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BACKGROUND

During the last decade many articles and reports have been published on the prop- -
erties of sea clutter echoes obtained with a high-resolution radar and the detection of
targets in non-Rayleigh sea clutter. The purpose of this report is to present a umﬁed
summary on the status of this work.

FUTURE WORK

While much work has been accomplished, there remain several outstandmg pmblems

®  What should be the polarization of a high-resolution radar?

®  What is the physical cause of the “spikes”; and more importantly, are th ‘ any
techniques for suppressing the “spikes”?

® A better understanding is needed of the non-Rayleigh nature of sea clutter
obtained at shallow grazing angles with large pulsewidths. Is this phenomenon
simply due to shadowing causing an apparent large water wavelengt‘.h‘?




NON-RAYLEIGH SEA CLUTTER: PROPERTIES AND DETECTION OF TARGETS

I.  INTRODUCTION

In the last several years, many investigators have studied the scattering mechar; SIS
that produce radar sea clutter. With results for scattering from slightly rough. surfaces
and composite surfaces obtained by Rice [1], Wright [2,3], Valenzuela [4-6], Guinard.
and Daley [7], and others, the properties of average radar backscatter can be:modeled: -
fairly well. ‘ S

The original work on the probability density p(x) of sea clutter is that o ,
[8]. Goldstein states that if many scatterers are uniformly distributed in an flluminated
patch (the area defined by the pulsewidth and the radar beamwidth, ¢7/2 by RG), the
relative phases of the individual echoes will be random. He adds that the cm ) o
theorem yields the Rayleigh density for envelope-detected sea clutter.

He notes, however, that if the pulsewidth is small, the assumption of unifor
tributed scatterers does not hold. As an example, he shows a photograph of an -scope
(Fig. 1) and notes the “spiky” appearance. Furthermore, he infers that the. radar 1s m
fact resolving the individual waves. :

This work was published in 1951. During the next 15 years, very little research was
done on the density of sea clutter, and that which was done was either classified or ap-
peared in reports of limited circulation. In 1969, Nathanson [8] reported some results
obtained by the Naval Research Laboratory (NRL) and the Applied Physics Liabo
the Johns Hopkins University (APL). Specifically, he gave standard-deviation-to-mean ‘
ratios for various pulsewidths and showed a deviation from the Rayleigh density for small
pulsewidths. Furthermore, he stated that for short pulses, the density function for hori-
zontal polarization had a longer tail than the density function for vertical polanzation

In 1970, Trunk and George [10] considered the log-normal and contammated‘ ”rmal
descriptions of sea clutter and calculated detection probabilities for targets in ‘these den-
sities. With that, the detailed description of the clutter density will begin. In Sce. II,
measurements of the average backscatter o¢ are given, and the results of slightl"y ri‘:"tigh
scattering and the composite surface-scattering model are introduced so that they may be
used later in this report. In Sec. III, a spatially varying conditional density p(x Ioo) is
introduced. This conditional density is a natural consequence of the ¢trnposite surface-
scattering model and is used to explain the non-Rayleigh nature of ses v uzt¢r. The vari-
tion of the clutter densities, p(x) and p(x|og), with various radar parameters. such 5. fres
quency, pulsewidth, and polarization are found using analysis of variance techmques In
Sec. IV, a way of constructing a realistic computer model of the sea surface is-given. The -
surface is used to predict non-Rayleigh clutter densities for various conditions and to indi-
cate some finer points associated with the detection of small targets on the surface of the

Manuscript submitted February 10, 1976.
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ocean. In Sec. V, various detectors such as integrators, rank detectors, and the_:;;_
Pearson detector are compared. The major results of the report are summarized.

II. AVERAGE RADAR CROSS SECTION

Important developments in understanding the nature of sea clutter have been made
by studying the interaction of electromagnetic waves with the surface of the ocean. - These
studies [2-6] are based on Rice’s work [1] on slightly rough surfaces (surfaces: whose
height variations are small in relationship to the incident wavelength and whose slopes are -
<<1). Using perturbation techniques, they found that the reflected energy was directly
proportmnal to the energy density spectrum of the surface height variation evaluated at
the Bragg scattering condition. Specifically, the radar cross section for direct po'

lt

OuH amk?* sin0 gy W(2k cosf) |

Il

oyy = 4mk? sin0 ayy W(2k cosb) ,
where & = 2Zn/A is the wavenumber of the incident wave, & is the grazing angle,..W{K) is
the energy density spectrum, and K = 2k cosf is the Bragg resonant condition. - (Valen-
zuela [4] found the cross-polarization cross section by considering the second-arder per-
turbation terms.) The « terms are :

Sy = (e - 1) ?
[sinf + (e — cos28)1/2]?
and
2
oy = {e — 1)[(e —~ 1) cos20 + ¢
[E sinf + (€ — cos? 6')1"2]2

is available, W(K) can be calculated since

KWIEYAKE = St deo
PRy les Ao

where w2 = gk. However, a more useful approach is to use a result of Phillips {11] who"
investigated the growth of water waves and concluded that there exists an upper bound -
for the height of gravity and capiliary waves. Using a dimensional argument, he'conelided .
that in the range where waveheight is limited, the energy spectrum was of the form -

W(K) = BK4.
There is uncertainty about ihe vaiue of B; however, Phillips gives B ~ 6 X 10~3 for g

waves and B ~ 1.5 X 1072 for capillary waves. Substituting Eq. (6) into Egs. (1) an
one obtains the following limiting values for the cross sections:
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Oyy = 1.57 X 1073 arypyy tantd 8}

where the o's are defined by Egs. (3} and {4},

Guinard and Daley [7] have compared sea clutier data with the theoretical model.
Their data were taken with the four-frequency radar (4FR) system, which is an airborne,
eoherent, puiseci radar capable of fransmitiing a sequence of four frequencies X band
{8910 MHz), C band (4455 MHz}, L band {1228 MHz}, and P band (428 MHz)}, alierna-
tively on horizontal and vertical polarizations. The basic radar parameters of the 4FR
system are given in Table 1. A basic description of the 4FR system can he found in

Ref. 7 and a detailed description in Guinard [12],

The data used in Guinard and Daley’s study [7] came {rom two major experiments.
In July 1965, a measurement program was conducted off Puerto Rico. Radar echoes
were recorded for all frequencies, both polarizations, and a variety of prazing angles and
sea states. Sea conditions were measured by a team from the Applied Physics Labora-
tory, Johns Hopkins University. During the measurements the sea stafe varied between
& and 2 and the maximum wingd waz 20 knots with 9-ft seas. The second measurement
program was conducted in February 1969 in the North Atlantic to study rougher sea
conditions. Ground truth was provided by ocean stations India (59°N, 19°W} snd Jubiet

R0 BN 9Ny Qas obobas vemarl PN O U | AR Ve ndo werco
{od.o N, U Wi o84 SUAles Vaiiea between 0 and t}, a maximum wind of 45 knots was

recorded, and a significant wave height of 26 f{ was observed. The L-band data are shown
in Figs, 2 and & for vertical angd horizontal polarizations, respectively. Each data point
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Fig. 2— Variation of RCS with grazing angle; W{K)}=§ X 1073 K™%,
€=173-85i [7]
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Table 1—Parameters of Four-Frequency Radar System®

Azimuth

Elevation

. Azimuth | Elevation . ! Cross- Antenna Peak Average Pulse- PRF
Freg;:clllcy P ":i"’:lllza' Beamwidth | Beamwidth h{l;i};); 1\3::: Polarized Gain Power Power Width (5:)5)
kw w s
(deg) | (deg) | (gp 3B (dB) @8 | W) W) (us)
P Band Horizontal 12.3 40.0 14.5 30.0 25 17.4 25 140 0.25-2.0 | 100-1463
Vertical 12.1 41.0 14.5 28.0 28 174
L Band | Horizontal 5.5 13.8 13.4 16.0 25 25.9 25 140 0.25-2.0 | 100-1463
Vertical 5.5 13.0 14.0 14.0 28 26.2
C Band Horizontal 5.0 5.0 23.2 24.5 >20 31.4 35 100 0.1-2.0 100-1463
Vertical 5.0 5.0 23.2 24.56 >20 31.4
X Band | Horizontal 5.0 5.3 23.6 23.5 >20 31.2 25 160 0.1-2.0 | 100-1463
Vertical 4.7 5.0 23.6 24.2 >20 31.2

*From reference {7].

986L LHOdHH THN
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Fig. 3— Variation of RCS with grazing angler W{K)=6 X 107 3K™4,

€=73-85i [71

represents the median value of cross section obtained by processing approximately 30 s of
data. The pulsewidth selected for all points was 6.25 pys, On duly 15, 18, and 21, the
seas were 3 to 5 ft high, on July 20 they were 2 to 3 ft high, and on July 27 and 28
they were less than 1 ft high, In Fig. 2 {vertical polarization}, one can see that the theo-
retical bound of Eq. (8) provides a realistic upper bound for sea clutter and exhibits the
correct variation with grazing angle.

However, the situation is more complex when the data are compared to the theoret-
ical limit in Fig. 3 (horizontal polarization). While there is good agreement for large
grazing angles, there is a wide decrepancy between model ana data for small grazing
angles. To understand the source of this discrepancy, recall that in the ocean the small
waves (i.e., Bragg scatterers) are sitting on the much larger gravity waves and swells. In
the composite-surface scattering model {which defines the role of the large and amall
waves), Wright [3] noted that the only significant effect of the large waves is that they
change the angle between the reflecting surface {ocean} and incident radiation. This an-
gular change can be resolved into two components: one a change in the apparent grazing
anple: the other, a rotation normal to the plane of incident radiation. Obviously, the first
component increases cross sections, and Valenzuela [5] has shown that considerable varia-
tion in cross section can be caused by the latter component. Guinard and Daley {71 con-
clude that to bound the cross section observed with horizontal polarization, it is necessary
to use the vertical bound of Eq. (8) for vertical and horizontal polarization.

The purpose of fhis section was to introduce the slightly rough-surface ang composite
surface scattering models. Those with a further interest in the subjeet should consult
Guinard and Daley {7}, which provides an overview of the theory and references all the
important work,
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III. DENSITY FUNCTION OF SEA CLUTTER

In this section, the results of fitting the clutter distribution with the log-normal and
contaminated-normal distributions are reviewed. Then, from the compomte-surfac
tering model, a conditional density p(xlog) is introduced, is shown to be Ricean; an
used to explain the non-Rayleigh density p(x) of sea clutter Finally, the variatio
clutter densities p(x) and p(x|og) with parameters such as radar frequency, pulsew1
polarization, and wind direction is found by analysis of variance technigues.

A. TFitting of Cluiter Data
Since 1951 [8], it has been known that the density function of sea clutier was not
Rayleigh if the radar pulsewidth was smail. While some research was done by laboratories
and industry on the non-Rayleigh density (for example, Macdonald [13] and Ballard [14}]),
nothing appeared in journals until Trunk and George [10]. They considered fitting the
log-normal and contaminated-normal distributions to the distribution of envelope:de tected
sea clutter. (Through the remainder of this report, unless otherwise stated, “‘distribution
of sea clutter” will mean the distribution of the return of envelope-detected sea clutter. )
By log-normal clutter, it is meant that the envelope-detected sample x from the sea”’t‘ I
turn has the density function L

- 2
p(x) = 2[8n (x/x%m)] )

where x,, is the median value of x and ¢ is the standard deviation of [¢n x]2, 2 By
“contaminated-normal clutter”, it is meant that the quadrature components y have ‘ .
contaminated-normal density AR T

a-v (%, _ 1 [ 2 )
ply) = k )+ ex ( ) 10
(2m02)1/2 202/ (21K202) T \2K2¢2 (20)

tewrn Dntiasiom Aamoidbiag

two (Gaussian densities. In a StfaightLOTW ard (.zuculauon it can be shown that tne
of the envelope-detected sample is

px) = (1-7) fg exp ( ’;Z\ Knoz (ZK‘ )

2%(1 - v)x -x%(K2+1) x2(K2 - 1)
+ —————— exp I .
Ko2 AK2 42 AK2 g2

Trunk and George’s data source was a frequency-agile, high-resolution radar (FHR),
which is an airborne, noncoherent, pulsed X-band radar capable of frequency diversity on -
a pulse-to-pulse basm The radar operates with either a long (100-ns) or short (20—ns)wpulse
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with vertical or horizontal polarization. The beamwidth is 0.5° and the PRF is 2,560 pps.
Standard operating procedure calls for the aircraft to fly at 180 knots sampling the data at
a range of 2 n.mi. to obtain a grazing angle of 4.7°,

Some examples of a non-Rayleigh sea clutter distribution taken by NRL in 1967 {15}
are plotied in Fig. 4 on probability paper in decibels, with the median of the density arbi-
trarily set to 0 dB. Each curve represents a 2-min sampling interval. As one can see, the
sea clutter distribution is non-Rayleigh; the higher the sea state, the more non-Rayleigh it
becomes.

The clutter models were fitted to the data by a minimax method. Firsi the param-
eters, x,,; of the log-normal and ¢ of the contaminated-normal densities, were used {o
equate the medians of the {heoretical distributions with the median of the actual data.
Then the remaining parameters, g of the log-normal and y and K of the contaminated-
normal densities, were used {o minimize the maximum difference in decibels between the
theorized curves and the actual data. The best fits for the data in Fig. 4 are shown in
Figs. b and 6. Because of the recording methods used, data recorded before 1969 couid
not be thoroughly processed.

