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A FORTRAN COMPUTER PROGRAM FOR CALCULATING
THE LINEAR PROLATE FUNCTIONS

INTRODUCTION

Ixiy phtysical cirtormc nan ho rnmaharnatAllv mnAtoloPdb hv n rnmnlp fiinrtinn nf n
±VAr&L kP.

5
J J1 .3Jo O/...W His~ J_ ---...w.- .A - -

single real variable f(t) whose Fourier transform is limited to the passband IWI < £2 and
which is assumed integrable (in the absolute square) over the interval [- oc, c]. An
analytic representation of the system in the interval [-T/2, T/2] is greatly facilitated by
the availability of a set of band-limited functions that are orthogonal and complete
over both the finite interval [-1/2, 1/2] and the infinite interval [- cc, cc] These re-
quirements are uniquely met by the linear prolate functions @2(c, t), constructed from
the prolate angular spheroidal functions of the first kind SQ\c, t), and the associated
linear prolate eigenvalues X2(c), constructed from the prolate radial spheroidal functions
of the first kind Rh(c. 1). That is (by definition)

V1/2-( 2) -(1/

I Sg(lq.c s)] 2 dsl

S( 2t)

and

Xx(C) =2C) [ R(1 (c, 1) ] 2, 2

where c = T2/2.

Spheroidal functions have been studied extensively since their discovery by Niven
[1] in 1880. Examples of such studies are the monographs by Meisner and Schifke
[2] and Flammer [3]. However not until about 1960 did Slepian, Pollak, and Landau
i- d j IiIIUuiat, thec asphidcttLit JUlncLtiUloLn jpoassess DcJci Jproperties thGatL hLav sincJC ueen
shown to lead to their application to phenomena as diverse as acoustics, antennas, optical
diffraction, filters, and noise.

It is convenient to define the function

V/X0SU(c, x)
i 2(c, x) = (3)

j Cr rq(])11 ell 2A2 Acl

_________ __ L - 1 J

Manuscript submitted March 16, 1976.
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A. L. VAN BUREN

which has the advantage of not containing T explicitly. The linear prolate function for a
given T is then given by

,(2\122 t 'TJ

The function 'Q(c, x) will be referred to in this report as a linear prolate function. The
names linear prolate function and linear prolate eigenvalue were given to 4t£(c, t) and -
X9(c) by Freiden [8I. They are useful in distinguishing these functions from the prolate
spheroidal wave functions used in their construction.

The computer program LINPRO (linear prolate functions) calculates, in double-
PreffZ51Vtt aflromtiefEl, numtemuew vWuet LUZr WIG c) and 4 'l (c, for ueired values (a C arlH 3
and for all integer values of £ from 0 to the largest value desired. The program is written
in universal Fortran and should run on any computer that accepts this language.

ANALYSIS

Solution of the Helmholtz Equation in Prolate Spheroidal Coordinates

.L Ile prtat SIe urx Oluai Sy wann tlni i Ur xux--u uy ruety, ME .WU-Ulfwrirau .W-W lif
elliptic coordinate system, consisting of confocal ellipses and hyperbolas1 about the major
axis of the ellipses. The prolate spheroidal coordinates (t, il, 0) with 1 C t < 
- 1 C6; t <1, 0 Ct < 2Cr are related to the cartesian coordinates (x, y, z) by the trans
formation

a 2~~~~~~~~~~~~~(a
-= (( -1)~(1-q2 )1" 2 cos@, (Sa)
2

y= a [(t2 _ Il, _n2) 1/2 sin @1 (5b)

Z (Sc>

where a is the interfocal distance. The spheroidal coordinates t = const1 = coast, =
const define the following set of orthogonal surfaces, as shown in Fig. 1:

ellipsoid of revolution: X2 +y2 + _Z =11 (a
(at2)2 (t2 _ 1) (a/2)2 t2

hyperboloid of two sheets: x +y9 _z _ (6h
(a/2) 2 (1 -_ 2) (a/2) 2 q2 1

half plane containing the z axis: 4 =tanf tyyx). (oc)

2
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Fig. 1 - The prolate spheroidal coordinate system
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A. L. VAN BUREN

The Helmholtz wave equation

(V 2 + k 2 )X = 0, (7)

QLJa cvatAun AI LL %JIaU O.it DjJlCaLVLLWI tatUIlesa,. ±1kV ±labtJLV-e OuILtLtfLAl lb, 5ivCI LUY

