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A FORTRAN COMPUTER PROGRAM FOR CALCULATING
THE LINEAR PROLATE FUNCTIONS

INTRODUCTION
Many physical systems can be mathematically modeled by a complex function of a
single real variable f(1) whose Fourier transform is limited to the passband |} € an

which is assumed integrable (in the absolute square) over the interval [- oo, o],

analytic representation of the system in the interval [-T/2, T/2] is greatly facilitated by
the availability of a set of band-limited functions Yy that are orthogonal and complete
over both the finite interval [-T/2, T/2] and the infinite interval [~ oo, *j. These re-
quirements are uniquely met by the linear prolate functlons Yyle, t), constructed from
the prolate angular spheroidal functions of the first kind st Q)(c, t), and the associated
linear prolate eigenvalues Ag(c), constructed from the prolate radial spheroidal functions
of the first kind Rﬂ,n)(c 1). That is (by definition)

2}\!2 1/2 ot
__* 1
( ) s (- ?)

)= @)

3y
}

‘i]’g <, 1/2
{f [88(c, )12 ds
and
a0 =(2) R, 117, (@)

where ¢ = T$2/2.

Spheroidal functions have been studied extensively since their discovery by Niven
[1] in 1880. Examples of such studies are the monographs by Meixner and Schifke
[2] and Flammer [3]. However not until about 1960 did Slepian Pollak, and Landau

TA. 7T &nAd 4hné
[4-7] find that the spheroidal functions possess special properties that have since been

shown to lead to their application to phenomena as diverse as acoust1cs, antennas, optical
diffraction, filters, and noise,

It is convenient to define the function

Wole, x) = , (3)

Manuscript submitted March 16, 1976.



A L, VAN BUREN

which has the advantage of not confaining T explicitly. The linear prolate function for a
given T is then given by

Y 52 L - A
#’gics F}‘“i?} ¥ }\C; ?}‘i‘ 145

The function fy(c, x} will be referred to in this report as a linear prolate function. The
names linear prolate function and linear prolate eigenvalue were given to Yyfe, t) and
Ag(c) by Freiden [8]. They are useful in distinguishing these functions from the prolate
spheroidal wave functions used in their construction.

The computer program LINPROC (linear prolate functions) ealculates, in double-
precision arithmetic, numerical values for Agie} and pie, x) for desired values of ¢ and x
and for ail integer values of £ from 0 to the largest value desired. The program is written
in universal Fortran and should run on any computer that accepts this language.

ANALYSIS'
Solution of the Helmholtz Equation in Prolate Spheroidal Coordinates

The prolate sphercidal system can be formed by rotating the {wo-dimensional
elliptic coordinate system, consisting of confocal ellipses and hyperbolas, about the major
axis of the ellipses. The prolate spheroidal coordinates (£, 3, ) with 1 < ¢ < o9,
-1<7 <1, 0<¢ <27 are related to the cartesian coordinates (x, ¥, z) by the trans-
formation

x= 2 [ - 1)1 - 7)) "2 cos g, (5a)
y= 3 (-1 -2 sing, (5b)
z= 3 0, (5¢)

where a is the interfocal distance. The spheroidal coordinates £ = const, 7 = const, ¢ =
const define the following set of orthogonal surfaces, as shown in Fig. 1:

24,2 2
Ty + 2 =3, (68}

@22 (2-1) (2% 82

ellipsoid of revolution:

2 +y2 2

hyperboloid of two sheets: T "~ 75 =" i1, {8h)
@2 (1-7%) (a/2)®n? *

haif plane containing the z axis: ¢ =tan™" {y/x). {oe)
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Fig. 1 — The prolate spheroidal coordinate system
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The Helmholtz wave equation

(vZ+x%X =0, 3}
is separable in prolate sphercidal coordinates. The faciored solulion is given by
Xmﬁ(c; Ef 7, ¢} = ng{ﬁ, é}smg{cs ﬁ}@m {é}a {S}

where ¢ = ka/2 and where the radial function R, (e £ ),' the angular function Smgic, 7},
and the azimuthal function tIlm {¢) satisfy the ordinary differential equations

d dBR o1 T mZ
G | E -0 - Amg-ﬂ%z"'sz_} Rppg =8 (9)
_ o .
'&% - 22) f:.;_‘g_ + _Am,2 ~e2p2 - :1:2“ S_¢=0, (10)
and
dr;’“ +m2®_ =0, (1)
¢

