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EFFECT OF SECTION SIZE ON THE FATIGUE CRACKGRWH"«H
RATE OF A516-60 PRESSURE VESSEL STEEL

INTRODUCTION

A primary goal of structural design is to produce reliable structures: tha‘i‘;‘are ag inex-
pensive as possible to fabricate and maintain. Achieving this requires a knowledge of the
conditions giving rise to catastrophic fracture and governing subcritical-er ‘growth The
applicability of linear elastic fracture mechanics (LEFM) to these design-problems is now
widely aceepted, and the conditions giving rise to catastrophic fracture & e defined by

the stress-intensity parameter Ky, (plane strain) or K, (plane stress).

Fatigue crack growth rate (da/dN) can also be related to the stress-intensity factor
range AK. However, little is known about possible section-size effects in fatigue crack
propagation. Because of this, and because generating data for specific cases is expensive
and time-consuming, design engineers conducting crack growth analyses tend to-extrapolate
da/dN data to thinner or thicker sections as a routine engineering approm on. The
current literature is of little help in judging the wisdom of these approxnn ions, since the
evidence for the effect of thickness on fatigue crack growth is conflicting; ‘

In 1970, for example, Clark and Trout [1] observed faster crack srowi* 1 25.‘-mm-
thick (1 in.) specimens of a Ni-Mo-V rotor forging than in 50.8-mm (2 in.v <praninens
However, in a subsequent study on ASTM A533-B steel, Clark [2] found:the fatigue crack
growth rate (FCGR) to be essentially constant over a thickness range from“?725;4 to 101.6

mm (1-4 in.).

Jack and Price [3] support the first conclusion with data from tests of mild steel
specimens with thicknesses rangmg from 1.27 to 22.9 mm (0.05-0.90 m) "The second is
1-0.265 in.)
thick; Hahn et al, [5] in 3% silicon ferrite 1.52 to 12 T mm (0 06-0. 50 in. ) thlck and
Griffiths and Richards [6].

Both conclusions are opposed by those of Barsom et al. [71. «~ ™ ~ovoral *'ph
strength steels in 25.4 to 50.8-mm (1 and 2 in.) specimens, and Heiser and Moriner [8],
testing 4340 steel in thicknesses from 1.6 to 12.7 mm (0.0825-0.580 in \ “Mhage-anthors

SFoviide LN SURTA LN valaaaatassos Al 1 iadiaa ywevhnrSiser saa MRS R uIATAS

report increasing crack growth rates with increasing thxckness

Except for the study by Barsom et al., the thinner specimens were machined down
from thicker parent material. Such a practice tends to increase data scatter and also to
cause ambiguity in result interpretation. A recent study on 5Ni-Cr-Mo-V sieel by Sullivan
and Crooker [9] showed that unrelieved residual stresses caused significant $catter in da/
dN data obtained from specimens cut down from 25.4-mm-thick (1 in.) ag¥olled, quenched,
and tempered plate. Stress-relieved specimens, on the other hand, indicated no:effect of

specimen thickness but did show an increased crack growth rate for all ‘foﬁidkﬁlés‘ses studied.

To recapitulate, three types of response have been documented:

1. Crack growth accelerated by decreased thickness
Manuscript submitted March 31, 1976.
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2. No effect of thickness
3. Crack growth accelerated by increased thickness.

Furthermore, factors other than thickness influence and cloud the results of section-size
investigations.

Given this confused background, the present study was undertaken to explore system-
atically the effects of thickness and specimen size on the FCGR of a lowstrength pressure-
vessel steel, A516-60. This material is reasonably homogeneous in thicknesses up to 50.8
mm {2 in.) and can be stressrelieved without significantly altering its mechanical properties.
Finally, both the steel itself and the specimen thicknesses investigated conform to a broad
range of industrial uses.

EXPERIMENTAL CONSIDERATIONS

The A516-60 steel used for these investigations was 76.2 mim (3-in.) thick as rolled.
It contained 0.17 wt% carbon and developed a yield stress of 43.7 ksi (301.3 MN/m?2) after
normalizing at 900°C (1,650°F). After machining, the specimens were further stress-
relieved at 620°C (1,050°F) for 1 h. Compact tension (CT) specimens having the config-
uration recommended for a recent ASTM committee interlaboratory program [10] were
used. Specimens designated as 1-T are illustrated in Fig. 1. They were tested in two
thicknesses, 12.7 and 25.4 mm (0.50 and 1.00 in.}. All planar dimensions of the 2-T spec-
imens are twice those of Fig. 1; these were tested in four thicknesses, 6.4, 12,7, 25.4, and
50.8 mm (0.25, 0.50, 1.00, and 2.00 in.).