On March 11, 1969, the FHR radar was flown 200 mi {320 km} off the Virginia
capes. In each run, the aircraft was flown in a given direction with respect to the wind,
t.e., upwind (U}, downwind (D}, or crosswind (C}, for about 20 min. After 2 min either
the polarization or pulsewidth was varied so that data would reflect a variety of conditions.
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Fig. 4—Experimental sea clutter cross-section data taken by airtborne X-band radar; 0.02-4s pulse, vertical
polarization, 4.7° grazing angle. Rayleigh distribution ineluded for comparison [10],
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Data on sea conditions were obtained from the Fleet Weather Facility, Naval Reconnais-
sance and Technical Support Center, Suitland, Md., which reported 25-t0-31-knot winds,
8-ft {2.0-m) waves, and a 1Z-ff {3.7-m} swell.

The best fitting log-normal and contaminated-normal distributions for some short-
pulse {Z0-ns) data are given in Table 2, where "best” is defined by the minimax solution.

Columns 1 and 2 ave idantifiors which distinouish the clutioar data rung, Onlymn 3 iz the
AR LS ATAT-IE B R LA AAARAL RALLS &Lﬂllull VLILC ATV LI AATEE & 33 3as SAAIALALLALE W AD WAL

parameter of the logmnormal which vields the best fit, and column 4 gives the maximum
difference {in decibels} between the data and the best-fitting distribution. Columns 5-7
contain similar information about the contaminated-normal distribution. Both dis{ribu-
tions provide essentially the same accuracy of approximation. Alsc, the previously re-
ported observation [9] that the density function for horizontal polarization has a longer
tail than that for vertical polarization seems to be verified.

Since the publication of Trunk and George {IQ} in 1970, the Icg—uﬂrmai density has
nnnnnn RN, Ry Ny R I I -y ey Y S U [ T S Tenrian  amon el cnden T

Lﬂbtﬁl\’tﬁu UL ainine dtbt‘ikb}uki, auu b!.l!: bUlLLd.IL[L[Id.WU.'iiUIilidl uEE}b}by lldb LTIl HERITU WU,
Before we leave this subject, the following cautions are in order:

& Sea clutter is not logmnormally distribufed. (It is shown in the nexi section to
have a spatially varving Ricean density.)

® While the log-normal modet of sea clutier can yield useful resuits, in only one case

does it yield the correct probability of detection in clutter. This problem is discussed
fully in Sec. V.

Table 2—Parameterization of Clutter Data

Lag-Normal Contaminated-Norma}
CI,;: :nt? %?;;?é:n Maximum Maximoam
o Dhifference v K Difference
{(dB) (dB)
1145 DH 8.0 1.6 0.025 5.1 1.4
1147 Dv 5.2 i6 0.486 2.7 0.8
11565 OH 6.1 1.3 0.034 5.6 1.5
1151 nv 4.6 1.6 0.426 2.8 0.7
1153 DH 6.0 1.0 0.051 4.9 1.3
1213 v 4.6 0.4 0,431 Z.8 1.4
1215 CcH 6.0 1.0 0.051 4.5 1.4
1218 CH 6.1 0.8 0.0b05 4.5 1.4
1220 v 4.8 0.8 0.456 3.2 1.7
1248 uv 5.6 1.8 0.065 3.0 1.4
1250 UH 6.3 0.8 0.065 4.6 1.4
izs2 uv 5.2 1.2 0.358 Z.B 4.8
1254 UH 6.3 0.8 0.104 4.9 id
10

-
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B. Density of Sea Clutter

If the density of sea clutter is not log-normally distributed, what is its den51t‘
insight can be gained by exammmg the time records of FHR sea clutter data shown in
Figs. 7 and 8. Since the plane is traveling at 180 knots, each record corresponds.to.the.
the return from an approximate 2,000-ft swath of ocean. While a structure is apparent.in
both sets of data, it is much more obvious in Fig. 8. The basic explanation, providéd. by
Trunk [16], of this variation with time is that the width (c7/2) of the radar’s illuminated
patch is less than the water wavelength of the sea (over 60 m for sea state 5). Conse-
quently, the density of the envelope return x of clutter is p[xlog(gg)]. That is, the prob-
ability of any value x is conditioned on the average backscatter g, which is a functmn
of the local grazing angle gg (Egs. (1) and (2)) at the range cell of interest. If gi
grazing angle for a flat sea and s is the slope of the large wave structure, gy = g
if clutter is observed over a time period corresponding to several water wavelength
density function can be written as

p(x) = fp[xloo(g+8)]p[00(3)] dag(s) ,

dB RELATIVE TO MAXIMUM

~40

TIME (s}

Fig. 7—Sea clutter: short-pulse data taken upwind with horizontal polarization

i1
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dB RELATIVE TO MAXIMUM

i

TE (&}

Fig. 8-—8ea clutter: short-pulse data taken upwind with vertical polarization

where p[og{s}] is the probability density of &y, which is a function of the slope of the
large wave structure {swell and/or wind waves). Equivalently, the density

uuuuuuuuuuu v function can
written, as

plx) = [plxiogle +s)ipls)ds, {13}

where p(s) is the slope density.

For simplicity it has been assumed that the large wave structure has constant slope
over the iHluminated patch area A. To take into account the variation of slope within a
range cell, let S'{A) be the variation from the average slope s. Then, since the reflected
power from elementary Bragg scattering patches in a range cell add noncoherently, the
average cross section in a cell with slope s is given by

aole+) = % § colgrst S da, (a9
A

12
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where the integral is a surface integral over the illuminated patch. Thus, smce
slope s is a function of space, the non-Rayleigh density p(x) is seen to be due: ‘to
tially varying density p(xlog). (In reality s is a function of time and space. - How ;
since the data are taken from a plane, the major change is spatial and for our nurpuw-
the sea may be considered frozen.) S

Before verifying these facts, it is worth noting that the formulation ylelds a Raylelgh
density when the illuminated patch (specifically the length along the wave direction):is

lavagn writh woanant tey the wator urotrn]nnrﬂ'h Thic ie hacauca if the natch encomnasces

IALES Wiull ICoPCTL VU WD wraltl Wartitligvil, 24l 3 MOLOAMOT L WIT pbAAl TLIARALSALLEISESS

many waves, the density of the average slope s is a delta function; i.e., p(s) = 6(g)... Con- '
sequently, p(x) = p(x|oy); and p(xloo) is a Rayleigh density because of the central ’
limit theorem. e

1. Correlation Properties

For large illuminated patches, independent samples of sea clutter can be obtained
either by using pulses separated by about 10 ms (the decorrelation time usually stated
for X-band sea clutter return) or by using frequency diversity. However, since th decor-
relation is due to phase changes between capillary waves, for a high-resolution radar - :
both methods should yield independent samples from the conditional density p(xioo ), not :
from the density p(x).

To verify these conclusions, Trunk [16] calculated the correlation functions.using :
12.8-s intervals {16,384 data points) of data taken with the FHR system. As can-be seen
from Figs. 7 and 8, this interval is long enough to represent a sample function from p(x).
Decorrelation times are given in Table 3. (Decorrelation time being defined as the time

Table 3—Correlation Values for Data Taken by FHR*

. Cross-
Time Identifier D?r?;)nr;e(lra:::;;)n Correlation
Value
1344 VUL 13 0.40
1346 HUL 75 0.57
1411 VDL 19 0.42
1413 HDL 132 0.68
1026 HDS 131 0.83
1028 vDS§ 168 0.61
1049 VCS 31 0.46
1051 HCS 112 0.64
1125 VCL 12 0.27
1127 HCL 131 0.70
1154 HUS 106 0.74
1156 vUs 193 0.62

*From reference [16].
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it takes the correlation function to fall to 1/e.) The decorrelation times vary from 12 to
193 ms, the average is 94 ms, which is much longer than the quoted time of 10 ms.

These particular data were analyzed because the pulse-to-pulse frequency diversity
used in each 12.8-s interval equaled the reciprocal of the pulsewidth, and this amount of
frequency difference is considered sufficient to decorrelate clutier retums J18}. The cross-
correlations for the two frequencies were calculated and are also given in Table 3, Itis
seen that frequency diversity does not decorrelate sea clutter returns from a high-resolution
radar, Next, the above calculations were repeated by “ividing each 12.8-s interval into 64
0.2 intervals (short enough to represent a sample function from plx isﬂ}} and averaging
the results of the 84 cases. For each of the 12 data records, the decorrelation time was
less thant 20 ms, and the cross-correlation was less than 0.1. This corresponds favorably fo
Pidgeon {19}, who reports a maximum correlation of 0.2. Thus, time separation of the
samples and frequency diversity yield independent samples from p{xiggy), not from p(x).

2. Spatially Varying Ricean Density

What is the density funciion for the conditional density p{xloy)? First, although the
iiluminated patch is rather small (10 ft by 120 £t (3 m by 36.6 m) for FHR data), there
are many capillary waves in it. Consequently, from the Centiral Limit Theorem one would
expect p(x(0,) to be Rayleigh distributed. However, Trunk [16] has shown (the analysis
is repeated in Appendix Aj that is not. Rather, because of the presence of dominant
scatterers, which can be related to scattering from breaking and very peak-crested waves
120,211, pixioy) is a Ricean density.

This is difficult to show because 0y changes so rapidly (in airborne systems} that
there are too few samples to obtain a good estimate of p(x|oy) before gy changes. Fortu-
nately, this difficulty can be overcome by analyzing the {requency-diverse FHE data in a
special way. For compuiation ease, a chi densily will be used in place of the Ricean
density. This approximation is very accurate [221 when the ratio of the dominant scat-
terer to hackground noise is in the neighborhood of O dB.

Let x; and y; be the independent samples from the two frequencies. The conditional
densities of the samples are then

fo -1 exp (—x?[Zaz}

15
T(k/2)(202)1/2 (28

It

P{xﬁﬁg}

and

292t exp (~y}/20%)

Pk(2)(202)4/2 (16)

[

ply;lon

where % is the number of degrees of freedom (k= 2 is the Rayleigh density) and o, is a
random variable. The same g; = ¢ can be used for both frequencies because the time
separation, 1/2560 s, is very small and frequency diversity changes 6y only slightly.

14
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As mentioned previously, the difficulty in showing that x; and y; are chi (or.equiva- . -
lently Ricean) random variables is that ¢; changes too rapidly for ‘good estimate of.p(x,IU ).
to be made. Consequently, a ratio z; = x;/y;, whose density is independent of ¢ '
formed. The density of z = z; = x; ,fyI is found by forming the joint density of x
¥;, substituting z = x;/y; and yI ¥;, and integrating over yl This yields* ;

M) ggk-1
T TRIDTRIZ) (1 + 52y

ol Y
P\<)

justed to minimize D wh1ch is the max1mum difference in probablllty betweer_; _
ple and theorized distributions. The fitting results are shown in Table 4, where Py
probability that the maximum difference will be less than I when the theorized: h
tion, given here by Eq. (17), is the true distribution. While the Kolmogorov-Sm one-
sample test [23], which compares Pp; to a threshold «, cannot be run, since 2 was found
by minimizing D {a procedure which biases the test in favor of acceptance), the '

Table 4—Fit of the Chi Density to the FHR Data*

Identifier Optl}?‘“m D Py
VUL 2.7 0.012 0.003
HUL 2.4 0.029 | 0.663
VDL 2.4 0.016 0.068
HDL 2.6 0.020 0.237
HDST 4.0 0.035 0.844
VDS 3.4 0.021 0.282
VCS 3.1 0.029 0.681
HCS 3.8 0.019 0.184
VCL 2.4 0.021 0.286
HCL 3.2 0.017 0.078
HUS 3.9 0.014 0.020
VUS 3.2 0.017 0.088

*From reference [16].
TThe optimum k for this case is greater than 4.0. The search

program employed search in the interval 2 <k € 4.0in 0.1
steps, -

*The reason that the Ricean density was not dlrectly analyzed is that the density for z is much mo! dt; o i

nllnnfnrl than 'F‘n I’1 '7\ Qnan fically if x Biron
ically, if x and y are Ricean,

22 exp (-B2/2
plz) = ZExB(B2/2) (1 LB Io( B2z \, B2z [ B2 \I
(1+22)2 4 Z2 + 1 Z2 + 1 Z2 + 1

where B is the ratio of the dominant scatterer to g.
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values of D and P indicate that p{x|og) is at least nearly a chi, or Ricean, density. For
the k’s given in Table 4, the ratio of the dominant scaiterer to hackground noise would
vary between —3 and *+4 dB.

3. Dominant Scatterers

In 1974, Lewis and Olin [20] measured the frequency dependence of sea returmn with
a system that transmitted 10-ns simultanc ous pulses at 8.6 and 9.2 GHz from the same
antenna with horizontal polarization. The measurements were taken at the Chesapeake
Bay Division of NRL and at a very short range, which yielded a range cell of about 5§ §£
by 5 ft {1.5 m by 1.5 m}. A typical data record is shown in Fig. 9; the waves were about
4 ft (1.2 m) from peak to trough, with whitecaps forming. Sea retura was found to have
a large dynamic range, with the largest returns coming from breaking waves. The relation-
ship between sea spikes and breaking waves was recognized and confirmed by a boresight
- motion picture camera mounted on the radar antenna. The camera was synchronized to
the recorded daia, viewing a region of the sez containing the range gate responsible for
the echoes. If should be noted that white water does not produce sea spikes. Waves must
be breaking, a fact which suggests that spray is important.