In physical problems in which the tield has to be periodic and unigue over the range of
the azimuthal coordinate ¢, it is required that m be an integer, chosen to be nonnegative.
For fixed m and ¢ # O the numbers A o(c) for which Eqs. (9] and (10} have nontrivial
convergent solutions are ordered numerically in an ascending series and labeled with the
mtegers £ =m, £ = m + 1, etc. In the limit ¢ = 0, Eq. {10) reduces to the ordinary dif-
ferential equation for the associated Legendre function whose separation constants A ¢
are equal to (X + 1),

The two independent solutions of Eg. {9) are identified as the radial function of the
first kind Rg}a(c, £} and the radial function of the second kind R}{Eﬁ(c, £). Similariy the
two independent solutions of Eq. (10) are called the angular function of the first kind
Sgt%{c, 7} and the angular function of the second kind SEE%(Q, 7). Eguations (9} and (10}
are essentially the same except for range.

Three volumes of tables of numerical values for the prolate radial funciiens and
their first derivatives with respect to £ were published in 1970 [9]. These volumes con-
tainn entries for the following range of parameters: m = { {Volume 1), m = 1 {Volume 2},
m=2 (Volume 3); {=m, m + 1, .., m + 49; £ = 1.00000001, 1.0000001, .., 1.01, 1.02
{0.02)1.2,* 1.4 (0.2) 2.0, 4.0 (2.0) 10.0; ¢ = 0.1 (0.1) 1.0, 2.0 {1.0) 10.0, 12.0 (2.0}
30.0, 35.0 40.0. A single volume of tables of numerical values for the prolate angular
functions and the linear prolate eigenvalues was published in 1975 [10}. The range of
variables covered in this volume ism = 0; £ = 0 (1) 49; & = 0° (1°) 90°, where 77 = cos 0;
c¢=0.1(0.1) 1.0, 2.0 {1,0) 10.0, 12.0 (2.0} 20.0, 35.0, 40.0. The numerical valueg given

*The nofation 1,0Z (G.02) 1.2 indicaies 1.03, 1.04, 1.06, ..., 1.2

4
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in Ref. 10 can be used to construct corresponding values for the linear prolate functions.
Three volumes of oblate radial functions [11] and one volume of oblate angular func-
tions [12] were also published.

The double-precision Fortran computer programs used to generate the tables are
documented in a series of NRL reports {13-15]. Unfortunately these computer programs
were developed around the large exponent size (£307) of the CDC 3800 computer at
NRL and are not easily modified to run on computers with a significantly smaller
exponent range. The program LINPRO however is designed to run on computers with
any exponent range.

Since the linear prolate functions and eigenvalues are constructed from the zero-
order spheroidal functions of the first kind Solg)(c, 1) and R&lz)(c, 1), the following discus-
sion will be restricted to these functions.

Prolate Angular Functions of the First Kind
igular function It
first kind in the limit as ¢ — 0, it is convenient
series of Lengendre functions:

=y

Twat 1-3
30 RKiii

j=5

a af tha
o UL i

+ oy
e to the . ,
0 expand Ss) (e, 1) in the following

-+

site,m= ) d(clo9P,(n), (12)

where the prime sign indicates that n =0, 2,4, ... if Qisevenandn =1, 3, 5, ... if ¢ is
odd. Substitution of Eq. (12) into Eq. (10) with m = 0 and use of the recursion formulas

for Legendre functions lead to the following three-term recursion formula in the coeffi-
cients d_(cl0%):

@ dpeg + Bady + 1,d o =0, n>0, (13)

where

nn+1)-1
(2n+3)2n-1) ¢’

B8, =nn+1)-Aq +

_ nn-1)
T G- ST 14)

If the choice of A_OQ is arbitra?y, solutions given by Eq. (12) with constants d,, determined
by Eq. (13) are divergent at either n = 1 or at n = - 1. However in physical applications it

is necessary that sglg)(c, n) be finite at both of these points. A search is therefore made

5
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to find special! values for Ayg which make 4, satisfy Eq. (13), ai the same time satisfy-
ing the condition - 7

im dn+2

I B - -

> 0. {15)

