
to d 32)

NRL Report 8289
Af/ I 

The Gravity-Capillary Wave Interaction Applied
to Wind-Generated, Short-Gravity Waves

- WILLIUAJ. PLANT

Physical Oceanology Branch
Ocean Sciences Daision

February 8, 1979

NAVAL RESEARCH LABORATORY
Washingwon, D.C.

Appnved fkr public rcau distibution unlimited

i

I

I

i

I

I
I

I

I

I
I

I



SECURITY CLASSIFICATION OF THIS PAGE (O., De.. En.Ir.d)

20. Abstract (Continued)

a k 5 j2 dependence in the no-wind case. Comparisons with more accurate numerical evaluations of
the interaction are given.
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THE GRAVITY-CAPILLARY WAVE INTERACTION

APPLIED TO WIND-GENERATED, SHORT-GRAVITY WAVES

INTRODUCTION

The second-order, gravity-capillary wave interaction elucidated by Valenzuela and
Laing [1 ] has recently been found to play a major role in the equilibration of short-gravity
waves in a wind-wave tank [2]. The exact equations for the interaction require the numer-
ical evaluation of several integrals and thus do not lend themselves easily to the development
of a simple, intuitive model of the interaction. Furthermore, the exact theory is developed
for irrotational waves and includes no wind-speed dependence except in the form of the
directional-wave spectrum.

In this report, the gravity-capillary wave interaction is reexamined for the special case
where one component of the resonant triad is in the short-gravity-wave range. Wind-speed
effects are included in an ad hoc manner by forcing the dispersion relation to conform to
that found in microwave scattering experiments [3] . When a k 4 capillary wave spectrum is
used, the result is a simple, analytical expression for the energy transfer which agrees well
with numerical calculations in the no-wind case. The expression shows that the interaction
may be envisioned as one between a short-gravity wave and a capillary wave whose group
speed equals the phase speed of the gravity wave. The interaction dies out for long-gravity
waves, having a k5 /2 dependence in the no-wind case.

GENERAL THEORY

Valenzuela and Laing developed the theory from the well-known equations for velocity
potential and surface deviation in which they included surface tension. These two functions
were expanded to third order in wave slope, and each order was considered a Fourier series.
From the solutions of differential equations for different orders, they computed the energy
transfer up to fourth-order terms. Their results, corrected by a factor of two in the energy
transfer, are (symbol definitions follow):

aS(k3 ,a3 ) -| T(+)- - S(k1,o4Q)S(k2, UQ))- CJ S(k ,x(j)S(k 3,9 3 )at fJ 1 =1 k 2 2

kw (C1 23 QM -

k2 wv1 S(k2 ,x 2 )S(k3 ,c23 )| dk1 + 2) Z | S(k1 ,dQ)S(k2 ,cS2))

W3 S(k1,a(iQ)S(k3, + k13 S o))S~k 1
(A2 1 3 3 + k2 ( 1 S(k 2 ')(20 S(k J 33) dk1
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where

2irw 2 cO2 ID+ + 12

-(+) = (aw /ak )kW4 IsinBI for Icosfl < 1

O for Icos > 1

and

27Trc2 c 2 IDk A 12
1 2 ki,-k 2

T&) - ~~~~~~ sinj3 for I cosf~ < iT(-) (avO2/ak2)kl ;3 IsinoI 

0 for Icos 1 > 1

Here,

S Si _2 (Sc Dkl'k22 { (sco1 + 82 G)2)(klk2 - kl-k2 ) + SIS2 ( 1& 2(SlVl + S2W2)

k~~~k2k ~~2 2 2 (2)
____2 kjk2\ C3 s|k 1(k2 + klk 2 ) s2 k2 (k1 + kj k2)

((2 +1 w@2 k3 I fk)J2j

where si and s2 give the signs associated with ci, and C02 in the resonance condition

02 ± co, = 03 , k2 ± k 1 = k3 . (3)

The angle 3 between k1 and k3 is given by

3o + 2p 2 + 3(K 2+ K32) | |3(K12 + K32)2 + 4(K 2 + K32) + |+Cosp CosH 2+3(Cos 1 3 ) 1

| 2K1jK3 4K2K23 

(4)

{K3 (1 + K3) + K2(1 2 2[K 1K3(1+ K12)(1 + K3)]1/2 
8K3K31 3

2 2 2 22
(K1 + K3 )(1 + Ki + k3)

8K3 K3
1 3
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where upper and lower signs in Eq. (4) go with those in Eq. (3).