RECEIVED POWER |EVEL

f
8.6 G.Hz, l ,—MJ—

t 2 3 4 5 1= 7 8
TME - {5}

Fig. 9—Typical sea spike
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The fine structure in the sea spike was studied and it was noted that the.xeturn. .
from the two frequencies appeared to be uncorrelated. Furthermore, it was noted that
the decorrelation time within the sea spike was about 10 ms. This time was arrived. at ‘
by noting times between maximum and minimum values. Lewis noted that these facts
could be explained by a fresnel zoning effect produced by the change in size of the -
whitecap within the range cell. As the whitecap changed its length by a fresnel. :
{A/4), the signal amplitude would change from a maximum to a minimum or \nce versa. ‘
The peak return was approximated by assuming that a zone had an effective height of -

A/2 and a width w. Then the scattering cross section of such a zone would be

2
_?syz)
41r( 9

= = 2
== Jwe.
ag )\2

The cross section predicted by Eq. (18) was compared to the data and reasonabl” agr g
ment was noted. Research is still being done in this area,

M. Long [21] has also noted the relationship between sea spikes and largg
structure. He reached the following conclusions.

1. For 50% of the sea spikes, a wave breaks (whitecap forms) simultaneously or a ‘
fraction of a second thereafter. ‘

2. About 40% of the time, a spike was called when a wave structure had a
peaked crest, as if a whitecap were about to form but did not. :

3. No breaking waves were observed in the absence of a sea spike.

structure,

While the mechanism producing the sea spikes is still unknown, there is nd un - |
tainty in the fact that sea spikes are associated with breaking waves or waves tha
break,

C. Variation of Clutter Densities

The scanning rate of a search radar is typically 6 to 15 rev/min. Thus, durln;., the 3,
scan time, the large-scale sea structure in a range cell changes very little. Consequently, -
if the illuminated patch is smaller than the water wavelength, the radar return from sca 5
clutter will come from the conditional density p(x|og) rather than from p(x). Onithe
other hand, if scan-to-scan processing is performed, it is very likely (dependmgwo‘ .
rates, radar geometry, and sea conditions) that samples are being obtained from p{x).
Since the density will determine the behavior of any detector used, the variation of clutter
densities p(x) and p(xl0g) with such parameters as frequency, polarization, pulsew1dt.h
and wind direction will be analyzed.

17
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1. Varigtion of p{x}

To find the variation of plx} with frequency, the 4FR data taken on February 10,
1969, in the Narth Atlantic was analyzed. Specifically, the data analyzed by Trunk [16]
were taken with 2 0.5-us pulsewidth at L and X bands; the antenna beamwidths were 5°
and 5.5°, respectively; horizontal polarization was used for transmission and reception;
and the pulse-repetition frequency (PRF} was 683 pps. The aircraft flew at 200 knots,
the range was 2,000 yd (1,829 m}, the depression angle was 10°, and the azimuthal angle
(the angle between the radar beam and the wind direction) was varied from 0° to 45° in
15 increments. Ground truth was provided by Ocean Stations India and Juliet, which
reported winds between 30 and 35 mi/h (48 and 56 km/h) a sea of 13.1 £ {4.0 m)}, and
a swell of 18 1 (5.5 m).

The Jog-normal density (Eg. {9}) was fitted to the data by equating x,, to the sample
median and then finding the ¢ that minimized the maximum difference in deciheis he-
tween the log-normal distribution and the sample distribution. The log-normal density
was used instead of the contaminated-normal one because it is easier to interpret: It has
only one parameter {excluding x,,} and a larger value of ¢ indicates a longer tail asso-
ciated with the density. A 36-s sample of data was used, the data were fitted between
the 50 and 99.95 percentiles, and the results of 16 cases appear in Table 5. The fitting
errors ranged from 0.44 fo 1.41 dB; the average was 0.78 4B.

From Table 5 it appears that the clutfer distribution is a function of the radar fre-
quency but not of the azimuthal squint angle. However, to test whether these factors
cause a significant change in the distribution, a statistical procedure ealled analysis of
variance was used. This procedure decides whether differences in experimental resulis {in
our case different values for o) are true differences or just experimental {sampling} errors.
The results of the analysis of variance will appear in this section and further details ave
givenn in Appendix B. The analysis of variance procedure was apphed to the o’s in Table
5 and the results are sumimarized in Table 6. The quantily SF estimates the sum of two
effects, the sampling error and the effect of changing frequency; the quantity SA also
estimates the sum of two effects the sampling error and the effect of changing azimuthal
angle and the quantlt},r SE is an independent estimate of the sampling error. The guantity
SF is compared to SZ. Since their ratio is large,” a frequency effect is present. Next, S§
is compared to bg Since their ratio is small, an azimuthal effect is not present. That ig,
changing the azimuthal angle from 0° to 45° does not change the clutter distribution
significantly.

F-band data {428 MHz) were fitted to the log-normat density wt an identical manner;
the results appear in Table 7. The P-band distributions have a much larger spread (higher
¢} than the X-band data but a slightly smaller spread than the L-band data. Unfortu-
nately, no definite comparison can be made between these bands since the Pband antenna
had a 12° heamwidth resulting in an illuminated patch area 140 percent larger than those
of £ and X bands. However, since a larger patch tends to make a distribution have a

*Under the hypothesis that there is no frequency effect, S;% and 5;5’ are independent estimates of the sam-
pling errar, and their ratio has an F-distribution. The threshold value for any significance, which for a
significance of 0.1 iz 3.2, can be found in either Dunean {241 or Fischer {251, which also provide further
information about analysis of variance. All analysis of variance in this section were condueted st a
significance tevel of 0.1,
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Table 5—0 in Decibels of the Fitted Log-Normal Distribution*

4FR Radar Azimuthal Squint Angle N
parameters 0° 15° 30° 45°
Frequency

L band 6.1 6.0 5.4 b.7 5.5 6.3 6.1
X band 4.8 4.4 4.9 4.3 4.6 4.5 5.0

*From reference [16].

Table 6—Results of Analysis of Variance: The Effect of Various
Parameters on the 4FR Clutter Distributions®

Effect Mean Square Variance Ratio Conclusion .

i

Frequency S}%
Azimuthal angle S2

5.640 S§/S2
0.062 | S3/s?
0.101

f

55.84 | Frequency effect isjbresen;ﬁ-FfV‘ -

1l

ES
i

0.61 | Azimuthal effect not present,

1

Sampling error S2

*From reference {16].

Table 7--¢ in Decibels of the Fitted Log-Normal
Distribution for P Band*

Azimuthal Squint Angle

0° 15° 30° 45°

5.8 5.7 5.1 5.8 5.1 5.8 6.0 6.2

*From reference [16].
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smaller spread, P-band distributions have a larger spread than X-band distributions, but
the retationship between P and L bands cannot be determined. Valenzuela and Laing {26}
analyzed the 4FR data and concluded that L-band data were more Rayleigh than X-band
data; based on results of K-S tests. However, if one studies the results of the individual
tests, one sees that the maximum difference in probahility {D) between L-band data and
the Rayleigh distribution is larger than the difference between X-band data and the Ray-
leigh distribution. The reason Valenzuela and Laing concluded that L-band data were
more Rayleigh than X-band data is probably because Py is smaller for the E-band than
for the X-band. However, since they concluded thaf neither data are Rayleigh distributed,
the only reason Pp is smaller for L-band data is that there are fewer independent sgmples
for L-band data than for X-band data. The resulf only indicates that the K-8 test is not

a powerful test; L.e., if data do not come from the theorized distribution, many independ-
ent samples are needed to reject the hypothesis that the data did come from the theorized
distribufion.

The FHR data are analyzed again to find the variation of p{x) with polarization,
pulsewidth, and wind direction. Firsi, the dala were fitied {o the log-normal distribution
{results appear in Table 8); the fitting errors ranged from 0.4 to 1.4 dB, and the average
error was 0.8 dB. An analysis of variance was conducted; the resulis are summarized in
Table 9. The most significant parameter is polarization: the clutter distribuiion for hori-
zontally polarized data has a much longer tail than that for vertically polarized data. The
next most significant parameter is crientation with respect to the wind: upwind or down-
wind measurements have a fonger tail to their distributions than crosswind measurements.
While the analysis of variance {Table 9} shows no significani difference between the up-
wind and downwind measurement, an analysis of variance {Table 10} of the shori-pulse
data in Table 2 definitely shows a difference between upwind and downwind measure-
ments. {Clutter time 1145 was eliminated to make an equal number of cases in each
category.} Finally, while the 20-ns data have a Jonger {ail than the 100-ns data, the

Table 8—Log-Normal Fit of Data Taken by the FHR*

Maximum

Date Time Tdentifier & Difference
(dB) (aB)
3411 1344 VUL 4.8 0.45
3/11 1346 HUL 6.0 0.73
3/11 1411 VDL 4.7 0.50
3111 1413 HDL 7.3 0.81
3/12 1026 HDS 7.5 0.83
312 1028 VDS 5.5 1.36
3112 1049 VS 4.4 0.52
3112 1051 HCS 6.1 0.40
3/12 1125 VCL 4.4 0.42
3/12 1127 HCL 5.6 1.40
3/12 1154 HUS 5.9 1.10
3/12 1156 vUs 5.8 1.08

*From reference {16].
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Parameters on the FHR Clutter Distributions™

Source Sl\éls:?e | Vfaﬁ ;r;ce Conclusion
Polarization 6.75 26.0 Polarization effect is presen
Pulse length 0.56 2.2 Pulse-length effect not pres“ ‘
Upwind vs downwind 0.78 3.0 | Effect not present 3
Upwind and downwind 1.76 6.7 Effect is present

vs crosswind
Sampling error 0.26 -

*From reference [16].

Table 10—Results of Analysis of Variance: The Effect of Various v

Parameters on the FHR Clutier Distributions in Table 2

Source Mean Varia.nce Conclusion
ke Square Ratio
Polarization 4.32 141.0 Effect is present
Upwind vs downwind 0.15 4.9 Eifect is present
Upwind and downwind | 0.15 4.9 Effect is present
vs crosswind
Sampling error 0.0306 -

analysis of variance (Table 9) indicates no significant difference. Since it is known“that

the clutier distribution is Rayleigh for large pulsewidth, there seems to be a thresh

effect. That is, small pulse measurements have a larger clutter spread t' v

measurements; however, once the pulsewidth is smaller than the water 21+,

are no longer significant.

2. Variation of p(xlo,)

-:‘."'I].':'Il'l. chiang~

To find the effect of various parameters on the conditional density p(xloo), an, a.nal-
ysis of variance was run on the data in Table 4 (optimum k are used as data points); the
results are summarized in Table 11. The most significant parameter is pulsewidth: the
larger the pulsewidth, the more Rayleigh (as oppose to Ricean) the density of clutter
backscatter. This can be explained by recalling that the dominant scatterers are-braakis

waves.

21

If the patch is small, there may be only one breaking wave in it, and th
will be Ricean. However, if the pulsewidth is increased, several breaking waves:
present. Since return from these waves will add noncoherently, the density w111
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Tabie 11 —Analysis of Variance Results: The Effect of Various
Parameters on the Conditional Clutter Density®

- M Vari
Effect can anance Conclusion
Square Ratio
Polarization (.606 7.88 Polarization effect is present
Pulse length 2.706 35.21 Pulse-length effect is present
Wind 0.006 0.07 Wind effect not present
Sampling error 0.078 -

*From reference [16].

toward a Rayleigh density as the pulsewidth and thus the number of breaking waves in-
creases. The other significant parameter is polarization, vertieal polarization giving rise {o

a more Rayleigh-like density than horizontal polarization. This could be explained by the
simple fact that the clutter refurn is higher for vertical polarization. Thus, if the dominant
scatterers have the same cross section for beth polarizationg, the ratio of the dominant scat-
terer to background clutter will be smaller, and hence the value of k will be nearer to 2.
Finally, wind direction has no effect on the conditional density.

D. Empirieal Density of piag)

In 1972, Trunk [16] showed that the non-Rayleigh density p{x} of envelope-detected
sea return could be expressed as

pix) = fp(xioﬁ)p(ﬂﬁ)dog» {12)

While Trunk investigated the densities p(x} and p{x[oy} and concluded that the form of
pog) has an important influence on p(x), he did not find the density for p{og}. This
situation was rectified in 1974 when Owens [27] used a nonparametric estimator for the
density of 10 log ¢4, whieh is equivalent to finding p{oy). Owens’ analysis is summarized
in the following sections.

1. Nenpgrametric Estimation of a Probability Density

It gy, ..., oy are independent random variables with a comunon deusity f, a kemnel
estimator of f at a point y has the form

N
Foy = 5 2. Ky, 9) (19)

i=1

2

where K is a known kernel. A common form of X is
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K(y,0) = — 0)/h(N)]

1
wony Kl

where A(N) is a number depending on the number of samples. There are many possible™ -
choices for K and A(N). (If the reader is interested in the area of nonparametric density
estimation, he should consult Owens {27] who quotes some basic results and references
the basic papers.) The choice of Owens was

. 2
R(Z) = %(suéZ)
and
h(N) = 20A/N .

Thus, if f is the density function of ¢ = 10 log o, then

) ‘ B
N smt .
fv) = 20\/_ Z ( ) e

is an estimator of f(y)} where

v - e)VN
T T

and g,, ..., gy are independent samples from the density f.

