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The tensile properties and chemical composition of the base metals are summarized
in Tables 1 and 2, and that of the weld metals in Tables 3 and 4.

TEST PROCEDURES

Single-edge-notched (SEN) bend specimens were used to evaluate the SCC properties of
the materials. All specimens were side-grooved and fatigue-precracked. The base plate SCC
specimens were 25 mm (1 in.) thick, the full thickness of the as-rolled plate, with the crack-
plane perpendicular to the width or long transverse (T) and parallel to the rolling or longi-
tudinal (L) directions (TL orientation). The as-fabricated weldments were all 38 mm (1.5 in.)
thick, and SCC specimens from weldments prepared in FY-1977 were initially tested in full
thickness. These earlier welds were retested together with all new weldments prepared in
FY-1978 after reducing the SEN specimen thickness to 25 mm (1 in.) by removal of the
outermost material from opposing faces of the specimen, as illustrated in Fig. 1.

Fig. 1 — The reduced-section weld-metal specimen for K Isce determination

The cantilever test method was used to determine the threshold stress-intensity factor
(K fscc) for stress-corrosion cracking [5] . The essential features of this test method are il-
lustrated in Fig. 2. The method is characterized by a constant load (P) but an increasing K I
as the crack grows by stress corrosion, as illustrated in the graphs. The symbols a; and ay are
initial and final crack lengths; P; and Pf are initial and final loads. The Kies’ equation shown
in Fig. 2, where M is the moment and a, B, and W are the crack length, thickness, and
width, respectively, was used to calculate all of the stress-intensity factors, K 1 [6];

For a new material, the stress-intensity factor for fast fracture in air, K x> Was first
measured and subsequently used to guide the initial load setting for the first K. test. The
initial load for the first K., test was usually 40 to 50% of that corresponding to K, . For
a material that was being retested, the K .. value determined previously was used as a point
of reference for the retest. The initial load in the retest corresponded to a K value that
was 11-22 MPay/m (10-20 ksiy/In.) below this reference point. To determine the critical K;
value for initiating SCC, a step-loading bracketing technique was used. Loads were increased
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Fig. 2 — Essential features of the cantilever test method, the SEN
specimen, and the Kies' equation for calculating the stress-intensity

factor, K p

incrementally every 500 h until crack growth was indicated by a precision dial gage posi-
tioned near the loaded end of the cantilever beam to monitor its movement. Each step or
load increment corresponded to an increase in K of approximately 11 MPay/m (10 ksiy/In.).
Upon completion of each SCC test, stress-corrosion crack growth was verified by visual and
microscopic examination of the fracture surfaces. The SCC threshold was considered to be
bracketed between the K; which initiated crack growth and the highest K; which failed to
do so within 500 hours. Thus, Kj,.. was obtained by averaging the K; values associated

with the final two loads.

All of the SCC tests were conducted in nonflowing 3.5-percent sodium chloride (NaCl)
solution with the specimens coupled to zinc anodes and at ambient temperature of approxi-
mately 25°C. The salt solution was changed each work day.

RESULTS AND DISCUSSION

The results of the cantilever SCC tests are given in Table 5 for the base metals and in
Table 6 for the weld metals. Included in the tables are K, values—the stress-intensity fac-
tors for fast fracture in air—and K, values for experiments conducted with two different
hold times between load increments—100 h in one set of tests and 500 h in the other. The
longer hold times were utilized in the retests to increase the reliability of the K., data
base. The Ky, . values from the 500-h tests are plotted versus the yield strength in Fig. 3
for the base metals and in Fig. 4 for the weld metals to assist in evaluating SCC behavioral
trends and identifying the exceptional SCC performers.
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Base Metals

As indicated in Fig. 3, the SCC properties of the HY-100 base metals (Codes J and K)
appear to be insensitive in the 600-800 MPa range to yield-strength changes induced by
heat treatment. There is a significant lowering in K., values in the transition from HY-100
to HY-130 base metals and an apparent increased sensitivity to heat treatment and changes
in yield strength. Heat treatment which produced embrittlement (Code C) or coarse-grain
microstructure (Code H) decreased the SCC resistance of the HY-130 base metal. Retemper-
ing Code H material which produced a lower yield strength (Code I) improved the SCC
properties of HY-130. Both as-received electroslag remelt (ESR/Code B) and electric fur-
nace (EF/Code A) processed materials had relatively good SCC resistance with little differ-
ence in SCC behavior between the two under these experimental conditions.

Weld Metals

The first year baseline studies (FY—1977) on full-thickness weld metal specimens
revealed that the surfaces were generally more susceptible to SCC than the midportion
of the weldments. Evidence for this difference in SCC behavior was the shape of the ad-
vancing stress-corrosion crack, as illustrated in Fig. 5a. The effect, presumed to be the
result of different levels of tempering from the middle to the surface of the weld metal,
was most pronounced in the GTA weldments which were prepared with the largest number
of welding passes. In view of these observations, the 500-h SCC tests were conducted on
reduced-section specimens to limit this potential source of variability and to permit a
comparison of the different weldments on the basis of their optimum properties. Figure
9b, a fracture surface from a reduced-section weld-metal specimen, displays a fairly straight
crack front which is indicative of relatively uniform through-thickness SCC properties.

As for general trends, Fig. 4 shows that K., decreases with increasing yield strength
from a high value of approximately 120 MPa\/r—n‘ of HY-100 weld metals, Codes A and B,
to approximately 90 MPay/m of the higher yield strength HY-130 weld metals. The major
effect of yield strength on K., may be due primarily to mechanical factors associated
with the cracking process, crack initiation being more effectively deterred in lower yield
strength material by increasing crack-tip plastic zone sizes and crack blunting.

A notable exception to the generally observed effect of yield strength on K Isce 1S the
Code T weldment produced by the GTA process with a filler wire that closely matched
the composition of the HY-130 base plate. The outstanding SCC properties of the Code-T
weld metal appears to be derived from a favorable weld-metal chemistry and microstructure.
In particular, the Code-T weld metal is characterized by relatively low sulfur, oxygen, ni-
trogen, and manganese contents, and a fine-grain, tempered, martensitic microstructure. In
contrast to this, the K, value of the 120S weld metal (Code Z) with higher sulfur and
manganese contents is significantly lower in spite of its fabrication by the GTA process
and a lower yield strength. It would thus appear that the negative effects of high yield
strength on Kj,.. have been overridden by the favorable chemistry and metallurgy of the
Code-T weld metal.

12
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FATIGUE
scc

FAST
FRACTURE

Fig. 5 — (a) Fracture surface of a full-thickness (38 mm) weld metal speci-
men (Code T) showing large differences in SCC propensity from the center
of weld metal to the outer surfaces, and (b) fracture surface of a reduced-
section (25 mm) weld metal specimen (Code T) showing a relatively straight
stress-corrosion crack front

SUMMARY

The present studies have shown correlations between the SCC properties of high-
strength steels and weld metals, and

® Yield strength
® Microstructure
® Weld metal composition
In general, low yield strength, a tempered martensitic microstructure, and low levels of

impurities such as sulfur, oxygen, and nitrogen appear to favor improved SCC properties
for these metals.

In utilizing K, data, it should be recalled that the SCC tests were conducted under
zine-coupled conditions in a quiescent salt water environment which polarized the specimen
at~1.0 V as measured against the Ag/AgCl reference electrode. Implicit in this caveat is
that the measured value of K, is unique to these test conditions, and that changes in
electrochemical potential or environment will likely affect K., .

13
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