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EXECUTIVE SUMMARY

In engineering and scientific practice, the extraction of information from signals
usually involves spectral analysis, a process by which one determines how the energy of a
signal is distributed among various frequency bands. In the standard technigues of
spectral analysis the data are sampled at equispaced intervals of time. Accuracy and the
ability to measure high-frequency components are lost if the data are not sampled at &
sufficiently high rate, but the maximum attainable data sample rate is imited by the
presence of noigse and other techuical factors such as limitations on computer storage and
processing time. Ii has been gpeculated that some of these difficuliies might be reduced
hy the use of data-sampling schemes employing nonequispaced samyding, but the question
as o whether this is posgible has not yet been settled.

This report 15 concerned with the spectral analysis of deferministic signals perturbed
by noise. The statistica of the noise are assumed fo be given {as is often the case), and
the emphasis of the report is on the reduction of the deterministic component of the
errars in spectral measurement. We develop a new mathematical method which permiis
one to express such errors as exphicitly given funclions of the sample points, and using
these results we show that equispaced sample points are not always optimal for spectrat
measurement. Hence the question next arises as to whether or not any practice! advantage
would bhe gained by the use of optimal sample-point sets rather than equispaced sets when
the latter are nonoptimal. Since the errors in spectral measurements have been given ag
explicit funclions of the sample points, the resolution of this gquestion has been reduced
to an ordinary problem in the caleulus: the minimization of an explicitly given function
of N variables. Although this minimization problem is perfectly straightforward, we have
not as yet been able to obtain ity solution.

v




OPTIMAL SPECTRAL ESTIMATES

1. DESCRIPTION OF THE PROBLEM AND THE RESULTS

1.1 Introduction

This is a preliminary report describing a recent investigation of the problem of ob-
taining information about the spectra of deterministic signals perturbed by n01se ;

data of the form f(t) = s(¢) + n(t) = signal + noise, the problem is to obtain- K
about the spectrum &(v) = [s(t)e-#t dt from the sampled data f(tl) f(tg)s iy
the time domain [0, T}. We should emphasize that the problem is to obtam mformatlon
about the spectrum of the deterministic component of f(t); the statistics of the‘rj
n(t) will be assumed to be given.

We are interested in obtaining a theory which is applicable to highly os,éjl_l_a‘, g
nals, and in which the errors in spectral estimates are described in terms of physically
meaningful parameters. P

There are three related but distinct aspects to this general problem: the detee:
resolution, and measurement of spectral components. We shall consider the-latd
first. o

1.2 The Problem of Measurement

The errors in spectral estimates consist of two components: a deterministi
ponent {(or quadra ture error) Which would be present even if noise were comple‘

is on the reduction of the deterministic component.

For the moment let us suppose that noise is completely absent. The preble
pose is to construct for each frequency » a linear filter f(t) = fag(¥) = EB 1t ) )
estimates the vth spectral component f(r). (We write a general linear Illter 1n
instead of Zf,f(¢;) to avoid the inconvenient appearance of the complex con]uga
later point in the discussion.} To measure the efficiency of such a filter, we-cot
set of all errors If(p) - fot (?)] normalized by a Sobolev-space norm which measures the
variation of f and is expressible in terms of signal energy and bandw;dth “9 then take -

......... b'dnd~

width and thus obtain an expression for the quadrature error explicitly given as a:fy
of the sample points t. and the ““weights” 6 as well as the signal energy and band th

md A1 L R S

It is at this point that our analysis differs from the more traditional Klna.
classical theory of numerical quadrature the quadrature error is expressed in term -
bounds on the kth order derivatives of f, parameters which have little physwal s:gmfmance _
and whose use becomes especially dubious for highly oscillatory signals.

Manuscript submitted May 10, 1976,




WILLIAM B. GORDON

Having expressed the quadrature error as an explicit function of the sample points
and weights, we can then, at least in principle, optimize (minimize) the error with respect
to these variables. In perticular, we wish fo determine if equispaced sample paint sets
are glways optimal. (Cf, Bef. 1, p. 33.)

