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BACKGROUND

During the last decade many articles and reports have been published on the prop-
erties of sea clutter echoes obtained with a high-resolution radar and the detection of
targets in non-Rayleigh sea clutter. The purpose of this report is to present a une4
summary on the status of this work.

FUTURE WORK

While much work has been accomplished, there remain several outstanding probem:

* What should be the polarization of a high-resolution radar?

* What is the physical cause of the "spikes"; and more importantly, aret any
techniques for suppressing the "spikes"?

* A better understanding is needed of the non-Rayleigh nature of sea clutt
obtained at shallow grazing angles with large pulsewidths. Is this phenomenon
simply due to shadowing causing an apparent large water wavelength?

v
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NON-RAYLEIGH SEA CLUTTER: PROPERTIES AND DETECTION OF TMDENS

I. INTRODUCTION

In the last several years, many investigators have studied the scattering neaISMS
that produce radar sea clutter. With results for scattering from slightly rough surfaces
and composite surfaces obtained by Rice [11, Wright [2,3], Valenzuela [4-6], Guinard
and Daley [71, and others, the properties of average radar backscatter can betted
fairly well.

The original work on the probability density p(x) of sea clutter is that of-Goldstein
[8]. Goldstein states that if many scatterers are uniformly distributed in an illuminated
patch (the area defined by the pulsewidth and the radar beamwidth, cr/2 by RO), the
relative phases of the individual echoes will be random. He adds that the cerl ;
theorem yields the Rayleigh density for envelope-detected sea clutter.

He notes, however, that if the pulsewidth is small, the assumption of uniforly: dis-
tributed scatterers does not hold. As an example, he shows a photograph of an A-scope
(Fig. 1) and notes the "spiky" appearance. Furthermore, he infers that the radar is in
fact resolving the individual waves.

This work was published in 1951. During the next 15 years, very little research was
done on the density of sea clutter, and that which was done was either classified or ap-
peared in reports of limited circulation. In 1969, Nathanson [9] reported some results
obtained by the Naval Research Laboratory (NRL) and the Applied Physics Labot orof
the Johns Hopkins University (APL). Specifically, he gave standard-deviationto-mean
ratios for various pulsewidths and showed a deviation from the Rayleigh density for small
pulsewidths. Furthermore, he stated that for short pulses, the density function for hori-
zontal polarization had a longer tail than the density function for vertical polarization.

In 1970, Trunk and George [10] considered the log-normal and contanited;normal
descriptions of sea clutter and calculated detection probabilities for targets in these den-
sities. With that, the detailed description of the clutter density will begin. In Sec. II,
measurements of the average backscatter uo are given, and the results of slightly rough
scattring and the composite surface-scattering model are introduced so that they may be
used later in this report. In Sec. III, a spatially varying conditional density p(x io) is
introduced. This conditional density is a natural consequence of the .- wnIio.oi.vI 'urfaeC-
scattering model and is used to explain the non-Rayleigh nature of se;-- c u11ir. TI he V;nrui1-
tion of the clutter densities, p(x) and p(xlao), with various radar parameters such"ltfre-
quency, pulsewidth, and polarization are found using analysis of variance techniques. In
Sec. IV, a way of constructing a realistic computer model of the sea surface is-given. The
surface is used to predict non-Rayleigh clutter densities for various conditions and to indi-
cate some finer points associated with the detection of small targets on the surface of the

Manuscript submitted February 10, 1976.
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NRL REPORT 7986

ocean. In Sec. V, various detectors such as integrators, rank detectors, and theiNeyan.-
Pearson detector are compared. The major results of the report are summarized inx e. VI.

II. AVERAGE RADAR CROSS SECTION

Important developments in understanding the nature of sea clutter have been made
by studying the interaction of electromagnetic waves with the surface of the ocean. -These
studies [2-6] are based on Rice's work [1] on slightly rough surfaces (surfaces whose
height variations are small in relationship to the incident wavelength and whose siopes are
<«1). Using perturbation techniques, they found that the reflected energy was directly
proportional to the energy density spectrum of the surface height variation evaluated at
the Bragg scattering condition. Specifically, the radar cross section for direct pI
is

ASH 47rk4 sin4) CyHW(2k cosO) (1)

0 vv 4Tk4 sin 40 avvW( 2 k cosO), (2)

where k = 2r/N is the wavenumber of the incident wave, 0 is the grazing angle,.:W-tK) is
the energy density spectrum, and K = 2k cos0 is the Bragg resonant condition. (Valen-
zuela [4] found the cross-polarization cross section by considering the second-order per-
turbation terms.) The a terms are

H [sinG + (E -O 12)()2
-a

anju

2
(e - 1)[(e - 1) cos 2 0 + e] I

[e sino0 + (e -cos20)1/2I 2

where e is the complex dielectric constant of the ocean. Now, if the wave spectrum S()
is available, W(K) can be calculated since

irwI~ kAVH = .QL., "Adt.: .'o

where W2 gk. However, a more useful approach is to use a result of Phillips [11] whol
investigated the growth of water waves and concluded that there exists an upper bound
for the height of gravity and capillary waves. Using a dimensional argument, he concluded
that in the range where waveheight is limited, the energy spectrum was of the form'-

W(K) = BK-4. ()

There is uncertainty about the value of B; however, Phillips gives B 6 X 10- for payity
waves and B : 1.5 X 10-2 for capillary waves. Substituting Eq. (6) into Eqs. (1) ad (2),
one obtains the following limiting values for the cross sections:

3
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0H1I = 1.5r X 10 3 aH tan 4o (7>

and

OVVr 1.57r)X 10-3a vV tan 4 0,

where the a's are defined bv Eas. (31 and (41.

Guinard and Daley [7) have compared sea clutter data with the theoretical model.
Their data were taken with the four-frequency radar (4F11 system, which is an airborne,
coherent, pulsed radar capable of transmitting a sequence of four frequencies, X band
89 .0 Mn-z), C band (4455 MHz) L band (1228 MHz), and P band (4z8 Mnnz', alterna-

tively on horizontal and vertical polarizations. The basic radar parameters of the 4FR
system are given in Table 1. A basic description of the 4FR system can be found in
Ref. 7 and a detailed description in Guinard [121.

The data used in Guinard and Daley's study [71 came from two major experiments.
In July 1965, a measurement program was conducted off Puerto Rico, Radar echoes
were recorded for all frequencies, both polarizations, and a variety of grazing angles and
sea states. Sea conditions were measured by a team from the Applied Physics Labora-
tory, Johns Hopkins University. During the measurements the sea state varied between
0 and 2 and the maximum wind was 20 knots with 9-ft seas. The second measurement
program was conducted in February 1969 in the North Atlantic to study rougher sea
conditions. Ground truth was provided by ocean stations India (59N, 19&W) and Juliet/C- rO -NX 000Ulvh 0-. el.A....~f _3. C - -zL..A .- t AM l..--.&,.-.tJA)', LU V). CtcOua sLdLs vctiieu ueuvWveeii U ailu CY, 4 ntttaiui WISIu ut tU xuluIS Wm

recorded, and a significant wave height of 26 ft was observed. The L-band data are shown
in Figs. 2 and 3 for vertical and horizontal polarizations, respectively. Each data point

RADAR SEA RETURN 0
* 10 FREQUENCY. 1228 MHz

POLARZATION; VERTICAL
JULY t965

O rTH - 2ST M 27TH
49TH O)20TH 28TH

N 30

-10

o~ .., L , ,I 

0 ~O 20 30 40 50 60 ?C 80 9

DEP RESS-ON ANGLE 3OEGZEES)

Fig. 2-Variation of RCS with grazing angle; W(K) = & X 1 8-3K- 4 ,
e = 73-85i 171

4



Table 1-Parameters of Four-Frequency Radar System*

Frequecy Polriza- Azimuth Elevation Azimuth Elevation Cross- Antenna Peak Average Pulse- PR
Frequency Polariza- Beamwidth Beamwidth Minor Minor Polarized Gain Power Power Width (PRFp

Band tion (deg) (deg) Lobe Lobe I(dB) (dB) (kW) (W (pa) ps
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I (dB ) (dB ) _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _

P Band Horizontal 12.3 40.0 j 14.5 r 30.0 | 25 } 17.4 [ 25 140 T 0.25-2.0 100-1463

ertical 2.1 41.0 14,5 26.0 28 17.4lI

L Band Horizontal 5.5 13.8 13.4 16.0 25 25.9 25 140 0.25-2.0 100-1463

Vertical 5-5 13.0 14.0 14.0 26 26.2

C Band Horizontal 5.0 5.0 23.2 24.5 >20 31.4 35 100 0.1-2.0 100-1463

Vertical 5.0 5.0 23.2 24.5 >20 31.4

X Band lrwnt la 5.0 5.323.6 2 3 .5 > . R2 92 6 160 0.1-2.0 100-1463

jVer t ical 4.7j 5.0 23.6 [24.21 >20 I 31.2 I _ I _ a

*From reference [ 71.

C71
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I RADAR SEA RETURN
*1zFREQUEN4CY: 1228 Mnz / g

POLARIZATION: HORIZONTAL f

JULY t965
z ° 15TH 321ST D 27TH r 0
o | * 19TH O2OTH o 2TH

n L
V>

n 20

ZC0 -40 ,. 1z-SO~~~~~-I0

t A I L I l t I I I_ _
0 I0 20 30 40 50 60 70 SO 90

DEPRESSION ANGLE (DEGREES)

Fig. 3- Variation of RCS with grazing angle = 6 X l& --' K-4,
a = 73-85i [7}

represents the median value of cross section obtained by processing approximately 30 of
data. The pulsewidth selected for all points was 0.25 Ms. On July 15, 19, and 21, the
seas were 3 to 5 f high, on July 20 they were 2 to 3 ft high, and on July 27 and 28
they were less than I ft high. In Fig. 2 (vertical polarization), one can see that the theo-
retical bound of Eq. (8) provides a realistic upper bound for sea clutter and exhibits the
correct variation with grazing angle.

However, the situation is more complex when the data are compared to the theoret-
ical limit in Fig. 3 (horizontal polarization). While there is good agreement for large
grazing angles, there is a wide decrepancy between model and data for small grazing
angles. To undersand the source of this discrepancy, recall that in the ocean the small
waaves (i.e., Bragg scatterers) are sitting on the much larger gravity waves and swells. In
the composite-surface scattering model (which defines the role of the large and small
waves), Wright [31 noted that the only significant effect of the large waves is that they
change the angle between the reflecting surface (ocean) and incident radiation. This an-
gular change can be resolved into two components: one a change in the apparent grazing
angle; the other, a rotation normal to the plane of incident radiation. Obviously, the first
component increases cross sections, and Valenzuela [51 has shown that considerable varia-
tion in cross section can be caused by the latter component. Guinard and Daley [71 con-
clude that to bound the cross section observed with horizontal polarization, it is necessary
to use the vertical bound of Eq. (8) for vertical and horizontal polarization.

The purpose of this section was to introduce the slightly rough-surface and composite-
surface scatterirw models. Those with a further interest in the subject should consult
Guinard and Daley [71, which provides an overview of the theory and references all the
important work.

6
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III. DENSITY FUNCTION OF SEA CLUTTER

In this section, the results of fitting the clutter distribution with the log-normol pd
contaminated-normal distributions are reviewed. Then, from the composite-surface s Et-
tering model, a conditional density p(x loo) is introduced, is shown to be Ricean, a04' is
used to explain the non-Rayleigh density p(x) of sea clutter. Finally, the variation oi the
clutter densities p(x) and p(xluo) with parameters such as radar frequency, pulsewidtb,
polarization, and wind direction is found by analysis of variance techniques

A. Fitting of Clutter Data

Since .LtJ 101, it ha ueen zuzuwi that we uensity IuUcUUH ui sea ctiutier was not
Rayleigh if the radar pulsewidth was small. While some research was done by laboratories
and industry on the non-Rayleigh density (for example, Macdonald [13] and Ballard [141),
nothing appeared in journals until Trunk and George [101. They considered fitting the
log-normal and contaminated-normal distributions to the distribution of envelopedc
sea clutter. (Through the remainder of this report, unless otherwise stated, "distribution
of sea clutter" will mean the distribution of the return of envelope-detected sea clutter.)
By log-normal clutter, it is meant that the envelope-detected sample x from the sea re-
turn has the density function

2 -2[Rn f(XIXm)] 2(

(2iro2x2)l/ 2 exp 2 )M

where xm is the median value of x and a is the standard deviation of [Yn x] 2. By
contaminated-normal clutter", it is meant that the quadrature components y hav a

contaminated-normal density

Ay) = - I exp =I exp Y
(2iro2)1/2 2a2) (2rK2a 2) )(2K22

where -y is the contamination fraction and K is the ratio of the standard deviatiqn of.e
two LauIssia1 Genitluies.n 1 ua Staguuiorward calculation, it can be shown that te cfensity
of the envelope-detected sample is

p~x) = (1 y)2 - exp ( n t + 1> exp( rx2 
cm \zua/ KhZ.