Fatigue testing was conducted under tension-tension cyelic loading using a haversine
waveform on a 0.49-MN (110-kip} capacity MTS closed-loop testing machine. The cyclic
frequency was 5 Hz, and the stress ratio B was 0.10. Crack-length measurements were
made using a crack-opening-displacement (COD) technique {11}. A commercial MTS COD
clip gage was used, the notched arms of which fit over knife edges screwed onto the speci-
men to straddle the mouth of the machined notch. Signals from the COD strain gage cir-
cuit were fed into a Hewlett-Packard XY recorder, fogether with those from the load cell
of the festing machine, to give a series of stress-COD curves.

Two specimens were tested at each thickness, with loads chosen to give predetermined
. AK values, to provide a region of overlap in the (da/dN)-vs-AK plots.

Crack length was determined by reference to the EB [COD]/P-vs-a/W calibration
curve, for which a polynomial expression has been developed. Details of this technique
are available [12]. Crack-growth rate da/dN was determined by fitting tangents to the
a-vs-IN curves using a Bausch and Lomb split-prism tangent meter. The stress-intensity
factor range AK is computed from the expression

AK = Ac+va ¥ (1)

where
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Fig. 1 — 1-T compact tension specimen with h/W = 0,486

Y = 30.96 ~ 195.8 (a/W) + 730.6 (a/W)2
- 1186.3 (a/W)3 + 754.6 (a/W)4.

This polynomial is appropriate for the 0.486 height-to-width ratio h/W of the-specimen
[13]. A stress-range normalizing factor is used, such that

AR = [(1-bR)/(1-R)] AK L@

where, for the positive values of R in this material, b = 0.85. Data are.c fained in Tables

1 through 4. All specimens were loaded in tension to failure at the conclusmn of the
FCGR test.

DISCUSSION OF EXPERIMENTAL RESULTS

Figures 2a, 2b, and 2¢ show that there is essentially no difference in measured FCGR
between the 1-T and 2-T specimens, although the latter exhibit somewhat more data scat-
ter. Further, no discernible effect of thickness can be observed. The tient hne shown on
each curve was developed from regression analyses of all specimens {288. p_ s-of
points). *

Although an ASTM thickness restriction for Ky test specimens is SpeCIfled [14] ac-
cording to the equation
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Table 1 —— A516-80 Steel, (1-T Specimen, Ac = 1.740 ksi)

Specimen No. 564 Specimen Ne. 866
Specimen Thickness B, Specimen Thickness B,
Crack Length, a A,‘jg& 0.50 in. (12.7omm} 1.8 in, (25.4mm)
{iny {kei/in.} dajdN dasdN
(X 1078) {x 196y

0.825 19.6 2.66 2.33
0.850 20.0 2.77 2.18
0.875 20.4 3.04 3.37
0.900 20,8 3.24 3.50
0.925 21.2 3.50 3.70
0.950 21.7 3.63 3.50
0.975 22.2 3.91 4.20
1.000 227 4.50 4.34
1.025 23.2 4.86 4.72
1.050 237 5.08 491
1.075 24.2 5.27 5.25
1.100 24.8 5.75 5.66
1.125 25.3 6.06 5.96
1.15¢ 25.9 6.46 6.52
1.175 26.5 6.64 6.9¢
1.200 27.1 7.42 T.41
1.225 27.7 7.52 3.60
1.250 28.4 8.52 9.21
1,275 29.1 9.50 9.81
1.300 28.8 16.02 10.72
1.325 30.6 10.72 1178
1.350 314 12,38 13.74
1.5376 32.4 13.74 15.76
1.400 33.3 14,86 18.66

Table 2 — A516-60 Steel, (1-T Specimen,

Ao = 2,740 ksi)

Specimen No. B85 Specimen No. 867
Specimen Thickness B, | Specimen Thickness B,
C"*“k( Length, a (k'“f/r;.ﬂ .59 tn. {12.Tmm) 1.00 in. (25.4mm)
in.) siv/in.) dasdN da/dN
(% 10°6) (X 10-5)
0.825 30.8 11.86 12.50
0.850 314 12.28 13.08
2.875 322 12.94 14.90
0.800 328 13.98 1586
0.925 33.4 15.52 16.17
0.950 24.2 14,58 16.58
0.975 35.0 17.20 17.21
1.006 35.8 15.12 17.98
1.025 38.5 18.687 18.53
1.060 37.3 19.62 19.62
1.075 38.2 20,80 20.80
1100 39.0 21.65 22.55
1.125 39.8 23.02 23.51
1.150 40.8 23.91 24.53
L.i75 41.8 25.62 25.62
1,200 427 28.08 28.08
1.225 437 29.44 29.44
1.250 44.8 30.24 30.94
1.275 45.8 32.56 34.34
1.300 47.0 37.14 38.47
1.325 48.2 39.41 40.88
1,360 49.5 43.56 - 43.07
1.376 5G.9 46.65 50,14
1.400 52.4 54,14 54.14
4
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Crack Length, a