The difficulty in applying Eq. (23) is that the random variables g; are not
observable. Rather, the data consist of the envelope-detected returns x. If th
tional density of p(xigg) is known precisely, then empirical Bayes methods [2
used to estimate p{oy). However, while Trunk [16] has shown that p(xlog) de “
various parameters such as pulsewidth and polarization, he has also stated that t} isity

of p(x|og) has little effect on the density of p(x). Consequently, it is safe to as
p(xlog) = Ty glx/og) ‘ (25)
for some density g. Thus, if
b = f xg(x) dx S 28)
A e o
then

E(xlog) = boy
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Now, consider the following procedure. For each {, {i = 1, N}, select a sample o; from f,

and then select k& samples, denoted x;y, ..., x;;, from the conditional density pixlo;).
Since
E{xij} = ba; for =1, ..., k, (28}
it follows that an estimate of bo; is
1 fod
bG; = ¢ ) (29)
i=1
Taking the log yislds
0; = 10loght; = 10logd; + 10logh. {30}

That is, g; is an estimate of 10 log g;, shifted by a constant that is independent of i. Thus,
g; defined by Egs. (29) and (30} can be used in Eg. (23) to estimate f{y)}.

2. Iata Analysis

The data analyzed by Owens were the small-pulse {Z0-ns} FHR data that appear in
Table 8. The nonparametric egtimation procedure is applied {o these data in the follow-
ing manner. First the decorrelation times for selected short-pulse data are extracted from
Table 3 (presented in column 3 of Table 12). Since 18 ms is the decorrelation time of
sea clutier when a remains constant, the decorrelation times in Table 12 are good esti-
mates of the times required for oy for the iluminated patch to decorcelate. Based on
these times, Owens selected a “sarmpting interval” (approximately one-eighth of the de-
correlation time), in which it is assumed that ¢ remains constani. For each data record,
every eignth sample was selected to form a new record, with samples 3 ms apart and
adjacent samples recorded at different frequencies. The total number of samples {this
corresponds to ¥ in Eq. (29)} in a given sampling interval is given in column & and the
total number of intervals (corresponding to Ng;) used in the analysis is given in column 6.
Then, using the data sets indicated in Table 12, Owens computed the densities as follows:

Table 12—Decorrelation Times and Sampling Intervals

Decorrelation Sampling Number of Number of

Time identifier Time Interval Samples i

£amm = 1 e v B Sam T d e} ntewa}s

[Riiey {Ims} 1 miervar
1026 HDS 131 39 14 208
1628 VDS 168 51 18 256
1049 VS 31 9 4 192
ias1 HCS 112 33 iz 256
1154 HUS 106 33 i2 2566
1158 HUS 193 63 22 256
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1. Use Eq. (29), to obtain average the returns in each sampling interval. '

2. Compute the estimates g; of ¢, (in decibels) for each interval, using E
3. Estimate the probability density of g, (in decibels), using Eq. (23). -

The density of each of the six cases is given in Ref. 27, and the density functionsg for the
downwind cases are shown in Figs. 10 and 11.

may be the result of shadowing of the patch by large waves. Furthermore, densities:fc
vertical polarization are more peaked than those for horizontal polarization. This sup-
ports the conclusion in (Ref. 16) that the density p(x) has a longer tail for horizontal . .
polarization than for vertical polarization. Further information about p(gg) can: nd
in Sec. IV.B. o
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Fig. 10—Estimated probability density of normalized RCS
(horizontal polarization, downwind)
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Fig. 11 —Estimated probability density of normalized RCS
{vertical polarization, downwind)

1V, SEA SURFACE SIMULATION

Trunk {16] and Owens {27,291 have found that a simulation of the ses surface ean
be extremely useful in certain problems associated with high-resolution radars. In this
section, this simulation will be discussed, and two examples of s use will be given.

A. Sea Surface

All investigators [16,27 291 have constructed realizations of the gea surface by using
the method suggested by Neumann and Pierson [30}. The realization is obtained by con-
sidering the linear solution to the Lagrangian equations of motion for the sea. The long

crested waves are given by the parametric equations in 4,

2
x{t) = & — sin [&;— {5 cosf + ¥ sinf) ~ wi-t} ;
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y(ity =y,

and

2 P S S
z(t) = cos [% (6 cosf + v sinf) — w,-t] , " (;31)
where (x, y, z) are the coordinates of the sea surface and @ is the direction in which the
wave crest is moving with respect to the x-axis. The realization is constructed by form-
ing a linear sum of elementary solutions, i.e., . :

N w2
i -
x(t) = & - Z a; sin ':? (8 cosb; +ysinb;) — w;t + 7‘]
i=1

y(it) =y

S, | S
2(t) Z a; cos |~ (6 cosb; +ysinfy) ~ w;t + v, Lo A32)

i=1 i
where v; are independently distributed phases between ¢ and 2x. Given a ane‘;spéc#um
S(w), Trunk [16] suggests setting the N frequencies w; by REPE

“ g _2i-1 (7 T
(wydw = oN S{w)dw - (33)
0 0 e

and letting a; be a Gaussian random variable whose variance is

02(a;) = ]% f " S(w)dw . a9
0 C i

The wave spectrum that was used was the Kitaigorodskii [31] spectrum for afullyde- o

veloped sea, e

dg? B
S(@) = “% exp [-b(glucw)i] U (38)

where d = 0.0081, b = 0.74, g is the acceleration of gravity, and u is the windspeed.
To see the type of realizations this method yields, let us construct two realizations
for a 20-knot wind. First, N = 100 values of w; were chosen by Eq. (83), and 0%(g;) was
calculated using Eq. (34). Next, the wave directions 6; were chosen from two Gaiissian
densities: the first with a standard deviation of 0.2 rad and the second with a standard
deviation of 0.5 rad. The surfaces are shown in Figs. 12 and 13. Each surface is-about
700 ft (213 m) long and 300 ft (91 m) wide. The 40 y cuts are 7.5 ft (2.3 m) apartiand
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Fig. 12—Simulation of T00-ft by 300-ft {213.4- by 91.4-m} sea surface, with alfi= 0.2
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Fig. 13—Simulation of 700-ft by 300-ft {213.4- by 91.4-m) sea surface, with o{f;} = 0.5 [18]

the § values (hence approximate x values) are 1.4 ft (0.4 m} apart. From appearance, Fig.
13, with o(8;) = 0.5, is the more realistic sea surface. {Unfortunately, while Trunk [16}
used () = 0.5 he reported a{f) = 0.2. Consequently, Owens [27,29] later used a{f;) =
0.2, It is the author’s opinion that this fact will have little effect on upwind and down-
wind results but could have a larger effect on crosswind results.) While there have been
several measurements of directional spectra, the results of one of which is reported in
Ref. 30, Phillips {321 states that no simple, realistic model for the direction spectrum,
corresponding to the existing one-dimensional wave spectrum, exists.

There are several ways in which the sea surface realization can be used. In Sec. IV.B

it is used to estimate the densities for p(x) and p(gy), and in Sec. IV.C it is used to cai-
culate the probability of detecting a small target on the surface of the ocean.
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B. Estimation of the Densities p{x) and p{0)
From Sec. II, the cross section for horizontal polarization at a grazing ?.n

(e —1)

[sing + (¢ — cos28)

oy (0) = 4mk? sintd 75z

where

€ is the complex dielectric constant
kE=2n/\

EW(K)dK = S(w)dw

w? = Kg

K = 2k cosf

S(w) is the wave spectrum of the sea surface.

Since the reflected power from elementary Bragg scattering patches in a rangé-cell__édd :
noncoherently, the average cross section in an illuminated patch area A is giv:‘gr‘lx-_ by-_

o= ff ogp(e)g(x, y, 2} dx dy
(x,v,z)€EA
where
z is the height of the sea surface at the point (x, v},
« = a(x, y, z) is the local grazing angle at the point (x, y, 2),
o(a) is the reflected power given by Eq. (36), and

g(x, y, 2) is the normalized two-way antenna power gain at the point ‘(x,‘_‘

Using Egs. (12), (36), and (37), Trunk [16] calculated p(x) in the following manner:
First, the sea surface shown in Fig. 13 was constructed. Then, o; (the average radar.cross
section for the ith sample)} is calculated by approximating the surface integral in Eq. (37)
with a double summation involving 210 points: twice the azimuth beamwidth is .divided
into 21 radials (each with a separation of 0.1 beamwdith) and the range is divided into

10 equally spaced ranges. For each of the 210 unshadowed points the local grazing angle.
« is calculated, oy («) is calculated using Eq. (36), and ¢; is calculated by Eq.=(37).-. _
Next, 0;,1 was calculated by advancing the sea surface 10 ft (3.0 m) and rep&gtiﬁg‘*ﬁhe,\;
calculations. This process was repeated until 50 values of o; were calculated. 1 )
given by

plx) = f p(xlo)p(0) do

was approximated by
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8 x exp [-x%/20?
oy - ) Tl
i=1 ay

. (38}

where the ergodic theorem has been used to replace the average over p{o} by the time
series in o; and p(xjo} has been assumed to be a Rayleigh density. The Rayleigh density
has been used instead of the Ricean density because if is easier to manipulate and Trunk
{16] has shown that it will not affect the results. That is, the variation of pix} from the
Ravleigh is basically due to the density p(o). Several distributions were calculated {33}
and are shown in Fig. 14. These calculated disiributions indicate the effects of various
parameters whose significances have previously been demonstrated (See, HL.C): {a) the
cluiter distribution for horzontal pelarization HUS has a lounger tail than that for vertieal
polarization VUS,; (b) the distribution for the short puise VUS has a longer tail than that
for the long pulse VUL; and (¢} the distribution for the upwingd case ITUS has a longer
tail than for the crosswind case HCS. (The computer model does not distinguish between
upwind and doewnwind.} Also, the 20-knot case has a longer tail than the 15-knot case.
The Rayleigh curve was obtained for HUS when the windspeed was 2 knots; l.e., when
the range cell is greater than the water wavelengih, the model yields a Rayleigh density.

Owens [29] calculated p(o) in a similar manner. Using o{f;} = 6.2 (Fig. 12}, he cal-
culated 200 values of 0;. Then Eq. (23) was used to calculate the density for 10 log ¢.
The results are shown in Figs. 15 and 16. In comparing the experimental results with the
simulation, the following paragraph of Owens [29] is quoted,

¥, .. one should remember that the observations of log 0y are obtained through different
mechanisms in the two cases, In lhe simutation the only errors associated with observations
of log 04 are caused by the inaccuracies of the model and the mathematical calculations
therein. Whereas, in the experiment, g4 is observed with an error having essentially two
components. The first component of error arises from the fact that on a given sample the
only observable variable is the return x, x being related to g through the density pixieg)
This componert of error is further complicated in that various properties of p{xlag), which
is not known explieifly, depend on experimental parameters. To reduce this component of
error, 2 number of ohserved values of x are averaged to obiain an estimate of G, the average
being carried out under the assumplion that ¢ remains constant over the appropriate time
interval. Of course, this assumption is not precisely eorrect, thus infroducing a second conr-
ponent of errar in the estimate of 0.7

Owens goes on to say that “considering the complexity of the mechanismn producing sea
clutter at low grazing angles and that the two sets of resulis are not based on the same
zet of abservables, the authors feels that the agreement is good.” It is worth noting that
Owens’ largest disagreement [29] occurs for the crosswind cases. However, if o{f;) = 0.5
is used instead of ui{f;) = 0.2, the spread of p{o) will increase and better agreement will
result,

C. Probhability of Detecting Small Surface Targels

Some small, fasi ships of tomorrow’s Navy, such as surface-effect ships, will probahly
use collision-avoidance systems to avoid such ocean debris as oil drums and logs. Conse-
quently, Owens [29] investigated the probability of detecting targets at a given height &
above the local sea surface. It is important to the debris-detection problem that these
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Fig. 14—Distribution functions for various simulations: horizontal (H) or vertical (V) polari-
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targets can be smaller in geommetric size than the larger ocean waves, and so the line of
sight from antenna to target may be obstructed by surface waves.

This shadowing problem was investigated using the sea surface simulation. At any
point {xq, yg ), the target’s height at a time { was i1g(f) = h '+ z4(t), where zo{t} is given
by Eq. {32). During periods when the line from the point {xg, Yo he(fil to the radar

armtormg Intarcands thea o ciswfona tha fowons + i Fntadarad? rannnt ha Aodoabal

SLiLTilila LIILTiaT L) LLIT uvcall bullai—t’, Llll’: uxigt‘b i FLIGRAF VYT &3i§ bﬁii!-’iut RO RATLETE LY,
{This ignores refraction effects, which are presently under investigation.) Various cases
were computed by QOwens and a typical case is given in Fig. 17. For example, if the
artenna height is 75 ft (22.9 m), target height £ is 1 fi {0.3 m), and the sea state is 3
(wind about 15 knots), the probability of having a clear line of sight at any moment is
0.5 at a range of 2 n.mi.

Owens also calculated the probability of detecting a target by calculating the clutter
return in the same range cell as the target. For purposes of ilhustraiion, consider the radar

tn haun o haamundth Af 1 ;0 o Mitlmpwriciti af AN e il o wmadoatiorn wonba ~AF EFT wnwa  Thpo
Vi oRrave 3 DTaIiiwiudl UL 1.4 4 PUBEWIGWI O 4v 1§, &G & Tovanin faw &l ov & pFEkE. &Ht‘r‘

radar is 75 ft {22.9 m) above the surface, aboard a ship traveling at 80 knots in sea state 3.
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Fig. 17—Probability of sighting vs range for an
antenna height of 75 ft (22.9 m) and a sea state
of 3
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In Fig. 18, the average received signal-plus-noise and average clutter level are..
function of range.

