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A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN.-
THE STATE EQUATIONS ARE IN TRIANGULAR FORM

INTRODUCTION

Estimating the state of a system from a set of uncertain measurements has been a,prob-
lem for along time. Kalman in the early sixties provided a simple recursive estlmat' pro-
cedure by introducing the concept of state and state transition. This procedure in :
instances provided simpler implementation than batching techniques. Since Kalmais: worl; a
number of numerical procedures have been developed. An excellent account of these pro- .
cedures as. well as historical notes can be found in Bierman'’s book [1]. The square-rox :
information filter (SRIF filter) is the numerical method of solving the Kalman-fllter equa-
tions, which is of interest in this report,

There are a number of problems which involve a state transition matrix which-is:in -
upper triangular form. Prominent examples of problems involving the condition are‘most
tracking problems. This report describes a simple means of updating the predlctlon process
of the filter under this condition. A secondary but important result is that the SRI? filter
lends itself to parallel hardware implementation.

REVIEW OF THE SRIF FILTER

The SRIF filter is a numerical method of implementing the Kalman fllter [1] The
Kalman filter is obtained from modeling the process as state equations, defining a measure-
ment procedure, and best estimating the states of the systems. The state equatlon and meas-
urement process are defined as

X(k)=Q(R)X(E -1) + ['(R)W(k)
and
Xy (k) = H(k)X(E) + V(k),
where it is desired to best estimate the n-by-1 state vector X (k). The remaining quantltles
are an n-by-n state transition matrix ®(k), an n-by-p matrix I'(%), an m- by-n measurement

matrix H(k}, and an m -by-1 measurement vector X, (k). W(k) and V{(k) are mdependent '
Gaussian noises with the properties

E[W(E)] =0
E[W(EIW' ()] = S(k)o 4,
E[(V(®)] =0

*Manuscript submitted February 16, 1978.
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E{V(E)V'(N] = Qk)S;,,
E{W{EV'(H] =0,

and
where &, 5% 18 1 when j = k and is ¢ otherwise. The covariance matrices S{k) and Q{k) are of
éunen&mn by p and m by m respectively.
The best estimate of X(k), denoted by X{k) in the standard Kalman-filter format, is
X(R) = X(0) + K(OLX,p, (k) - HEOX ()], {1}

where K(&} is the filter gain, given by

K(k) = PUH' (R)Q71 (), (2)
in which P(k) is the smoothed covariance matrix, with )
Bl (k) = P (k) + H'(R)Q (R)H(R). i ]
P(k) is the predicted covariance matrix, with
P+ 1) =2k + 1)PR)D'( + 1) + ['(k + 1)S(k + 1)[(R + 1), {4)
and X(k + 1) is the prediction:
X(k +1) = Bk + )X(R), ()

The filter operates in a predict-and-correct fashion. This suggests a simple derivation, out-
lined helow.

Equation (1) is the least-square estimate between the prediction and the measurement
at the kth sample which is obtained by minimizing the cost function

(k) = [X(k) - X)) P7L ()X (R) - X(R)] + [Xpr(R) - HX (R)1'Q2 (R} Xpy (k) - HX ()]
(8)

with respect to X (k). The value of X{k) which minimizes J(%) is denoted by X {k), is the best
estimate of X{&), and is given in equations (1) through (3). Given the best estimate of X{k},
the best prediction is simply equation (8) with the covariance of (4). The process is then
simply repeated recursively, with equations (4) and (5) being the prediction and equations
{1} through (3) being the correction. .

Mhe QRIT fliawr ic a manng Af Immnlamanting tha Kalmaon filtor whinh Aononrds hoawiler an
ALLD RALWRLT LLIVCY 10 @A MITCAIID VY ul‘.yl‘:lll‘:l]vlils VALY IREERIAGREE Z3E5WL ¥V IILWIL UBFULIMD ARLELY LR J Wk

Cholesky decomposition and the Householder matrix {riangulation algorithm {1}. The
Cholesky decomposition is performed on a symmetric positive-definite matrix by factoring
i info the product of a lower triangular matrix L and its transpose:

@=LL
and
@ t=@wHyirt,

oo
F-
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The algorithm for obtaining L, found in reference 1, is

ij =4 forj=1,..,n-1,
Ui = qnilY; fork=j+1,..,n,

and
Qip = dip - Qijﬁkj fork=j+1,. ,nandi=k,..,n.
The cost function in equation (6) can be written as
J= X -XVRR'K - X)+ (Xy -HX)W) LMKy -HR), D)
where the parenthetical k has been dropped for notational covenience, Plis fac.t.idréﬂ:.-into,
RR’, and Q(k) is factored into L L’ (note that @1 (k) = (L")"1L71). Equation W)z;@“be_:m'

written as

J=(Z -B'X)'(Z - R'X) + (Zy - Hy X)' (23 - HyX),

where
Z =R'X,
Zy = L7 Xy,
and
Hy =L'H.