Xm(c; &, tr, i) = Rmk (ci t)Sm2(c, ?7)m(4m (8>

where c = ka/2 and where the radial function RmQ(c, t), the angular function Sm$(Ci XO
and the azimuthal function 4m .( satisfy the ordinary differential equations

d dRmiF 211

I(t- d1) m [A.- _ e22 + _ R -

dF 1 12 }- d g~j * in- 2_ 2 C 1 Z= (10>

and
-2 + _n2( = 02 .-

In physical problems in which the field has to be periodic and unique over the range of
the azimuthal coordinate q, it is required that m be an integer, chosen to be nonnegative.
For fixed m and c # 0 the numbers Am(c) for which Eqs (9) and (10) have nontrivial
convergent solutions are ordered numerically in an ascending series and labeled with the
integers 2 = n, 2 = m + 1, etc. In the limit c -) 0, Eq. (10) reduces to the ordinary dif-
ferential equation for the associated Legendre function whose separation constants Amq
are equal to 2(k + 1).

The two independent solutions of Eq. (9) are identified as the radial function of the
first kind R$c, t) and the radl function of the second kind Rj$c, t). Similarly the
two independent solutions of Eq. (10) are called the angular function of the first kind
S$1(c, q) and the angular function of the second kind S$3j(c, i). Equations (9) and (10>
are essentially the same except for range.

Three volumes of tables of numerical values for the prolate radial functions and
their first derivatives with respect to t were published in 1970 [9J. These volumes con-
Wu ennie5 'or mhe oillowing range oa parameters: In U (Vo'lume 1 m = L (Volume 2),
m = 2 (Volume 3); 2 = m, m + 1, ..., m + 49; > = 1.00000001, 1.0000001, .. , 1.01, 1.02
(0.O2)1.2,* 1.4 (0.2) 2.0, 4.0 (2.0) 10.0; c = 0.1 (0.1) 1.0, 2.0 (1.0) 10.0, 12.0 (2.0>
30.0, 35.0 40.0. A single volume of tables of numerical values for the prolate angular
functions and the linear prolate eigenvalues was published in 1975 [101. The range of
variables covered in this volume is m = 0; = 0 (1) 49; 0 0 OD (10) 9, where i7 - cos (;
c = 0.1 (0.1) 1.0, 2.0 (1.0) 10.0, 12.0 (2.0) 30.0, 35.0, 40.0. The numerical values given

`T-he notation .2.uz tu.u4 1.2 indicates 1.02, L.04, 1.06, ...7 i2z.
.5
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in Ref. 10 can be used to construct corresponding values for the linear prolate functions.
Three volumes of oblate radial functions [11) and one volume of oblate angular func-
tions [12] were also published.

I hie Ldou jlte'precisiLon ForUIUJr-an computeLr programs used to generate LALth LaCUIb are
documented in a series of NRL reports [13-15]. Unfortunately these computer programs
were developed around the large exponent size (±307) of the CDC 3800 computer at
NRL and are not easily modified to run on computers with a significantly smaller
exponent range. The program LINPRO however is designed to run on computers with
any exponent range.

Since the linear prolate functions and eigenvalues are constructed from the zero-
order spheroidal functions of the first kind St)(c, t1 ) and R~g(c, 1), the following discus-
sion will be restricted to these functions.

Prolate Angular Functions of the First Kind

since +the annl- function of thbe first, k ind" reduc to Uh Tene 4ucton 4f 4hkJ1l1t, UIVit aLl~IaLr t'Iiiit LAVkI II0 1VIL~ II i~eUUIWc LA) Wit LJCvC1ulCu LUnuaiCltsi VI L~L1

first kind in the limit as c - 0, it is convenient to expand SglgY(c, tq) in the following
series of Lengendre functions:

SIQ(c, 77) = Z dn(cIOQ)Pn(77), (12)
n=0,1

where the prime sign indicates that n = 0, 2, 4, ... if 2 is even and n = 1, 3, 5, ... if 2 is
odd. Substitution of Ea. (12) into Ea. (10) with m = 0 and use of the recursion formulms
for Legendre functions lead to the following three-term recursion formula in the coeffi-
cients dn(cl02):

°ndn+2 + 3ndn + yndn-2 =° n > 0, (13)

where

(n+2)(n+1) 2
-- (>n + 3)(+ 1 + c

On n(n + 1) - A°Q + (2n + 3)(2n 1) C2

n(n - 1) 2
EYn (2n - 3)(2n -13) c (14)