2y(1 - (yux /-X2(K2 + 1)\ (x2(K2 - 1)
+ K 2 exp 4K2u 2 / I0 _ 1.(u (11)

Trunk and George's data source was a frequency-agile, high-resolution radar (FHR),
which is an airborne, noncoherent, pulsed X-band radar capable of frequency diversity on
a pulse-to-pulse basis. The radar operates with either a long (100-ns) or short (20-nip) pUse

7



GERARD V. TRUNK

with vertical or horizontal polarization. The beamwidth is 0.5° and the PRF is 2,560 pps.
Standard operating procedure calls for the aircraft to fly at 180 knots sampling the data at
a range of 2 n.mi. to obtain a grazing angle of 4.7O.

Some examples of a non-Rayleigh sea clutter distribution taken by NRL in 1967 [151
are plotted in Fig. 4 on probability paper in decibels, with the median of the density arbi-
trarily set to 0 dB- Each curve represents a 2-mmn sampling interval. As one can see, the
sea clutter distribution is non-Rayleigh; the higher the sea state, the more non-Rayleigh it
becomes.

The clutter models were fitted to the data by a minimax method. First the param-
eters, xm of the log-normal and a of the contaminated-normal densities, were used t
equate the medians of the theoretical distributions with the median of the actual data.
Then the remaining parameters, a of the log-normal and y and K of the contaminated-
normal densities, were used to minimize the maximum difference in decibels between the
theorized curves and the actual data. The best fits for the data in Fig, 4 are shown in
Figs. 5 and 6. Because of the recording methods used, data recorded before 1969 could
not be thoroughly processed.

On March 11, 1969, the FHR radar was flown 200 mi (320 km) off the Virginia
capes. In each run, the aircraft was flown in a given direction with respect to the wind,
i.e., upwind (U), downwind (D), or crosswind (C), for about 20 min. After 2 in either
the polarization or pulsewidth was varied so that data would reflect a variety of conditions.

(C o

o 2 2

Lii

0 0

0 M - ~~~~~~RAYLEI H N4 SANLDT
0.0005 - ~~~~~~~~~SEA STAIE"I SEA STATE -2-3

0 2 ~ ~~4 C 8 10 2 14 18( Z0 ?22

CLUTTER CROSS SECTON N (1B TO AN ARHBTRARY SCALE

Fig. 4-Experimental sea clutter cross-section data taken by airborne X-band radar; 0.02-pa pulse, vertical
polarization, 4.7O grazing angle. Rayleigh distribution included for comparison [l1f.
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CLUTTER CROSS SECTION IN dB TO AN ARBITRARY SCALE

Fig. 5-Log-normal distributions for a = 4.5 and,6 dB, compared to NRL data [10];
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Data on sea conditions were obtained from the Fleet Weather Facility, Naval Reconnais-
sance and Technical Support Center, Suitland, Md., which reported 25-to-31-knot winds,
8-ft (2.5-m) waves, and a 12-ft (3.7-m) swell.

The best fitting log-normal and contaminated-normal distributions for some short-
pulse (20-ns) data are given in Table 2, where "best" is defined by the minimax solution.
Columns I and 9 are identife rh. - _-& -n-r sh -he ,-in+ta data - nns flnh-lrn 3- t he
parameter of the log-normal which yields the best fit, and column 4 gives the maximum
difference (in decibels) between the data and the best-fitting distribution. Columns 5-7
contain similar information about the contaminated-normal distribution. Both distribu-
tions provide essentially the same accuracy of approximation. Also, the previously re-
ported observation 191 that the density function for horizontal polarization has a longer
tail than that for vertical polarization seems to be verified.

Since the publication of Trunk and George [101 in 1970, the log-normal density has
Ltwtlveuud 'UriMUtaUaie iktdLJIull, ullU -Lit! L2JiiLtdttLLitt(MU-i1UlZiWR Utlilbly LIM UttLL t1tugtu.

Before we leave this subject, the following cautions are in order:

* Sea clutter is not log-normaly distributed. (It is shown in the next section to
have a spatially varying Ricean density.)

* While the log-normal model of sea clutter can yield useful results, in only one case
does it yield the correct probability of detection in clutter. This problem is discussed
fully in See. V.

Table 2-Parameterization of Clutter Data

I I t Ic-No~rmal I Contaminat-Norma I

Clutter Description Maximu laximamCTim Identifier 4aiu Maximum
I me -denti~er a Differen -y K ifference

(dB) (dB
___ ___ ___ __ _ _ _ _ ___ _= _ _= I t,__ __ _ _t __ =___ __ ___ _ _ _ ; _ _ _ _ _

1145 Dl 6.0 L.6 0.025 5.1 1.4

1155 DHI 6.1 1.3 0.034 5.6 1.5
list D V - u ) U.4Z6 Z. 8 u
1153 D_ 6.0 1.0 0.051 4.9 LI

1213 CV 4.6 0.4 0.431 2.8 L4
1215 Cn i 6.0 1.0 0.051 4.5 1.0
1218 CH 6.1 0.8 0.055 4.5 1.0
1220 CV 4.8 0.8 0.456 3.2 1.7

1248 UV 5.6 1.8 0.065 3.0 1,4
1250 UH 6.3 0.8 0 .05. 4.6 IA

* 1252 1 UV 5.2 1.2 0.358 2.8 0p8
1254 UH 6.3 0.8 0.104 4.9 1.4

10
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B. Density of Sea Clutter

If the density of sea clutter is not log-normally distributed, what is its density? Some
insight can be gained by examining the time records of FHR sea clutter data shown in
Figs. 7 and 8. Since the plane is traveling at 180 knots, each record corresponds.to the
the return from an approximate 2,000-ft swath of ocean. While a structure is apparent-in
both sets of data, it is much more obvious in Fig. 8. The basic explanation, provide-dby
Trunk [161, of this variation with time is that the width (Cr/2) of the radar's illuminated
patch is less than the water wavelength of the sea (over 60 m for sea state 5). Conse-
quently, the density of the envelope return x of clutter is p[xoo(gQ)J . That is, the prob-
ability of any value x is conditioned on the average backscatter ao, which is a function
of the local grazing angle gQ (Eqs. (1) and (2)) at the range cell of interest. If g is-the
grazing angle for a flat sea and s is the slope of the large wave structure, g2 = g + s. Then,
if clutter is observed over a time period corresponding to several water wavelengths, its
density function can be written as

p(X) = fP[xluo(g + s)] p[ao(s)] da0 (s), (12)

0 1 2 3 4 5 6

TIME as

Fig. 7-Sea clutter: short-pulse data taken upwind with horizontal polarization
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Fig. 8-Sea clutter: short-pulse data taken upwind with vertical polarization

where pfu 0(s}j is the probability density of co, which is a function of the slope of the
large Wave strlctuVe fswTell anor windl wA.mrsX l' nnixcaln ly tvhe aensity17 fufnctuion han be
written, as

p(x) = fpfxi(g + sljp(s) ds, (13>

where p(s) is the slope density.

For simplicity it has been assumed that the large wave structure has constant slope
over the illuminated patch area A. To take into account the variation of slope within a
range cell, let S (A) be the variation from the average slope s. Then, since the reflected
power from elementary Bragg scattering patches in a range cell add noncoherently, the
average cross section in a cell with slope s is given by

u0 (g + s) = 1 jf g + s + St(A)l dA , (14)
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where the integral is a surface integral over the illuminated patch. Thus, since:i'th6'eiv .ae
slope s is a function of space, the non-Rayleigh density p(x) is seen to be due to
tially varying density p(xluo). (In reality s is a function of time and space. JIwever,
since the data are taken from a plane, the major change is spatial and for our !hpirtlnl:r.
the sea may be considered frozen.)

Before verifying these facts, it is worth noting that the formulation yields a Rayleigh
density when the illuminated patch (specifically the length along the wave direction): i.
lrge tWnb+I respect 4f^ +he -- +nr ¶szTvala.enrh Thia icI hancenixac if the ndt-oh onmntnntuuan

many waves, the density of the average slope s is a delta function; i.e., p(s) = 6(s). Con-
sequently, p(x) = p(x Iao); and p(x lao) is a Rayleigh density because of the central
limit theorem.

1. Correlation Properties

For large illuminated patches, independent samples of sea clutter can be obtained
either by using Dulses separated by about 1 0 ms (the decorrelation time usually stated
for X-band sea clutter return) or by using frequency diversity. However, since the decor-
relation is due to phase changes between capillary waves, for a high-resolution rat,:
both methods should yield independent samples from the conditional density P(xlu 0 ) not
from the density p(x).

To verify these conclusions, Trunk [16] calculated the correlation functions using
12.8-s intervals (16,384 data points) of data taken with the FHR system. As can be seen
from Figs. 7 and 8, this interval is long enough to represent a sample function fromp(x).
Decorrelation times are given in Table 3. (Decorrelation time being defined as the time

Table 3-Correlation Values for Data Taken by FHR*

*From reference [ 16].

13

Decorrelation Cos
Time Identifier Time (ins) Correlation

ValueJ
1344 VUL 13 0.40
1346 HUL 75 0.57
1411 VDL 19 0.42
1413 HDL 132 0.68
1026 HDS 131 0.83
1028 VDS 168 0.61
1049 VCS 31 0.46
1051 HCS 112 0.64
1125 VCL 12 0.27
117Z HOL 131 0.70
1154 HUS 106 0.74
1156 VUS 193 0.62
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it takes the correlation function to fall to 1/e.) The decorrelation times vary from 12 to
193 ins; the average is 94 ms, which is much longer than the quoted time of 10 ms.

These particular data were analyzed because the pulse-to-pulse frequency diversity
used in each 12.8-s interval equaled the reciprocal of the pulsewidth, and this amount of
frequency difference is considered sufficient to decorrelate clutter returns 11iS. The cross-
correlations for the two frequencies were calculated and are also given in Table 3. 1t is
seen that frequency diversity does not decorrelate sea clutter returns from a high-resolution
radar. Next, the above calculations were repeated by 'ividing each 12.8-s interval into 64
0.2-s intervals (short enough to represent a sample function from p(x los)) and averaging
the results of the 64 cases. For each of the 12 data recards, the decorrelation time was
less than 20 ms, and the cross-correlation was less than 0.1. This corresponds favorably to
Pidgeon (19, who reports a maximum correlation of 0.2. Thus, time separation of the
samples and frequency diversity yield independent samples from p(xkr 0o) not from p(x>.

2. Spatially Varying Ricean Density

What is the density function for the conditional density p(x Ja,)? First, although the
illuminated patch is rather small (10 ft by 120 ft (3 mn by 36,6 m) for FUR data), there
are many capillary waves in it. Consequently, from the Central Limit Theorem one would
expect p(x a)3 to be Rayleigh distributed. However, Trunk 1161 has shown (the analysis
is repeated in Appendix A) that is not. Rather, because of the presence of dominant
scatterers, which can be related to scattering from breaking and very peak-crested waves
120,211, p(xuO) is a Ricean density.

This is difficult to show because 0 changes so rapidly (in airborne systems) that
there are too few samples to obtain a good estimate of p(xlao) before 0o changes. Fortu-
nately, this difficulty can be overcome by analyzing the frequency-diverse FHR data in a
special way. For computation ease, a chi density will be used in place of the Ricean
density. This approximation is very accurate [221 when the ratio of the dominant scat-
terer to background noise is in the neighborhood of 0 dR.

Let xi and y, be the independent samples from the two frequencies. The conditional
densities of the samples are then

p~x~k1) 24-I exp (-Xj2c2}P(Xetlcd = -r~2e ,)t --- I/ 

and

2yy 24 exp (-y?12g2 ) (

r(k/2) (202 1h/2

where k is the number of degrees of freedom (k 2 is the Rayleigh density) and ai is a
random variable, The same gi = a can be used for both frequencies because the time
separation, 1/2560 s, is very small and frequency diversity changes co only slightly.