It furns out that equispaced sample point sets are not always optimal. So we should
then consider the question as to whether any practical advantage would be gained by us-
ing estimates employing optimal sample-point sels when equispaced sets are nonoptimal.
We have reduced the resolution of this question to a problem in the caleulus — the
minimization of an explicit expression involving certain hyperbolic and trigonometrie
functions evaluated at the sample points, Although this problem is perfectly straight-
forward, we have not as yet been able o solve if. {See Section 2 for details.}

1.3 The Problem of Detection

In its deterministic version the problem iz to construct for each frequency v a linear
filter f — Eﬁjf(tj} with the property that

[28,f(t){> D, tmplies f(»)+# 0, (1.1)

where [, is a certain threshold value dependent on the weights ﬁ} the sample points t
and the 51gnal parameters (energy and bandwidth}. We wish o opiimize this scheme in
the sense of making the inequaiity in (1.1} as weak as possible.

Now the reader might object that in the deferministic case one could deleet a fre-
quency component f{z) merely by computing the integral [f(#)e-#t dt, However the
algorithms for computing such integrals are filters of the {ype given above, and moreover
we have no right to assume that a filter which is optimal for the measurement of a
gpectral component is also optimal for its detection,

It turns out that, at least for the classes of signals which we have so for considered,
a filter which is aptimal for measurement is also optimal for detection. But it alse furns
out that the smallest possible value for the threshold value D), is somewhat smaller than
the corresponding error bound for meagurement.

1.4 The Effects of Noise on Measurement

We shall suppose that we are dealing with data records having some fixed time span
T. When noise is absent, the errors in spectral estimates can be made arbitrarily smait by
making the number of sample poinis N arbitrarily targe. On the other hand, when noise
is present, one expects that the stochastic component of the error {¢ remain above a cer-
tain level as N = oo, Thig is because for data records having fixed length T, N can be
increased only by increasing the average sample rate, and when this rate iz increased
the imformation contained in the stochastic part of the sampled data becomes more
redundant.

More specifically, the deterministic component of the error has the appearance of a
hias whose square is a nonhomogeneous polynominal in the weights ﬁj and whose

Z
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coefficients are functions of the sample points The stochastic component is.an.rms. exror
whose square is a homogeneous polynominal in the weights 8. and whose coefficients.: are
the autocorrelation of the noise evaluated at the sample pom{s One could effect: some
kind of a tradeoff between these two kinds of errors, but such an ana.lysm h
been attempted. '

This apparent limitation that noise imposes on the average sample rate-lends:
interest to the problem of determining whether the deterministic component-of
can be significantly reduced below the values obtained by eguispaced samplmg
is small and equipspaced sample points are not optimal.

1.5 Resolution

There are two types of resolution phenomena: those which involve the efféects. of
noise and those which do not, We shall also have to consider two classes. of signals:
periodic and nonperiodic. As in the previous paragraph, we asume that we are:
with a data record of fixed length T. -

Periodic Case

a spectral component with arbitrarily small amphtude can be effected by makmng ‘
sufficiently large, "

Suppose now that noise is present. Then the detection scheme (1.1) v éS-
yield false detections when the noise causes the filter output to rise above the :
value D,,. Slmllarly the noise will sometimes prevent the detectmn of a spectral

depend in part on how strongly the fﬂter responds to frequenc1es other than th uency
to which it is matched. Now the spectrum of a periodic signal is discrete, an. n
redesign the detection filter so that it will have a zero response to any disc_réﬁ
frequencies, in particular to those which are close to the frequency whose déte
desired. Such a “sidelobe suppression” can be made only at the expense of: mcreamng
the threshold value D,,. Also, as mentioned in the last paragraph, one shoul
the existence of noise will impose a limit on the number of sample points N 17Wh1‘
be used with a record of fixed time span T.

Nonperiodic Case

In the nonperiodic case there is a resolution problem even when noise is ¢
absent. This is because what we are measuring is the “truncated” spectrum

-~ T .
fr)= [ et at,
0




WILLIAM B. GORDON

whereas what we really want is the “true” spectrum

f{V}ZI fitye™ > ds. (1.3)

-0

From a purely mathematical point of view there is no way out of this difficulty, hecause
for funectiorns l" in general the functional values of f an fho Intarual I P Ao nat dator

A0S B 4733 i i i peeaviiid Wi LULRULIULIGE V&ILTo i R A L A A T L L i L o

mire its functienal values anywhere else. Ag is Well known, the spectrum f, corresponds
{roughly} to the spectrum [ smoocthed {integrated) over a frequency band 0% width 1/T.