The following additional definitions apply in the above equations:

ki is the wave number of ith wave,

coi = V/gki + Tk- 3 is the angular frequency of ith wave,

ai is the angle of ith wave with symmetry axis,

S(kioa) is the wave-number spectrum of ith wave in cm4. Multiplied by
pwco~2/k this gives the energy spectrum (p density of water),

ki k Ikm,

g = 980 cm/s2 ,

T = 74 cm3 /s2 ,

km = gIT = 3.64 cm-.

The sum over j in Eq. (1) accounts for the ambiguity in a 1 and a2 due to the sign ambiguity
in a resulting from Eq. (4).

WIND-DRIVEN, SHORT-GRAVITY WAVE THEORY

We now apply these results to the case in which the subscript 3 refers to a short-gravity
wave. In this case, only difference interactions exist; i.e., Eq. (3) can be satisfied only for the
lower signs. Furthermore, to include wind-speed effects in the dispersion relation, we write

Vf= g;k1+T +TkJJ -k + k,.U (5)

where, following Plant and Wright [3],

lUil = US - * In + 0o.277 ) (6)
V P~j 0.41 k 

Here Pa and pad are the densities of air and water, Us is the surface water velocity at an air
friction velocity u, and zo is the roughness length at u*. These parameters have all been
determined experimentally.

The assumption that k3 refers to a short-gravity wave requires that k1 and k2 refer to
the capillary-wave range. Thus,

> 3 3 3< Tk (7)gk3 >Tk3 , gk 1 <Tki , and gk 2 2 . (7
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This implies that k3 /k 1 = IK3 / 1 is small and that =0/K 13 . Thus (Ci / 10)2
< K3 IK1 . In the following development, we shall drop terms which are higher than first order
in K3 /I1.

The resonance condition, Eq. (3), may be written

k2 = k1 + k3 ,

(8)

N~gk-3 + k * U. =k/;g + k1 *U. -U, - Tk*g 3+k3 U3 Tk3 2 22

The geometry of this interaction is shown in Fig. 1. Equations (7) and (8) lead immediately
to the following relations:

k2 = k1 +k3 cos 3 (9)

and

gk3 + k3 U3cosa 3 =
3Tk 2k3 cos 1

2 /iTk3
1

+ k3 U1 Cos o 3

U

Fig. 1 - Geometry of the gravity-capillary wave
. interaction applied to a short-gravity wave

4
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where we have used the fact that U1 _ U2 . Solving for cos 1, we obtain

cos 3 =
2k1 [ C30 + (U3 -U 1 ) cos a3] (11)

where C = g/k 3 is the gravity-wave phase speed in the absence of wind. Equation (11),
then, replaces Eq. (4) when k3 refers to a short-gravity wave. Note that the sign ambiguity
still exists for 13.

We must now simplify Eq. (1). First note that difference interactions require that
Si = - and s = +. Thus D +' + = 0 and T(+) = 0, so that only the first integral in Eq. (1)

contributes. Let us concentrate first on D -' + which we shall simply call D. Substituting

Eqs. (3) and (9) into Eq. (2) and using Eq. I 7) yields

D = j 2co 3k1 (k+ + kokl(kl + k3cosf3) (1 1 3 +
(01 + 03)

(12)