Use of these characteristic values leads to successful expansions for Sg;}(e, 77} of the form
given in Eq. (12). Since the Legendre functions can be analytically continued into the
region || > 1, the series expansion of Eq. {12) can be used also in this region. It is easy
to show that this series converges uniformly for inl > 1,/since in the limit as n approaches
oo, the ratio P, , (n)/P, (n) approaches the constant (Inl + /2% - 1)? and the ratio I

d,, approaches - c2/4n<,

An efficient algorithm for the determination of Agp and d,, has been developed using
a procedure described by Bouwkamp [16]. This will be discussed in the section on the
computational procedure. The d thus obtained are normalized to satisfy the requirement

that ggl,}(g, m} have the same normalization factor as P, {nt:

=Sy Mok T OSERET VAT SRLRT SALISLSSML SR = L

Ny = [ 50 mi2dn= [ [Pom12da= =2 (16)
ﬂg » 02 0,7? ﬂ » [ (s fl‘ (22{_1} .

Substituting the expansion for S&)(c, 1) given in Eq. (12) and using the known ortho-
gonality properties of the Legendre functions, one obtains the normalizing relation for d,:

—' 2 . 2
Zﬂ} v [0 = 5 an

This normalization scheme was first used by Meixner and Schafke [2]. It has the
practical advantage of eliminating the need to numerically evaluate the normalization
factor Nyo(e) which is often encountered in prablems envolving expansions in angular
functions. With this normalization the denominator in the definition of the linear pro-
late functions given in Eq. (1) reduces to' [2/(22 + 1)}12. The angular-function tables of
Ref. 16 contain the Meixner-Schifke normalization. An alternative way to insure that
each angular function reduces exactly to the corresponding Legendre function when ¢
becomes 0 is to match their behavior at a particular value of n. For example, Flammer
[3] and Chu and Stration [17] normalize at 7 = 0, whereas Morse and Feshbach {18}
and Page [19] choose = 1. Note that the linear prolate functions are defined, Eq. {1},
so that their value is independent of the normalization used for the anguiar functions.

Several graphs depicting the behavior of Sg&‘(e, ), Sgl}{c, 1}, and ng}{e, Rrasa
function of § = cos™! 75 for selected values of ¢ are given in Fig. 2. The behavior for § =

an® ta 19N° o wnt chaum ovnlinifly sinas tha anonilay fimatinng avhihit +ha carma ouan aw
(VAV} LUV Ty LV AT LIVV DLIAS YL ‘;AP‘:‘/:WJ’ WERNT BEIY ﬂllsum SRALALLIALIELD TALLLILIIY RIAS SARALLAT ©YWEE VL

odd symmetry as the corresponding Legendre functions,
The prolaie angular function Sgg)(c, 1) possesses exactly £ zeros in the interval

~-1< 7 <1. When ¢ = 0, these zeros become identical to the' zeros of the corresponding
Legendre function Py{n}. When ¢ — =, the prolate angular function SS?((:, 1) becomes

6
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Fig. 2 — Behavior of sglo)(c, ), 8§5)c, n), and 8{L)c, 7) as a function of 8 = cos™ 7 for selected values of .
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extremely small everywhere other than in the narrow region In| << [{2% + 1)/c]1*/2, and
the zeros are squeezed toward n = 0. Examination of the asymptotic behavior of Eq.
(10) shows that the zeros approach those of the Hermite polynomial Hp{/en) [20].
This squeezing behavior as ¢ increases is seen in Fig. 2.

Prolate Radial Functions of the First Kind

pression given in Eq. (12) for the angular function Sﬁf{c, 7} by means of an integral
fransform proecedure outlined by Morse and Feshbaeh [18]. The result is

A useful exoregsion for the radial function R{l,.}!' e, £} can be ohtained from the ex-

[

2. %, (clowj (cé')} (18

n=%,1

R{e, &) =

!

> aclon {
=0

r=0,1

where again the primme on the summation indicates that even or odd terms are taken de-
pending on whether £ is even or odd respectively. Note that B 1}(9, £) is independent of
the normalization of the coefficients d, (cl0%).