14
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As mentioned previously, the difficulty in showing that xi and yi are chi (or equiva-
lently Ricean) random variables is that oi changes too rapidly for good estimate of p'(xVIla1)
to be made. Consequently, a ratio z; = x 1/yi, whose density is independent of uv, is
formed. The density of z = z- xJlyi is found by forming the joint density of and
y',, substituting z =x 1/y1 and y = yi, and integrating over yi. This yields*

F(h) D k1 -In
F(k/2)r(k/2) (,+Z2)k

Using the FHR data, the sample distribution of independent zi (constructed from 1,Q24
samples 12 ms apart, iLe., every 16th zi) was compared to Eq. (17). The value of' kps'ad-
justed to minimize D, which is the maximum difference in probability between thse sam-
ple and theorized distributions. The fitting results are shown in Table 4, where D is the
probability that the maximum difference will be less than D when the theorized dist~bu-
tion, given here by Eq. (17), is the true distribution. While the Kolmogorov-Smimov one-
sample test [231, which compares P- to a threshold a, cannot be run, since k was found
by minimizing D (a procedure which biases the test in favor of acceptance), the sky4i

Table 4-Fit of the Chi Density to the FHR Data*

*From reference [16].
'The optimum k for this case is greater than 4.0. The search
program employed search in the interval 2 < k • 4.0 in 0.1
steps.

*The reason that the Ricean density was not directly analyzed is that the density for z is much more 
plicated than Eq. (1 7) QQ-;V4..-1rT if x -n y are U-er *

Y ... ..... .....~ ~~~~~~~~~ ......

2z exp (-B2 /2) B2 Z B2 Z ( BZ
p(z) = (I+Z2) 2 + Z2 + I Z2 + 1 2 2+

where B is the ratio of the dominant scatterer to CiT

15

Identifier Optimum {PD
VUL 2.7 0.012 0.003
HUL 2.4 0.029 0.663
VDL 2.4 0.016 0.068
HDL 2.6 0.020 0.237
HDSt 4.0 0.035 0.844
VDS 3.4 0.021 0.282
VCS 3.1 0.029 0.681
HCS 3.8 0.019 0.184
VCL 2.4 0.021 0.286
HCL 3.2 0.017 0.078
HUS 3.l 0.0 I4 .020
VUS 3.2 0.017 0.088

M

A..
no



GERARD V TRUNK

values of D and P0 indicate that p(x la) is at least nearly a chi, or Ricean, density. For
the hks given in Table 4, the ratio of the dominant scatterer to background noise would
vary between -3 and +4 dB.

3. Dominant Scatterers

In 1974, Lewis and Olin 1201 measured the frequency dependence of sea return with
a system that transmitted 10-ns sirnultancDus pulses at 8.6 and 9.2 GHz from the same
antenna with horizontal polaization. The measurements were taken at the Chesapeake
Bay Division of NRL and at a very short range, which yielded a range cell of about & ft
by 5 ft (1.5 m by 1. 5 m). A typical data record is shown in Fig. 9; the waves were about
4 ft (1.2 m) from peak to trough, with whitecaps forming. Sea return was found to have
a large dynamic range, with the largest returns coming from breaking waves. The relation-
ship between sea spikes and breaking waves was recognized and confirmed by a boresight
motion picture camera mounted on the radar antenna. The camera was synchronized to
the recorded data, viewing a region of the sea containing the range gate responsible for
the echoes. It should be noted that white water does not produce sea spikes. Waves must
be breaking, a fact which suggests that spray is important.

A9.2 G.Kr.

La _ 

TtME Isi

Fig. 9-Typical sea spike
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The fine structure in the sea spike was studied and it was noted that theoreturn
from the two frequencies appeared to be uncorrelated. Furthermore, it was noted 6that
the decorrelation time within the sea spike was about 10 ms. This time was arrived at
by noting times between maximum and minimum values. Lewis noted that these facts
could be explained by a fresnel zoning effect produced by the change in size of the
whitecap within the range cell. As the whitecap changed its length by a fresnel zie
(X/4), the signal amplitude would change from a maximum to a minimum or vice versa.
The peak return was approximated by assuming that a zone had an effective height of
Xf2 and a width w. Then the scattering cross section of such a zone would be

(I = _ _ _ = 7iW 2 (18)

The cross section predicted by Eq. (18) was compared to the data and reasonabl eagee-
ment was noted. Research is still being done in this area.

M. Long [21] has also noted the relationship between sea spikes and largewfav~e
structure. He reached the following conclusions.

1. For 50% of the sea spikes, a wave breaks (whitecap forms) simultaneously or a
fraction of a second thereafter.

2. About 40% of the time, a spike was called when a wave structure had a ver
peaked crest, as if a whitecap were about to form but did not.

3. No breaking waves were observed in the absence of a sea spike.

Long explains the sea spikes as reflections from facets (smooth areas) of the large we
structure.

While the mechanism producing the sea spikes is still unknown, there is no Izer-
tainty in the fact that sea spikes are associated with breaking waves or waves thato (ost
break.

C. Variation of Clutter Densities

The scanning rate of a search radar is typically 6 to 15 rev/min. Thus, during the ,
scan time, the large-scale sea structure in a range cell changes very little. Consequently,
if the illuminated patch is smaller than the water wavelength, the radar rel urn fromn sea
clutter will come from the conditional density p(x lIo) rather than from p(x). On the,
other hand, if scan-to-scan processing is performed, it is very likely (depending on'pcan
rates, radar geometry, and sea conditions) that samples are being obtained from p(x).
Since the density will determine the behavior of any detector used, the variation of.clutter
densities p(x) and p(xlon) with such parameters as frequency, polarization, pulsewidth,
and wind direction will be analyzed.

17
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1. Variation of p(x)

To find the variation of p(x) with frequency, the 4FR data taken on February 10,
1969, in the North Atlantic was analyzed. Specifically, the data analyzed by Trunk [161
were taken with a 0.5-ps pulsewidth at L and X bands; the antenna beamwidths were 50
and 5.50, respectively; horizontal polarization was used for transmission and reception;
and the pulse-repetition frequency (PRFJ was 683 pps. The aircraft flew at 200 knots,
the range was 2,000 yd (1,829 m), the depression angle was 100, and the azimuthal angle
(the angle between the radar beam and the wind direction) was varied from 0 to, 45 in
15° increments. Ground truth was provided by Ocean Stations India and Juliet, which
reported winds between 30 and 35 mi/h (48 and 56 kkm/h) a sea of 13.1 ft (4.0 m), and
a swell of 18 ft (5.5 in).

The log-normal density (Eq. (9)) was fitted to the data by equating xm to the sample
median and then finding the a that minimized the mnaximuinm difference in decibels be-
tween the log-normal distribution and the sample distribution. The log-normal density
was used instead of the contaminated-normal one because it is easier to interpret: it has
only one parameter (excluding xm) and a larger value of a indicates a longer tail asso-
ciated with the density. A 36-s sample of data was used, the data were fitted between
the 50 and 99.95 percentiles, and the results of 16 cases appear in Table 5. The fitting
errors ranged from 0.44 to 1.41 dB; the average was 0.78 drB.

From Table 5 it appears that the clutter distribution is a function of the radar fre-
quency but not of the azimuthal squint angle. However, to test whether these factors
cause a significant change in the distribution, a statistical procedure called analysis of
variance was used. This procedure decides whether differences in experimental results (in
our case different values for a) are true differences or just experimental (sampling) errors.
The results of the analysis of variance will appear in this section and further details are
given in Appendix B. The analysis of variance procedure was applied to the a's in Table
5 and the results are summarized in Table 6 The quantity _ estimates the sum of two
effects, the sampling error and the effect of changing frequency; the quantity S, also
estimates the sum of two effects, the sampling error and the effect of changing azimuthal
angle; and the quantity 4 is an independent estimate of the sampling error. The quantity
SF is compared to SE. Since their ratio is large,' a frequency effect is present. Next, SX
is compared to S>. Since their ratio is small, an azimuthal effect is not present. That is,
changing the azimuthal angle from 0o to 450 does not change the clutter distribution
significantly.

P-hand data (428 MHz) were fitted to the log-normal density in an identical manner;
the results appear in Table 7. The P-band distributions have a much larger spread (higher
a) than the X-band data but a slightly smaller spread than the L-band data. Unfortu-
nately, no definite comparison can be made between these bands since the P-band antenna
had a 12° beamwidth resulting in an illuminated patch area 140 percent larger than those
of L and X bands. However, since a Larger patch tends to make a distribtion have a

2 2*Under the hypothesis that there is no frequency effect, S2 and SE are independent estimates of the sam-
pling error, and their ratio has an F-distribution. The threshold value for any significance, which for a
significance of 0.1 is 3.2, can be found in either Duncan [24l or Fischer [251, which also provide further
information about analysis of variance. All analysis of variance in this section were conducted at a
significance level of 0.1,

is
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I''

Table 5-a in Decibels of the Fitted Log-Normal Distribution*

So0

Azimuthal Squint Angle
4FR Radar
Parameters

Frequency 1
L band 6.1 6.0 5.4 5.7 5.5 6.3 6.1 5'6
X band 4.8 4.4 4.9 4.3 4.6 4.5 5.0 4.7

15°o0

I. .

*Fromn reference [ 16 }.

Table 6-Results of Analysis of Variance: The Effect of Various
Parameters on the 4FR Clutter Distributions*

Effect Mean Square Variance Ratio Conclusion 
_ _ __ _ __ __ 1 - - -1 __ __ _

Frequency =2 -5.640 = 55.84 Frequency effect is present

Azimuthal angle S2 0.062 S21S2 = 0.61 Azimuthal effect not Prevtnt

Sampling error 0.101

*From reference [16].

Table 7 -a in Decibels of the Fitted Log-Normal
Distribution for P Band*

*From reference [ 16 ].
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smaller spread, P-band distributions have a larger spread than X-band distributions, but
the relationship between P and L bands cannot be determined. Valenrzuela and Laing [26i
analyzed the 4FR data and concluded that L-band data were more Rayleigh than X-band
data; based on results of K-S tests. However, if one studies the results of the individual
tests, one sees that the maximum difference in probability (D) between L-band data and
the Rayleigh distribution is larger than the difference between X-band data and the Ray-
leivh distribution. The reason VaIenzuela and Laing eoncluded that L-hand data were
more Rayleigh than X-hand data is probably because P1, is smaller for the L-band than
for the X-band. However, since they concluded that neither data are Rayleigh distributed,
the only reason PD is smaller for L-band data is that there are fewer independent samples
for L-band data than for X-band data. The result only indicates that the K-S test is not
a powerful test; ihe., if data do not come from the theorized distribution, many independ-
ent samples are needed to reject the hypothesis that the data did come from the theorized
distribution.

The FHR data are analyzed again to find the variation of p(x) with Polarization,
pulsewidth, and wind direction. First, the data were fitted to the log-normal distribution
(results appear in Table 8); the fitting errors ranged from 0.4 to 1.4 dB, and the average
error was 0.8 dB. An analysis of variance was conducted; the results are summarized in
Table 9. The most significant parameter is polarization: the clutter distribution for hori-
zontally polarized data has a much longer tail than that for vertically polarized data. The
next most significant parameter is orientation with respect to the wind: upwind or down-
wind measurements have a longer tail to their distributions than crosswind measurements.
While the analysis of variance (Table 9) shows no significant difference between the up-
wind and downwind measurement. an analysis of variance (Table 101 of the short-pulse
data in Table 2 definitely shows a difference between upwind and downwind measure-
ments. (Clutter time 1145 was eliminated to make an equal number of cases in each
category.) Finally, while the 20-ns data have a longer tail than the 100-ns data, the

Table 8-Log-Normal Fit of Data Taken by the FHR*

Maximum
Date . Time _ .dentier _ . . ..Difference

I _______ ~~(dBi) V (d )

3/11 1344 VUL 4.8 0.45
3/11 1346 HUL 6.0 0.73
3/11 1411 VDL 4.7 0.so
3/11 1413 HDL 7.3 0.81
3/12 1026 HUS 7.5 0.83
3/12 1028 VDS 5.5 1.36
3/12 1049 VCS 4.4 0.52
3/12 1051 HCS 6.1 OAO
3/12 1125 VCL 4.4 0.42
3/12 1127 HCL 5.6 1.40
3/12 1154 HUS 5.9 1.10
3/12 1156 j VUS 5.8 1.08

*From reference [1 61.

20



NRL REPORT 7986

Table 9-Results of Analysis of Variance: The Effect of Various
Parameters on the FHR Clutter Distributions*

Source I Mean I Vance ConclusionSquarej Ratio ________

Polarization 6.75 26.0 Polarization effect is presenI 

Pulse length 0.56 2.2 Pulse-length effect not present

Upwind vs downwind 0.78 3.0 Effect not present

Upwind and downwind 1.76 6.7 Effect is present
vs crosswind

Sampling error 0.26 J " : __ __________

*From reference [16 ]. . . ......