_3 _kk3COS (k1+ k3cos13)kk3cos13 I

k3 W, 1 cc1) + W 3

or

D = +i( 3klcos
Wi + k3cosA

(01 + (03 /

Thus, to first order in K3/K1,

D = +i3 k2cos1
w1

The expression for the energy transfer may be written to this same order as

aS(k 3 ,13) )

at

f 2
2 7j=l T(-)| k3 S(k 1 ,a( )) S(k1,cx(Q) -

[ W3 (1 - ) S(k1,a(j))- - 3 (1_k-cosC3)j S(kl,oa()) +

aS(ka(Qj)) + S(k 1,ae()) IIjk3 jdk
ak k 3cos a(i) | k cos, S(k3,Ol dk

1
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or

aS(k3,C03 ' k3 2 .
at____ 2 ' T( ) | -AnS(k,.dh +

W1 (3 - k3 cos) S(k1 ,)(Q)S(k3 ,c 3 ) +

w 3k3c0os a3S(ka {_)+ (16)

WI a~k k +)

23k3eOS9 aS(kj,1 ) S(kla3) dk1 -

1

Since all terms inside the braces are of order K3 /K1 or higher, we need to evaluate T(-)

only to lowest order:

3 21 
47rwlklcos 1| 3W1 0 + 3k1 Ulcosa(<

31singl 3w0o + 2kjU cosu(') 7 s (1)

When Icos91I > 1, T() = 0. Thus, the lower limit of the integral in Eq. (16) may be replaced

by kp, the value of ki when cos3 = 1. From Eq. (11),

3V/ T-k/2+ UlcosoM3 /k3 + U3 cosa3 . (18)

The wind-speed dependence of the term in brackets in Eq. (17) is very weak. For conditions
of practical interest, it varies from about 1 to 1.3. Thus we shall evaluate it at k1 for

a, = 0 and denote it as A. Then,

4Arcolk3cos21 3 ,T-k + 3U,

T(-) = in where A - - + 2U1 (19)

EVALUATION FOR k- 4 CAPILLARY-WAVE SPECTRA

Capillary-wave spectra measured in wind-wave tanks fall off approximately as k-4 and

have an angular dependence close to cos2 a [4]. Thus we now assume that

S(k,oc) = C(u)k- 4 cos 2 a (20)

6



NRL REPORT 8289

for the capillary waves. Then, if Eq. (11) is used to evaluate (03 /ci, Eq. (16) yields

aS(k3 ,03 ) _

at 2 f
k1

3 2g C2 CSU
2 4A7rclkicos 1 C k3cos4 a ( Sk

=l 3 1sing1I k9 _S(k 3,o 3 )

r 2 (j) - (j) 7Cco3k 3coscs k3C 3CU1CoSAl) (COS(a3 -3/2cos13cosa(j1 )

2(w k+5 C(2 k 4

[ ~~1 1 

2N/ Cco3 k3 cos9cosU 1 sinma 1|

+(k5 JI
11 1

as(k3 ,a3 ) _

at L 2'k, j=l
I

2 2go4U(j)AirC (lk 3c0s 1cos 1

3k6 Isingl
1

8A7rCC03 k3 cos3 13 ' 7cos2 a I
3k2 Isinp1 | 2 + 2-cos(3)sina(3) S(k3l3) -1 L ig1 

(22)

8A lrC( 3 k3 U1cos2 cos 2 alQ (coso 3 - 3/2cos13cosa(j{) )S(k3 ,ct3 ) |

3co1 k Isin1 I 1I

Fig. 1 shows that a, = a3 1 3 which accounts for the sum over j in the above equations.