These values are for a particular realization of the sea surface and both curve ‘
referenced to the ambient noise level. First, notice the lower envelope of *"‘o clittor re-
turn. This represents the clutter received through the sidelobes; when the «".nier level -
falls to this envelope, the entire illuminated patch is obscured by large wave structure.
The upper envelope of signal-plus-noise indicates the target return when the ta
obscured. When the curve drops away from the envelope, the target is obscu
effective cross section).

Furthermore, the signal and clutter returns are highly correlated. When the target is
not obscured, it is likely to be on the front side or top of a large wave; and a large clutter
return can be expected. On the other hand, when the target is obscured, the illuminated
patch is likely on the back side of a wave, and a relatively small clutter return will ‘result,
Owens assumed a square-law detector* and performed scan-to-scan integration. - Typlcal
results are shown in Fig. 19. As will be seen in the next section, substantial 1mprovqment
results from scan-to-scan integration. For specific details of this work, see Ref

!

V. DETECTION OF TARGETS IN NON-RAYLEIGH SEA CLUTTER,

Since 1947, the classical works of Marcum [35] and Swerling [36] have been used
to calculate the probability of detecting targets in sea clutter. Their models, based -on a )

*Since a target can be shadowed for a number of scans, the detector incurs a loss similar to a collapsing

loss: A square-law detector is used, since the col!apsmg loss is greater for a linear detector than for a
square-law detector [34].
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Fig. 18—Received signal strength for a 20-ns radar in sea state 3

Rayleigh density for envelope-detected clutter, usually provide accurate resulis when
pulsewidth is laxge. (Even for fairly large pulsewidths (0.25 us), non-Rayleigh densities
can occur for high sea states [16,26] or shallow grazing angles [21].} However, as the
range-resolution cell decreases in size, the clutfer density develons a longer tail than the
Rayleigh. Thus, if the Rayleigh theory is used, too many false alarms wili oceur.

To remedy this situation Trunk and George {10} approximated the clutter return by

the log-normal and contaminatednormal dengities and calculated probability-of-detoction

LIFL I QUi LOIRIINIIR VATV Siias e iian s LALINL LAlLUisutid

curves for the mean and median detectors. Trunk {37] generated detection curves for
fluctuating targets and the trimmed-mean defector. Schieher {38} found a bound for the
opiimal detector in log-normal clutter and showed that the binary integrator approaches
the performance of the optimal detector. Before reviewing the performance of various
detectors in the next sections, let us consider the applicability of the various models.

Except for the ratio detector [38] and the work of Owens [29], all investigations
have assumed that the available samples are independent samples from péx}). Since it has
been shown {Sec. IIL B} that frequency diversity produces independent samples from
pi{xio}, only samples obtained on different scans can be consideved independent samples
from p(x). {In this section, clutter is restricted to that resembling Figs. 7 and 8, as op-

posed to Fig. 9.3 However, since the range cell is very narrow (this is why the density is
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Fig. 19—Prohability of detection vs range for a high-resoclution radar
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Fig. 19—Probability of detection vs range for 2 high-resolution radar {Continued)
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non-Rayleigh), in order for the target to remain in the same range cell it must ezther be almost
stationary or some kind of range tracking (during detection) or collapsing must be apphed

Besides the problem of independence of the samples, there is the question of the ap-
propriate density for the clutter returm. From Fig. 20, it is obvious that the signal required
to obtain a particular performance level is very dependent on the ‘distribution assumed for
the clutter—a log-normal distribution requires more signal strength than a contaminated-
normal one, which requires more than a Rayleigh distribution. Also, the difference:
larger for 1 pulse than for 30 pulses. Thus, the choice is extremely critical whe
or a few independent samples are available. It is this author’s opinion that for s jall. fals
alarm rates (i.e., below 1076), the log-normal density will yield pessnmstlc results ie. . Per-
formance will actually be better than predicted. This is because p(x) is not really log-
normally distributed and has only been used to approximate the density to its 99 99 per-
centile. As shown in Sec. IIL. B, p(x) eventually falls off as a Rlcean densﬁ:y i :

sity requires.

Keeping in mind the previous comments, detection results are presented
normal and contaminated-normal densities.

A. Log-Normal Density

For the log-normal model the envelope-detected sample has the density fung i

9 {=2[8%n (x/x )] 2\

Y SR T R
PlA) = exp
\ g2

(2ro2x2)Y/2

where x,, is the median value of x and ¢ is the standard deviation of (%n x)z
Rice’s procedure [4C], we can show [41] that the density function of a cons
in log-normal noise is

09598

0.999-
0.998
0.995
©.99[-
. & oos
Fig. 20—Comparison of the Rayleigh, e
contaminated-normal (y = 0.25, K = H 095
2.25), and log-normal (0 = 6 dB) de- & o8
tection probabilities for N = 1 and 30 S
pulses and P, = 1078, For this com- £ o8
parison, S§/N is defined in terms of the 2 o7l
median value for all the probability 2 06
distributions [16]. 4 }
a 0.5}
0.4
0.3
0.2
0.1 A

14 18
5/N (dB)
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2x - T2 — 23y1/2
x exp [—2 R (x4 — 2xA cos + A2)/ =} dff
pix, A} = [ Y 9 > {39}
< A2ree)} 4 (xs — 2xA cosf + A%)

where the return has been normalized by median, so that x,, = 1.

Various detectors will now be evaluated using the logn

1. Mean Detector

The straightforward method of determining the probabilily density for the sum of
N independent pulses {i.e., the mean detector) is the characteristic funciion method. If

x (40}

is the characteristic function, the probability density of the sum of N statistically inde-
pendent envelope-detected pulses is

Pt 4) = 3 | 6@ exp (i) e (1)

The probability of false alarm Py, for a threshold T is given by

Pfﬂ

i2

[ pyix, 0y dx, (42)
JT -

and the probability of detection Pp is

o0

Pp = pylx, Aydx, {43}

T

WL tha
.=

3 transform, it 8 fairly simple o raloninta
YYitil inn 18

or
CLITE pRidsiosiFiiiiy w3 LOIILY OLUIRIUC W O LOUL KRG

o Egs. (40) and {41}
Then, Py, and Pp are calculated by straightforward numerical integration. Threshoid
values for N = 1, 3, 10, and 30 for values of P, ranging from 10~ 2 5 1078 are shown

in Fig. 21 for the lognormal density, with ¢ = 6 dB.* With these thresholds, Eq. {48} is
evaluated, yielding P_ vs signal-to-noise ratio S/N per pulse, where S/N is the signal divided
by the median vaiue of clutter. This is not the usual definition of /N, in which the neise
reference is the rms value of the noise. However, if is an appropriate choice, since it is
the median value of clutier that is usually reported [7}. The Py curves for 0 = 6 dB are
plotted in Fig. 22. An inspection of these curves shows that the S/N required for

o
LCLIC K

* Additional threshold values and detection probabilities for 7 = 3 dB and ¢ = 9 dB can be found in {41].
It should be denoted that for all detectors ¢ is not known a pricri. Consegquently, an adaptive thresholding
technigue must be used.
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Fig. 21—Normalized bias values for the log-
normal distribution with 0= 6 dB [10]
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detection decreases rapidly as N increases. In fact, the integration gam L is gl'eaﬁer than
would be obtained for the coherent integration of a Gaussian density, i. e I > 10 log N

It has been pointed out [37] that this means the optimal beamwidth for.ahlgh-
resolution scanning radar need not be the smallest, For instance, consider a case in.-which
S/N is 20 dB per pulse, and a three-pulse scan-to-scan integration is being performed. If
the clutter has a log-normal distribution with ¢ = 6 dB, Py, will be 0.1 for a Py, -of 1076.
If the beamwidth and scanning rate are both increased by a factor of 10/3, then 10-pulses
can be integrated in the same time. In this case, while S/N falls to about 15 dB per pulse,
Pp is greater than 0.99. Thus, better performance is obtained with the larger-beamwidth.

2. Binary Integrator and Rank Detector

It is well known that the binary integrator (sometimes called a dual-threshold ‘detector
or M-out-of-N integrator} is exactly equivalent to a rank detector. Given a set. of N ordered
samples, xy < ... < xp < ... < xy, the kth ordered rank detector involves simply com-
paring x;, to a threshold. The median detector is the special case where & = N/2. How-
ever, since the implementation and evaluation of this detector is simpler in the form of
the binary integrator, the detector will be discussed in this form. A simple block diagram
of the binary integrator (or kth rank) is shown in Fig. 23. The probabﬂlty p(A) that the
returned signal exceeds 7 is :

pl4) =f p(x, A) dx ” “]“:(44)
T .

where p(x, A) is given by Eq. (89). The probability that more than m = N k of. the N
returns exceed 7 is given by the binomial distribution .

N

N
P(4) = )’ (Q)pQ(A)[l—p(A)JN'Q.
L=m+1

n-STAGE SHIFT REGISTER

Tx: L2
INPUT X COMPA.:!ATOR é::—: :1T' n n n ‘ ‘
. ,

IFy > n-k .
TARGET

Fig. 23—Implementation of binary integrator o,
equivalently, rank detector [10]
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The desired probabilities are given by Py, = P(A = 0) and Py = P(4). In 1970 [10], the
median detector for the log-normal distribution with ¢ = 6 dB was evaluated. The thresh-

Alds nwa mwvacanfad in Big 24 and tha Aatandiamn waoolbo ors mvanamtad e TG, QR F PR ey
IS QU LuaClibtr QI £ . &y QeI WIT WL VDL MLNL STOLLILD AT DICOTLILDUL L LiE, aJ.e L

paring the mean and median detectors in Fig. 26, one concludes that the median reguires
a smaller S/N than the mean and that the difference increases with increasing N: for

N = 3, the median is 1.6 dB better than the mean; and for N = 30, the median is 2.8 dB
hetter. The perfurmance difference befween the two detectors for large sample sizes can
be obtained from Pitman’s asymptotic relative efficiency {ARE} [42]. This criterion is
quite appropriate when the signals are very weak. Specifieally, it is the ratic of the num-
ber of samples required to maintain a Py, and Pp for the first defector to the number re-
quired for the second detector as the §/N approaches zero!

ARE (0. o) ) N1{Ppys Py, SINY (46)
, = lim
VT g inso Na(Pro, Pp, SINY

where N, is the minimem number of observations required for detector d;. The simplest
way of calculating the ARE is by employing the concept of efficacies, which was also
introduced by Pitman. Using a result of Noether {43}, Trunk {44} calculated an ARE
of 129, (See Appendix C.) Assuming that a noncoherent integration gain of 10 iog\/ﬁ
15 appropriate for small signals, the median detector is approximately 10.5 dB betfer than
the mean detector for very small signals.

T IN MEDIANS

NORMALIZED BIAS LEVEL
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}
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Fig. 24—Normaljzed bias values for the median detector
(log-normal distribution with & = & dB)
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Since the log-normal density is unsymmetrical about its median value, there is no
reason to expect that k = N/Z (the median] ig the optimal rank. Rather, because of the
long tails of the log-normal, one would expect that the smaller ranks (2 < N72} would
behave better. While Trunk [45] showed that 1 dB could be gained with respect to the
median by using k = N/3 against the contaminated-normal density, Schieher {38} showed
that larger gains were obtained with smaller ranks against the log-normal. Schieher [461
obtained the optimal value of m for different values of N by calculating the detection
curves for each possible value of m and choosing the best value. The optimal vaiues of m
for N = 3, 10, and 30 pulses, for the logmnormal density with ¢ = 8 dB, are given in Table
13 along with the optimal values for the Rayleigh density, which were determined by
Schwartz [47]. Detection curves were generated by Schleher [46] for the log-normal
density (o = 6 dB) with N = 3, 10, and 30 pulses. The detection curves for the optimaim
are given in Figs, 27, 28, and 29. Comparing these results with the median detector shows
that the largest differential is for smaller N, For N = 3, the median is about 4 dB worse
(for Pp ~ 0.9 and Py, = 107%) than the binary integrator (m = 2); for N = 30, the median

is only about 1 dB worse,

Table 13—0Optimal Value of
Second Threshold m

I
n lm (Lag-Normal) | m (Rayleigh)
3 2 2
10 7 4
30 24 8
Q.95 T T 7 T T
[eR: e 3 ]
=
(=
=
S asof )
-
g

P! =jG~2 o4 o8

o oot o .

o

C o680 F <

>

= oso) 1
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30 / '

g O3 [— / 4
! / -
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-6 -4 -2 0 2 L € a
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,.
-

Fig 27—Prohability of detection vs S/N for the log-normal distribution
{& = 6 dB} and optimal binary integrator: N=3, m = 2
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8. Trimmed-Meagn Detector

Since Tukey [48] has shown that the trimmed-mean detector is effective against
contaminated distributions {Tukey only considered symmetrical densities), Trunk {49}
conjectured that the trimmed mean would also be effective against long-tailed noncoherent
densities, specifically lognormal and contaminated-normal densities.