Table 10-Results of Analysis of Variance: The Effect of Various:
Parameters on the FHR Clutter Distributions in Table 2

Variance
Ratio

Polarization 4.32 141.0 Effect is present

Upwind vs downwind 0.15 4.9 Effect is present

Upwind and downwind 0.15 4.9 Effect is present
vs crosswind

Sampling error 0.0306 -

analysis of variance (Table 9) indicates no significant difference. Since it is known that
the clutter distribution is Rayleigh for large pulsewidth, there seems to be a threA61oWd
effect. That is, small pulse measurements have a larger clutter spread t:' I.'Tal PiIL1t(*
measurements; however, once the pulsewidth is smaller than the water . '.1 1|'ip'i. 'IIt*.
are no longer significant.

2. Variation of p(xjo 0)

To find the effect of various parameters on the conditional density p(xlao), an anal-
ysis of variance was run on the data in Table 4 (optimum ke are used as data points); the
results are summarized in Table 11. The most significant parameter is pulsewidth: the
larger the pulsewidth, the more Rayleigh (as oppose to Ricean) the density of clutter
backscatter. This can be explained by recalling that the dominant scatterers ajre, beg g
waves. If the patch is small, there may be only one breaking wave in it, and tlqe'!dngmty
will be Ricean. However, if the pulsewidth is increased, several breaking waves :may1 b::e
present. Since return from these waves will add noncoherently, the density will te0nd

21
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Table 11-Analysis of Variance Results: The Effect of Various
Parameters on the Conditional Clutter Density*

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~I 

Effect } Mean Variae Conclusion
Square Ratio

Polarization 0-606 7.88 Polarization effect is present

Pulse length 2.706 35.21 Pulse-length effect is present

Wind 0.006 0.07 Wind effect not present

Sampling error 0.076 -

*From reference [ 161.

toward a Rayleigh density as the pulsewidth and thus the number of breaking waves in-
creases. The other significant parameter is polarization, vertical polarization giving rise to
a more Rayleigh-like density than horizontal polarization. This could be explained by the
simple fact that the clutter return is higher for vertical polarization, Thu, if the dominant
scatterers have the same cross section for both polarizations, the ratio of the dominant scat-
terer to background clutter will be smaller, and hence the value of k will be nearer to 2.
Finally, wind direction has no effect on the conditional density.

D. Empirical Density of p(uo0 )

In 1972, Trunk [161 showed that the non-Rayleigh density p(x) of envelope-detected
sea return could be expressed as

p(x) = p(xkoip(uo) du(o. (12)

While Trunk investigated the densities p(x) and p(x[aol and concluded that the form of
p(ao) has an important influence on p(x), he did not find the density for p(a0). This
situation was rectified in 1974 when Owens [271 used a nonparametric estimator for the
density of 10 log au, which is equivalent to finding p(%). Owens' analysis is summarized
in the following sections.

1. Nonparometric Estimation of a Probability Density

If al, .. * uN are independent random variables with a common density f, a kernel
estimator of f at a point y has the form

IN
hy) k K K(y, a) (19)

w=1

where K is a known kernel. A common form of K is
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K(y, a) = h(N) K[(y - a)/h(N)] (20)

where h(N) is a number depending on the number of samples. There are many possible
choices for K and h(N). (If the reader is interested in the area of nonparametric density
estimation, he should consult Owens [271 who quotes some basic results and references
the basic papers.) The choice of Owens was

7r~~~~~~~~~~~~~~~~~~ Z

K(Z) '= +(siZY)a (21)

and

h(N) = 20/v/T. (22)

Thus, if f is the density function of o = 10 log a, then

Y) = 0 2 ( (23)

is an estimator of f(y) where

tij { 20)vW- (24

and al, 9.. eN are independent samples from the density f.

The difficulty in applying Eq. (23) is that the random variables Ci are not diectly
observable. Rather, the data consist of the envelope-detected returns xi. If the ,cndi-
tional density of p(xlao) is known precisely, then empirical Bayes methods [28J qold b
used to estimate p(ao). However, while Trunk [16] has shown that p(xlao) dpe on
various parameters such as pulsewidth and polarization, he has also stated that t jtlsty
of p(xlao) has little effect on the density of p(x). Consequently, it is safe to assthat

p(xI 00) = o. g(x/ao) (25)

for some density g. Thus, if

b f xg(x) dx (26)
0

then

E(x io) = boo. (27)
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Now, consider the following procedure. For each i, ti 1, NJ select a sample ui from f
and then select k samples, denoted x 1,, ... Xih from the conditional density p(x[u1 ).

ExiiJ = ^bi for j = 1, ., k, %28)

it follows 'h-+at an est-.a-n of ba is

b=i kL Xu. (29J
i=*1

Taking the log yields

, ; 10 loab = 1IOloai + lO ogb. (30)

That is, ui is an estimate of 10 log ai, shifted by a constant that is independent of I. Thus,.
ai defined by Eqs. (29) and (30) can be used in Eq. (23) to estimate f(y).

2. Data Analysis

The data analyzed by Owens were the small-pulse (20-ns) FHR data that appear in
xaDle a. hie 1Žuupanuetnc eslnaolutu proceuuie is appueui L) ules uian in "tlne snuoYw-
ing manner. First the decorrelation times for selected short-pulse data are extracted front
Table 3 (presented in column 3 of Table 12). Since 10 ms is the decorrelation time of
sea clutter when Qo remains constant, the decorrelation times in Table 12 are good esti-
mates of the times required for aa for the illuminated patch to decorrelate. Based on
these times, Owens selected a "sampling interval" (approximately one-eighth of the de-
correlation time), in which it is assumed that a remains constant. For each data record,
every eighth sample was selected to form a new record, with samples 3 ms apart and
adjacent samples recorded at different frequencies. The total number of samples (this
corresponds to k in Eq. (29)) in a given sampling interval is given in column 5 and the
total number of intervals (corresponding to No,) used in the analysis is given in column 6.
Then, using the data sets indicated in Table 12, Owens computed the densities as follows:

Table 12-Decorrelation Times and Sampling Intervals

1 Decorrelation = Sampling | Number of Number of
Time Identifier | Time Interval Samples j lntervais

__________ _________ __ _ j Nit j 1111 4 i. Lt LInelvfa[

1026 | HDS - 131 39 | 14 J 208
1028 VDS 168 51 4 8 256
1049 VCS 31 9 4 192
1051 HCS 112 33 12 256
1154 HUS 106 33 12 f 256
1156 HUS 193 63 22 256

24



NRL REPORT 7986

1. Use Eq. (29), to obtain average the returns in each sampling interval.

2. Compute the estimates ui of uo (in decibels) for each interval, using Eiq. (30).

3. Estimate the probability density of co (in decibels), using Eq. (23).

The density of each of the six cases is given in Ref. 27, and the density functions for the
downwind cases are shown in Figs. 10 and 11.

The density functions for the downwind and upwind cases are quite irreguW,,ThisTls,
may be the result of shadowing of the patch by large waves. Furthermore, densities tor
vertical polarization are more peaked than those for horizontal polarization. This sup-
ports the conclusion in (Ref. 16) that the density p(x) has a longer tail for horizontal.. .
polarization than for vertical polarization. Further information about p(oo) can.::i"ound
in Sec. IV.B.

I~~~~~~~~~~~~~~~~~~~~

-45 -35 -25
dB (Al

Fig. 10-Estimated probability density of normalized RCS
(horizontal polarization, downwind)
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IV. SEA SURFACE SIMULATION

Trunk [161 and Owens [27,29] have found that a simulation of the sea surface can
be extremely useful in certain problems associated with high-resolution radars. In this
section, this simulation will be discussed, and two examples of its use will be given.

A. Sea Surface

All invfsticratonrq II 9 97 9!4 have rontnatefed realiantins of the sea surface hy using
the method suggested by Neumann and Pierson [301. The realization is obtained by con-
sidering the linear solution to the Lagrangian equations of motion for the sea. The long-
crested waves are given by the parametric equations in 6,

x(t) = 6 - sin W2 (6 cosO +y sin0) - a3
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y(t) =y

and

z(t) = cos [Wg (6 cosO +y sin0 ) - wati, (31)

where (x, y, z) are the coordinates of the sea surface and 0 is the direction in which the
wave crest is moving with respect to the x-axis. The realization is constructed by form-
ing a linear sum of elementary solutions, i.e.,

N 2

i-i

y(t) = y

N 2,? 
Z(t) = ai cos [-t (6 cos0j + y sinG1) - cit + Tyi 132)

where yi are independently distributed phases between o and 2wr. Given a wave spectu
S(w), Trunk [16] suggests setting the N frequencies wi by

f~j S(o) d =2i - S(w)dw (38)

and letting ai be a Gaussian random variable whose variance is

2(a,)= 1 S(w) dw . (84)

The wave spectrum that was used was the Kitaigorodskii [31] spectrum for a fully de&
veloped sea,

dg2

S(w) = - exp [-b(g/uCw)41 (35)

where d = 0.0081, b = 0.74, g is the acceleration of gravity, and u is the windspeed. 

To see the type of realizations this method yields, let us construct two realizations
for a 20-knot wind. First, N = 100 values of COi were chosen by Eq. (33), and u2 (az) was
calculated using Eq. (34). Next, the wave directions Ot were chosen from two Gaussian
densities: the first with a standard deviation of 0.2 rad and the second with a standard
deviation of 0.5 rad. The surfaces are shown in Figs. 12 and 13. Each surface is-about
700 ft (213 m) long and 300 ft (91 m) wide. The 40 y cuts are 7.5 ft (2.3 m) aparand
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Fig. 12-Simulation of 700-ft by 300-ft (213.4- by 91.4-m) sea surface, with a(d = O02

Fig. 13-Simulation of 700-ft by 300-ft (213.4- by 91.4-m) sea surface, with O(Ocl = 0.5 [16f

the 6 values (hence approximate x values) are 1.4 ft (0.4 m) apart. From appearance, Fig.
13, with (6j) = (.5, is the more realistic sea surface. (Unfortunately, while Trunk I161
used u(G) 0.5 he reported o(O) = 0.2. Consequently, Owens [27,291 later used o(Q) =
0.2. It is the author's opinion that this fact will have little effect on upwind and down-
wind results but could have a larger effect on crosswind results.) While there have been
several measurements of directional spectra, the results of one of which is reported in
Ref. 30, Phillips [321 states that no simple, realistic model for the direction spectrum,
corresponding to the existing one-dimensional wave spectrum, exists.

There are several ways in which the sea surface realization can be used. In See IV.B
it is used to estimate the densities for p(x) and p(o)o and in Sec. IV.C it is used to cal-
culate the probability of detecting a small target on the surface of the ocean.
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B. Estimation of the Densities p(x) and p(oa)

From Sec. It, the cross section for horizontal polarization at a grazing ng&3

afHw(O= 4irk sin 4 0 2 W(2k cosO) (36)
[sin o + (e -O2012 

where

e is the complex dielectric constant

Fe = / : e :r:: :

KW(K) dK = S(w) dw .. :

W2 = Kg

K = 2k cosO

S(w) is the wave spectrum of the sea surface.

Since the reflected power from elementary Bragg scattering patches in a range cell. add
noncoherently, the average cross section in an illuminated patch area A is given- by - P

a = if oH(aH g(x, y, z) dx dy

(x,y,z)eA
where

z is the height of the sea surface at the point (x, y),

ce = a(x, y, z) is the local grazing angle at the point (x, y, z),

a(a) is the reflected power given by Eq. (36), and

g(x, y, z) is the normalized two-way antenna power gain at the point (x, y,Az),

Using Eqs. (12), (36), and (37), Trunk [16] calculated p(x) in the following manner:
First, the sea surface shown in Fig. 13 was constructed. Then, ai (the average radar-cross
section for the ith sample) is calculated by approximating the surface integral in Eq. (37)
with a double summation involving 210 points: twice the azimuth beamwidth is divided
into 21 radials (each with a separation of 0.1 beamnwdith) and the range is divided into
10 equally spaced ranges. For each of the 210 unshadowed points the local grazingangle:
a is calculated, uHH(Q) is calculated using Eq. (36), and ao is calculated by Eq. (37)..
Next, 0i+1 was calculated by advancing the sea surface 10 ft (3.0 m) and repeataggtAe.
calculations. This process was repeated until 50 values of a1 were calculated. Th;phx),.
given by

p fx) p(x c)p (a) du . (12)

was approximated by
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[7(X) W E X exp [1x2/2$I (3

where the ergodic theorem has been used to replace the average over p(o) by the time
series in oi and p(xla) has been assumed to be a Rayleigh density, The Rayleigh density
has been used instead of the Ricean density because it is easier to manipulate and Trunk
[161 has shown that it will not affect the results. That is, the variation of p(x) from the
Rayleigh is basically due to the density p(a). Several distributions were calculated [331
and are shown in Fig. 14. These calculated distributions indicate the effects of various
parameters whose significances have previously been demonstrated (Sec. 11.0}): (a) the
clutter distribution for horizontal polarization HUS has a longer tail than that for vertied
polarization VUS; (b) the distribution for the short pulse VUS has a longer tail than that
for the long pulse VUL; and (c) the distribution for the upwind case HUS has a longer
tail than for the crosswind case HCS. (The computer model does not distinguish between
upwind and downwind.) Also, the 20-knot case has a longer tail than the 15-knot cae.
The Rayleigh curve was obtained for BUS when the windspeed was 2 knots; i.e., when
the range cell is greater than the water wavelength, the model yields a Rayleigh density.