Two cases are of particular importance, namely, when ai3 = 0, and when an integral over3~~~~~~~~~~~~a 3 is performed. For oa3 = 0, we note that (xi = ± ,B so that the sum over j causes the term
involving sin a(J) to drop out. Then we have

1

as(k 3 ,0)

at
- 16A7rC2cojk3cos61 dkl

13k6 singl (23)

S(k3 9O) |
ki

56A7rCW3 k3 cos5 13 dkj

3k 2 Isino3
1

I 8A7rC(, 3k3 Ulcos 40(2 - 3cos2 03)dkl |

kl 3cw3 kj Isinol

Note that Eqs. (11) and (18) indicate that

cosB = vk/k , and sing = N1- k1 /k-

If we use this and let U1 _Us which is independent of kj, Eq. (23) becomes

7
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aS(k3 ,0) 16AirC2k3k3 T1/2J- dk +

at 3 k k7 k 1 -k 1

16A7rC 2k3 ki7 2 US _By dkl
3 f k8 k

1
-

k 1 1 Vk 1kl k

(25)

56AlrCW3kkI52 y dkl
S(k k0) 3 +k /lk

8A7rCC03 k 3 k Us 2 3k, 1 dkX

WIk uk 5/ 2 /\k_ -k I 0/2N/12 any 1 

Now, the only troublesome integral is the last one which contains Col in the denominator.
Using Eq. (24), we may write

(0lk-5/ 2 = k-4[T1 /2 + k1/2Uk-]- 1 (26)1 ~~~~~~~~~1 si

As k1 goes from k, to A, the term in brackets goes from [T1 /2 + Usk-1/ 2] -1 to T-1/2 while k-4
goes rapidly from k5 4 to zero. Thus, the main contribution of the term in brackets will be
near k1, so we approximate wi by

Wx -1 k3/2 [T112 + Ukj-1/2] (27)

Once again note that no approximation is involved if the wind speed is zero.

The integrals in Eq. (25 )are now easily evaluated to give

3S(k3,O) = 11.9T1 12 AC 2 k k-7/ 2 + 11.0AC 2k3k74U5 -
at 3 1 31U

(28)

S(k 0)[57.5ACci k k-1 5l4AC Uak3k1 /U5

If the wind speed is zero, this equation becomes

aSbk3 ,O = 205C2 T4 g 7 1 2k3I 2 - 129CTg1 k32 k51 2 S(kO) (29)
at3

This expression has been compared with the original theory by using a computer program
developed by Valenzuela and Laing [1]; we used S(k 3,0) = 0.0064k 34 for k3 > 0.364 cm-
and zero otherwise. The results are given in Table 1.
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Table 1 - Comparison of Energy Fluxes Predicted by Original Theory and by Eq. (29)

k3 aS(k 3 ,0)/at (Eq. 1) aS(k 3 ,0)/at (Eq. 29)
(cm-1) 3 (cm4) [ (cm4)

0.364 -4.86 X 10-2 -5.71 X 10-2
0.728 -1.60 X 10-2 -2.02 X 10-2
1.09 -8.09 X 10-3 -1.10 X 10-2
1.46 -4.96 X 10-3 -7.10 X 10-3
1.82 -3.40 X 10-3 -5.10 X 10-3

Now let us consider the second case mentioned above, that of integrating the energy
transfer given by Eq. (22) over a3. We assume the following form for S(k3 ,u 3) in conformity
with wave-tank experiments:

S(k3 )cos2 a3

0

Ia 3 1 < 7r/2,

la 3 1 > 7r/2.

Furthermore, in order to simplify the integrations over a 3 , we assume that a. = 0 in all dis-
persion relations so that all dependence on a3 is in the spectral form. In view of the ad hoc
manner in which wind speed is being incorporated in the theory, this approximation is
probably satisfactory. As usual, the approximation becomes exact for zero wind speed.

The integrals over a3 are now straightforward if one recalls that al = a + , and
U2 = a3 -13. We obtain