Given a set of N ordered samples, xy < xy < ... < xp, the trimmed-mean detector
is given by ‘
No
<
SNy, Ngy = ) % (47)
i=N1

where 1 € N; < Ny < N. This detector class contains the mean S{I, N} and rank de-
tectors (binary integrators) S¢k, &). Unfortunately, when p(x) is a lognormal density,

the density of S{N;, Ny} can only be expressed in terms of an (N — Ny + 1}-order integral
to which there exists no known closed-form solufion. Sinee it i impractical to evaluate
those densities by numerical integration, a Monte Carlo simulation, involving 108 trimmed
means,” was performed {49] to estimate the threshold values for desired Pes. ForNy =2
and Ny = 5, the eguation

~log Py, = —3.1735 + 1.06857 - 0.00707T2, (48)

relating the threshold T to Py, was obtained for the log-normal density with o = & dB.
The Pp curves were generated using Monte Carlo techniques and the results are given in
Fig. 36. Of the two trimmed-mean detectors, the one using the lower ordered samples
vields the higher P;. This corroborates the previous resulf [38] that the lower ordered
ranks were the better detectors. Comparing the {rimmed-mean with the binary integrator

shows little or no difference in their performance. However, since the binary integrator
is much simpler to implement, i is definitely to be preferred.

4. Qptimagl Detector

It is well mown that the optimal detector is specified by the likelihood ratio, or
equivalently, the loglikelihood ratio. That is, a decision is obtained by

pN(DC, -‘4)

paln A=0) < L (49)

Mx} = @n

where ppfx, A) is given by Eq. (41} A decision of “no signal present” is made ¥ A{x}< T,
and a decision of “signal present” is made if A(x) 2 T. Unfortunately, since the density of
Prix, A) involves an integral, the hikelihood ratio cannot be obtained in closed form. Thus,
the optimal detector canunot be found.

*It should be noted that several authors 150,011 using the importance-sampling technique [62] have gen-
erated threshold values for the range of Pg; = 167% to 1078 with about 104 cases, It ia this author’s opine
ion that the technique is very significant. A description of the method is given in Appendix D.
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However, if one can bound the performance of the optimal detector and find & sub-
optimal detector that approaches this performance, then there is no reason to specify the
optimal detector.,

The Chernoff [53] hound,

Pgg < exp [u(s) ~ sufs)]

0<s<1 {505
Pp 2 1 — explu(sy + (1 -shuisi,
where the semi-invariant u{s) is given by
we) =t [ Iote, A ontn A= 001 s, (51)

-0

provides a rather coarse bound for the desired probabilities. Van Trees [b4] tightened
the bounds by finding a mtiltiplicative factor for the exponentials, in Ref. b0, using a
central-limit-theorem argument. Schleher [38,46) obtained a more accurate result by
using an Edgeworth series expansion to approximate the desired probabilities. Schieher
[46] shows that Py, is given by

Py, = % erfc [a(S)} exp [02(8) + B{(S)H

#(S) 1 3 .
- ——— — exp[B(8}] {—2— erfe [a(SVT IS/ ui8)| exp [ae{8]]
B[Sy} 3/2
i _ enn
v ucsn} (52)
where

«fS) = S[sy21Y2 (68}
B(S) = u(S) - Sp(S). (54}

An expression for 1 — P can be found [46] by substituting 1 - S for § in Egs. (52),
{53), and (54}. Evaluation of Eq. {52} {or P, and Fp requires the determination of the
first, second, and third derivatives of g(8). Schleher calculated these derivatives by eval-
uating #(8} at many points in the interval {0, 1}, fitting a cubic gpline funclion to the
points, and differentiating the spline function. {The N-degrse spline function produces
the smoothest curve through the data points while maintaining eontinuity of the first

N — 1 derivatives at each data point.) Receiver operating curves were generated and are
given in Ref. 46, Curves comparing the mean, median, binary integrator, and trimmed-
mean delectors with the optimal detector are given in Figs. 31, 32, and 33, for N = &,

N = 10, and N = 30 pulses, respectively. From these curves it can be seen that the binary
integrator and trimmed-mean detector are within 1 dB of the optimal detector. Since the
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trimmed-mean detector requires a ranking of the samples, the binary integrator should be
used to detect nonfluctuating targets in the presence of lognormat interference.

5. Fluctuating Targets

In the previous sections, Py curves were generated for various detectors. It has been
assumed that the target is not fluctuating and that the noise samples are independent.
However, to obtain independent samples from sea clutter {whose density is approximated
by the log-normal), the returned samples must be from different scans. Since the time
separation is probably larger than 1 s, it is quite likely that the target is fluctuating. Con-
sequently, Trunk [55] calculated the performance of the mean, median, and trimmed-
mean detectors against the log-normal density, with Swerling II and IV fluctuations as-
sumed [36}.

Since the threshold value for any Pf., is independent of the target model, they have

i\nen n?peady Caicuzabgé, ali vhat rema}ns IXS +n na}nﬁ}ai’a ‘i’}‘\ﬂ ph 'Fnr U’ﬁ]’TﬂTIG Q}N Qiﬁf"ﬁ' i‘hﬁ

interesting range of Pp is from 0.01 to 0.98, Monte Carlo %echmques which require con-
siderably less computer time than the characteristic-function approach, will be used. It is
well known that the ith sample x; of an envelope detector can be generated by

(yg + 28 }1;2 (55)

where y; and 2; are in-phase and quadrature-phase components. For the generation of
iog-normal clutter
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I

y; = exp {0[-2 2 (v;1)1Y/2 sin (27u;5)} sin (2my;3) + A,

i 5

z; = exp {0[~2 % (1;1)11/2 cos (2nv;9)} cos (2myi3) , S fj‘ - (56)

where {v;;} are independent and uniformly distributed random numbers on (0 1)‘ and A
is the signal. For the fluctuating signal, the probability densities are

p(A) = E e_A2/02
g

for the Swerling II case and
3 2172 o
p(A) = == e724%0 o (88)
o o

for the Swerling IV case. The generation of a variable having the density given m Eq { 57)
is straaghtforward Integrating Eq {(57), one obtains

Pu< A) = 1 ~ e-A%/0?

o
Lo

e"A*/0® = 1 - Pu<A). | il“‘(‘59)

A = of-%n u)]Y? - 1(80)
thoan A 1e cann +tn hava a Qworhing TT Adigtmbhattinan Tha nAawaoar doncityu Nr a m.n"]il’\dTv
LIICIL 3 1o OCTIE LU JIAYe o DWOLLMEE 11 WS ULIRIULIULL 411U pUvLL UTLIOIuvY 1V @ unv&f&l\a\am v
case is -

4Z oy
- 3L - o !
p(2) =~ e 2Zfo o (61)
o

If Z=x; + xy and if p(x) = (2/0) exp (—2x/0), Z will have the density given m Eq, (61)
Consequently, if

/2
LY b4

A= {—% [en (uy) + @ (uzn} ; )

A will have a Swerling IV distribution. With Eqgs. (565), (66), (60), and (62),‘
Carlo simulation was performed. The results are given in Ref. 55.

In Fig. 34, the fluctuating results are compared with the nonfluctuating. results. ‘This
figure illustrates the fact that for a given number of samples N, the fewer the samples 1n-
volved in the detector {i.e., ng — ny + 1) the larger the required increase in S/N: 1:n
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the desired Pp. For instance, to maintain Py, = 1076 and Pp = 0.9 for N = 3 and ‘
Swerling II target, the mean detector (which uses all three samples) requires a 4
crease, whereas the median detector (which was only one sample) requires a 6.0-dB'in-
crease. Similarly, for N = 10, the mean requires a smaller S/N increase than the tnmmed
mean.

Since the binary integrator uses only one sample, like the median, this auth:
lieves it will suffer a “fluctuation loss’’ similar to that of the median. Thus,. fo Co -
tuating targets and log-normal density, the trimmed-mean detector is the most effective ‘
one, the binary integrator is next, and the median is third, only slightly better:- the
mean. Of course, for large samples, the behavior of the detectors for I"lut.tuatmg
will approach the nonfluctuating behavior. Consequently, for large sample sizes, thc-
binary 1nteg1'ator and trimmed-mean detector are equivalent, and both are better
median, which in turn is better than the mean.

B. Contaminated-Normal Density

For the contaminated-normal model, the envelope-detected sample x has‘:‘:trhe Sity
function e

2 72x2 _xz
{x 1- )2 _x__ ex ( + ex
plx) = (1-7) 52 Plo e 22 P orags

2v(1-7)x ~x2(K2 +1 x2(K? -1 S
N At £ exp ( ) Iy ( ) , = A{11)
where 1y is the contamination fraction and K is the ratio of the standard deviatiy of the

two underlying Gaussian densities. Following Rice’s procedure [40], we can: sh:
that the density function of a constant signal A in contaminated-normal noise is

2n
plx, A) = f plx, A, 6)d8 ,
1]

where

pix, A, 0

2 {(1 ~ )2 exp [-(x2 - 2xA cosf + AZ)/202] -

2
+I%2- exp [~(x2 — 2xA cosh + A2)/2K202)

1_ i .
+L(Tﬂ exp [--(xz $in20 — 2xAK2 cosf + A2K2 .
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+K2x2 cos20)/2K202]

(1 — )
+ILK*“Q exp [—{x2 cosf — 2x4 cosd + A2

+K2x2 5;5}23;;*2:\:2{;2}} : (64)

Various deteclors will now be evaluated using the contaminated-normal model.
i, Mean Belector

The threshold T for a desived Py, and the Pp have been calculated using the charac-
teristic function approach given hy Eqgs. (40} through (43}, The thresholds for v = .25
and K= 2.25 can be found in Ref. 18, and the detection curves for N = 1, 3, 1§, and 30
pulses are given in Fig. 35, where S/N is still the signal divided by the median elutier,
which for this case is 1.410. Two poinis should be noted: (a) the integration gain for
the contaminated-normal density is greater than for the Rayleigh density, but less than for
the log-normal density; (b} comparing Figs. 22 and 35 shows that the contaminated-
normal mode! requires considerable less signal strength then the log-normal model to ob-
tain the same probabilities. The curves for N = 1 and 36 and Py, = 1078 are shown in
Fig. 20.

2. Binary Integrator and Rank Detector

The threshold values and the Pp can be found with Eqgs. (44) and (45), by using
Egs. (63) and (64) for p{x, A). The threshold values are given in Ref. 45, and the detec-
tion curves for N = 8 and 30 for the median (k& = N/2} and 33d percentile {(k = N/3) are
shown in Fig. 36. The following observations can be made.

1. Whether the 33d-percentile value or the BOth-perceniile value (median} is betier
depends on Fy, and Pp. For the values of Py, and Pp investigated, there is only
a 1-dB difference between the two. Furthermore, since the difference is so
small, only a minor improvement can be made by finding the optimal rank.

2. For a fixed Pp, as Py, becomes smaller, the 33d percentile becomes the betier
detector.

3. For a fixed Pr,, as Pp becomes larger, the B0th percentile becomes the better
detector.

Comparing the mean and median detectors in Fig. 37, one concludes that the mean re-
quires a smaller S/N than the median. However, the difference decreases with increasing
N. For N = 3, the mean is about 1 dB better than the median; for N = 30, the mean is
less than 0.2 4B better than the median. The performance difference between the two
detectors for large sample gizes can be obiained from the ARE. In Appendix C, it is
shown that the ARE of the mean with respect to the median is 1.76. If a noncoherent
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distribution with ¥ = 0.25 and K = 2,285 {447}

integration gain of 10 log+/N is appropriate for small signals, the median is approximately
1.2 4B better than the mean for very smail signals.

3. Trimmed-Mean Detectar

With the previously outlined procedure of Ref. 49, a Monte Carlo simutation was
performed. For N; = 2 and Ny = 5, the equation

~log Py, = ~1.691 + 0.3123T + 0.030872, {65}

relating the threshold T to Fy,, was obtained for the contaminated-normal modei, with

v = 0.25 and K = 2.25. The P curves were generated using Monte Carlo fechniques; the
results are given in Fig. 38. Again, the detector with the smaller ranks (N} = 2 and

Ny = §) 18 the better detector. Comparing the {rimmed-mean detector’. performance with
that of the mean {Fig. 35} indicates that the trimmed-mean is the better detector, re-
quiring 0.5 to 1 dB less 8/N than the wean.

4. Fluctuating Targels
The Pp curves for fluctuating targets are generated hy the Monte Carlo method dis-
cussed in the previous section on the log-normal method. For the contaminated-normat

model with parameters K and v, the in-phase and guadrature-phase components are

o8
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¥ = 1290 Gy )12 sin (2mu;0) 8 (u3) + 4

;= -2 8 Y2 cos (2mu;5)S ) (66)

N
li

s Ka s ﬁ;j < Y
S(Ltl}) = }
Lo, Llfj > Y,

where {u;;} are independent, uniformly distributed, random numbers on {0, 1). Using
Egs. (b5}, {86} in place of (L6}, (80}, and {82), a Monte Carlo simulation was
performed; the results are given in Bef, 55. . In Fig. 89, the fluctuating results are com-
pared with the nonfluctuating results. This figure fllustrates the fact that for a given
number of samples N, the smaller the number of ranked samples invoived in the sum
{ng — ny + 1), the larger the required increase in S/N to maintain the desired Pp. That
is, the median suffers the largest “flucination logs,” the trimmed mean the next largest,
and the mean the smallest. Thus, for fluctuating targets and contaminated-normal
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densities, the mean is the most effective detector, the trimmed mean is the nex
the median the least effective.