If the choice of A02 is arbitrary, solutions given by Eq. (12) with constants dn determined
by Eq. (13) are divergent at either 7' = 1 or at i7 = - 1. However in physical applications it
is necessary that S )(c, q') be finite at both of these points. A search is therefore made

5



A. L. VAN BUREN

to find special values for A09 which make dn satisfy Eq. (13), at the ame time sat -
ing the condition

dnn+2 (1 5

, n #>* c

Use of these characteristic values leads to successful expansions for SW)(c, q) of the form
given in En. (121. Since Thegendre fune-tiink ran hp annalyticlly onntinudA into the
region It$> 1, the series expansion of Eq. (12) can be used also in thisregion. It i easy
to show that this series converges uniformly for il > 1,;since in the limit as n approaches
OD, the ratio P +,(u7)fP (,) approaches the constant (IaP + }2 and the ratio dn2
d. approaches- c2/4n2.

An efficient algorithm for the determination of A02 and dn has been developed using
a procedure described by Bouwkamp [161. This will be discussed in the section on the
computational procedure. The dn thus obtained are normalized to satisfy the requirement
thnfa R(l)(r nl haQUP the name nnrm-tnlizinn fnr--tnr An P.C

N0 = j [S(,gc, n)2 dr = [P2(??)I2 d- = 2 (16)

Substituting the expansion for SV(c, ") given in Eq. (12) and using the known ortho-
gonality properties of the Legendre functions, one obtains the normalizing relation for d

Cma

2n21 [di(c102)12 - 29+1 (17>

This normalization scheme was first used by Meixner and Schfke [21. It has the
practical advantage of eliminating the need to numerically evaluate the normalization
factor Nk(e) which is often encountered in problems envolving expansions in angular
functions. With this normalization the denominator in the definition of the linear pro-
late functions given in Eq. (1) reduces to' [2/(22 + 1)11/2. The angular-function tables of
Ref. 10 cortain thw e Mrvmnrshn nrvmali..ra Ark ,Sn ao+n~rnafra nratr ,n in tra tchat
each angular function reduces exactly to the corresponding Legendre function when c
becomes 0 is to match their behavior at a particular value of q. For example, Flammer
[31 and Chu and Stratton [17] normalize at q = 0, whereas Morse and Feshbach (181
and Page [19] choose ? = 1. Note that the linear prolate functions are defined, Eq. (1X
so that their value is independent of the normalization used for the angular functions.

Several graphs depicting the behavior of SW")(c, nX Sgfi(c, t, and S 4(c, 77) as a
function of S = cos7 ,1 for selected values of c are given in Fig. 2. The behavior for q
90f0 fn. I i0 o+ nt hnn rovn1.expl4-ittly,s. +,eni-rlntInnlsnna o+I 4Im rww

odd symmetry as the corresponding Legendre functions.

The prolate angular function S4(c, i possesses exactly £ zeros in the interval
- 1 < q < 1. When c -- 0, these zeros become identical to the zeros of the corresponding
Legendre function Pk(??). When c - 40, the prolate angular function S(cl o n) becomes

6
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J l.5 - > (a) Behavior of
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Fig. 2- Behavior of S 6 6 )(c, t7), S(61)(c, 7}), and S 6.M(c, 7) as a function of 0 = cos 17 for selected values of c.
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A. L. VAN BUREN

extremely small everywhere other than in the narrow region qI «< [(22 + 1}c 112, and
the zeros are squeezed toward t = 0. Examination of the asymptotic behavior of Eq.
(10) shows that the zeros approach those of the Hermite polynomial HRE-/1i (201.
This squeezing behavior as c increases is seen in Fig. 2.

Prolate Radial Functions of the First Kind

A useful exnemsgion for the radial function RtIfec hl can he ahtainsd from the ex-
pression given in Eq. (12) for the angular function SW(c, nJ by means of an itegral
transform procedure outlined by Morse and Feshbach [1811. The result is

= __________=_1 L ln-k d (e102)n(ct } 1 (IS)

L t~)d1 (c[0Q)

where again the prime on the summation indicates that even or odd terms are taken de-
pending on whether 2 is even or odd respectively. Note that R61 (c, t) is independent of
the normalization of the coefficients dn(c1o0).