Since both Rg‘g){ﬁ, £y and Sgﬁ) (c, ) satisfy essentially the same differential equation,
they must be proportional to each other. That is,

siP(e, 2) = kPRI e, 2), (19)

where EQQ)(C} is a joining factor and where the angular snd radial functions are exiended
by anaivtic continuation beyond the region where they were originally defined. The
joining factor iz obtained from Egs. (12} and (18) by matching the behavior of the
angular and radial functions at z = © and is given by

Dy = S _ 't 20
R = Teon Z d{ciﬂi&} g;e d, (clo®) prmper Rl (208)
W= 2 1Y g eion] 3 a eion P 1! 2 odd
TGl o T T - D2l ey

(20b)

The Bessel-function expansion of Eq. {18} is a reasonably well behaved series for

numericallv svaluating Ru..){n £) in the ranga 1 < £ <{ w0, Therefors q§1); , 1) can be

fateiiai IRl f = laiin A1I UIAY ARiigmw = e
.

evaluated in the same range 1 € 17 < oo by the use of
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K(l (C) ooy
s e, m) = — o [Z i“‘an(cIOQ)J‘n(cnﬂ (21)
Zr dr(clog) n=0,1
r=0,1

Equation (21) is equally useful for negative values of 7 in the range - < g < -1.

A convenient expression for Rglﬂ)(c, 1) is obtained using Eq. (19) and the expression
for Sgg)(c, 1) given by Eq. (12). The result is

0o

Y d,(clog)

n=0,1

R{P(c, 1) = (22)

kgg(c)
Brief Introduction to the Linear Prolate Functions

The factored solutions Sg}z(c, 1) and R(nl‘&(c, £) provide a convenient expansion of
plane waves in spheroidal coordinates:

£
H" Eml
ekr=n ) T sll)(c,cos0,)8L)(c, MRA)(c, ) cos [m(d - 9,)1,  (23)

m 2 m¥
where the wave vector k is given by k(sin 6, cos ¢, e_ + sin 6, sin ¢, e_ + cos 60 e)
and the point r has cartesian and spheroidal coordinates (x, v, 2) and (£, n, ¢) respec-
tively, so that
k-r = k(x sin 8, cos ¢, +y sin 0, sin ¢, + z cos ;) (24)

or

ker=c[((2 - 1)12 (1 - y2)2/2 5in 0, cos (¢ - ;) + £n cos 8,1 (25)
The coefficient e, equals 1 if m = 0 and equals 2 otherwise. The normalization N is

given by

1
Npg = [ (50 m? an (26)

By multiplying the left- and right-hand sides by cos [p(¢ - 91 Spq(c, 1) and
integrating over ¢ - ¢0\and $ = cos 0, one obtains the integral equation™

1
258) (e, MR (e, &) =im* f . el [o(¢2 - 1)Y2 (1 - n?)M/2 sin 6,180} (e, 5) ds. (27)

9
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Choosing .m = 0 and £ = 1, using the definitions for the linear prolate functions and
eigenvalues given in Egs. {1} and (2), and making a transformation of coordinates, one
obtains the expression

T/2
Yolc, tYetds = g TIM 2 gy Q: 235-) (28)

-Ti2

for w real. Thus the linear prolate functions (e, t} possess the powerful property that
they are invariant fo the operation of a finite Fourier transform. Such a property is
useful in analyzing optical {diffraction) systems by Fourier methods [21].

Muitiplying both sides of Eq. (28} by ¢ % and integrating with respect to w from
- £ to + £, one obtains a second integral! transform with many useful applications:

T2 .
f bofer t) SBIUEE) gy (e)ugle, 9, forall s, (29)
L ay2 Tonls-t)

For example this transform can be shown to represent the resonance condition for the
confocal laser with rectangular, spherical endplates {22].

The property of orthogonality over both finite and infinite ranges provides a valuable
extrapolation formula for band-limited functions. If a band-limited function f(t) is known
over a finite inferval T, then it is known everywhere. In mathematical terms, when the
Yy are available, one can write

T2
w  Vele,ty b £t Ngle, t) at’
-Ti2
fity= . 30}
“ ;3 Ag(e)

The significance of this property is thati, in principle, one can restore information outside
the interval ~T/2 < t < T/2 from a knowledge of the field over only the interval. In
practice the restoration is degraded by the presence of noise.

The preceding discussion is intended only as a brief introduction. The reader is
referred to the article by Freiden [8] far an excellent and thorough review of the mathe-
matical properties and optical applications of the linear prolate functions. Applications to
the synthesis of planar antenna sources are discussed in a monograph by Rhodes [23].

DESCRIPTION OF THE COMPUTER PROGRAM LINPRO

The computer program LINPRO calculates, in double-precision arithmetie, numerical
values for Ag(c) and Yg(c, x), as defined in Eq. (4), for desired values of ¢ and x and for
all integer values of ¥ from 0 fo the largest value requested. The program is written in
universal Fortran and should run on any computer that accepts this computer language.