Table 3 — AB516-60 Steel, (1-T Specimen, Ao = 1.228 ksi)

oK
(ksivin}

Specimen No. 871
Specimen TFhickness B,

Specimen No. 870
Specimen Thickness B,

Specimen No. 872
Specimen Thickness B,

Specimen No, 876
.. 8pecimen Thickness B,
20 2,00 in. (50.8mm)

(in.) 0.25 in. (6.4mm) 0.50 in. (12.7mm) 1.00 in. (25.4mm)

da/dN da/dN dafdN da/dN

(X 10-6) (X 10-9) (% 10-6) (X 10-8)
1.650 19.5 1.92 2.07 2.44 2,22
1.700 19.9 212 2.22 3.00 2.54
1.750 20.3 2.33 2.54 3.24 2.71
1.800 20.8 2,71 2.66 8.50 2.94
1.850 21.2 3.12 2.82 3.63 3.06
1.900 21.6 3.24 3.37 2.76 . 3.37
1.950 22.2 3.50 2.63 301 4.04
2.000 22,6 3.76 3,76 4.20 4.34
2.050 23.2 3.91 4.04 4.42 4,74
2.100 23.6 4.04 4.42 4.82 5.268
2.150 24.2 4.34 4.66 5,18 5.56
2.200 24.6 4,88 5.00 5.55 6.17
2.250 25.2 5.00 5.55 6.24 6.64
2.300 25.8 5.25 5.75 6.64 7.14
2.350 26.4 575 6.24 7.14 7.10
2.400 27.0 6.24 6.88 7.60 8.32
2.450 27.6 6.88 7.41 8.32 9.02
2.500 28.4 7.41 8.00 9.25 9.66
2.550 29.0 8.00 8.68 10.02 - 981
2.600 29.8 8.66 9.81 11.23 11.20
2.650 30.6 9.61 11.23 13.26 11.78
2.700 31.4 10.25 13.02 14,52 12.38
2.750 32.2 11.78 14.52 16.35 13.02
2.800 33.2 12.38 17.44 21.68 14.52

Table 4 —— A516-60 Steel, (2-T Specimen, Ag = 1.932 ksi)

Specimen No. 873 Specimen No. 874 Specimen No. 875 Bpecitnen No, 877
Specimen Thickness B, Specimen Thickness B, Specimen Thickness B, Specitmen Thickness B,
C'“Ck(i[‘eg'g‘h' a (kﬁi{;& 0.25 in. {6.4mm) 0.50 in. (12.7mm) 1.00 in. (25.4mm) | "~ 2:00'in. (50.8mm)
n. si/in.) dajdN dajdN da/IN dafdN
(X 10-8) (X 10-6) (X 10-6} (X 10°6)
1.650 306 9.08 10.68 12.07 9.78
1.700 31.3 9.59 11.41 12,50 10,48
1.750 32.0 10.12 11.66 12.50 11.82
1.800 32.6 10.86 12560 13.12 12.60
1.850 333 11.28 14,38 13.54 13.54
1.900 34.1 12.07 16.77 13.88 13.88
1.950 34.8 12.94 17.62 14.64 14.12
2.000 356 14.38 17.62 15.44 14,90
2,050 36.4 16.29 18.05 16.23 15.44
2.100 37.2 17.21 18.563 16.72 16.00
2.150 38.0 17.85 19.47 17.85 16.89
2.200 388 18.53 21.00 19.24 17.85
2.250 39.7 19.62 22.09 20.80 19.03
2.300 40.6 20.80 24.22 21.65 20.80
2.360 41.5 23.02 25.62 23.31 22.65
2,400 425 24.53 28.08 24.74 24.63
2.450 43.4 26.81 30.18 27.30 26.62
2.500 44.6 29,93 31.73 29.44 27.30
2.550 45.6 32.56 35.04 31.73 20.44
2.600 46.8 34.34 39.64 37.36 30.94
2.650 48.1 38.47 43.59 39.64 36.30
2.700 49.3 44.47 50.14 46.65 45.07
2.750 50.7 50.14 60.36 52.88 60.14
2.800 52.2 64.31 70.89 67.44 56.38
5
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K axrz AK 2 :
B=2.5(K’) = m), (3)

its application to the AK values employed for fatigue crack propagation seems unwarranted,
since data for all thicknesses conform well to a regression equation between values of AK
from 22 to 55 MN/m3/2 (20 to 50 ksi +/in). Table 5 contains values of limiting AK values
obtained from Eq. (3).