Since both H)(c, t) and Sg>2)(c, 7?) satisfy essentially the same differential equation,
they must be proportional to each other. That is,

SW (C, Z) = KV(C)Rgl (C. Za) (1

where 41P(c) is a joining factor and where the angular and radial functions are extended
by analytic continuation beyond the region where they were origintaly defined. The
joining factor is obtained from Eq. (12) and (1) by matching the behavior of the
angular and radial functions at z = 0 and is given by

t4Akc) = d(1O) Kt drtc[0Qj I dj(CJ02) 2 (/2! 2 ,2 even, (20a)

c djo L) d4(I02) iYn + 1)1
d1 (CiOQ) En= 2I (n - 1)/21![(n + 11Jt21

(2Gb)

The Bessel-function expansion of Eq. (18) is a reasonably well behaved series for
numerinclly evaluating FO(r t< in the r<n- n 1 t u of Thc'rafnra s('Ji nl a h
evaluated in the same range 1 •27 <c by the use of

8
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S(0'2(C, 17) °1 (c) L in-dn(CIOv~inQc?7 (21)

21 d,(cIOQ)

r=0,1

Equation (21) is equally useful for negative values of q in the range - < ,7 • -1.

A convenient expression for R(1 (c, 1) is obtained using Eq. (19) and the expression
for SQ (c, 1) given by Eq. (12). The result is

DO t

2 dn(cIOQ)

R(C, 1) = n0,1 (22)
K UQ(c)

Brief Introduction to the Linear Prolate Functions

The factored solutions S(l(c, sj) and RZ11(c, f) provide a convenient expansion of
plane waves in spheroidal coordinates:

eik r = 2 N S( (c, cos O)S(l)(c, x)R(l)( c, cos m(0-)], (23)
mE Nm2 MR, MR ±t M m( (3

where the wave vector k is given by k(sin 00 cos 00 e. + sin 00 sin %0 eY + cos 00 Y
and the point r has cartesian and spheroidal coordinates (x, y, z) and (Q, 27, 0) respec-
tively, so that

k- r = k(x sin 00 cos 00 + y sin 00 sin 00 + z cos 00 ) (24)

or

k-r = C[(t2 _ 1)1/2 (1 _ y 2 )1/2 sin 00 cos (@ - 0 0 ) + 07 cos 00 (25)

The coefficient cm equals 1 if m = 0 and equals 2 otherwise. The normalization Nm1 is
given by

NmQ = J[1 [S(l(c, 7}J2 dq. (26)

By multiplying the left- and right-hand sides by cos [p(0 - 00)] Spq(c, q) and
integrating over 0 - 00 \and s = cos 00, one obtains the integral equationw-

2S('t(c, )R4()(c, i) = 4 J ei4 lsJm[c(02 - 1)1/2 (1 _ q2)1/2 sin o]S~ k(c, s) ds. (27)

9



A. L. VAN BUREN

Choosing m = 0 and t = 1, using the deffiitions for the linear prolate functions and
eigenvalues given in Eqs. (1) and (2), and making a transformation of coordinates, one
obtains the expression

fT/2 QR(c, t)eiktdt = i2Q( r~rr)24c ) (28)

for 'a real. Thus the linear prolate functions Wac, t possess the Powerful property.that
they are invariant to the operation of a finite Fauer transform. Such a property is
useful in analyzing optical (diffraction) systems by Fourier methods [211.

Multiplying both sides of Eq. (28) by CeWS and integrating with respect to ' from
- Q to + (2, one obtains a second integral transform with many useful applications:

T/2 sin SI(s -t) 

iT2 4(ct) 9 (s - dt- = c)Vk(c, saforalls (29}

For example this transform can be shown to represent the resonance condition for the
confocal laser with rectangular, spherical endplates [22].

The property of orthogonalty over both finite and infinite ranges provides a valuabe
extrapolation formula for band-limited functions. If a band-limited function f(t) is known
over a finite interval T, then it is known everywhere. In mathematical terms , when the
QQ are available, one can write

T12

Doo 4*2(c, t) f f(t)t (c, t') dt'

ftt)= 21 -T/2 (-3Q4 =0 NM

The significance of this property is that, in principle, one can restore information outside
the interval -T/2 < t < T/2 from a knowledge of the field over only the interval. In
practice the restoration is degraded by the presence of noise.

The preceding discussion is intended only as a brief introduction. The reader is
referred to the article by Freiden [S1 for an excellent and thorough review of the mathe-
matical properties and optical applications of the linear prolate functions. Applications to
the synthesis of planar antenna sources are discussed in a monograph by Rhodes [2384

DESCRIPTION OF THE COMPUTER PROGRAM LINPRO

The computer program LINPRO calculates, in double-precision arithmetic, numerical
values for Yc) and OP(c, x), as defined in Eq. (4), for desired values of a and x and for
all integer values of R from 0 to the largest value requested. The program is written in
universal Fortran and should run on any computer that accepts this computer language.