One can apply the results ohtained in the pericdic case fo the nonperiodic cage by
extending a function defined on the internal [0, T to a periodic function. The fre-
quencies of the extended periodic function will be multiples of 1/7, and the Fourier
goefficients (squared) will correspond {roughly) to the amount of signal energy coutained

in frequency bands of width 1/7. The accuracy of the process improves as T increases.
H noige is now introduced. then the same nhenomena will accur as was described for the

LR RN Lol B LITLAVALGRG, wiihal -.un, fa i i 1)L 4 EEANC LR N WTSLLIRS

periodic case.

Remark 1.1. There is one important class of functions F for which the functional
vatues in any internal [0, T}, no matter how small, determine the values of f everywhere,
namely, the class of “band-limited” signals whose specira are contained in some bounded
interval of v space. We have not been able to extend owr function analytic methods to
this class of functions, our difficulties in this regard being conceptual rather than compu-
tational. Note thal a periodic function is band limited in this sense if if only has a finite
number of nonzero Fourler coefficients. Thus the spectrum of a purely deterministic

periodic signal can be solved for exactly with only a finite number of sample pointg. {See
Ref. 2))

Remark 1.2, In many applied problems one is given a band-limited signal with a
carrier frequency v, and “pandwidth™ B,. Such functions have the representation

patBf2
7ty = f P f)et a,

V. B

vg-Bi2
The error funetions discussed in the succeeding sections are expressed in terms of another
kind of “bandwidth” B, which is the second moment of the spectrum aboul the axis v =
. {See Section 2.2.) These two bandwidths are related by

2 - 2 2
B v+ SBﬁ,

where & is a quantity which depends on the shape of the spectrum and is usually on the

arder af unity  In rwactics whaoan doalting with cionsle having o hicdh casveior roavency
WALAAVL WL uILLQJ- Fyys ylu‘zvzﬂri#, FPiEh i3 u\.ﬂmu.\.& LA SR LN UL&LL&MH ALiA V¥ I.AA.& w Il{&ll AINAL L LA %1‘/‘1“‘4‘29:1

signal processing is preceded by heterodyning which translates the signal spectrum from
Vg to the origin » = Q. One can therefore apply the results below to the heterodyned
signal, the bandwidth B now being identified with B,. More generally, one would expect
that an opiimal filter would mimic the process of heterodyning, bul we can prove this to
be the case only when v, /N is small and under the assumption that equispaced sample
points are close to optimal,
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1.6 Historical Remarks

For deterministic signals the case v = 0 corresponds to ordinary numencal quadrature,
and Sobolev-space techniques have been applied to the problem of numerical gt ure-by
(not surprizingly) Sobolev and his students. The emphasis of their work has been-én:the
quadrature of functions defined on domains of dimension greater than 1 and en-obtainix
weights 8, which are optimal with respect to a given (not necessarily optimal)-sampl
set and for which the corresponding quadrature formulas are exact on polynomial
given degree. For a bibliography on the subject the reader is referred to an exposi -
article by Haber [4]. This article also contains an account of some recent num oreti-
cal treatments of the problem of numerical quadrature which have raised doubts i
the optimality of equispaced sample points.

2. THE ERROR FUNCTIONS FOR DETERMINISTIC SIGNALS
2.1 Notation

We shall adopt a convention whereby the time span over which a function fi
will be denoted by P is f is periodic and by T if f is nonperiodic. The number.
points will always be denoted by N, and the set of sample points will always be

by the sequence t = {t,, t,, ..., ty;}. The N sample points t; will always be ass
distinct. -

results apply equally well to vector-valued functions), and we shall write
g . I

3= [ iR ae : “(2.1)

A : .

where ¢ is P or T depending on whether f is periodic or nonperiodic. The op
differentiation will be denoted by D, so that -

Df(ty = f'(t). . (2:2)

Finally a general linear filter will hereafter be written in the form

N
Z Bt

instead of

to avoid the inconvient appearance of the complex conjugates f at a later pom
discussion.
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2.2 The EBrror Function @, (1 B}

For each frequency v we wish to construct filters of the type

N
fest(v)z Z ﬁ_}f{t!), (2.3}
j=1

which estimate the »th spectral component

-~ E -
fwy = f ftyet a, 2.4
8]

where ¢ is P or T as before, For P-periodic functions the only allowed frequencies are of
the form v = 27&/P, k an integer,

To measure the efficiency of the filler (2.3}, we define an error function Qy e =
Q}} e{t 8) by

i) - £ )12
Q> {t,5)=sup = , (2.5)
“ £ IFNE + clDfii2

where ¢ is a positive number {whose value will be zet later} and the supremum is taken
aver the class of all continuous functions { whose derwatwes exist almost evervwhere and
are square integrable. This class will be denoted by H!, and it contains sawtoothlike
functions whose derwaﬁwes are undefined or d;scontmuous at certain points. We shall
presently show that HY can also be described as the class of all continuous functions with
finite bandwidth.

