. -Zajj(Zp + ZA)1 ZHa] Ia (6)

The radiation pattern is determined by the relative values of the antenna currents -l:,
which can be found from (5b) by arbitrarily setting 'a = 1. It is obviously independent of
any source impedance or precise value of input impedance.

We now return to the evaluation of Za,, the open-circuit impedance matrix of the
backward-wave feed-line network. This network is shown in Fig. 3a, with Figs. 3b and 3c
defining the circuit symbols used. The dipole elements are connected in shunt, forming a
shunt three-port T junction at the terminal pairs marked 2, 3, ..., K + 1. Figure 3b represents
a lossless transmission line of length V, characteristic resistance Ro, and propagation
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Fig. Sa - Backward-wave feed-line network

lb, X0 I

Fig. Sb - Transmission line Fig. Sc - Phase-reversal network
schematized in two ways

constant Kc . For TEM lines, tc would be proportional to frequency. In the antenna diagram
(Fig. 1) the dipoles are shown attached to alternate conductors of the two-wire transmission
line. This produces a reversal in excitation phase which can also be schematized in the two
alternative ways shown in Fig. 3c: transposition of conductors and a length of transmission
ir electrical radians in length (independent of frequency) [7] . The two-port connecting the
input (1) with the (K + 1)th terminal pair merely alters the internal impedance of the source
and does not alter the patterns. Although shown arbitrary, a (dummy) section of the
backnwaru-vcvavc line wasi coeFrc"JvenIUO. Ihe upcnuut impvuanc kLIIcana
now be calculated via a number of circuit techniques all leading to relative values of V, and
I,: rj= Vr/Is, when Ir = ° for a r s

A 16-ELEMENT ARRAY

As an illustration of these ideas the performance of a sixteen-element backward-wave
a. -4a ,van '.ILIJIt. The array LAJised a pba'C.ardal-ave OIJ4.-. of raAa-- ipoes

spaced 0.260 m apart and eleven Yagi director dipoles spaced 0.4 m apart. The TEM two-
wire transmission line of the backward-wave circuit had a characteristic resistance RO = 300.
Each dipole rod had radius 0.024 m. The lengths of the dipoles are given in Table I (in order
from the backward-wave end to the front of the Yagi).

The computations were carried out using the formulas for mutual coupling among
canonical minimum-scattering (CMS) antennas supplemented by a (separately evaluated)
antenna impedance [6,8] . The equivalent circuit for implementing this calculation is shown

LV'- A AA + 4-nm--nnIn t-.o-J +t¶-. s 1+ a1 Annnn nn1n.rnw, +nlrn +n tim onrnn ProIrO-+
Ai .

t
f,. 1. Al -a w.f UI. *AtIU I I t.J. t ut, JV Y. oafhe _J 1. IU

dipoles [5] . This approximation is justified by the slow change in pattern characteristics
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Table 1 - Dipole Lengths in a 16-Element Backward Wave
Yagi Array

EQUIVALENT ACTUAL
ANTENNA TERMINALS

CMS A
TERMIN

I I7

c' br

TO ACTUAL LOAD

EQUIVALENT LOAD
FOR CMS ANTENNA

NTENNA
JALS

ACTUAL ANTENNA
TERMINALS

Zas R r+jXa
n2 = Re

Fig. 4 - Equivalent circuit for dipole calculations

for dipole antennas less than 1 wavelength in overall length [4] .The dimensions of the
dipole then enter the calculations only through their effect on the individual dipole input
impedance.

H-plane antenna Datterns were ennoputed at free-space wavelengths from- 0.A40 to
1.060 m. Patterns in the 8% band from 0.960 to 1.040 m are shown in Figs. 5a and Sb.

5

Backward-Wave Dipoles

Element I Length (m)

1 0.780
2 0.660
3 0.680
4 0.650
5 0.U60

Yagi Director Dipoles

Element I Length (m)

I 0.340

7 0.380
8 0.340
9 0.340

10 0.340
11 0.340
12 0.300
13 0.300
14 0.300
15 0.290

16 0.280
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Fig. 6a - H-plane radiation patterns for the
16-element antenna of Table 1 computed at the
free-space wavelengths indicated
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Fig. 5b -H-plane radiation patterns for the
16-elem-ent a6tena od Table I computed at
the free-space wavelengths indicated

Within this band, sidelobes remain below -16.6 dB. The sidelobe level deteriorates to -14 dB
at the edges of a 10% band. The dipole element pattern assures that E-plane patterns have
sidelobes at least 2.5 dB lower than the corresponding H-plane patterns. Radiation for
negative angles (backward lobes) was not computed explicitly.
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