2 a /2

7r at /S(k 3 aO3) du 3 = 8IrC2k,f / 2 f-~Acoicos 2Idkl

ki 1

r287rC(03k3 1 r A(1 + 2 cos2 1) cos3 13dkl

'3)' 3 fJ kl2 I sinol

[47rCCO3 k3 l AU 1(1 + 2 cos21) cos 213(2 -3 cos13)dkl

S(k 3 ) 1 3 1 collk, lsinfl

9
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Then, letting U1 -U- and using Eq. (26) for w,
sin 1 and cos 13, we obtain

aS(k3 )
at

in the last integral and Eq. (24) for

= 8AirC 2 k3 7r12k1 kk5 -k1 j+
k1

8AirC2k UkI3 1 2 6k3s k6k- k
jI1

I 28A7rCco3k3
S(k3 ) 3

r {$3/2d [$5/2d Ef kJ 2dkl + 2 f kl +
k3 k -k

8AiTCCO3 k3 U8

3[T1/2 + Usk{-412]
r f kkdkj

I J -k~ j kj
I

I3 f=kl 1 2 dk1

2 k5 /2 k
1

= 2dk -3fIk 1 dk1
2 k

4 k 3-kIJ1
552 /2 

kkI 2 dk1 -kl J
f1 I

Finally, evaluating the integrals and combining numerical values where possible, we have

at = 21.6T1/ 2AC2 k3 k-7/ 2 + 19.4AC2 k ky 4Us -

S(k3 )[92.2AC(03 k3k 1 -
13.4ACW 3 k3 k7 31 2 U8

T1 /2 + U k-1/2
S I

This expression has been checked against a direct numerical integration of Eq. (31) for
C = 0.01 and the exact value of A. The results are given in Table 2. For zero wind speed,
Eq. (33) becomes

aS(k 3) = 369C2 T 4g-71 2 k9 /2 - 207CTg-l1 2 k5I2 (34)at3

10

(32)

(33)



NRL REPORT 8289

Table 2 - Comparison of Energy Fluxes Predicted by Eqs. (31) and (33)

k3 U, aS(k 3)/at (Eq. 31) as(k3 )/at Eq. 33)
(cm-1) (cm/s) (cm ) (cm__

0.11 15 2.96 X 10-9 -(1.93 X 10-2)S(k 3 ) 3.81 X 10-9 -(2.35 X 10- 2 )S(k3 )
0.11 60 1.84 X 10-8 -(3.28 X 10-2)S(k 3 ) 2.71 X 10-8 -(4.11 X 10- 2 )S(k3 )
1.15 15 6.87 X 105 - (7.06)S(k 3 ) 9.53 X 10-5 -(7.75)S(k 3)
1.15 60 2.73 X 10-4 -(11.2)S(k 3 ) 4.51 X 10-4 - (13.9)S(k 3 )

SUMMARY AND DISCUSSION

We have assumed that k3 < 3.64 cm 1 and derived a simplified form for the gravity-
capillary wave interaction. For the zero wind-speed case, this assumption is sufficient to
reduce the form of the interaction to the simple analytical expressions given in Eqs. (29) and
(34). The first term in each expression is several orders of magnitude smaller than the
second so that energy is always drained from the short-gravity wave.

To include wind-speed effects in the problem, the dispersion relation was modified as
given in Eq. (5). This procedure is by no means rigorously justified but is an attempt to
include the predominant effect of air flow in the problem, considering that a rigorous analy-
sis of wave-wave interactions in a shear flow is extremely complex and currently evades
elucidation.

Three additional approximations were necessary to simplify solutions for a wind-
dependent dispersion relation. Two of these are given in Eqs. (19) and (27); the third con-
sisted of setting cos ai equal to one in all dispersion relations. Such dispersion relations are
good approximations for small angles where wave heights and energy transfers are large. The
results of these manipulations are given in Eqs. (28) and (33). Table 2 shows that the first
two terms in these equations are very small. Furthermore, the last terms in the equations
are less than about 10% of the third terms. Thus, a rather good approximation to the gravity-
capillary interaction for an arbitrary wind speed may be written

at~k3)0 57.5w 3 k k3 S(k3 ,0)S(k1 0) (35)

as(k3) = -92.2c 3 k3k~S(k 3)S(k1 ) (36)

where

3\/k7/2+ U8 = N9k + U3. (37)

To this extent, then, the gravity-capillary wave interaction for short-gravity waves may be
considered to be an interaction between a short-gravity wave and a capillary wave whose
group speed equals the gravity-wave phase speed.
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