Since QZ is defined as the supremun of the quaniity in the brackets, we have the
inequalily

f0) - T 2 < (U + 2 IDAI2IQE it, ), (2.6)

which holds for all f in the class HY. 1t can be shown that this megquality becomes an
equality at some functions f, so that {2.6) is in this sense the strongest possible ineguality
for any given vatues of », ¢ 3, and f-.

We now wish to show that Qz be is the squared error if(ff) - fest{v)% normalized by a
quantzty which measures the variation of f and is ex;};ess;ble in terms of szgna]; energy angd
mgum ua;xuwxuu; lll Ll!Ubb d.y]_JLI.Ld(tIU[Ih |j(|‘,}[2 f[ias DIIB uﬁliﬁil:ﬂt}iib U.t pvww t‘#&bbﬁ}, m;u
l{ﬂ[é is therefore the signal energy. For P-periodic functions one easily establishes that

HD}:H% _ ZHZif(pﬂ?

- {271
IAE 2R

where ¥ varies over all the frequencies 27k/P, k an integer. For nonperiodic functions

vanishing at the endpoints the relation is the same with Z replaced by . For nonperiodic

functions not vanisning at the endpoints the reletion is complicaled by the addition of
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terms involving the values of f at the endpoints. For functions of class Hl‘:(On:‘ + o))
these terms converge to 0 as T — o=, In any case the left-hand side of (2.7) is.xé] 10
the spectral spread about the axis » = 0 and will be called the bandwidth By
setting

IDA2
BX(f) = — TR
112
we write (2.6) in the form : |
F9) - Fu )12 < NAIZ (L + c2B2(N)QZ (1, B). ¥ ] ” i '(2.9)

Remark 2.1. There is another type of “bandwidth” more commonly used “““ whlch

measures the spectral moment about a carrier frequency v,. See Remark 1.2,

2.3 The Error Function R, c(t)

The error function Q ot 8) will be shown to be a nonhomogeneous quadratm poly~

nominal in the weights f. Hence for any given v, ¢, and t there exists a umque timal‘

value of 8 which minimizes ngc. We define
¥

R, (1) = igf (@, (1, )], o (210)

so that (2.9) with optimal 8 becomes

) - F )12 < IIF1I211 + e2B2(ATR2 (1), (211)
et (U N ver >

this inequality being the strongest possible for given values of », ¢, and t.

Remark 2.2 Smce Q2 ot B)is quadratlc in 8, the calculation of the op'

(t) without having to compute A7 or the optimal weights f. The rnethod' :
mvolve the calculus of variations and the theory of Sobolev spaces which has-been much-
used in partial differential equations and differential geometry. 8.)

The Result for Periodic Functions

For P-periodic functions there is no loss of generality in assuming that Ly Thls
is because the P-periodic functions can be identified with the functions defined ena T
circle with perimeter P, and by rotating the circle one can make t correspond to. any

;
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point. Alternatively, the P-periodic functions of class H1 can be identified with fune-
tions f on the interval [0, P] with f(Q} = f(P), so that the P-periodic functions can be
considered as functions on the interval [0, Pl with the endpoints O and P identified.
Since we also assume that the & sample points are distinet, for P-periodic functiong there
is no loss in generality in assuming that

O=1¢, <ty <..<ity <P (2.12)
We also set
At = f -t,, H1<n<N-1,
= P-t, ifn=N. (2,13
With this understanding our resulf ig

[ [

N cosh \_c-) - cos (vAL )

P 2¢
R? 1) = - Z (2,14}
Be
1+c2? (1+c%2)2 o sioh (fﬁ)
For v = 0, this reduces to
N At
R (y=P-2 ) |tanh|—]l. (2,15}
ne1 L Y5
The Result for Nonperiodic Functions
For the nonperiodic case we can assume that
0t <t <<y ST, £2.18)