C. Pulse-to-Pulse Processing

Trunk [39] investigated the problems associated with pulse-to-pulse prouewng ol‘
data taken with a high-resolution radar. His results are summarized in this sec L;q TL
should be noted that if integration takes place during a single scan, the deteci_;l ]
(given in Secs. V.A and V.B) cannot be used, hecause the integrated samples: ar
independent samples from p(x). If they are used, a higher number of false alarms than
predicted will occur. To illustrate this, the threshold values for N = 3 and Py, = 10'
and 1073 were taken from Ref. 10. Letting S; be the sum of three samples taken 12. 5 ms
apart, we calculated 3,000 values for S; from the FHR data (run 1153, HUS-[10]). The
sums were compared to the thresholds and Py, values of 0.15, 0.016, and 0.0032 were
obtained. Thus, the Py, is higher than predicted; the relative error becomes larger for
smaller Pr,. The only way of calculating the correct thresholds for a detector summing
N pulses per scan is to calculate (approximate, as in Sec. III.A) the density of S; rither
than that of x;. While Trunk approximated a density of §; for the HUS case, he noted
that adaptlve thresholding was a more fruitful method.

A common adaptive thresholding technique is the cell-averaging :,onstmt-f : arm-
rate (CFAR) method considered by Finn and Johnson [57]. Their detector for
range cell can be written as a ratio,

N
1 < o
N 13_1 xij L
_ i=1 SRR :
Rj ) 1 ¥ X - [ (67)
9 .
2Mi QZ;_ Zl (TI,J"'Q"’I-Fx: 1—!2-1)
-1 i=

where x;; is the ith envelope-detected sample in the jth range cell. (The samples “““ oty e1ther
side of tfne test cell are not used because when a target is present, the Gaussian pulse shape
causes target returns in the adjacent cells.) A decision is made by comparing R; to a thresh-
old T{CFAR). This detector provides CFAR when the noise samples are Rayleigh distri-
buted. The threshold T(CFAR) is a function of {he number of reference cells and-ap-
proaches the threshold T (which is the threshold if the o of the Rayleigh density is known
a priori} as the product MN approaches infinite. The difference in S/N caused by T{CFAR)
being larger than T is called the “CFAR loss.” It can be found in Mitchell and Walker [58]
and it is given in Table 14 for N = 3. Thus, to minimize the “CFAR Ioss,” ong' ‘mth as
large as possible.

Unfortunately, if one views the clutter in F1g 40, which was generated by ‘as mlng
the sea to be frozen and converting time data in Fig. 8 to spatial data, one sée;
return goes from a minimum to a maximum in 30 or 40 ft (9.1-12.2 m). There :
Trunk [39] suggested setting M small to detect in the nulls of the sea clutter (for-targets -
that are not shadowed, i.e., low-flying targets) and evaluating the detector with M = 1 and

actual clutter data. First, if x;; are independent samples from the conditional det
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8and Py, = 10-6

Table 14—CFAR Loss {(dB) for N
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p(x|o), which is Rayleigh, then the density of R;, under the assumption of no s:lgn
is the F-distribution with 2N and 4N degrees of freedom. The thresholds can

Sinee it has heen assumed that n('rh‘r} is a an]pgdh density, xh has

Raf 94
AVT L) &TXs MLILLG LU 16 RAW-Uil DAL WL wiiday

density with two degrees of freedom. If the ch1 densities obtamed in Table 4 wei
the degrees of freedom for the F-distribution would be greater than 2N and 4N, Conse-
quently, the threshold obtained from Ref. 24 would be lower. Thus, we see; thi

Rayleigh assumption is a conservative approach: the actual By, will be lower! than.

I A v VI

To calculate the P of the detector, a Monte Carlo simulation that used actual clutter
data (run 1153, HUS [10]) was performed The output of the cell contammg signal was

generated by

Z’2 = (x cosé; +A + (x sm(ﬂ,-)2

where x;; is the actual FHR data sample, A is the nonfluctuating target amphtqd id:
6; is a random number uniformly distributed on (0, 27). The detection curve for N = 3
a.nd P, = 1076 (which was derived from 512 cases) is shown in Fig. 41. The ratio detec-
tor is compared to the one-pulse detector (i.e., x; is compared to an appropnate thJ:esh

old) and the three-pulse integrator

3
=Y
i=1

is compared to a threshold, assuming that p(S ) is known z priori. (This is equiv}ia'ient to
a ratio detector with M = o<}. The ratio detector is better than the three-pulse 1ntegrator

except for Py, > 0.96, in which case the integrator can be 1.2 dB better. i

The explanation for this is that when signal strength is fairly low, ihe ralio deiector:
can detect signals in the null of the clutter. On the other hand, when simal strength is
high, resulting in high Pp, signals must be detected in all regions, including the high-
clutter region. However, in the high-clutter regions the three-pulse integrator is better, .
since no CFAR loss is suffered in estimating the threshold. While the Pp is faily lotw for
low S8/N, it should be noted that this Py is for a single scan. It can be improved by using
scan-to-scan integration or a binary integrator. It should be noted from Table 14 that the

0.99 T T T R — 1 T
093L PROBABILITY OF FALSE ALARM=10™8 /; /‘

CTION

B MPULSE OFTEcTop
JRE [N (DU TR N N T S

Ll
<

$/N(dB)
Fig. 41—Comparison of the ratio detector with the one-
and three-pulse integrators using sea clutter data [39]
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ratio detector with M = 1 incurs a CFAR tlass of 7.8 dB. If the geometry of the situation
{the range resclution with respect to the water wavelength) permits M to equal 2, the
CFAR loss can be reduced {0 about 4.0 dBR.

VI. SUMMARY

When the range resolution of a radar becomes less than the water wavelength, the
probability density of the radar echoes from the sea has a longer fail than the Rayleigh
density. This non-Rayleigh density p{x) has been approximated by the log-normat and
contaminated-normal densities. However, p{x) is neither of these densities. Rather, the
non-Rayleigh nature of plx) is due to a spatially varving density pi{xig). The density of

pi{x) can be expressed as
p(x) = [ plxiog)p(og) do

where p{og} is the probability density of 0y and is related to the low-frequency sea spec-
trum {i.e., large wave structure}. The conditionat density p{xiog} is a Ricean density and
the dominant scatterers are associated with return from breaking, or near-breaking, waves.
From the analysis of variance, the following conclusions were drawn about the effeet of
varicus parameters on the density pix)h:

1. Data taken with horizontal polarization have a large clutter spread than those
taken with vertical polarization.

2. L-band data have a larger clutter spread than X-band data. This is true for very
high sea states and may be true for lesser sea states.

3. Upwind and downwind data have a larger ciutter spread than crosswind data.

4. Small-pulse data have a larger clutier spread than large-pulse data. However,
if the pulsewidth is smaller than the water wavelength, changes are no longer
significant. (This ignores the extremely small (5 ft by 5 ft; 1.5 m by 1.5 m})
resolution cells.)

Analysis of variance was also applied to the conditional density p{xiog), and the follow-
ing conclusions were reached:

1. Data taken with vertical polarization follow more closely the Rayleigh distribu-
tion than horizontal-polarization data, which are more Ricean.

2. Large-puise data are more Rayleigh, while short-pulse data are more Ricean.
3. Wind direction has no effect on plxiagg).
A simulation of the sea surface has been developed. It has been used to predict the

variation of p{x} and p{(9y) with various radar parameters. The simulation has also been
used to calculaie the probability that a small surface fargel is being shadowed and to

noa
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show that the times that the target is not shadowed are correlated with largg;fcl
returns. s

Various problems associated with detection of targets have been investigated.
samples separated by about 10 ms (the decorrelation time usually stated for X-b
clutter retum) or employing frequency diversity produced independent samples 1
p(xlog), not from p(x). Independent samples from p(x) can be obtained only. by‘
lecting samples from dlfferent scans.

erated for the mean, median, blnary integrator, and trimmed-mean detectors for ﬂuc-
tuating and nonfluctuating targets using independent samples (scan-to-scan processing).
Overall, the trimmed mean detector is the best. However, because of implementation
problems, the appropriate binary integrator should be used. If pulse-to-pulse processing .
is used, it is recommended that if the target is above the surface a small numb
ence cells be used, so that the target can be detected in the clutter nulls. On
hand, if the target is a small target on the surface, it can be shadowed and the se
simulation must be used to evaluate detector performance.

The question of what polarization should be used remains. Croney and Woroncow
[59] recommend vertical polarization, and Trunk and George [10] recommend horizontal
polarization. This author believes the question is now open; no generalization can be made.
Depending on radar parameters, data-processing constraints, and environmental require-
ments, either horizontal or vertical polarization could be used. However, in general this
author favors vertical polarization because of the false-alarm problem assoc1atedww1 the
sea spikes attributed mainly to horizontal polarization. ‘
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Appendix A
ANALYSIS OF SPATIALLY VARYING RAYLEIGH MODEL

It can be shown from the frequency-diverse FHR data that the conditional dénsity -
p(xlo;} is not a Rayleigh density. If x; and y; are the independent backscatter samples
from the two frequencies, the condltlonal densities of the samples are

X
p(x;lo;) = —!2- exp(- x7/207)

g;

Yi
p(yilo) = — exp(- y¥120?),

o;

where o; is a random variable. The same ¢; can be used for both frequencies, since the :
time separatmn (1/2560 ) is very small a.nd the frequency difference, of the ordel' of the
reciprocal of the pulsewidth, changes 0, only slightly. o

Since o, changes rapidly with time, only a few samples of x; and y; are avall
a fixed o;. Consequently, a ratio 2; = x;/y;, whose density is easily shown to be :

p(zi) = Zz,/(ziz + 1)23

is formed. The ratio p(2;) is independent of ¢;. Thus, even though 0; changes,
samples can be used to test whether Eq. (A3} gives the correct density for the ratio. ‘

the FHR data, the sample distribution of independent z; (constructed from 1,024 samples
taken 12 ms apart) was compared to Eq. (A3) using the Kolmogorov-Smirnov (K-S) one-

sample test.* The results of the test are shown in Table Al; D is the maximum difference
between the sample and theorized distributions and Py, is the probability that the dif- :
ference will be less than D when the theorized distribution is the true distributio
cases are rejected at the o = 0.002 level (i.e., P;, = 0.998), indicating that x; ; an
not mdependent random variables of a conchtlonal Rayleigh density. However .
prising thing is that the sample density is more peaked (has a narrower spread) th
(A3). This indicates that either x; and y, are correlated, or the density of x; and
mote peaked than a Rayleigh den31ty like a chi or Ricean density.

However, it can be shown that the first of these explanations is not posmbie
test whether correlation between x; and y; can account for the observed peaked sample
density of z, one must calculate the dens1ty of z when x and y are correlated Raylelgh .

*S.S. Wilks, Mathematical Statistics, Wiley, New York, 1962
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Table A1 — Test of FHR Data
for a Conditional Rayleigh

Distribution
Identifier | I Py
YUL {1 D71 1. Gag

HUL 0,080 | 0.999
VBL 0.052 ; 0.998
HidL 0.093 | 0.999
HDS 0.224 | 0.999
VDS 0,181 | 0.999
V(B 01562 | 0.999
HCS 0.166 | 0.999
VCL 0.050 | 0.908

oY ni1no N aoa
LS Wy ) LY ] AV PRV Ry vy

HUS 0.192 | 6.999
vus 0,136 | 0.999 |

random variables. Let the in-phase and quadrature components of x and y be x, Xy Vs
and y_; let the in-phase components be independent of the quadrature components and
et both have correlation p. The joint density of the components, then, is

i 2
M. x ,¥y.¥.1= ————— expl-(x°-2px ¥
£ a g (54 E‘?ﬂ}z(lwpg) L [ il <4
+y2 + 22 _ 90k v +y V21 - o). {Ad)
c ‘l"" Lo Snls vszr \ i~ rI A £

1
p(xa XYy 6! 7)— S exp{‘[x2+y2
(2m)y%(1 - p%)
A Fame £ nmg me 2 aim £ alv m s1rat A2 £ARY
afBXy {COB Y CO8Y 3 LU B Yitraid = &%, LAY
letting a = & - v and § = # and integrating reveal that
A2 A
|| exp 20y cos (6 - 41201 - 0] derdy
¢!
2
= [ fexp [2pxy cos of2(1 - 0231 do dp
Yy
= (2m)21, ( oxy (A6)
\1-p%
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Consequently, the joint density of x and y is

P, 3) = exp [-(a? +3%)/2(1 - 7)1, ( it 2) :

(1-p%) 1-p

Letting z = x/y and R = ¥ and integrating over R produces

=  R? 2. e
p(z) = f B2 ep - B2+ 2220 - o211, [ 22 ) ar. . (a8)
0o (1-p%) 1-p2

To, evaluate Eq. (AB), we use the series expansion of I;.

(=)
Io(x)l"z 47

R=o0 (kR"?

By substituting Eq. (A9) into Eq. (A8) and letting 4 = (1 + 22y -p ) and B
02), we find the kth term in the series to be

F4

1 - p2 22k(k1)2

f R4S exp [~ AR?/2] dR.