Equation (7) can then be rewritten more compactly as

(AR Ao
Hyl © L2y Hyl " Lzyil

The cost J is unaltered if an orthogonal transform T, where T 'T' = I, is multiplied by the new
resulting vector in (8). Consequently using o

J=C'T'TC.
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In addition, if T, which is a n + m square matrix, is chosen such that

1 T&
T'[HW] - [ﬁ] ®

then the cost J becomes
J=(R'X-ZY(R'X~Z)+ee.
By inspection the least-square estimate of X is
R'X=ZorX=R"Z,

e'e is the minimum value of the cost J, and the smoothed covariance is ﬁ(k) = (ﬁf)'iﬁ -1,
For simplification {10) is argumented to (9), yielding

R Z R' Z
T[ Z}{R } 1)
HW ZM 0 e

The transform T triangulizes the matrix,

To show (11) is equivalent to the smoothing portion of the Kalman filier, {11) can be

writien as
Ty Tye R Z =R’Z‘
Eguating terms, one has
TiiR" + TyoHy = R’ a2
and
T2+ T2y =Z2. (13}
I one chooses
T, =R R 14)
and
T, =R Hy, (15)
4
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equation (12) becotmes

RR'+HyHy=RER"

Using previous definitions for Hy, and using Pl =RR'and P! = R R’, one obtains.equa
tion (3} of the Kalman filter. Similarly, substituting (14) and (15) into (13), one- ob ans
equation (1) of the Kalman filter. o

The Householder algorithm can be used to triangulize the matrix represented -
without ever computing the transform T' directly. Only the basic results are sketched
an example is given. Detailed information may be found in reference 1. The algon___
based on reflection. Let the vector U be normal to the plane U, . An arbitrary vect
be represented by

Y=(Y'O)U +»,

where U= U (- u )1'r 2 and v is that part of Y that is orthogonal to U. The reﬂect:l
denoted by Y, in the plane U, is

Y, =-(Y'U)U +», <A
and the results are represented in Fig. 1. |

Eliminating v from (16) and (17) yields

= YU o SR
Y,=Y-2 T U={{-gUU)Y=TY, (18)

where

__2
b= UU
The matrix T is an elementary Householder transform with properties 7’ = T and T.7" =

Equation (18) can be shown to triangulize a matrix by first setting the elements of---- e vec-
tor U by

]} Ul

I'_cvfnﬁ—-k—wfnﬂ——J u

Fig. 1 — Geometry of the Householder algorithm

5
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u(l)=y(d) +o,
u{2) = y(2),
and

u( 7} = (i),

where o = sgn y{1}+/ Y'Y. The transform 7Y yields y (1) =oand y{/j =0 forj=1, 2, ...
The first column of the matrix is chosen as y(j)} in order o set 1(j). Equation (18} is then
applied successively. The sign on {18) is changed to yield positive diagonal elements of o,
and the notation § = 2/U'U is introduced. The algorithm operating on successive columns of
the matrix is

Y,=-Y+§(Y'OW.

For example
¥ Qo) 6, B Boy)
G117 Gy 13 1 Y12 Y13
@g; Gpy Gog 0 b9y by
T} = )
@3y Ggp Ogg G B3y b3
a1 G49 G4 0 by, by
where
a3y ¥ 04
a
21
= s
831
Q41

g1 = sgnfa;y }\/“il + agl + agl + ail’
g=2/U'U,
7yj = 08(1) * agu(2) + ag;u(3) + ay u(4),
and

b= -+ Py u@) forj=1,2,and3andi=1, ., 4.
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The process is repeated for each successive submatrix. The next step is

r [~ M
01 byg b13_| o1 b1z by3
1 0 0 b b 0 o c R
22 28 | _ 2 Ca3 ’ ' (19)
0 Tyl |0 by, by 0 0 o
0 by byg LO 0 cyy
where
bgg + 0y
U= b32 y
byo

04 = sign(byg) /b2, + b2, + bZ,,
8=2/U'U,
Ygj = bgu(l) + bg;u(2) + by u(3),

and

=—b,-j+ﬂ'Y2ju(j—1) forj=2and 3andi= 2,3, and 4.