The sample-point set t may contain both, one, or none of the endpoints & and 7. For
example, £, = 0 and £y < T corresponds to the case when 1 contains 0 but not 7. Qur
result in the nonperiodic case is

=)
- _— - At
R 7 90 N-1 [ cosh p cos (P4t}
Ryt = - 2.2 Z At
’ t+e?p? (1+cB?y? T cinh (_ﬁ)
c ty sin i, {217}
+ —————Hp2e% - 1y tanh| — ) - 2ve ——— {Continued)
(1 + c2?)2 ¢ cosh {_ii)
¢
3
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T-t sin (T - t;)..

+ ———-c—- (Vzcz__l) tanh( N) "'2VC N . . :

(1 +c2p2)2 c (T-— L
cosh

L N e L] o
where At =t ., -¢,,(n=1,..,N-1) as before. Whenv= 0, the resdlt,“redﬁ&e‘sfto

N-1 Atn t T.'i- t %
R?}’c(t)=T—2c Z tanh (—Ec—) - ¢ tanh (-g) - ¢ tanh —

[ 1 D o VAU BN B o, PRI T\-:_.l. [ e
Lk pi.-l.lﬂd.l Ddlllp L ULILL DJeLd

The starting point for this discussion is the inequality (2.11), which We-_
as strong as posmble by making the right-hand side as small as possible for gi
signal energy (= IIfII } and bandwidth B.

For each fixed value of v and ¢ there exists a t set t,(c) which minirpize the nght-
hand 51de of (2.11) for any given values of !lfl |0 and B. Obv10usly t,(c) do
on IIfII0 and B, so that f1x1ng the value of v, we have reduced the rlght hand

11 9 S ST M alda Mlan Plnnl abne dn Ll B
\a J.J.; 1o an UAlebblUll inn which the u;u_y variable is ¢, The final SLLP ifi- kil S0 10

ing value of ¢ by c;,. In general ¢, may depend on B: ¢, = ¢, (B). Wesett (B) =t;(c, (B)).

Summanzmg For each frequency v there exists ‘“‘optimal’ values of-¢c= and
t= t (B) which minimize the right-hand side of (2.11}) for given values of: |[f|‘

there exist a continuum of optimal sample-point sets t obtained by transla‘fid

oivan noint cat madnla P 1 a }’“1 vni‘n‘hnn‘ 'H'\n ecirele on which the D.r\awnr"ln i
g|ven point se% moquue .

are defined.)

We shall say that any possible value of t (B) is a strongly oplimal. (S-—
sample-point set for the frequency v and bandwadth B.

2.5 The Error Function L (t)

In the discussion above we ought to allow the possibility that the optim alue-of
¢ is given at ¢ = o=, Referring to (2.11), this motivates the definition -

L,(t)= lim [cR, (B)]. SR :;;(2;19)

>0

Hence, as ¢ = <, the right-hand side of (2.11) converges to lIfIl2Bz(f)L2(t)‘.
the left-hand sxde" We have f st (V) = EB f( tj) where the welghts g are optlm
given values of ¢ (and the other parameters) It can be shown that 8 converges: éel"-"
tain value, say 8", as ¢ = . Setting foi¥) = EG f(t;) in the limit, the meauah_‘ :

at ¢ = oo becomes

Whiz about
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o) - £, )2 <IFI2ZB2(ALE ), (2.20)

We shall say that o value of t is optimal in the limit (is L optimal) for ¢ given fre-
quency ¥ if it minimizes L (t}.

An L-optimal set t is also S opfimal only if the optimal value of ¢ is given by ¢ = o5,
If an L-optimal set is not also 8 optimal, then the right-hand side of {2.20) is greater than
the right-hand side of (2.11) with ¢ given the optimal value. Note also that the L-oplimal
t sets depend only on and not on B, whereas the S-optimal sets have an (at least
apparent) dependence on B which, as diseusseé in Section 2.4, aroge from the {(apparent)

dependence of the optimal value of ¢ on B.