10
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LINPRO is designed to accommodate the word length and exponent range that is
available on the user’s computer. The first two executable statements in the listing of
LINPRO given in Appendix B are ND = 16 and NEX = 75. These statements must be
changed, if necessary, to specify the number of decimal digits ND and the maximum
exponent size NEX available for double-precision numbers. The user of LINPRO must
also set the array dimensions large enough for the desired input. This will be discussed
in detail in a subsection entitled “Dimensions and Storage.”

No other changes are necessary to prepare LINPRO for the user’s computer. Asa
test of the universality of LINPRO, it was run on both the CDC 3800 computer with
ND = 25 and NEX = 307 and the Texas Instruments ASC computer with ND = 16 and
NEX = 75. The test was successful over the entire range of allowable input parameter
values.

The remainder of this report describes LINPRO. Included are a listing of the
significant Fortran variable names and descriptions of the major computational blocks in
LINPRO followed by a discussion of the parameter input, parameter ranges, dimensions
and storage, computational procedure, accuracy of the results, computation time, and

printed output. A sample page of output is shown in Appendix A. The listing of LIN-

PRO is given in Appendix B.

Significant Fortran Variable Names

The significant fortran variable names in LINPRO are as follows:

ALAM Ag.
APSI Vector whose Ith element APSI(I) = 1,[12 [e, BARG(I)].
ARAY Doubly dimensioned array that contains scaled values of the

spherical Bessel function. The element ARAY(], J) =
HTEST j;_, [BARG(D)].

A AdL2 -] LEsRAR

ARG Vector containing desired values of the argument x that lie in the
‘ range [x| <1. The element ARG(I) is the Ith value of x 1n the
range |x| < 1.

ARG1 Input parameter and initial value used to generate ARG.

BARG Vector containing desired values of the argument x that lie in the
range |x| > 1. The element BARG(I) is the Ith value of x in the
range x| > 1.

BLIST Vector used in the Bouwkamp variational procedure. The element

BLIST(I) = ay, +1X-2721+1x from Egs. (13) and (14).

BRAY Doubly dimensioned array containing modified values of the
Legendre function for values of x in the range 1 < |x| < 2.

11
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BTEST

CL

CLL, CLU

CTEST
DARG
pH

DL

DN

DNO

DNUM

DTEST

EIGL, EIGZ2, EIGS,

EIG4, EIG5

ENR

ETEST

FACT

FARG

A L. VAN BUREN
Input parameter and initial value used to generate BARG.

Constant set equal to 107NDIG-Z 1t i ysed to determine con-
vergence of the final sums for Yo(c, x).

Characteristic value Agg.

Lower and upper bounds for determining the characteristic

value Agp.

Constant set equal to 10”ND
Input parameter and step size used to generate ARG,
Input parameter and step size used to generate desived values for c.

Correction to the previous appmximatien for Age. H is calculated

anew each iteration of the nouwxamp proceaure,

Vector containing the expansion coefficients d,,(cl02). The ele-
ment DN(T) = d o1, ;¢(cl08). For convenience in avoiding computer
averflow and 1md9rﬂnw problems, the coefficients are normalized

so that \dm(ctosz) = 1.
First expansion coefficient dy {ci0g).

Last sum g).ven in the definitions of & “(c} in BEq. {20). 1t is used
to obtain R| E)(c, 1}.

Constant set equal to 107NP*1 | 1 iz used as a test to determine

Anseraunnnn ~F fhn 1‘2.\«“"} Ty vl

UUIIVULECIIUU i blic ALV I P LU\»ﬂuuLc;

Characteristic values for values of € immediately precediag the
one under conmderatmn They are used to calculate the starting
values, labeled Ang

Vector containing either scaled or unscaled ratios of d_(cl0f)
coefficients. When the ratios are scaled, ENR({I) =
U o1 1% DN(I)/DN(I - 1}. When unscaled, ENR (I) =

RT /T ITAR

DN{Iy/DN{I~- 1)

Constant set equal fo 10°ND-1 | 1tis used in determining the con-
vergence of two inner sums required each iteration in the Bouw-
kamn orocedure,

el e eenilile.

Vector whose Ith element FACT(I) = (21 - 2}!/ {4§"1 I~ 131 23,
FACT is calculated once for an entive computer run, I s usedin
evaluating the sums over n in Eq. {20).

Inpui parameter and step size used to generate BARG.