Owens (291 calculated p(o) in a similar manner. Using a(06) = 0.2 (Fig. 12), he cal-
culated 200 values of uj. Then Eq. (23) was used to calculate the density for 10 log 0a.
The results are shown in Figs, 15 and 16. In comparing the experimental results with the
simulation, the following paragraph of Owens [291 is quoted,

S... one should remember that the observations of tog or are obtained through different
mechanisms in the two cases. In the simulation the only errors associated with observations
of log 0 o are caused by the inaccuracies of the model and the mathematical calculations
therein. Whereas, in the experiment, uo is observed with an error having essentiafly two
components. The first component of error arises from the fact that on a given sample the
only observable variable is the return x, x being related to a through the density p(xio 0}.
This component of error is further complicated in. that various properties of p(xkio), which
is not known explicitly depend on experimental parameters. To reduce this component of
error, a number of observed values of x are averaged to obtain an estimate of U the average
being carried out under the assumption that cr remains constant over the appropriate time
interval, Of course, this assumption is not precisely correct, thus introducing a second com-
ponent of error in the estimate of a."

Owens goes an t say that "considering the complexity of the mechanism producing sea
clutter at low grazing angles and that the two sets of results are not based on the same
set of observables, the authors feels that the agreement is good." It is worth noting that
Owens' largest disagreement [291 occurs for the crosswind cases. However, if a(Q) 0.5
is used instead of a(oj) 0 0.2, the spread of p(cv) will increase and better agreement will
result.

C. Probability of Detecting Small Surface Targets

Some small, fast ships of tomorrow's Navy, such as surface-effect ships, will probably
use collision-avoidance systems to avoid such ocean debris as oil drums and logs. Conse-
quently, Owens [291 investigated the probability of detecting targets at a given height h
above the local sea surface. It is important to the debris-detection problem that these
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0 2 4 6 a 10 12 4 16 18 20 22 '24S2

CLUTTER CROSS SECTION IN dB TO AN ARBITRARY SCALE .

Fig. 14-Distribution functions for various simulations: horizontal (H) or vertical (V)-polari-
zation, upwind (U) or downwind (D), short (S) or long (L) pulsewidth. A 15-knot cape. is.
marked; all others are for a 20-knot wind [13].
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targets can be smaller in geometric size than the larger ocean waves, and so the line of
sight from antenna to target may be obstructed by surface waves.

This shadowing problem was investigated using the sea surface simulation.' At any
point (xo, yo), the target's height at a time t was h0 (t) h h-+ zo(t), where z0 (t) is given
by Eq. (32). During periods When the line from the point lxo, Yo7 ho(tjl to the radar

Ltenna intersect.s theUC LUe tlarget isiauuweu> andi can no
(This ignores refraction effects, which are presently under investigation.} Various cases
were computed by Owens and a typical case is given in Fig. 17. For example, if the
antenna height is 75 ft (22.9 m), target height h is 1 ft (0.3 in), and the sea state is 3
(wind about 15 knots), the probability of having a clear line of sight at any moment is
0-5 at a range of 2 n.mi.

Owens also calculated the probability of detecting a target by calculating the clutter
return in the same range cell as the target. For purposes of illustration, consider the radar
+nb,.nrnn ab,-.nn,nA+1, -A'I- ro P -- WA"- c ~ -- . 1 ~ 4'& -- m-.
I i^aie a eai n is ±l .' , a u lJ,;, IAkt al. tU Ln , cui a rtu-auTetn l4LC VI 9393 kvkifm. aki
radar is 75 ft (22.9 rn) above the surface, aboard a ship traveling at 80 knots in sea state I.
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,i 0.6\

Fig. 17-Probability of sighting vs range for an o0-
antenna height of 75 ft (22.9 m) and a sea state > 0.5
of 3 0.4

F, 0I -.Om 0.3 3
a_

0.2 

0.01 -
RANGE (n.mi.)

In Fig. 18, the average received signal-plus-noise and average clutter level are Iras.a
function of range.

These values are for a particular realization of the sea surface and both curves are
referenced to the ambient noise level. First, notice the lower envelope of r'e cllutter re-
turn. This represents the clutter received through the sidelobes; when the '%ii ii-r II-- 1
falls to this envelope, the entire illuminated patch is obscured by large wave structure.
The upper envelope of signal-plus-noise indicates the target return when the tqrgetisInIot
obscured. When the curve drops away from the envelope, the target is obscured: (:zpr ::
effective cross section). :.

Furthermore, the signal and clutter returns are highly correlated. When the target is
not obscured, it is likely to be on the front side or top of a large wave; and a large clutter
return can be expected. On the other hand, when the target is obscured, the illuminated
patch is likely on the back side of a wave, and a relatively small clutter return will result,
Owens assumed a square-law detector* and performed scan-to-scan integration. Typical
results are shown in Fig. 19. As will be seen in the next section, substantial. improvqmetit
results from scan-to-scan integration. For specific details of this work, see Ref. 31,. ;:

V. DETECTION OF TARGETS IN NON-RAYLEIGH SEA CLUTTER

Since 1947, the classical works of Marcum [35] and Swerling [36] have been used
to calculate the probability of detecting targets in sea clutter. Their models, based -on a

*Since a target can be shadowed for a number of scans, the detector incurs a loss similar to a collapsing
loss: A square-law detector is used, since the collapsing loss is greater for a linear detector than for a
square-law detector f34J.

33



GERARD V. TRUNK

40- [lf l l I f' r i lil 

jt LOW A PPR FNVELOPE OF SI GNAL kOFSE

-20
LOWER EtNVE-LOP OF CLUTTER-~ I

-30

RANGE (nimi.)

Fig. 18-Received signal strength for a 20-ns radar in sea state 3

Rayleigh density for envelope-detected clutter, usually provide accurate results when
pulsewidth is large. (Even for fairly large pulsewidths (0.25 ps), non-Rayleigh densities
can occur for high sea states [16,261 or shallow grazing angles [211.) However, as the
range-resolution cell decreases in size, the clutter density develops a longer tail than the
Rayleigh. Thus, if the Rayleigh theory is used, too many false alarms will occur,

To remedy this situation Trunk and George [101 approximated the clutter return by
thpe 1nu-nnnnl an1 an rrnnfnminntf-nnrrnl deenqifioe antli nSalnilnt nrnbhiit-f-dste ian
curves for the mean and median detectors. Trunk [371 generated detection curves for
fluctuating targets and the trimmed-mean detector. Schleher [381 found a bound for the
optimal detector in log-normal clutter and showed that the binary integrator approaches
the performance of the optimal detector. Before reviewing the performance of various
detectors in the next sections, let us consider the applicability of the various models.

Except for the ratio detector [391 and the work of Owens [291, all investigations
have assumed that the available samples are independent samples from p(x). Since it has
&FVCU DII-wIS kQeJ~. IA 11A) LiaL, fLrequenLy 1C vU1VtI1bLY pitiuut a IIUeUpuLttanit. Saml 119311D

p(x aR, only samples obtained on different scans can be considered independent samples
from p(x). (In this section, clutter is restricted to that resembling Figs- 7 and 8, as op-
posed to Fig. 9.) However, since the range cell is very narrow (this is why the density is
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RANGE (n. mi.)

(a) 1 scan

RANGE (n.ml.)

(b) 5 scans

Fig. 19-Probability of detection vs range for a high-resolution radar
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Fig. 19-Probability of deteetion vs range for a high-resolution radar (Continued)
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non-Rayleigh), in order for the target to remain in the same range cell it must either.Le almost
stationary or some kind of range tracking (during detection) or collapsing must be applied.

Besides the problem of independence of the samples, there is the question of the ap-
propriate density for the clutter return. From Fig. 20, it is obvious that the signal required
to obtain a particular performance level is very dependent on the'distribution assumed for
the clutter-a log-normal distribution requires more signal strength than a contaminated-
normal one- which requires more than a Rayleigh distribution. Also, the differences are
larger for 1 pulse than for 30 pulses. Thus, the choice is extremely critical whei'4,only one
or a few independent samples are available. It is this author's opinion that for Small false
alarm rates (i.e., below 10-6), the log-normal density will yield pessimistic results, i.e., per-
formance will actually be better than predicted. This is because p(x) is not really log-
normally distributed and has only been used to approximate the density to its 99.99 per-
centile. As shown in Sec. III. B, p(x) eventually falls off as a Ricean density;,.i.e.,
exponentially. Thus, the threshold need not be set quite as high as the log-r6pidl'49n-
sity requires.

Keeping in mind the previous comments, detection results are presentedc r t log-
normal and contaminated-normal densities.

A. Log-Normal Density

For the log-normal model the envelope-detected sample has the density f

2 (-2[tQn(x/xm)] 2)
(2nacr2x2)l12 l\ L t:

where xm is the median value of x and a is the standard deviation of (Qn x)2 . Fpgqing.
Rice's procedure [40], we can show [41] that the density function of a con4stantigza A
in log-normal noise is

0.999 o

0.995

099-g -11 1o ,TatI , R 

Fig. 20-Cornparison of the Rayleigh, c " g l g .
contaminated-normal (y = 0.25, K t 0.95 ,1 -
2.25), and log-normal (a = 6 dB) de-
tection probabilities for N= 1 and 30 0 0.9
pulses and Pf0 = 1 F8 For this corn- ~ .
parison, SIN is defined in terms of the c. 0 :
median value for all the probability ' 06 | |
flistLU ULIiIbSt 1lO. Ft 0. I5 I I. '
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r x exp [-2a- 2 Qn2 (X2 - 2xA cosO + A2)' 1 2 I dOpet~ ~~ in-9 -I2 -_ I --- >1 A9 
-0 FZ10 /{to{U2) 2 t- _XA Tos+ Atj

where the return has been normalized by median, so that x,- 1.

Various detectors will now he evaluated using the log-normal model,

1. Mean Detector

The straightforward method of determining the probability density for the sum of
N independent pulses (i.e., the mean detector) is the characteristic function method. If

fht. _ RlPYnth.rrft= F nMr A4U'vnptiar} dr 14fl'r% 1 ' ___s-.-r \ Jo ,1J rx--' --- I--r

is the characteristic function, the probability density of the sum of N statistically inde-
pendent envelope-detected pulses is

PN(x, A) - f J Wf l 'V exp (-i Wx)dw (41)

The probability of false alarm P. for a threshold T is given by

Pr = fJ ,O(x, 0) dx (421

and the probability of detection PD is

P f pN(x, A) d (43)
T

W;th the + asc F nrie t 4rnrm Hf t, ;t 4,sfnc rly s t ole ic 'lata-e Vn-, tIW a"4 (A I
Then, Pf , and PD are calculated by straightforward numerical integration. Threshold
values for N = 1, 3, 10, and 30 for values of P(a ranging from 10-2 to 10-8 are shown
in Fig. 21 for the log-normal density, with a = 6 dB.* With these thresholds, Eq. (43) is
evaluated, yielding P_, vs signal-to-noise ratio S/N per pulse, where SIN is the signal divided
by the median value-of clutter. This is not the usual definition of S/N, in which the noise
reference is the rms value of the noise. However, it is an appropriate choice, since it is
the median value of clutter that is usually reported [71. The PD curves for a = 6 dB are
plotted in Fig. 22. An inspection of these curves shows that the SIN required for

*Additional threshold values and detection probabilities for u t 3 dB and a 9 dB van be found in 1411.
It should be denoted that for all detectors a is not known a priori. Consequently, an adaptive threiholding
technique must be used.
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detection decreases rapidly as N increases. In fact, the integration gain Ig is greater than
would be obtained for the coherent integration of a Gaussian density, i.e., I.> 10 log N.