10
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LINPRO is designed to accommodate the word length and exponent range that is
available on the user's computer. The first two executable statements in the listing of
LINPRO given in Appendix B are ND = 16 and NEX = 75. These statements must be
changed, if necessary, to specify the number of decimal digits ND and the maximum
exponent size NEX availahle for douhle-nreeision numhert The user of LTNPRQ must
also set the array dimensions large enough for the desired input. This will be discussed
in detail in a subsection entitled "Dimensions and Storage."

No other changes are necessary to prepare LINPRO for the user's computer. As a
test of the universalty of LNINPR, it was run on DOth The CDC 3800 computer wit
ND = 25 and NEX = 307 and the Texas Instruments ASC computer with ND = 16 and
NEX = 75. The test was successful over the entire range of allowable input parameter
values.

The remainder of this report describes LINPRO. Included are a listing of the
significant Fortran variable names and descriptions of the major computational blocks in
LINPRO followed by a discussion of the parameter input, parameter ranges, dimensions
and storage, computational procedure, accuracy of the results, computation time, and
nrirfa A n if-niit- A cnrnnla nanas nf niitniit ic cbnnrn in A-nd;n- A mbn- 1-+nn .- F 1 RExprint.ed output. A -a..p- pge -f output is show.l. in. Appendi A.Th slrgoTIT
PRO is given in Appendix B.

Significant Fortran Variable Names

The significant fortran variable names in LINPRO are as follows:

ALAM X2 .

APSI Vector whose Ith element APSI(I) = 4Q[c, BARG(J)J.

ARAY Doubly dimensioned array that contains scaled values of the
spherical Bessel function. The element ARAY(I, J) =
HTESTiJJ1 [BARG(I).

ARG Vector containing desired values of the argument x that lie in the
range IxI < 1. The element ARG(I) is the Ith value of x in the
range lxi •1.

ARGI Input parameter and initial value used to generate ARG.

BARG Vector containing desired values of the argument x that lie in the
range lxi > 1. The element BARG(I) is the Ith value of x in the
range lxI > 1.

BLIST Vector used in the Bouwkamp variational procedure. The element
BLIST(I) = a21+IX-2'y2I+lX from Eqs. (13) and (14).

BRAY Doubly dimensioned array containing modified values of the
Legendre function for values of x in the range 1 < lxi < 2.

11



BEGI

BTEST

CL

CLL, CLU

CTEST

DARG

DH

DL

DN

DNO

DNUTM

DTEST

EIGI, EIG2, BIG3,
EIG4, EIG5

ENR

ETEST

FACT

FARG

A. L. VAN BUREN

Input parameter and initial value used to generate BARG.

Constant set equal t 1(0NDIG2. It is used to determine con-
vergence of the final sums for 2'(c, x).

Characteristic value Ao0 .

Lower and upper bounds for determining the characteristic
-rairn A-

Constant set equal to I -rND

Input parameter and step size used to generate ARG.

Input parameter and step size used to generate desired values for c.

Correction to the previous approximation for AOR. It is calculated
anew each iteration of the Bouwkamp procedu-re.

Vector containing the expansion coefficients d,(c [04 The ele-
ment DN(I) = d 21+1X(C[OQt For convenience in avoiding computer
overflow and nnderflnw nrnhlemnv the efficients are normizd
so that d2 +2 (c[lo0 = 1.

First expansion coefficient dLX(clO2).

Last sum given in the definitions Of Kkct(c) in Eq. (21), It is used
to obtain R (c , 1).

Constant set equal to 1Q ND+ - It is used as a test to determine
convGergene Wu Mbue zs ueuc

Characteristic values for values of Q immediately preceding the
one under consideration. They are used to calculate the starting
values, labeled Al.

Vector containing either scaled or unscaled ratios of d1$c[Oq)
coefficients. When the ratios are scaled, ENR(1) =
azWx 2DNfI)/DN(I - 11. When unscaled, ENR (1)
UiNki )JiNki - I.

Constant set equal to l(-ND-1. It is used in determining the con-
vergenice of two inner sums required each iteration in the Bouw-
kamn nro-ednur

Vector whose Ith element FACT() = (21 - 2) {41-1 [(I - )11 2 4.
FACT is calculated once for an entire computer run. It is used in
evaluating the sums over n in Eq. (20).