12
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FTEST Constant set equal to 10" NEX,

GLIST Vector used in the Bouwkamp variational procedure. The element
GLIST(I) = f 5y, 1x_o from Egs. (13) and (14).

GTEST Constant set equal to 10" NEX/2,

H c.

H1 Input parameter and step size used to generate desired values for c.

HL The final {ralue for ¢ generated using a single set of input parameters

H1, DH, and NH. That is, HL = H1 + {NH - 1)DH.
HSQ c2.

HTEST Constant set equal to 10NEX-5_ 1t is used to scale the spherical
Bessel functions.

IBLIM LIM1/2 - IX.,
IBLIMM IBLIM - 1.
1IX IX+1.

IRIO IW6 +1.

=
=2}

®/2, truncated to an integer.

=

¥ - 2(IW6). This is equal to O for even values of £ and equal to
1 for odd values of £.

JARG Total number of desired values of x in the range x| <1

JFLAG Vector whose Ith element JFLAG(I) equals 0, 1, 2, 8, or 4.
JFLAG(T) always equals 0if 1< JARG and equals 0 or 3 if

TADIMN ~ T o~ N
JADRAT ™ 1 ] unnu auu bllﬂ d..l'lgu.ld.l' .ll.lnbblUIl

8{i {c, BARG[KFLAG(I)]} and therefore the linear prolate func-
tion wg{c BARG[KFLAG(I)]} is calculated using only Eq. (12);
JFLAG(I) equals 1 if JARG < I < NARG and the function S{)
and therefore y is calculated using both Eq. (12) and Eq. (21)
and choosing the best result; JFLAG(I) equals 2 if JARG <I<
NARG and the function S 13 and therefore \,b is calculated using
only Eq. (21); and JFLAG(I) equals 4 if JARG <I<NARG and
the function S¢ 1) and therefore l,fJQ is not calculated but set equal

to 0 when both expanblons would prowue Completely inaccurate
results,

JLIM Integer greater than IW6 such that both IbNtJLiM)_I > CTEST and
IDN(JLIM + 1}| < CTEST. ‘

13
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JLN Number of Bessel functions calculated for each value of x in the
. range [x| > 1 for a given value of ¢ and LL. 1t is given by JIN =
LL + 0.0004¢? + 12, /c+ 12.

JMAX Number of modified Legendre functions {BRAY) that are
evaluated for values of x in the range 1 <|x| < 2. Fore¢ <100,
dMAX is normally set equal to 294 + 2(NEX/2), where NEX/2 is
truncated to an integer before multiplication by 2. The section
“Parameter Ranges” contains information on when to use alter-
nate expressions for JMAX.

JSTOR Integer equal to the maximum number of terms required for con-
vergence of the series used in caleulating Ay and Yyfe, x}. I is
determined anew for each €.

J1 Integer'less than IW6 such that both [DN{J1}| > CTEST and
[DN(J1 - 1}{< CTEST. If noJ1 > 1 satisfies this condition, then
Ji1=1,

KFLAG Veetor whose Ith element KFLAG(1} equals 0 when iBﬁRGﬁ}% >2.

For the first of the (NARG - JARG) values of BARG(T) such that
(BARG{D)! < 2, the element KFLAG(Y) = JARG + 1, For the
second, KFLAG(I}Y = JARG + 2, etc.

L L

LFLAG Vector whose Ith element LFLAG(I) equals O when [BARG(D)I > 2.
When IBARG(I} < 2, LFLAG() is initially set equal to O but is
* changed to 1 when the Legendre functions are calculated for the
argument BARG(I). It is used to avoid unnecessarily recalculating
Legendre functions when ¢ is changed.

LiM1 Integer equal to the largest value of the index n as given in Eqgs.
: (12}, (13}, etc. that is retained in the calculations. For £ =0itis
set equal to 12./c + 12. . For > 0 it is set equal to JSTOR +
JSTOR + 10, where JSTOR has its value as determined duzing
previous ¢aiculations for £ - 1.

LL Largest value of € desired. It may be different for different vaiues
~ofc. .

LMAX ' Largest value of { allowed. It depends on both ¢ and NEX.

LUM Integer measure of the degree of convergence of the Bessel fune-

tion expansion for Y(c, x). It is calculated from the expression
-log IFTERM/SUM|, where FTERM is the last term taken in the
series and SUM is the sum of ail terms up to and including FTERM.

MACC Vector whose Tth element MACC(Ii is a measure of the number of
decimal digits that are accurate in the printed value for
Yole, BARG(I)].