It has been pointed out [37] that this means the optimal beamwidth for.a high-
resolution scanning radar need not be the smallest. For instance, consider a case in. which
S/N is 20 dB per pulse, and a three-pulse scan-to-scan integration is being performed. If
the clutter has a log-normal distribution with a = 6 dB, PD will be 0.1 for a Pra -of 10-6.
If the beamwidth and scanning rate are both increased by a factor of 10/3, then- 1Opulses
can be integrated in the same time. In this case, while SIN falls to about 15 dB per pulse,
PD is greater than 0.99. Thus, better performance is obtained with the larger enidth.

2. Binary Integrator and Rank Detector

It is well known that the binary integrator. (sometimes called a dual-threshold detector
or M-out-of-N integrator) is exactly equivalent to a rank detector. Given a set, of N ordered
samples, x1 C: ... C -x < ... < XN, the kth ordered rank detector involves simply. com-
paring Xk to a threshold. The median detector is the special case where k = N/2'. How-
ever, since the implementation and evaluation of this detector is simpler in the form of
the binary integrator, the detector will be discussed in this form. A simple blck diagram
of the binary integrator (or kth rank) is shown in Fig. 23. The probability p(A) that the
returned signal exceeds T is

p(A) = p(x, A) dx (44)
T

where p(x, A) is given by Eq. (39). The probability that more than m = N- kE of-the N
returns exceed T is given by the binomial distribution "i

N(N
P(A) = K P (A)[1 p(A)]N-Q. (46)

n-STAGE SHIFT REGISTER

INPUTx: COMPARATOR I IFsx: T 
T OIFx: < T

Iy

IF y > n-k
ARGFT

Fig. 23-Implementation of binary integrator or.
equivalently, rank detector [10]
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The desired probabilities are given by Pf0 = P(A = 0) and PD = P(A). In 1970 [101} the
median detector for the log-normal distribution with a = 6 dB was evaluated. The thresh-
1Als are prt.JenCLs\ in Fig . +Itl 4-fW440rL reAS. e- -J±CI-.L V11 1- 15. %J1J11L

paring the mean and median detectors in Fig. 26, one concludes that the median requires
a smaller SIN than the mean and that the difference increases with increasing N: for
N = 3, the median is 1.6 dB better than the mean; and for N = 30, the median is 2.8 dB
better. The performance difference between the two detectors for large sample sizes can
be obtained from Pitman's asymptotic relative efficieney.(ARE) [421. This criterion is
quite appropriate when the signals are very weak. Specifically, it is the ratio of the num-
ber of samples required to maintain a Pa and PD for the first detector to the number re-
quired for the second detector as the S/N approaches zero:

(46)ARE (d4, d2 ) = lim Nl (pf, ap SIN)
S/N-*O N2(Pf 1Pp1SIN)

where Ni is the minimum number of observations required for detector di. The simplest
way of calculating the ARE is by employing the concept of efficacies, which was also
introduced by Pitman. Using a result of Noether [431, Trunk [441 calculated an ARE
of 129, (See Appendix C.) Assuming that a noncoherent integration gain of 10 logNŽT
is appropriate for small signals. the median detector is aporoximatelv 10.5 dB better than
the mean detector for very small signals.

14k

t3 F-

[OF-

0 2 3 4 5 6 7
-iLnn pto

8 9 10 1I 12

Fig. 24-Normalized bias values for the median detector
(log-normal distribution with a = 6 dB)
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GERARD V. TRUNK

Since the log-normal density is unsymmetrical about its median value, there is no
reason to expect that k = N12 (the median) is the optimal rank. Rather, because of the
log tails of the uig-normai, one would expect that the smaller ranks tk c A/2) would[
behave better. While Trunk (451 showed that 1 dR could be gained with respect to the
median by using k = N/3 against the contaminated-normal density, Schleher [381 showed
that larger gains were obtained with smaller ranks against the log-normal, Schleher [461
obtained the optimal value of m for different values of N by calculating the detection
curves for each possible value of m and choosing the best value. The optimal values of m
for N1 3, 10, and 30 pulses, for the log-normal density with a = 6 dB, are given in Table
13 along with the optimal values for the Rayleigh density, which were determined by
Schwartz [471. Detection curves were generated by Schleher (461 for the log-normal
density (a = 6 dB) with N = 3, 10, and 30 pulses. The detection curves for the optimal m
are given in Figs, 27, 28, and 29. Comparing these results with the median detector shows
that the largest differential is for smaller N. For N = 3, the median is about 4 dB worse
(for %P - 0.9 and P- 10-6) than the binary integrator (in = 2); for N = 30, the median
is only about 1 dR wore.

0.95

K
2
QW
I-
Wa
0

a-

Table 13-Optimal Value of
Second Threshold m

nJ m (Log-Normal) m (Rayleigh)

30 j 24 2 J
1 ( r3% 1 7 

lu - I i 1~~~~k

-S -4 -2 0 2 4 6 S
S/N (do)

Fig, 27-Probability of detection vs S/N for the log-normal distribution
(0 6 dB} and optimal binary integrator: N = 3, rn G 2
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GERARD V. TRUNK

3. Trimmed-Mean Detector

Since Tukey [481 has shown that the trimmed-mean detector is effective against
contaminated distributions (Tukey only considered symmetrical densities), Trunk [49j
conjectured that the trimmed mean would also he effective against long-tailed noncoherent
densities, specifically log-normal and contaminated-normal densities.

Given a set of N ordered samples, x1 < :<. < xN, the trimmed-mean detector
is given by

N2

S(N1i N2 ) L xi (47)
i =N1

where 1 < N1 < kl9 < N. 'rhis detector class contains the mean S(1, NJ and rank de-
tectors (binary integrators) S(F, F). Unfortunately, when p(x) is a log-normal density,
the density of S(N1 , N2) can only be expressed in terms of an (N2 - N1 + 1)-order integral
to which there exists no known closed-form solution. Since it is impractical to evalate
those densities by numerical integration, a Monte Carlo simulation, involving 106 trimmed
means,* was performed f 491 to estimate the threshold values for desired PrtA's. For N = 2
and N2 = 5, the equation

-log -f= -3= 735 + L0685 7T - 0.0070 T2 (48)

relating the threshold T to Pfa ' was obtained for the log-normal density with a = S dB.
The PD curves were generated using Monte Carlo techniques and the results are given in
Fig. 30. Of the two trimmted-mean detectors, the one uosing the lower ordered samples
yields the higher PD. This corroborates the previous result [381 that the lower ordered
ranks were the hetter d4enertne flnr-nnrina +hs' + t*4fnmAsl..n wlth h+o hinrma ini+tnrarolnr

shows little or no difference in their performance. However, since the binary integrator
is much simpler to implement, it is definitely to be preferred.

4. Optimal Detector

It is well known that the optimal detector is specified by the likelihood ratio, or
equivalently, the log-likelihood ratio. That is, a decision is obtained by

A (x) E_ Qfl PN(x, A) > r,(93(;C)- Mnpi (-x A t C) <

where PNv(X, A) is given by Eq. (41). A dcision of "no signal present" is made if A(x} < T,
and a decision of "'sigual present" is made if A(x} Ž T. Unfortunately, since the density of
ptw(x, A) involves ar integral, the likelihood ratio cannot be obtained in closed form. Thus,
the optimal detector cannot be found.

*It should be noted that several autho~rs [50,51] using the importance-sampling technique [S2 1 have gen-
erated threshold values for the range of Pf, = 1 Q-2 to 10-9 with about 104 eases, It isth i author's opin-
ion that the technique is very significant. A description of the method is given in Appendix D.
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(a) N = 10, N1 = 2, N2 = 5

S
S/N (dB)

14

(b)N= 1ON 1 = 4,N 2 = 7

Fig. 30-Probability of detection for the log-normal distribution
(a = 6 dB) and for the trimmed-mean detector
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GERARD V. TRUNK

However, if one can bound the performance of the optimal detector and find a sub-
optimal detector that approaches this performance, then there is no reason to specify the
optimal detector.

The ChernotT L531 bound,

• < exp [Wes) - sg(s)1

Pu > 1 - exp jp(s) + (- s)p(s)j

where the semi-invariant ti(s) is given by

Y(S) = tn J [PN(x, A)1'tpN(x, A = 0)1 dx , (51)

provides a rather coarse bound for the desired probabilities. Van iTrees i541i tightened
the bounds by finding a multiplicative factor for the exponentials, in Ref. 50, using a
central-limit-theorem argument. Schleher [38,461 obtained a miore accurate result by
using an Edgeworth series expansion to approximate the desired probabilities. Sehleher
[461 shows that Pb is given by

P1 = - erfc [a(S)l exp [O2(S) + B(S)l

- HS) ~exp [B(S)I erf [a(S)] s'7l1 exp [ax2(S)1

6Es-312 {2 IS (S

+ 11 - S2o S)l (52)

where

a(S) = S[HS)/2112 (53)

B(S) = pg) - Sp(S) (54)

An expression for 1 - PD can be found [46] by substituting 1 - S for S in Eqs. (52),
(53), and (54). Evaluation of Eq. (52) for P and PD requires the determination of the
first, second, and third derivatives of g(S). Schleher calculated these derivatives by eva-
uating p(S) at many points in the interval (0, 1), fitting a cubic spline function to the

puint-s iLt tLtt 1 LLIl OjPiiii Lt11tblionL. ±s he 41T-1LC
5

t spline I AAUU pIfLMtVa

the smoothest curve through the data points while maintaining continuity of the first
N - 1 derivatives at each data point.) Receiver operating curves were generated and are
given in Ref. 46. Curves comparing the mean, median, binary integrator, and trimmed-
mean detectors with the optimal detector are given in Figs. 31, 32, and 33, for N = 3,
N = 10, and N = 30 pulses, respectively. From these curves it can be seen that the binary
integrator and trimmed-mean detector are within 1 dB of the optimal detector. Since the
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10 12 14 16 IS 20 22 24

S/N (d 1)

Fig. 31-Comparison of various detectors in log-normal
(o = 6 dB) interference
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Fig. 32-Comparison of various detectors in log-normal
(a = 6 dB) interference
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I N3O P3 Itf . 1076

0.95 OPTIMAL WMEAN

9 Lso DETECTOR DETECTOR

a 0.80

> 0.0 60
-0.50 -

r~o 0.301 INTEGURATOR = A i
IL rn:24

0.20[-

-2 0 2 4 6 a to 12

5/N (de)

Fig. 33-Comparison of various detectors in log-normal
(a = 6 dB) interference

trimmed-mean detector requires a ranking of the samples, the binary integrator should be
used to detect nonfluctuating targets in the presence of log-normal interference.

5. Ftuctuating Targets

In the previous sections, PD curves were generated for various detectors. It has been
assumed that the target is not fluctuating and that ti-le noise samplies are indepndent.
However, to obtain independent samples from sea clutter (whose density is approximated
by the log-normal), the returned samples must be from different scans. Since the time
separation is probably larger than 1 s, it is quite likely that the target is fluctuating. Con-
sequently, Trunk [551 calculated the performance of the mean, median, and trimmed-
mean detectors against the log-normal density, with Swerling II and IV fluctuations as-
surned [361.

Since the threshold value for any P1a is independent of the target model, they have
t0en al-eanaty Calculated; lnl + tha rem.ains isn tA lrla -he PI- fnr trarintis ASU Rineea th
interesting range of PD is from 0.01 to 0.99, Monte Carlo techniques, which require con-
siderably less computer time than the characteristic-function approach, will be used. It is
well known that the ith sample xi of an envelope detector can be generated by

X= (yj2 +Z2)/2 (

where yi and zi are in-phase and quadrature-phase components. For the generation of
log-normal clutter
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yj = exp {o[-2 tn (V, 1)]P/2 sin (2irUj2 )} sin (27rv1 3) + A

zo = exn {n[-2 tn (v{, )1
1t2 cos (2igwj)} cos (27rwq ). (56)

where (vij) are independent and uniformly distributed random numbers on (0, 1) and A
is the signal. For the fluctuating signal, the probability densities are

p(A) = 2A e-A 2 /0,2 (57)
U2

for the Swerling II case and

p(A) = 8A3 e-2A 2 /0 2 (58)

for the Swerling IV case. The generation of a variable having the density given in-Eq. (57)
is straightforward. Integrating Eq. (57), one obtains

P(u < A) I1 e-A2/a2

or

e-A21° = 1 - P(u < A) . (59)

Now, the quantity 1 - P(u < A) is uniformly distributed between 0 and 1 and so can be
replaced by a random number u. if Eq. (59) is solve fo A, giving

A = r[-Qn (u)]1/2 (60)

then A i Sn 4-,o have a C.-enNr-n IIT distrhionn 'The nnwnr density for a w..nlinn TV
case is

P(Z) = 4Z -2Z/ ' (61)

If Z = X1 + X2 and if p(x) (2/a) exp (-2x/u), Z will have the density given in Eq. (61).
Consequently, if

A a{- [tn (Us) + 2in (U2)4} (62)

A will have a Swerling IV distribution. With Eqs. (55), (56), (60), and (62), a op
Carlo simulation was performed. The results are given in Ref. 55.