Input parameter and step size used to generate BARG.

12
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FTEST Constant set equal to lo-NEX.

GLIST Vector used in the Bouwkamp variational procedure. The element
GLIST(I) = 021+IX-2 from Eqs. (13) and (14).

GTEST Constant set equal to lo-NEX/2.

H c.

H1 Input parameter and step size used to generate desired values for c.

HL The final value for c generated using a single set of input parameters
H1, DH, and NH. That is, HL = H1 + (NH - 1)DH.

HSQ c2 .

HTEST Constant set equal to 1 0NEX-5. It is used to scale the spherical
Bessel functions.

IBLIM LIM1/2 - IX.

IBLIMM IBLIM - 1.

IIX IX+1.

IRIO IW6 + 1.

Mw6 £12, truncated to an integer.

Ix 9 - 2(IW6). This is equal to 0 for even values of £ and equal to
1 for odd values of R.

JARG Total number of desired values of x in the range lxi • 1.

JFLAG Vector whose Ith element JFLAG(I) equals 0, 1, 2, 3, or 4.
JFLAG(I) always equals 0 if 1I JARG and equals 0 or 3 if
TAflJ T A ATn T ._ _ L. . ._._i._iut-Inn '. I 1 eN1IIUI WMu LiC anguar lunu>LUll
S,' {fc, BARG[KFLAG(I)] } and therefore the linear prolate func-
tion 4i9 c, BARG[KFLAG(I)] } is calculated using only Eq. (12);
JFLAG(I) equals 1 if JARG < I < NARG and the function s)
and therefore 4Q is calculated using both Eq. (12) and Eq. (21)
and choosing the best result- JFLAG(I) equals 2 if JARG < I C
NARG and the function s('l and therefore 4R is calculated usingN AR an th fuctin S01..
only Eq. (21); and JFLAG(I) equals 4 if JARG < I < NARG and
the function sgol) and therefore /Q is not calculated but set equal
to 0 when both expansions would provide completely inaccurate
results.

JLIM Integer greater than IW6 such that both IDN(JLIM)I > CTEST and
IDN(JLIM + 1)1 < CTEST.

13
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JLN Number of Bessel functions calculated for each value of x in the
range jxi > 1 for a given value of c and LL. It is given by JLN 
LL + 0.0004c2 + 12-yC+ 12.

JMAX Number of modified Legendre functions (BRAY) that are
evaluated for values of x in the range 1 < IxI < 2. For c < I0Q

JMAX is normally set equal to 294 + 2(NEX/2)I where NEX/2 is
truncated to an integer before multiplication by 2. The section
"Parameter Ranges" contains information on when to use alter-
nate expressions for JMAX.

JSTOR Integer equal to the maximum number of terms required for con-
vergence of the series used in calculating X2 and 4/I(c, x4. It is
determined anew for each 2.

31 Integer less than IW6 such that both IDN(J1M1> CTEST and
LDN(J1 -1 1) C CTEST. If no JI > I satisfies this condition, then
J 1l

KEFLAG Vector whose Ith element KFLAG(IJ equals 0 when {BARG(IM) > 2.
For the first of the (NARG - JARG) values of BARG(I) such that
LBARG(IM< 2, the element KFLAG(I) = JARG + 1. For the
second, KFLAG(I) = JARG + 2, etc.

L 2.

LFLAG Vector whose Ith element LFLAG(I) equals 0 when IBARG(IYi > 2.
When IBARG(IMl < 2, LFLAG(I) is initially set equal to 0 but is
changed to 1 when the Legendre functions are calculated for the
argument BARG(I). It is used to avoid unnecessarily recalculating
Legendre functions when c is changed.

LIMI Integer aqual to the largest value of the index n as given in Eqs.
(42), (13), etc. that is retained in the calculations. For 2 0 it is
set equal to 12%/i + 12. kFor 2 > 0 it is set equal to JSTOR +
JSTOR + 10, where JSTOR has its value as determined during
previous calculations for 2 - 1,

II Largest value of 2 desired. It may be different for different values
of c.

LMAX Largest value of 2 allowed. It depends on both c and NEX.

LUM Integer measure of the degree of convergence of the Bessel func-
tion expansion for 4(c, x). It is calculated from the expression
-log IFTERM(SUM 1, where FTERM is the last term taken in the
series and SUM is the sum of all terms up to and including FTERM.