14
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MAT

MFLAG

MINAC

MUM

NACC

NARG
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[
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Integer used two ways. First it is an input parameter specifying
how many values of x in the range {x| > 1 are to be generated from
a single input set of BRG1 and FARG. Second it is the total

mirselian Af smliias Af v 3 Fha vanea vl ™ 1 +hat aes ganavatad 1raiee
NDUITIOEY O1 VAiIUes UL A Ll LT Lalige A 7 1 Wlay dit gllifiaicud usilig

all the input sets of BRG1 and FARG.

Number of Legendre functions calculated for each value of x in
the range |x) <1. MAT is equal to LL + 0.0004(HL)2 + 12,/HL +
12, where HL is the largest value of ¢ desired.

Vector whose Ith element MFLAG(I) equals 0 for I =1 to JARG.
The element MFLAG(JARG + 1) is equal to the index J of the
first value BARG{J) such that IBARG(J)| < 2. The next element
MFLAG(JARG + 2) is equal to the index of the second value
BARG(J) such that [BARG(I)| < 2, ete., until MFLAG(NARG) is
reached.

Integer set equal to 8. It indicates the minimum number of
accurate decimal digits that are desired. When the accuracy of
Yole, BARG(I)] for £ > 2¢/m and BARG(I)| < 2 as calculated
using the Bessel-function series falls to MINAC, the Legendre

R I s s, I e P P A e s Y R e YA AN |
1UNCLION SEries 15 used 1o calcuwale WQLC, DARix(l)].

Integer measure of the degree of convergence of the Legendre
function expansion for Y(c, x). It is calculated from the expres-
sion - log |[FTERM/SUM|, where FTERM is the last term taken in
the series and SUM is the sum of all terms up to and including
FTERM., B

Vector whose Ith element NACC(I) is a measure of the number of
decimal digits that are accurate in the printed value for
dgle, ARG(D)].

Integer used two different ways. First it is an input parameter
specifying how many values of x in the range |x[ < 1 are to be
generated from a single input set of ARG1 and DARG. Second it
is the total number of values of x generated in the range |x| < 2
from all the input.

Number of decimal digits available in double-precision number on
the computer. It equals 25 for the CDC 3800 computer at NRL
and equals 16 for the TI ASC computer at NRL and for most IBM
computers.

Integer set equal to 8. It indicates the degree of convergence
desired in the final series calculations of Yolc, x). Terms are taken
in the series until the relative contribution of the last term taken is
less than 10~ NDIG-2

15
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NEX The largest exponent available for double-precision numbers on
the computer. K equals approximately 307 on the CDC 3800
computer at NRL and equals approximately 75 for the TT ASC
computer at NRL and for most IBM computers.

NFLAG Vector whose Ith element NFLAG(Ij eguals 0 for I =1 to JARG.
ForI=JARG + 1 to NARG, NFLAG(I) is equal to the lesser of
JMAX or the index n such that |P,; {BARG[MFLAG{D}}} >
10NEX+ND ang [Pn.o {BARGIMFLAG(I)]} < 1ONEX+ND,

NEOP 2c/7, truncated to an integer.
P Doubly dimensioned array containing values of the Legendre

function for all values of X in the range x| < 1. The element
P(1,d)=P;_; [ARG(D].

PSI Vector whose fth element PSK(I) = Pole, ARG(D].

RAY Vector used in the generation of the spherical Bessel functions.
Rl R{P(c, 1).

SALAM Ag times 10NEX

TTEST Congtant set equal to 10 NEXNI+NDZ

UTEST Constant set equal to 1QND+ND+5

VTEST Constant set equal to 10" NEX+ND+5

WTEST 1/VTEST.

YTEST 1/HTEST.