In Fig. 34, the fluctuating results are compared with the nonfluctuating results. This
figure illustrates the fact that for a given number of samples N, the fewer the samples in-
volved in the detector (i e, n2 - n1 + 1) the larger the required increase in S/N to msintain

51



GERARD V. TRUNK

hNONFLUCTUATING TARGET

- - -- SWERLINGU FLUCTUATIONS

lB 20 22 24
C/1At ?.4IA
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(b) N 10 [37J

Fig. 34-Comparison of various detectors for Pf, = ltO-fi for
the tog-normal (u = 6 dB) distribution and for fluctuating
targets
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the desired Pp. For instance, to maintain 106 and PD = 0.9 for N = 3 and a
Swerling II target, the mean detector (which uses all three samples) requires a 4.6-B4 in-
crease, whereas the median detector (which was only one sample) requires a 6.0-dB" in-
crease. Similarly, for N = 10, the mean requires a smaller SIN increase than the tri mmed
mean.

Since the binary integrator uses only one sample, like the median, this authio b'
lieves it will suffer a "fluctuation loss" similar to that of the median. Thus, for f
tuating targets and log-normal density, the trimmed-mean detector is the most ef
one, the binary integrator is next, and the median is third, only slightly better. th;kthe
mean. Of course, for large samples, the behavior of the detectors for nuctuating targe
will approach the nonfluctuating behavior. Consequently, for large sample sizes, the
binary integrator and trimmed-mean detector are equivalent, and both are better thy; the
median, which in turn is better than the mean.

B. Contaminated-Normal Density

For the contaminated-normal model, the envelope-detected sample x has th4ety
function

x (-X2'\ ( 22 
pWx) (1-7)2 - exp + exp t

a2 2u2} K 2ug2 \2K2u2/

+z (I7)- exp X2(K2 +21)i x2(K 2 - 1) (11)
Ku2 ~~4K20C2)0 k4K 2U2 /

where y is the contamination fraction and K is the ratio of the standard deviations of; the
two underlying Gaussian densities. Following Rice's procedure [40], we can show L6]
that the density function of a constant signal A in contaminated-normal noise is

p(x, A) = p(x, A, O) dO, (63)

where

p(x, A, 0) = { (1 y)2 exp [-(X2 - 2xA cos0 +A2 )/2u 2 ]

27r2

+ 2 exp[-(X2 - ZxA cosO +A2 )/2K2 u2],
K(2

+ E exp [-(X2 sin2o - 2xAK2 cosO + A2K2 (64)

5 3
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+K 2X 2 coS2d)/2K2c2 ]

+ly I - 7) exp [-(x2 cosO - 2xA cosO + A2

+K2X2 sin2Olj2K2a2ll * jf4)

Various detectors will now be evaluated using the contaminated-normal model.

1. Mean Detector

The threshold T for a desired , and the PD have been calculated using the charac-
teristic function approach given by Eqs. (40) through (43). The thresholds for z= 0.25
liU And- K= 25 c-an b-e fo und in Ref. 10, andt the detection curves for NT = 1, 3:, 101 and 30
pulses are given in Fig. 35, where SIN is still the signal divided by the median clutter,
which for this case is 1.41o. Two points should be noted: (a) the integration gain for
the contaminated-normal density is greater than for the Rayleigh density, but less than for
the log-normal densitv: (bh comoarina Fies. 22 and 35 shows that the contaminated-
normal model requires considerable less signal strength then the log-normnal model to ob-
tain the same probabilities. The curves for N = I and 30 and Ppf = i0-6 are shown in
Fig, 20.

2. Binary Integrator and Rank Detector

The threshold values and the PD can be found with Eqs, (44) and (45), by using
Eqs. (63) and (64) for p(x, A). The threshold values are given in Ref. 45, and the detec-
tion curves for N - 3 and 30 for the median (k N 2) and 33d percentile (k = Nia) are
shown in Fig. 36. The following observations can be made.

1. Whether the 33d-percentile value or the 50th-percentile value (median) is better
Uepen on ' an' For the values of n rand .n' there Ls _ r: vonfl dli ru. C~u CD ILLVDsugabeu, t w ty
a 1-dB difference between the two. Furthermore, since the difference is so
small, only a minor improvement can be made by finding the optimal rank.

2. For a fixed Pr, as PF, becomes smaller, the 33d percentile becomes the better
detector.

3. For a fixed Pr, as PD becomes larger, the 50th percentile becomes the better
detector.

Comparing the mean and median detectors in Fig. 37, one concludes that the mean re-
quires a smaller SIN than the median. However, the difference decreases with increasing
Nh For N 3, the mean is about I dB better than the median; for N = 30, the mean is
less than 02 A1 better than the medifan. The performance differenre betwPeen fthAe two
detectors for large sample sizes can he obtained from the ARE. In Appendix C, it is
shown that the ARE of the mean with respect to the median is 1.76. If a noncoherent
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Fig. 37-Probability of detection vs SIN for the contaminated-norrnat
distribution with y = 0.25 and K = 2.25 44I

integration gain of 10 logv /N'is appropriate for small signals, the median is approximately
1.2 dB better than the mean for very small signals.

3. Trimmed-Mean Detector

With the previously outlined procedure of Ref. 49, a Monte Carlo simulation was
performed. For N - 2 and N2 = 5, the equation

-log Pf = -1.691 + 0.3123T + 0.30$8T2, (65)

relating the threshold T to Pt0, was obtained for the contamninated-normal model, with
y = 0.25 and K = 2.25- The PD curves were generated using Monte Carlo techniques; the
results are given in Fig. 38. Again, the detector with the smaller ranks QA% = 2 and
N2 5) is the better detector. Comparing the trimmed-mean detector': performance with
that of tue mean (Frg. 35) inadcates that the trimmed-mean is the better detector, re-
quiring 0.5 to 1 dB less SIN than the mean.

4. Fluctuating Targets

The P curves for fluctuating targets are generated by the Monte Carlo method dis-
cussed in the previous section on the log-normal method. For the contaminated-normal
model with parameters K and 'y, the in-phase and quadrature-phase eompnonents are
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y = [-2 Vn (u11)IV12 sin (27rui2 S(Ua3 ) + A

Zi - [-2 Ln (u;)j '1/2 cos (2irui 2 )S(Ui 4 )

S(u 0 ) K U <
where {tiJ} are independent, uniformly distributed, random numbers on (0, 1). Using
Eqs. (55), (66) in place of (2), (60), and (62), a Monte Carlo simulation was

performed; the results are given in Ref. 55. In Fig. 39, the fluctuating results are com-
pared with the nonfluctuating results. This figure illustrates the fact that for a given
number of samples N, the smaller the number of ranked samples involved in the sum
(n2 - n 1 + 1), the larger the required increase in S/N to maintain the desired Pb That
is, the median suffers the largest "flucluation loss," the trimmed mean the next largest,
and the mean the smallest. Thus, for fluctuating targets and contaminated-normal

z 0.95
C

a aseU O'SUA

0 05

4sQ.
Xi Os5
cM 045
0
0-
0- 0 3

SIN idS)

Fig. 39-Comparison of variowa detectorxs for
Pr,, - 10 6, for the contaminated-normal
distribution (y = 025, K = 2.25), and for
fluctuating and nonfluctuating targetr I371
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densities, the mean is the most effective detector, the trimmed mean is the next Iand
the median the least effective.

C. Pulse-to-Pulse Processing

Trunk [39] investigated the problems associated with pulse-to-pulse processing of
data taken with a high-resolution radar. His results are summarized in this section. TIL
should be noted that if integration takes place during a single scan, the detection"curves
(given in Secs. V.A and V.B) cannot be used, because the integrated samples arejioit.
independent samples from p(x). If they are used, a higher number of false alarms than
predicted will occur. To illustrate this, the threshold -values for N = 3 and Pfa = 10-2,
and 10-3 were taken from Ref . 10. Letting S be the sum of three samples t 12.5 ms
apart, we calculated 3,000 values for S from the FHR data (run 1153, HUS [10]J). The
sums were compared to the thresholds and Pfa values of 0.15, 0.016, and 0.0032 were
obtained. Thus, the Pf0 is higher than predicted; the relative error becomes larger for
smaller Pfa. The only way of calculating the correct thresholds for a detector:sunming
N pulses per scan is to calculate (approximate, as in Sec. III.A) the density of Sj rather
than that of xj. While Trunk approximated a density of So for the HUS case, he noted
that adaptive thresholding was a more fruitful method,

A common adaptive thresholding technique is the cell-averaguig constant-flselam-
rate (CFAR) method considered by Finn and Johnson [57]. Their detector for-te jt
range cell can be written as a ratio,

ItN;

-k ? x f

Rj = it: . , (67)

IMV e L XtZ,j+9+i +X~j_R_l)' 

where xi- is the ith envelope-detected sample in the jth range cell. (The samples on either
side of the test cell are not used because when a target is present, the Gaussian pulse shape
causes target returns in the adjacent cells.) A decision is made by comparing Bj to a thresh-
old Tt(CFAR). This detector provides CFAR when the noise samples are Rayleigh distril
buted. The threshold T(CFAR) is a function of the number of reference cells and-ap-
proaches the threshold T (which is the threshold if the a of the Rayleigh density is known
a priori) as the product MN approaches infinite. The difference in S/N caused by.T(CFAR)
being larger than T is called the "CFAR loss." It can be found in Mitchell and Walker [58]
and it is given in Table 14 for N = 3. Thus, to minimize the "CFAR loss," onewwtsWM as
large as possible.

Unfortunately, if one views the clutter in Fig. 40, which was generated by ssuming
-- Is z LI--_ ___ v3 _ _- A1: J _ r1_ :n 1 1_ _ ~ -1 I- _ L - - I -s I s BeWith sa to ubu UteuI -and cu LvtCrtng m110e daa in i lg. S to spaial data, one sees that the

return goes from a minimum to a maximum in 30 or 40 ft (9.1-12.2 in). There4foir
Trunk [39] suggested setting M small to detect in the nulls of the sea clutter: (fo'targets
that are not shadowed, i.e., low-flying targets) and evaluating the detector with M 1 and
actual clutter data. First, if Xii are independent samples from the conditional: desjW
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Table 14-CFAR Loss (dB) for N = 3 and F 10-i6

2M [ -1PD = 0.1 jPD = 0.5 P 0.-9 P= 0.99

1 13.9 15.1 - _
2 6.9 7.4 7.8 8.3
3 4.6 4.9 5.1 5.4
5 2.8 2.9 3.1 3.4

10 1.4 1.4 1.4 1.6
0.0 0.0 0.0 0.

-50
0 300 600 .900

DISTANCE (It)

Fig. 40-Sea clutter data (VUS) vs range
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p(xla), which is Rayleigh, then the density of Rj under the assumption of no sigppnt,
is the F-distribution with 2N and 4N degrees of freedom. The thresholds canr .beI:"nin
nef. 04 A n c f hc ia- aeen acsinvr-I fhat pnlr|cr ic a Rayldigh tkns'ity rYA has:a .hi-enared

density with two degrees of freedom. If the chi-densities obtained in Table 4 wered,
the degrees of freedom for the F-distribution would be greater than 2N and N. Conse-
quently, the threshold obtained from Ref. 24 would be lower. Thus, we see. thittthe:'
Rayleigh assumption is a conservative approach: the actual Pfp will be lower thanrpsired.

To calculate the PD of the detector, a Monte Carlo simulation that used actual clutter
data (run 1153, HUS [10]) was performed. The output of the cell containing uitnal-waS
generated by .... ..... ....