Explicit expressions for L, are easily obtained from (2.14) through (2.18}). Using
the same expressions for étn as in Section 2.3, we get the following:

In the periodic case

N [1-cosvAt,
P 2
Hiy=— - = . 2.21
mo= - Z ( ) (2.21)
At v = U this reduces to {cf. {2.15})

1 N
L3 = 35 21 (At,)°. (2.92)

ne

in the nonperiodic case

N-1 {1 -cos pAt t
Lg{t}=£ - 2 Z —"—L‘s—"—n' + 2 _‘?"‘ Si.tlvti
92 1913 — it tn L,z 123

T—t
N 2 .
+( ~ 3 sin v{T-tNg. {2.23}
A4 & !
For ¢ = ( this reduces to
1 1 1
Liy =5 2. AP+ oad+ (Tt (2.24)
n=1

3. THE PROBLEM OF MEASUREMENT
3.1 Some Consequences of Egs. (2.14) Through (2.24)

The problem of determining the S-optimal sample-point sets t has been reduced 1o
the prohlem of minimizing the right-hand side of (2.11) with respect fo the variables ¢,

Eys e , where R Ve is given by (2.14) or (2.17). Similarly the problem of determining
the E{}pt}mal sets t'has been reduced to the problem of minimizing L y(t) with respect to

14
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t, where L, is given by (2.21) or (2.23). Although these problems are perfectly‘jwstra‘ight-
forward we have not as yet been able to obtain their solution. Thus we are not yet able
to declde whether any practical advantage would be obtained by the use of
sample-point sets over equispaced sets in those cases when the latter are niong
Another unresolved problem is to determine the optimal weights 8. Howeéw
the following partial results, which we state as propositions. The detailed.
appear in Ref. 3. .

Proposition 1. Fix N, ¢, and P (or T). Then there exists a sequence o
{v,}, with v, > oo, such that equispaced sample points are not optimal for the ¢ ]

values of N, ¢, P (or T), and v = »,.

Proposition 2. Equispaced sample point sets are L-optimal provided:t
where N, depends on v and P {or T). (The exact dependence of NO on ¥ an
yet been determined.) :

Proposition 3. For the special case v = 0, equispaced sample points are alijgys
optimal, for any value of ¢. In particular: For the periodic case an optimal set t.is.
given by t, = (n - 1) P/N, 0 <n < N. Any other t set obtained from this one by trans-
lations modulo P is also optimal. In the nonperiodic case the oniy optlmal t-‘set 1s gwen
by t; = P{2N, t,, , ~t, =P/N,1 <n <N -1 (sothat T -ty = t, - 0=P/2N)

Drnnnerfinn A4 F‘vv tha nitmhar M Af camnla nainte and 1at T {farmiionana
A TR ORLEU L T, UL L IIel 1Y L SOILIDAIG PAOULLIUDy GLIU LTy uv Lruispiauc
{optimal) represent the values of L, (t) evaluated at t = equispaced s

respectively. Then

L2 (optimal)/LZ(equispaced) > 0.38.

Proposition 5. Fix the values of v and ¢. Then for equispaced sample-pomt sets the
values of the optimal weights 8, converge to their “naive™ values :

e—ivtk

- 52

2|y

Bk=

as N — oo,

3.2 Discussion

The proof of Proposition 1 (in the periodic case) is based on an inspecti
For equispaced sets one can choose a sequence of t‘requenc:les v such that cos (#At, ) =
+1 for all At,, and ch will vary as (k, /v?) - (k,/v?), where k; and k,, are: certam con-
stants. On the other hand one can choose N-1 of the At such that cos (vAL,) =~ 1
for the same frequencies v, and for such a t set R2 will vary as (k, /%) - (kg vq)

It is even more instructive to consider the error function Ly vl aned (“ql.ll-lit.t('ti
sets t. In the periodic case the only allowed frequencies are of th. 1w 2m0 I & 4
integer, and setting At, = P/N in (2.21) we see that when N divides k L"* :attai n
largest possible value ( Pjv?) at equispaced sample-point sets. In other word

11
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accepts L, (t) as a measure of efficiency of estimation, as might be suggested by {2.20),
then equispaced sample-point sets are sometimes the worst possible. This phenomenon,
which occurs when N divides the frequency number %, corresponds to the “atiasing ervors”
which are much discussed in the literature.

Recall that L, gives the best measure of efficiency only if the inequality {2.20} is
stronger than (2.11) for all finite values of the parameter ¢, If this were ever the case,

thenn Pronasition 4 would imply that no great nractical advantaos would he ssined Srom
FERILLLALL AL SLA.LLLL.LA ALVILLE

wvaaaa e balall SaLAita LAdpAiyY  wiGu G e PE AL DR ERL TRTA ¥ IR bR

the use of optimal over equispaced sample-point sets.