Equation (19) is the desired triangular form required of equation (11) for the example,
The correspondence is :

_ . _
o %11 %12] ., |91 bua
R = , R'= s
Ggy Ggg 0 o,
L i L.
- “ r
g3 939 RLE
HW = y ZM - ]
f41 a42J L a43
a b c
" 13 ~ 13 33
Z = s 2= ,and e =
Ggg Cog C43

The Householder algorithm just described can be compactly encoded in Fort"’ ] ':lfdlf

general computer operation. In some cases a hardware implementation is desu'ab
shown schematically in Fig. 2.
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25 252 213
b 222 1223
e ) 233
] k- a
m 41 42 43
g{
1
—_%
T12 Y13
N + = + -
bz bg
by bag
U 11 B3z by
oy 11 b4 bga
Y23
04 bio b3
] oy Cog

o Q £33
A T A [
Fig. 2 — Schematic of operations performed
with the Householder algorithm

The Kalman and SRIF filters were briefly reviewed fo set the notation and acquaint
those readers not familiar with algorithms with the salient features. A simple means of
obtaining the prediction portion of the SRIF filter under an important special case is next
considered.

PREDICTION PROCESS

The smoothing portion of the Kalman filter using SRIF implementation updates the
factorization of the smoothed covariance and the transformed best estimate, 1t is desirable
to update the prediction process in a commensurable form. Only an important special case
is considered.

The process noise W(k) is assumed to be zero, and the state transition matrix is
assumed to be in upper triangular form. Equation {4) updating the prediction covariance
then becomes

P = &P’ (20

o0
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where the noise W(k) is removed and the sample % has been dropped for notational.conveni-
ence. The inverse of (20) is taken, yielding

pl=(2")y1piel, B :_Z" | (21)

The covariances are replaced with their factorization
R'=(®')yIRR'®,
which can be rewritten as
RE' =[@"'R][(e"R] .
Note that (®')"1 R is in lower triangular form, which means that _
R=(2")1R. . -~ (22)

Equation (22) shows the simple form of updating the factor of the prediction covarumce

The predicted state given by

from equation (5) is transformed by
BYZ=9(ERY'Z,
where X = (R')"1Z and X = (R')"1Z. Solving for Z yields
Z=(R"YERNZ. o | | _(23)
Substituting R from (22) into (23) yields o
Z=Z. (24)
The transformed smoothed and predicted states are seen to be identical. |

Sometimes it is desirable to implement a fading-memory filter by making. the
smoothed covariance larger. This is accomplished by rewriting equation (21) as

P-—l - (q) )—1aP—1¢, 1
The parameter is a scaler representing a time fading by

a -t/r

where 7 is the time constant and t is time. Equation (22) is modified by
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R =\/a@) R,

IMPLEMENTATION
Ag an exampie a tracking problem ig taken into consideration, The state transition”
matrix
f 1t 0 0} 1 -t 0 ﬁ)
_ 160106 i 181 690
= 1o g1 ¢| Where? 0 0 1-t|"
0001 9 ¢ 0 1

represents a farget moving in a straight line in a two-dimensional Cartesian coordinate sys-
tem. The components of the state vector X(%) to be estimated are X, {k), the position in the
ith direction; X,(k), the velocity in the ith direction; Xg(k), the position in the jth direc-
tion; and X, (k), the velocity in the jth direction. Only the positions are measured; conse-
guently the measurement matrix H is :

10 0 0

H =
0 0 1 0

The functional flow of the filter is shown in Fig. 3. The measurement is prewhitened
using the Cholesky factorization. In most tracking problems the inverse required can simply
be written in ciosed form using the Cramer rule. The prediction variables are updated with
no more than a matrix multiplication. These steps can be mechanized with several degrees of
parailelism in hardware. Finally the smoothing is performed using the Householder aigo-
rithm shown schematically in Fig. 2. The output of the filter in normal tracking is the sta-
tistical distance [2,3] J=ee which is required for correlation {a direct consequence of the
filter) and the predicted position X used in correlation and for display. The outputs are
easily obtained, including X, because R™1 need not be found, The best estimate X can be
obtained from Z and R’ directly by back substitution, since R’ is in triangular form. All the
operations described including the Householder algorithm are simple operations easily
mechanized with parallelism in the hardware.

SUMMARY

The SRIF filter was briefly reviewed, including the Cholesky factorization and House-
holder aigorithm. The smoothing portion of the SRIF filter is claimed to have good numeri-
cal characteristics and lends itself to paralle! hardware operation. The prediction process
under an important simple case was examined. The state transition matrix was assumed to
be in upper friangular form, and the process noise was assumed to be zere, Most fracking
problems can be formulated in this form. Under this special case it was shown that the trans-
formed smoothed and predicted states were ideniical and thai the smoothed and predicted
covariance factors were related by a simple matrix fransform. Consequently the entire SRIF
filter including both the smoothing and prediction lends itself o hardware implementation.

10
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Obtain new measurement

1

Prewhiten measurement:
a=1LL,

=1 =1
Hy = L Hand 2y = L XM

s

Prediction:

i = Z, and FA!' = \/;ﬁ'l‘df“

Smoothing:
Rz R’ b4
T =
HW ZM o e
3
Prediction:
X =Rz

Statistical Distance:
J=1g¢e,

Fig. 3 — Functional flow of the SRIF filter
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