Table 5 — Restricted Values of AK

Thickness,
B (MNm3/2) | (ksiy/in.)
(in.)
0.25 13.3 121
0.50 19.0 17.3
1.00 26.8 24.4
2.00 38.0 34.6

No valid K;, data were obtained from the specimens loaded to failure. However, in
thin-sheet testing, K values calculated from the stress measured at the departure from lin-
earity (DL) of the elastic 6-COD line, although a little higher than the true Ky, values for
two aluminum ailoys, discriminated between them appropriately [15]. Therefore Kpg,
values were determined for this steel and are plotted in Fig. 3. Despite the low material yield
strength, these KnL values are low enough to be in the range of the regression-equation
data, For this steel, perhaps the termmal stress intensity is Kc, that for plane stress, even
though all specimens exhibited flat fracture.

A limited fractographlc study shows the dominant mechanism of-crack growth to be
ductile striation formation. This supports the hypothesis of Richards ana ‘Lindley [16],
who contend that this mechanism precludes specimen thickness effects. -

However, recent studies have shown that mean stress [17] oT an aqueous environment
[18] can alter the mechanism of crack growth in a given material. It istherefore possible
that under conditions promoting crack-tip constraints, and thereby a microcleavage crack
growth mechanism, size effects not apparent in this investigation could bé introduced.

REGRESSION ANALYSIS

Regression analyses for various combinations of the experimental data were developed
in the linear form of ‘
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10106 da/dN = n (logl0® AK,) + logl0® A (4)
and transformed to the familiar exponential equation
dade = A ﬁKeffn. ‘ (5}

The regression curve equation for all thicknesses of both 1-T and 2-T specimens was cal-
culated to be

da/dN = 0.286 X 1079 AK 4 3.08. (6)

A correlation coefficient of r, = 0.991 was obtained with this equation. Values of the
exponent n, correlation coefficient - and percent of twice the standard error of estimate
{95% confidence limits) are shown in Figs. 4, 5, and 6. Slightly more scatter was evident
ag thickness or specimen size increased. It is uncertain whether this trend would persist in
larger specimens or structures subjected to cyclic loadings, or tend to level off as indicated
by the 2-T specimens of Fig. 7. '

ESTIMATES FROM REGRESSION CURVE
EQUATION

The value of any FCGR trend-line equation lies in iis ability to predict crack growth.
The close correlation between the data curves of crack length a vs number of cycles N and
the curves estimated from the regression equation is seen in Figs. 7a and 7b. Scatter bands
of ¥10% and +15% enclose, respectively, data from the 1.T and 2-T specimens.
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CONCLUSIONS

& Walthow gioe mavr thinknoge af tha cnacimen affor
w INCILUITL DLAT [1U] UL ARLITOS Ul LT O UCliiabin GRiitie

served in stress-relieved specimens of ASTM Ab16-
and normalized 76.2-mm (3-in.) plate.

c}ﬂ"'
O=+

® Curves of crack length vs number of cycles estimated from the crack growth rate
regression equation agree well with actual data curves.

® An increase in data scatter is noted with increased thickness and'size.

® No effect of crack-tip stress state, as defined by the ASTM testing limit for plane
strain fracture toughness, was observed in this study.

® No broader generalizations can be made concerning the effect of section size on
fatigue crack growth rate without further systematic testing of a wariety of materials

nwm rrawiad Aase Ab s

A
UWNaer variea Condaiiions.

® For fail-safe design, at present, conservative practice indicates thé“:ﬁecessity of test-
ing material in both the thinnest and the thickest sections exactly as they are to be
encountered in the structure, i.e., as-rolled, cut-down, heat-treated, ‘stress-relieved, ete.
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SYMBOLS

a crack length of CT specimen

a/W  crack length-to-width ratio

B specimen thickness

COD crack opening displacement

cT compact tension specimen

da/dN crack growth rate; change in crack length per cycle
E Young’s modulus

FCGR fatigue crack growth rate

h half-height of CT specimen

critical stress intensity parameter for plane stress

Kpi;, K computed from stress value at the departure from linearity of a: ¢ versus COD
curve of a specimen loaded to fracture '

Kie critical stress-intensity parameter for plane strain

LEFM linear elastic fracture mechanics

N number of cycles

n slope value of da/dN vs AK
P load on specimen

R stress ratio (0p,in/0max)

I'yy correlation coefficient

W specimen width

AK stress-intensity parameter range (K .. - K. .;1)

AKp; stress-intensity parameter normalized for stress ratio effect; = (1-bR/1-R) AK;
where R = +, b = 0.85 '

i gross or nominal stress (P/BW)
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stress at maximum load

stress at minimum load

yieid strength
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stress at maximum load

stress at minimum load

yield strength
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