The relations (2.11) and (2.20) give bounds on the absolute errors Ej;{a*}n- fest{sﬁ}i, but
they cannot be used to obtain bounds on the relative errors If{r} - £ _, (#il/if{v}i, since,
e.g., f(v} may be 0 when [, (v) is not 0. Another and perhaps better way of looking at
these results is to interpret them ag imposing bounds on the energy lost {or gained) in
going from a signal f(t) to the “reconstituted™ signal /. (t) defined by

Fust(8) = D Loyt
v

{periodic case) or

T
fo ()= fﬂ fooi(v)e®t de

{(nonperiodic case). To see how this works, let us evaluate {(2.20) at a set of N equispaced
sample points and take the periodic case. Then using {2.21) we get Lg ~ {1/12WPE NS g
N o0, Ho 2.20 becomes

) - £, )12 < ifll ZBZ(f) 5 N large. (3.3)

Recall that |if1i2 has the dimensions of energy (joules}, so that If{») - £,_ ()% has the
dimensions of joules per hertz and can be regarded as the amount of energy at the fre-
quency ¥ which is lost or gained in forming £, (). The total amount of energy lost ox
gained over all frequencies is obtained by summation {{}}' integration). Since the right

P P N B, T ot TTT TR oo ¥kl v overey At FPPrvnnan Ao

oy 3
!.ld;LLU. b.LU.U UL QL) O; UUCD (1U0 LUiivaiis -V an BRI UULLLE(..I bU L& TOUEL CIITIEY GIIIOYENCe Can

be approximated by multiplving the rlg}}t -hand side by B = bandwidth. ©Or to pud the
matler ancther way, the fractional energy loss or gain is given by

B -f 2 1 (gpy? 4
= — , Nlargs. -
Hilk: 12 ne

Hence the quanti%y {BP)B,KN 2 measures the efﬁciem:y of equispaced sample points gver
all frequencies. {Note that in going from {2.21) to (3.3) we assumed that »&i, = »PIN
was small for each frequency v under consideration. Hence (3.4} iz only valid when BPIN

is small.}
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4. THE PROBLEM OF DETECTION

4.1 First Detection Scheme

The problem here, in its deterministic setfing, is to construct filters f—>
the property that f(v) # O whenever the filter output exceeds a certain thresh
Our first detection scheme is based on the filters f_, (v) and the use of (2.9

ot @)1
ifHE[1 + c®B2(M)]

> Q2 (t, B) implies f(v) # 0. - (4.1)

All this relation says is that if lf st (V)1 exceeds the largest possible error, then (p)-must
be nonzero. ,

4.2 Second Detection Scheme
We shall new develop a detection scheme in a more systematic fashion and show- that

a set of weights f§ which are optimal for measurement are also optimal for
shall also show that the right-hand 51de of (4.1) is somewhat larger than nece

number N of sample points sufficiently large.
Our starting point is the construction of a threshold values D, (1, 8) de
|ZB;1(t;) 12
ot B) = 2 2 .
f(v) lifll5(1 + e“B=(f))

Since DE o 18 the supremum of the quantity in the brackets taken over all mg‘nal hose

vth component vanishes, we have

|ZB;1(t)1
1311 + c2B2(N)]

D2 (t,6) implies f(»)£0. 43)

We now wish to optimize the detection scheme (4.3) with respect tot

We first optimize with respect to § as follows: For each fixed values of v
we choose the value of 8 which minimizes D2 c(t £) subject to a constraint: whi
normalizes the weights § by matching the fﬂter to the frequency v. More' spec
shall require that :

26 ewt
where u is a nonzero parameter. It turns out that the precise value of u selec

effect on the detection scheme, because u will occur as a factor on both s1des
with 8 optimal. Hence we define

13
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D} (ty=inf [DZ (t, B)IZ,™) = (4.5}
B
e el oo T D*‘ J (PSR I & - ,p 1 S 41 s
FLV Iy g Uubiivie fi=2 {}ptiindk 't«’.iiut' i p, S0 W&y

D, (=D, (t,57). (4.6)

Let v denocte the weight vector which is optimal for measurement for given v, ¢, and t,
s0 that from Section 2.3 we have