Major Computation Blocks

Descriptions of the major computation blocks in LINPRO are as follows:

, Statement Number
Computation Block From To
Read data v 1 15
Calculate both the Legendre functions for x| <1 and
the vector FACT 51+1% 88
Calculate the spherical Bessel functions by sub-
routine SBESF 36+3 35

*The symbol 51 + 1 signifies statement number 51 plus one line.
18
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Calculate the starting value A%)Q for the characteristic
value Agp

Generate successive corrections to obtain AOE

Test the resulting value for A,y to determine whether
it is correct

If AOQ is incorrect, change A})Q and return to recal-
culate AoQ

Calculate the coefficients d,

Calculate both R{})(c, 1) and the normalization given
by the left-hand side of Eq. (17)

Calculate Ay and scale if necessary

v T .r A for x| <1
Lalcuiare WQ X) I0r [X]| &=

Decide whether to use Legendre functions to calcu-
late wg(c, x)forl <|x|<2

Calculate wg(c, x) for 1 < x| < 2 by the Legendre-
function expansion

Calculate the accuracy check for fbg(c, x) obtained
using Legendre functions

Decide whether to

N P e R i |
WptC, X) 10T 1L < iX|

use Bessel functions to calculate
-
=L

Calculate JIQ(C, x) for |x| > 1 by the Bessel-function
expansion
Calculate the accuracy check for yﬁQ (c,x), x| >1

Decide whether Legendre functions are required for
1 <Ilx| < 2 and have not previously been calculated

Calculate Legendre functions for 1 < x| < 2
Choose the best value for Yy (c, x) for x| < 2 when
both the Legendre function and the Bessel function
expansions are used

Final printout

17

93

12+1

22 +1

22

23+2

83+4
50 + 2

- A,

148 + 2
and 151 + 9

161

191
and 151 +9

151

]
e
.'.

[

94 + 2
58 +8

58 +2

o
Co
+
[
=]

58 +19

61

56+1

11+4

27+4

33

33+5

83+3

50 +1
148

A e

45
151 +9

162+1

196
151 +9

151+8

=t
<]
o0
+
-t

57
58+9

58+6

cn
o]
+
[
oo

175

61

46,
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Parameter Input
The input consists of a series of data cards:

Data Card 1: Format 3I5 — This card contains the integers NX1, NX2 and NCH. The
mteger NX1 is right justified in the five spaces on the card. The integer NX2 is right
justified in the second five spaces, etc. The integer NX1 is the number of fuilowmg data
cards that specify the values of x in the range -1 < x < 1 for which u‘;g{c, X} is desired.
The integer NX2 is the number of data cards {following the previcus 1 + NX1 data .
cards) that specify the desired values of x in the range Ix{ > 1. The integer NCH is the
number of data cards (following the previous 1 + NX1 + NX2 data cards} that specify the
desired values of ¢.

Data Card 2: Format 2D20.10,I5 — This card contains an initial value of x, called ARGI,
a step size for x, called DARG, and the number of values of x, called NARG, to be cal
culated from ARGI and DRAG. The values of x resulting from this data card are ARGI,
ARG1 + DARG, ..., ARG + (NARG - 1)DARG. ARG1] is contained in the first 20
spaces on the card, DARG is contained in the next 20 spaces, and NARG is given in
spaces 41 through 45 {right justified).

Data Cards 3 through 1 + NX1: Format 2D20.10,I5 — Each of these data cards is
identical in function and format to data card 2. They each contain an initial vaine ARG1
and step size DARG for generating NARG additional values in the range -1 < X < 1.

{The integer NARG is of course reset with each new data card.}

Data Card 2 + NX1: Format 2D20.10,I5 — This data card is identical in format and
similar in function {o data card 2. It provides an initial value BRG1, a step size FARG,
and MARG, the number of values of x to be generated from BRGL and FARG in the
range x|l > 1. The resulting values for x are BRG1, BRGl + FARG, ..., BRG1 + (MARG
- 1)FARG.

Data Cards 3 + NX1 through 1 + NX1 + NX2: Format 2D20.10,I56 — Each of these data
cards is identical in format and function to data card 2 + NX1. They each give an initial
vajue BRG1 and step size FARG for generating MARG additional vaiues of x in the range
fx} > 1.

Data Card 2 + NX1 + NX2: Format 2D20.10,2I5 — This data eard contains an initial
value for c, called H1, a positive step size for ¢, called DH, the number of values of ¢ to
be generated from H1 and DH, called NH, and the last value of 2 desired, called LL. The
values of c that result from this card are H1, H1 + DH, .., H1 + (NH - 1)}DH. LINPRO
calcutates Yo(c, x) for LL + 1 values of £ from 0 to LL.

Data Cards 8 + NX1 + NX2 through 1 + NX1 + NX2 + NCH: Format 2D20.10,2I5 —
These data cards are identical in format and function to data card 2 + NX1 + NX2. Each
card contains an initial value H1, a step size DH for generating NH additional values of ¢,
and a last € value LL. {NH and LL are reset with each new data card.)
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