MACC Vector whose Ith element MACC(I) is a measure of the number of
decimal digits that are accurate in the printed value for
4'2 [c, BARG(11].

14



NRL REPORT 7994

MARG Integer used two ways. First it is an input parameter specifying
how many values of x in the range IxI > 1 are to be generated from
a single input set of BRG1 and FARG. Second it is the total
IIuIULe U] VruLe Un An the range [A1 .- 1dthat aie gerterated LLuOrn

all the input sets of BRG1 and FARG.

MAT Number of Legendre functions calculated for each value of x in
the range jxi C1. MAT is equal to LL + 0.0004(HL)2 + 12V/Ht +
12, where HL is the largest value of c desired.

MFLAG Vector whose Ith element MFLAG(I) equals 0 for I = 1 to JARG.
The element MFLAG(JARG + 1) is equal to the index J of the

fi--t -- n Ann/YTX - -1 tI- In 1 Art1l/ TXI l tflt..- .... .1 - ---irst value DA1Ru(d) such that IflIAGd)i 9 z. Ine next, element
MFLAG(JARG + 2) is equal to the index of the second value
BARG(J) such that IBARG(J)i < 2, etc., until MFLAG(NARG) is
reached.

MINAC Integer set equal to 8. It indicates the minimum number of
accurate decimal digits that are desired. When the accuracy of
4'[c, BARG(I)] for 2 > 2c/r and IBARG(I)I < 2 as calculated
using the Bessel-function series falls to MINAC, the Legendre
function series is used to calculate WR [c, fAl-UIn .)j.

MUM Integer measure of the degree of convergence of the Legendre
function expansion for 1Q(c, x). It is calculated from the expres-
sion - log IFTERM/SUMI, where FTERM is the last term taken in
the series and SUM is the sum of all terms up to and including
FTERM.

NACC Vector whose Ith element NACC(I) is a measure of the number of
decimal digits that are accurate in the printed value for
iP[c, ARG(I)J.

NARG Integer used two different ways. First it is an input parameter
specifying how many values of x in the range IxI < 1 are to he
generated from a single input set of ARGI and DARG. Second it
is the total number of values of x generated in the range lxi < 2
from all the input.

TNi Number of decimal digits available in double-precision number on
the computer. It equals 25 for the CDC 3800 computer at NRL
and equals 16 for the TI ASC computer at NRL and for most IBM
computers.

NDIG Integer set equal to 8. It indicates the degree of convergence
desired in the final series calculations of OQ(c, x). Terms are taken
in the series until the relative contribution of the last term taken is
less than l0 -NDIG-2

15
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NEX The largest exponent available for double-precision numbers on
the computer. It equals approximately 307 on the CDIC .880
computer at NRL and equals approximately 75 for the TI ASO
computer at NRLL and for most IBM computers.

NELAG Vector whose Ith element NFLAG(I) equals 0 for 1 1 to JARO.
For I = JARG + 1 to NARG, NFLAG(I) is equal to the lesser of
JMAX or the index n such that IP.-I {BARG[MFLAG(1fl 1>
1ONEX+ND and [Pn.2 {BARG[MFLAG(I)1}I • IONE+ND>.

NHOP 2ctM, truncated to an integer.

P Doubly dimensioned array containing values of the Legendre
function for all values of x in the range Ixf I 1. The element
P(I, J) = Pj_1 (ARG(Ifl.

PSI Vector whose Itfrelement PSI(I) ~P[c, ARG(I) I

RAY Vector used in the generation of the spherical Bessel functions.

Ri RW(c, 1).

SALAM X2times. 1 QNEX

TTEST Constant set equal to i-N-EX+N0+ND'2.

UTEST Constant set equal to 1N+DS

VTEST Constant set equal to lQ-NEX+ND+5.

WTEST I1(VTEST.

YTEST IIHTEST.

Major Computation Blocks

Descriptions of the major computation blocks in LINPRC) are as follows:.

Computation Block Statement Number
From TO

Read data 1 1

Caculate both the Legendre functions for Ix I•<1 and
the vector FACT 51 +1* 6

Calculate the spherical Bessel functions by sub-

routine SBESF 36 +3 35

*~The symbol 51 + 1 signifies statement number 51 plus one line.