R, (=@, (7). @7

Fix 3 L Py Fon 4~ Flannner AF Ol ~toer e rareibo
Ubl.l.ls .L!..Lll.lu!JJ.U.lJ. O.U.O.L}’ l.-lb IJC\.,ILI.[.[L!(,{G.S WO i-v.lIU LIITLY i o0 TY BPG’UGE}, One 8l wWille

down explicit expressions for Dz AL 8} and D oAt I turns out that 8" is a scalar multi-
ple of v, and our second detectmn scheme becomes

PEEICAlY
ST + B2

{1 +c20%)
P

>RE (1) [1 - ?,I,c(t}] implies f(r) # 0. {4.8)

- nZ . T > AT
LVUL(:‘ LIIGD bilﬁ Iigﬁ b‘iidiku blﬁﬂ U}. t"k {}) is blﬂd.ut& b}}{kﬂ .lL !LL}f W!.J.J.bl]. ifi bLU.II s bn;t? SIfidusS8v

possible value of Q2 o(t, f), which is the right-hand side ‘of the detection scheme {4.1).
Recall also that the optnna.l weights ¥ depend on v, ¢, and t. In particular, multiplying
(4.8} by c? and taking the Hmit as ¢ = oo, we get

IE'?jf(tj‘;iz L2 ,
—2-—~— Lytyi1 L 5 ()} implies f{v} # 10, (4.9}
IFiE B2 ¢

whiorn ~ mwe mavar o mnifine mnling nf e walichia A oo a4 — oo

¥FYEEWIL T ; ALLT LIV WY UL lullLDlllé VEALLL O Wi il ."’DIEJ.IUB { [ = n -

Having oplimized the detection scheme with vespect to the weights, we should now
consider the problem of optimizing with respect {o the variabies t (and ¢) for given values
of gignal energy Hf!E and bandwidth B. Rewriting {4.8) in the form

(1+c2p?y

5 Rze(t}i\ implies fiz) # 0,

{4.10)

YR > AR L + S BRNRS (1) [1 -

one is tempted to choose those values of t and ¢ which are optimal for measurement,
because these are the valyes of t and ¢ which make {1 + c“’B?(f}}Rﬁ (t} minimum. How-
ever, as t and ¢ vary, so do the weights ., and we have the C(}nﬁeptﬁa}. difficulty of de-
fining how the sensitivity of the defection scheme changes as both sides of (4.10) are
varied in this way.

On the other hand one can jusiify choosing the values of t and ¢ to be those which
wErita ot rettovve sl e

al £~ an 4 Llin Fall~ A amrr antramen robiink fo o sadiaeand
aic Upbli.uﬂé IO MEasurenienc UJ.J. LS LVFLLUVY UL SIU“IIUD LRILY OUIITINIT ¥Wilitil I Y pteiial

for measurement will estimate f(v) at least as well as schemes based on equispaced
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sampling, and for equispaced t we know (Proposition 5, Section 3.1 that the left-hand
side of (4.10) is equal to square of the Riemann sum (P/N )Ee’”tjf(t) plus a sma]l quantlty

Section 3.2). Hence we have the following proposﬂslon

Proposition 4.1. For equispaced or optimal t, the left-hand side of (4.10
uniformly to |f(»}|2 as N — oo, and the right-hand side goes to 0 at least as-fast as-1/N2.
Hence in the deterministic setting one can detect arbitrarily small values of lf (v)l by ‘mak-
ing N sufficiently large.

Remark 4.1. There does not appear to be any practical difference between the two
detec‘uon schemes, because the right-hand sides of (4.1) (w1th Q,.t 5/ =@, "é'(t )=

» o(1)) and (4.8) differ only by a term which varies as Ru (B and R, ()18
good values of t. However the theoretical development of the second aetectlo
provides more information about the optimal weights v, and it has the additio
that it can be easily modified to serve the purpose of sidelobe cancellation, aS-Wlll be.
shown in the next paragraph.

4.3 Resolution

We shall now confine our discussion to the periodic case and conside;-_---rﬂ-_;:'

result all one need do is to require that the opmmal weightis f sa‘msry the  additional
constraints Zgel? 't j = 0 as well as the constraint 23.e?%j = u. Tfle calculations inyalved
in obtaining such a set of weights appears to be petfectly straightforward, though rather
laborious, and will be undertaken later. S
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