Integrating by parts 2k + 2 times yields

z B2k [22’”1(% + 1)1}
(1 __p2) 22&(}'3!)2 A2k+2 '

Substituting for A and B gives the density of z as

o Zi v _ oZy,2k+1
p(z) = Z 202k + 1) p*(1 - p*)z .

k70 (RDP (1 +22)ERE

The FHR data were used again. This time they were compared to Eq (A12). The
K-S results are presented in Table A2, where “Opt 027 is the value of p at which the
minimum D is obtained. (The only values of p2 used were 0.0 to 0.4, in steps of 01.)
Since (a) only 4 of the 12 cases are accepted at the o = 0.1 level, (b) the maximum cross-

correlatinn caleulatad for thic data ic (0 1 (ﬂ\ 'Drrlrtnn-n I"ﬂhf\\'" a maviminm onrealatinm. n'F
Toaa T AL LAt i dtis 10D UWALS LRl S V.4 TRVLA U G LA LA WAL WAL L CIAVALL -
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Table A2 — Test of FHR Data fora
Correlated TVR Distribution

identifier | Optimum 02| D .
VUL 0.4 0,015} 0.087
HUL 0.3 0.0421 0.951
VDL 0.3 0.027| 0.558
HDL 0.4 0.037| 0.879
HDS 0.4 0.138} 0.999
VDS 0.4 0.0771 0.999
vCSs 0.4 0.069 | 0.989
HECS 0.4 0.088 ] 0.999
VCL 0.3 0.0310.749
HCL 0.4 0.046 | 0.974
HUS 0.4 0.104 | 0.999
VU8 0.4 0.080 | 0.998

t

0.2 when the frequency difference is the reciprocal of the pulsewidth,* and {d)} the
smallest “Opt £27 was 0.3, the hypothesis that x and y are correlated, Raylsigh-distribuied,
random variables must be rejected. It is worth noting that the value of p° was set by
minimizing D; a procedure which biased the test in favor of acceptance.

*V.W. Pidgeon, "Time Frequency and Spatial Correlation of Radar Sea Returs,” Proe, Amer. Asironsuf,
Soc. Symp. {(Boston, May 25-27, 1967), in Use of Space Systems for Planetary Geology and Geophysics
The Society, Tarzana, Calif.,, 1968, pp. 455-458.
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Appendix B
BRIEF DESCRIPTION OF ANALYSIS OF VARIANCE

The analysis of variance (ANOVA) procedure will be demonstrated by fmdmgmthe
variation of the clutter distribution with changing frequency and azimuthal squm
As shown in Table B1, the distribution can be represented by a single number
analysis of variance, the data o, are represented by a linear model which consis:
mean u, a frequency effect F, an azimuthal angle effect A , and a random erro
that

i=1,.,Np
=—"[J+F!.+Ai+ éijk f—'—“l,...,NA
k=1, ., Ny

where Ny is the number of frequencies, N, is the number of azimuthal angles NR‘ 1suthe
number of repetitions of each frequency azlmuth case, ‘

NF NA
> R=0.Y 40,
i=1l :ITI‘l ’

and €, are independent Gaussian random variables with mean 0 and unknown v zculu.:e)\2
The significance of a change in frequency is checked by testing the hypotheses, f

Hy:F; =0, foralli(no frequency effect present)

H,:F,# 0, for some i (frequency effect present),

using an F-test (an optimal fest for the equality of unknown variances). The tesﬁuls‘ per-
formed by takmg the ratio R of two statlstlcs, S , an unbiased estimator of A2 + 4(F
F ) , and S2, an unbiased estimator of A2, Under H,, the ratio has an F-distribuf
and under H, the ratio has a noncentral F- dlstnbutlon For a type-f error of 0;
threshold value is found in Duncan to be 3.2.% In Table B2, R = 55.8; consequentl:
null hypothesis is rejected. That is, a frequency effect is present. The proced:
peated for the azimuthal angle, and the effect is not significant InteractionsT wn
not to be significant at the 0.1 level in this or any other data used in this paper.
quently, to avoid unnecessary complications, the results of interactions were not-
tioned in the report. Further details about analysis of variance can be found m
Duncan* or Fisher.T,

*A.J. Duncan, Quality Control and Industrial Statistics, Irwin, Homewood, 1ll., 1959.
R.A. Fisher, Statistical Methods for Research Workers Oliver and Boyd, Edmburgh 1941
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Table B1—¢ in Decibels of the Fitted Log-Normal Distribution®

4 FR Radar Azimuthal Squint Angle
Parameters 0° 15° 30° 45°
Frequency
L bhand 6.1 8.0 5.4 5.7 5.5 8.3 8.1 5.6
X band 4.8 4.4 4.9 4.3 4.8 4.5 5.0 4.7

*From reference [ 161,

Table B2—Results of Analysis of Variance: The Effect of Various
Parameters on the 4FR Clutter Distributiong®

Effect Mean Square Variance Ratio Conclusion
Frequency SE' = 5.640 S%/’SE = B5H.84 | Frequency effect is present
Azimuthal angle | Sf = 0.062 SZ/SZ = 0.61 | Azimuthal effect not present
Sampling error S% = 101

*From reference {16].
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Appendix C
ASYMPTOTIC RELATIVE EFFICIENCY OF MEAN
AND MEDIAN DETECTORS

The asymptotic relative efficiency (ARE) can usually be calculated rather.ﬂ;
employing a concept known as efficacy.* That is, the ARE of two detectors d

ig

&2
ARE (dy, dy) = =,
1

where &, is the efficacy of detector d,. Specifically, given a binary hypothesis-tesﬁiigw
problem (Hy:A = Ag vs HytA > Ag), if the detector d; is based on a statistic T;, = Ty(xy,%g, -
wo X, ) and if E{T, } = §,,(4) and Var{T,,} = ai2n(A) and m and § are defingg by

Uin(Ag) = . = M (4,) =0, Yim)A ) > 0

where
' i, (4)
YIM(Ag) = —
aA™ A=Ay
and
L m v (4,) .
im n = ,
n-—ree z'n(AO)
then the efficacy of detector d; is
w(nm)(Ao) 1/md
= (.3 Y
oin(AO) ,

subject to certain regularity conditions.! When dealing with the class of translation .
alternatives, the following conditions generally apply: m = 1, § = 1/2, and the.evaluation .
of Eq. (C4) is very simple. However, when dealing with other alternative classes (e.g.,
noncoherent detection), generally m = 2, § = 1/4, and the evaluation of Eq. (C4) is not
always simple. '

i
*E.

G.
1948,
ta.E Noether, “On a Theorem of Pitman,” Ann. Math. Statist. 26, 64-68 (1955).
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An expression for the efficacy of the mean against the log-normal density is derived
from

2 {2~
[a-l il f xp(x, A) dx:{ (CEH)
342 % A

by taking the second derivative inside the integral and dropping terms that when evaluated
at zero signal strength are zero. The efficacy of the mean can be writlen as

T.
B 4(0% -1}  16(e% tnx + (W x%)
5;"{]- F{)[ 2.3 atad ]

0 o<x

2
X (2r02y Y2exp [~ 2(in x)2 o2} dx} , (C6)

-

whelr% for the efficacy of the sample mean, F(x) = nx, T; = =, and 61 {ﬁegafef’z -
Y

The expregsion for the efficacy of the median is derived by first nutmg that making
a decision when the median is greater than a threshold value T is entirely equivalent to
making the decision by counting the number of samples greater than T. Thus, as the
number of samples approaches infinity, T approaches the median velue of the distribution,
since the median detector is consistent. Hence, if

Xx

m
E{T . }=np=n f pix, A} dx, (ChH
i}
the efficacy of the median is
A by Z
6y - {Mﬁ_ﬂ (C8)
0.5/

which reduces to Eq. (C6) with Fo(R) =1, T, = 1, and a? = 0.5//n.

Now, if one repeats the previous procedure, one obtains for the efficacy of the mean
against the contaminated-normal density

2 2 .2
R e S o
B S 202, 252

2 2 2
+ X 1+ = exp ol €9
Kot 2K2¢62 2K242 (Continued)
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+ 2rd-7) fﬂlz [( 14 x2 cos? 8)
Knog* 0 o?

(_ [x2 + (K2 - 1)x2 cos? 9])
2K2 g2
2 2
g1{.q 4 X cos 9)
K252

2 . . \
X exp (—(x K% - (K% - 1)x? cos 9))} o }d" ) CAC9)

X exp

where F, (x) = nx, T; =, and 0, is the standard deviation of the sample mean for the
noncoherent contaminated-normal distribution with A = 0, which is 12 - 1?/2-)1"2 an/h
for v = 0 and is 1.11 o4/n for v = 0.25 and K = 2.25. The latter value for 0y was ‘
found by numerical integration. Lo

The efficacy of the median against the contaminated-normal density reduce‘sﬂtw |
(C9) with F2 (x) = nx, T, = the median value of the noncoherent contaminated normal
distribution (which is (2% 2)/2 ¢ for v = 0 and is 1.410 for y = 0.25 and K= 2125),

and 0, = 0.5\/n. L
For the Rayleigh case (y = 0), the integral in Eq. (C9) can be performed. It yields

—8-11'?‘!

= m = 0.915n

&1

and
&, = (% 2)%n = 0.48n

for the efficacies of the mean and median, respectively. The ARE is

&
ARE (median, mean) = g—z = 0.525.

1

This implies that in the limit as A = 0, in order to maintain the same rrehalylidies of
false alarm and detection, the mean requires only 52.5 percent as man; irplos as "he
median. Thus, the mean is the better large-sample detector for the Rayleigh distributi

For the noncoherent contaminated-normal (¥ # 0) and the log-normal deﬁsities, o
Egs. (C6) and (C9) have been evaluated numerically; the results obtained are given in
Table C1. These show that, in all cases, the median is the better large-sample detector.
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Table C1 — Asympiotic Relative Efficency of the Mean

and Median Detectors
T Efficacy of Efficacy of
Distribution Sampled Mean Median ARE
Lognormal (o = 3) 0.286n 5.2334n 188
Log-normat {g = 6} 0.0103n 1.333n 129
Contaminated-normal
{y=0.25 and XK = 2.25}) 0.0187n 6.0238n i 1.76

E. K. AL Hussein* has solved the integral in Eq. (C9) for &, and has obtained
6, = 8njma?. {C10)

Substituting ¢ = 0.2303a(dB) into Eq. (C10) with o = 3 dB and ¢ = § dB, one obtains
5.334n and 1.333n, respectively.

*E K. AL Hussein, Cairc University, Giza, Egypt, in a letter received April 8, 1976,
78
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Appendix D
IMPORTANCE SAMPLING

A straightforward method of determining the required threshoid for a glven P .18 to
perform a Monte Carlo simulation. Unfortunately, for P, = 1076, more than one milhon
repetitions would need to be run, and the computation {;me on any computier would.be
large. However, a simulation that uses importance sampling can be used.* The main pur-
pose of importance sampling is to modify the probabilities that govern the outcome of
the bhasic experiment of the simulation so that the event of interest (i.e., a false alarm)
occurs more frequently. This distortion is then compensated for by wei ™ '" . % 0
by the ratio of its probability if the true probabilities had been used to : LN
with the distorted probabilities. Consequently, by proper choice of dist T

ties, the number of repetitions can be reduced greatly. For instance, in L L

mean of a function @(x)

E[Q(x)] = [@(x) dP(x), oy

where P(x) is the distribution of x; the mean can be estimated by selecting m mdéi:éndent
samples x; from P(x) and associating the probability 1/M with each event. Then, E[Q(x)]
can he estlmated by

Q). ‘f*]tz)

M

1
g

1
M
i

The importance-sampling technique used the Radon-Nikodyn derivative to eXpress. the
mean value of Q(x) by

ELQ()] = (@) 58 d6e), (@3

where G(x) is a distribution function. Now, E[@(x)] can be estimated by
independent samples from G(x) and associating the probability dP(x;)/MdG{;
event Q(x;). Thus, E[Q(x)] is estimated by

8. Hillier and G.J. Lieberman, Introduction to Operation Research Holden-Day, San\Franciséo;«]:
. 457-459,
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Since Egs. (D3) and (D4} are both unbiased estimates of @(x), it is possible to select
Gi{x) so that the variance of Eq. (N4) is less than the variance of Eq. {P2)

To illustrate, let us generate the distribution function {and hence curve of threshold
T vs P, ) for the trimmed-mean detector against the log-normal density with ¢ = 6 dB.
It {u;; are independent and uniformly distributed on (0, 1), then the variables {x;},
such that

x; = exp{o[- 2 Wnfu;; 11172 sin (2mu,,)], {D5)

have a log-normal density, with x,, = 1. Recatting” that the o in Eg. {D5} is in natural
units (¢ = 0.23030 (dB)), choose 0y, which is greater than ¢. To simulate the trimmed
mean for n, = 2, n, = 5, and N = 10, generate 10 samples x;, using Eq. {D5}) with o
replaced by o, Order the {x;i and form the sum

g

g

i=n1

Since this procedure is repeated M times, denote log-normal samples by x,; and trimmed-
mean samples by 8., The estimated cumulative distribution of S}. for the fog—nonnai
model with parameter ¢ is

M
- 1
PIS;<T)= = ) 81, (D6}
where
‘1 SjéT
5, = (D7)
}ﬁ Sj>’1"

N 2exp{- 2[fn(x,)12 0%}/ (2molx;) /2

p; =
/ 31}1 2 exp - Z{Qn{xﬁ-}}2!9§}f(2£a§xg)1!2
This reduces fo
N N
Iy (2 2 2}
p=1—1 expij— - — fn (x,01°; . {D8)

While, a priori, the desired value of o, is unknown, an appropriate value can easily be
found since the variance of the estimate (T} is given by

*5 F, George, “The Detection of Nonfluctuating Targets in Log-normal Clutter,” NRL Report 6796, Oct.
4, 1968,
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1 M
5 Z; (8P, - B(T)?).
f=

That is, every value of 6 allows us to calculate the density accurately in a particilar = -
interval. Equation (D9) is used to find the accurate interval. A much simplier heuristic -
method is to plot f)(sj < T). In the regions where the function is smooth, the est
is accurate. "