1 6
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Calculate the starting value Alk for the characteristic
value A02

Generate successive corrections to obtain AO0

Test the resulting value for AU2 to determine whether
it is correct

If A02 is incorrect, change A' and return to recal-
culate AO0

Calculate the coefficients dn

Calculate both R(A)(c. 1) and the normalization given
by the left-hand side of Eq. (17)

Calculate Nk and scale if necessary

Calculate vq(c, x) for lxi •1i

Decide whether to use Legendre functions to calcu-
late @9(c, x) for I <l xi < 2

Calculate 4p'c, x) for 1 < lxi < 2 by the Legendre-
function expansion

Calculate the accuracy check for iQ(c, x) obtained
using Legendre functions

Decide whether to use Bessel functions to calculate
W vQW , A) LfL r 12 Ix 

Calculate TI(c, x) for lxi > 1 by the Bessel-function
expansion

Calculate the accuracy check for 4'2(c, x), IxI > 1

Decide whether Legendre functions are required for
1 < IxI < 2 and havy nnt nrisvinn=1v hccn rnaloilo+OA

Calculate Legendre functions for 1 < Ixi • 2

Choose the best value for 1'2(c, x) for IxI < 2 when
both the Legendre function and the Bessel function
expansions are used

Final printout

93

12 + 1

22 + 1

22

23 + 2

83 + 4

50 + 2

148 + z
and 151 + 9

161

191
and 151 + 9

151

94 + 3

94 + 2
58 + 8

58 + 2

r:Q .4 IA
UU I LU

58 + 19

61

55 + 1

17

11 + 4

27 + 4

33

33 + 5

83 + 3

50 + 1

148

48
151 + 9

162 + 1

196
151 + 9

151 + 8

198 + 1

57
58 + 9

58 + 6

Co -0 1 *0do -to

175

61

46.
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Parameter Input

The input consists of a series of data cards:

Data Card 1: Format 315 - This card contains the integers NXI, NX2, and NCH. The
integer NX1 is right justified in the-five spaces on the card. The integer NX2 is right
justified in the second five spaces, etc. The integer NX1 is the numbe, of following data
cards that specify the values of x in the range -1 < x < 1 for which 2(c, x3 is desired.
The integer NX2 is the number of data cards (following the previous 1 + NX1 data
cards) that specify the desired values of x in the range 1xJ > 1. The integer NCH is the
number of data cards (following the previous 1 + NXI + NX2 data cards) that specify the
desired values of c.

Data Card 2: Format 2DL20.1i0,5 - 'hbis card contains an initial value of x, called AiGIL
a step size for x, called DARG, and the number of values of x, called NARG, to be cal-
culated from ARGI and DRAG. The values of x resulting from this data card are ARG1,
ARGl + DARG, ..., ARG1 + (NARG - 1)DARG. ARG1 is contained in the first 20
spaces on the card, DARG is contained in the next 20 spaces, and NARG is given in
spaces 41 through 46 (right justified).

Data Cards 3 through 1 + NXI: Format 2D20.10,15 - Each of these data cards is
identical in function and format to data card 2. They each contain an initial value ARGI
and step size DARG for generating NARG additional values in the range -1 < x < 1.
(The integer NARG is of course reset with each new data card.)

Data Card 2 + NX1: Format 2D20.10,15 - This data card is identical in format and
similar in function to data card 2. It provides an initial value BRG1, a step size FARG,
and MARC, the number of values of x to be generated from BRG1 and FARG in the
range ixL> 1. The resulting values for x are BRG1, BEG1 + FARG, ..., BEG1 + (MARC
- 1)FARG.

Data Cards 3 + NX1 through 1 + NX1 + NX2: Format 2D20.10,15 - Each of these data
cards is identical in format and function to data card 2 + NX1. They each give an initial
value BEG1 and step size FARG for generating MARG additional values of x in the range

> 1.

Data Card 2 + NX1 + NX2: Format 2D20.10,215 - This data card contains an initial
value for c, called HI, a positive step size for c, called DH, the number of values of c to
be generated from Hi and DH, called NH, and the last value of 2 desired, called LL. The
values of c that result from this card are HI, HI + DH, ..., HI + (NH - 1)DH. LINPRO
calculates WQxc, x) for LL + I values of 2 from 0 to LL.

Data Cards 3 + NXl + NX2 through 1 + NX1 + NX2 + NCH: Format 2D20.10,2115-
These data cards are identical in format and function to data card 2 + NXI + NX2. Each
card contains an initial value Hi, a step size DH for generating NH additional values of c,
and a last 2 value LL. (NH and LL are reset with each new data card.)
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