Z4 = 2 OAj 2 + (x4 sinO i)2 (68)

where xif is the actual FHR data sample, A is the nonfluctuating target ampliWe, 'aid
Oi is a random number uniformly distributed on (0, 27r). The detection curve for N = 3
and Pf0 = 10-6 (which was derived from 512 cases) is shown in Fig. 41. The ratio detec-
tor is compared to the one-pulse detector (i.e., xi is compared to an appropriate thresh-
old) and the three-pulse integrator

3

sj=7JEgx2]
Si= lM

is compared to a threshold, assuming that p(SJ) is known a priori. (This is equivalent to
a ratio detector with M = °°). The ratio detector is better than the three-pulse integrator
except for P, > 0.96, in which case the integrator can be 1.2 dB better. n - '

The explanation for this is that when signal strength is fairly low, ihe ratio detector-
can detect signals in the null of the clutter. On the other hand, when signal strength is
high, resulting in high PD, signals must be detected in all regions, including the high-
clutter region. However, in the high-clutter regions the three-pulse integrator is better,
since no CFAR loss is suffered in estimating the threshold. While the PD is fairly low for
low SIN, it should be noted that this PD is for a single scan. It can be improved by .using
scan-to-scan integration or a binary integrator. It should be noted from Table 14 that the

098 PROSASLiTY OF FALSE ALARM10
6

lo

a0. :

00.70C , -. - _ '"f0 "E '

ziO.950

K 0920

~~~~0.70~~~~~~~~~

a O I2 i4 N N io 20 22 24 26 2ff 30 P:I'm:'''

S/N Id8)' '''' ; ': 

Fig. 41-Comparison of the ratio detector with the one- TA
and three-pulse integrators using sea clutter data {39] 1 ~
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ratio detector with M = 1 incurs a CFAR loss of 7.8 dB. If the geometry of the situation
(the range resolution with respect to the water wavelength) permits M to equal 2, the
CDAR loss can be reduced to about 4.0 diR

VI. SUMMARY

When the range resolution of a radar becomes less than the water wavelength, the
probability density of the radar echoes from the sea has a longer tail than the Rayleigh
density. This non-Rayleigh density p(x) has been approximated by the log-normal and
contaminated-normal densities. However, p(x) is neither of these densities. Rather, the
non-Rayleigh nature of nfxl is due io a spatinlly vnrvin0 density pnxfyu. The densityv of
p(x) can be expressed as

p(x) = fp(xoo)p(ao) do

where p(ao) is the probability density of o( and is related to the low-frequency sea spec-
trum (i.e., large wave structure). The conditional density p(xluo) is a Ricean density and
the dominant scatterers are associated with return from breakina, or near-breaking, waves.
From the analysis of variance, the following conclusions were drawn about the effect of
various parameters on the density p(x):

1. Data taken with horizontal polarization have a large clutter spread than those
taken with vertical polarization.

2. L-band data have a larger clutter spread than X-band data. This is true for very
high sea states and may be true for lesser sea states.

3. Upwind and downwind data have a larger clutter spread than crosswind data.

4. Small-pulse data have a larger clutter spread than large-pulse data. However,
if the pulsewidth is smaller than the water wavelength, changes are no longer
significant. (This ignores the extremely small (5 ft by 5 ft; 1.5 m by 1.5 m3
resolution cells.)

Analysis of variance was also applied to the conditional density p(x u1,u and the follow-
ing conclusions were reached:

1. Data taken with vertical polarization follow more closely the Rayleigh distribu-
tion than horizontal-polarization data, which are more Ricean.

2. Large-pulse data are more Rayleigh, while short-pulse data are more Ricean.

3. Wind direction has no effect on p(x ina).

A simulation of the sea surface has been developed, it has been used to predict the
variation of p(x) and p(uo) with various radar parameters. The simulation has also been
used to calculate the probability that a small surface target is being shadowed and to
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show that the times that the target is not shadowed are correlated with largectt,
returns.

Various problems associated with detection of targets have been investigated. Using
samples separated by about 10 ms (the decorrelation time usually stated for X-band :sea
clutter return) or employing frequency diversity produced independent samples from
p(xlao), not from p(x). Independent samples from p(x) can be obtained only by col-
lecting samples from different scans. Since p(x) has been modeled by log-normal and
contaminated-normal densities, detection curves for these two densities have been gen-
erated for the mean, median, binary integrator, and trimmed-mean detectors for fluc-
tuating and nonfluctuating targets using independent samples (scan-to-scan processing).
Overall, the trimmed mean detector is the best. However, because of implementation
problems, the appropriate binary integrator should be used. If pulse-to-pulse processing
is used, it is recommended that if the target is above the surface a small numberof',r!etfer-
ence cells be used, so that the target can be detected in the clutter nulls. Onr th '.ot4ier
hand, if the target is a small target on the surface, it can be shadowed and the sea surface
simulation must be used to evaluate detector performance.

The question of what polarization should be used remains. Croney and Woroncow
[59] recommend vertical polarization, and Trunk and George 110] recommend horizontal
polarization. This author believes the question is now open; no generalization can be miade.
Depending on radar parameters, data-processing constraints, and environmental require-
ments, either horizontal or vertical polarization could be used. However, in general this
author favors vertical polarization because of the false-alarm problem associated with the
sea spikes attributed mainly to horizontal polarization.

ACKNOWLEDGMENTS

I wish to thank S. F. George, who sparked my interest in the sea-clutter problem,
and J. D. Wilson, who helped with various programing problems. I am indebted to.;.
P. Thiebaud and M. Laing, who provided me with the FHR and 4 FR data, respectively.
Special thanks are due B. Suits, who typed the manuscript and provided many references
while the author was on sabbatical. Thanks also are due K. Ivan, who typed the -al
version.

REFERENCES

1. S.O. Rice, "Reflection of Electromagnetic Waves from Slightly Rough Surfao4,"
Commun. Pure AppL Math. 4, 351-378 (Aug. 1951).

2. J.W. Wright, "Backscattering from Capillary Waves with Applications to Sea;. Clutter"
IFE Thans. A n tennas -opog. AD IA '74Aa=75A (Nov-., IOC1.0.

IOl T, I I N k1JV . _LUUUJ. 

3. ", 'A New Model for Sea Clutter," IEEE Trans. Antennas Propag., AP16
217-223 (Mar. 1968). L 4

4. G.R. Valenzuela, "Depolarization of EM Waves by Slightly Rough Surfaces,"IE
Trans. Antennas Propag. AP-15, 552-557 (July 1967).

65



GERARD V. TRUNK

5. , "Scattering of Electromagnetic Waves from a Tilted Slightly Rough Sur-
face," Radio Sci, 3, (new series), 10U7-1L066 (Nov. 1968).

6. . . and M.B. Laing, "Study of Doppler Spectra of Radar Sea Echo," J
Geophysx Res 75, 551-563 (Jan. 1970).

7, NW_ Guinard and J.C:. Dalewv- "An xnperimentnl Sthudy of a S*n Phittor MSndp
Proe. IEEE, 58, 543-550 (Apr. 1970).

8. D.E. Kerr, ed., Propagation of Short Radio Waues, MIT Radiation Laboratory Series
New York McGraw-Hill, 1951), vol. 13, Secs. 6.6-6.12.

9. F.E. Nathanson, Radar Design Principles, McGraw-Hill, New York, 1969.

10. G.V. Trunk and S.F. George, "Detection of Targets in Non-Gaussian Sea Clutter,"
IEEE Trans& Aerosp- Electron. Syst. AES-6, 620-628 (Sept. 1970).

11 (i1 P-jhillne Tho nFnnminv -f fko UTnno- flro PTrnm (>rnhridna Tfni-5;Arcaifxs PvAc Tn-ndCn

1966, pp 109-119.

12. N.W. Guinard, "The NRL Four-Frequency Radar System," Report of NRL Progress,
May 1969, pp. 1-10.

13. F.C. Maddonald, "Characteristics of Radar Sea Clutter. Part 1 - Persistent Target-
Like Echoes in Sea Clutter," NRL Report 4902, Feb. 1957.

14. AH Ballard, "Detection of Radar Signals in Log-Normal Sea Clutter," TRW Systems
Doc. 7425-8509-TO-OO0, May 31, 1966.

15. A.M. Findlay, "Sea Clutter Measurements by Radar-Return Sampling," NRL Report
6661, Feb. 12, 1968.

16. G.V. Trunk, "Radar Properties of Non-Rayleigh Sea Clutter," IEEE Trans Aerosp.
Electron. Syst. AEtS-8(2), 196-204 (Mar. 1972).

17. M.I. Skolnik, Introduction to Radar System McGraw-Hill, New York, 1962.

18. M.i. Skolnik, Radar Handbook, McGraw-Hill, New York, 1970, chap. 26.

19. V.W. Pidgeon, "The Frequency and Spatial Correlation of Radar Sea Return," Proc.
Amer. Astronaut. Soc. Symp. (Boston, May 25-27, 1967), in Use of Space Systems
for Planetary Geology and Geophysics The Society, Tarzana, Calif., 1968, pp. 455-
458.

20. B.L. Lewis and L.D. Olin, "Measurement and Theory of Spiky Sea Return in a
Horizontally Polarized High Resolution Radar".

21. M.W. Long, "On a Two-Scatterer Theory of Sea Echo," fEEE Trans. Antennas
Propag. AP-22(5), 667-672 (Sept. 1974).

22. P. Swerling, "Lecture Notes on Radar Target Signatures: Measurements, Statistical
Models, and System Analysis," Aug. 1968.

23. S.S. Wilks, Mathematical Statistics Wiley, New York, 1962.

24. A.J. Duncan, Quality Control and Industrial Statistics (Homewood, El: Irwin, 19591.

25. R.A. Fisher, Statistical Methods [or Research Workers Oliver and Boyd, Edinburgh,
1941.

66



NRL REPORT 7986

26. G.R. Valenzuela and M.B. Laing, "On the Statistics of Sea Clutter," NRLb e.
7349, Dec. 30, 1971. ......1.'......

27. M.E.B. Owens, "Empirical Bayes Estimation of the Probability Density of thg'Rg4ar
Cross Section of the Sea Surface," NRL Report 7741, June 13, 1974.

28. J.S. Maritz, Empirical Bayes Estimation Methuen and Co., Ltd., London, 1970.

29. M.E.B. Owens," Detection of Small Surface Targets in Sea Clutter," RAS Technical
Memorandum 45, Radar Analysis Staff, Radar Division, NRL, Jan. 27, 1976.

30. G. Neumann and W.J. Peierson, Jr., Principles of Physical Oceanography, Ch. 12,
Prentice-Hall, Englewood Cliffs, N.J., 1966.

31. S./A. Kitaigorodskii, "Application of the Theory of Similarity to the Anaysis -U
Wind Generated Wave Motion as a Stochastic Process," Izu. Akad. Nauk SSR, Ser
Geofiz. 1, 105-117. (English translation in vol. 1, pp. 73-80 (1961).

32. O.M. Phillips, Johns Hopkins University private communication, June 1O19..,

33. G.V. Trunk, "Modification of Radar Properties of Non-Rayleigh Sea Clutt LR
Trans. Aerosp. Electron. Syst. AES-9(l), 110 (Jan. 1973). -

34. G.V. Trunk, "Comparison of the Collapsing Losses in Linear and Square-Law Detec-
tors, Proc. IEEE 60(6), 743-744 (June 1972).

35. J.I. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar,," IiTramns.
Inform. Theor. IT-6, 59-144 (Apr. 1960). ,111,,

36. P. Swerling, "Probability of Detection for Fluctuating Targets," IRE Trans. :frm.
Theor. IT-6, 269-308 (Apr. 1960).

37. G.V. Trunk, "Further Results on the Detection of Targets in Non-Gaussian. :.
Clutter," IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 563-556 (May 1971).

38. D.C. Schleher, "Radar Detection in Clutter," Proc. IEEE Int. Radar Conf., ril
1965, pp. 262-267.

39. N.V. Trunk, "Detection of Targets in Non-Rayleigh Sea Clutter," Eascon Conerence
Proceedings 1971, pp. 239-245.

40. S.O. Rice, "Mathematical Analysis of Random Noise," in Selected Papers onN.cl e.7
and Stochastic Processes, N. Wax, ed. Dover, New York, 1954. i.6

41. S.F. George, "The Detection of Nonfluctuating Targets in Log-Normal Cluit;,A":'N]RL
Report 6796, Oct. 4, 1968.

42. E.J.G. Pitman, "Lecture- - T- .-. +.4 sttstcl- nerene"Cl-.1.Lt
NCL. +V~k~iB X4111U11 INOUU l5>Oil 110vfi~cuallIMItt oa~ltstcu 11LVL-cLVLV11t;V ytw,

University, Spring 1948.

43. G.E. Noether, "On a Theorem of Pitman," Ann. Math. Statist. 26, 64-68 (1905).

44. G.V. Trunk, "Small- and Large-Sample Behavior of Two Detectors Against Envelope-
Detected Sea Clutter," IEEE Trans. Inform. Theor. IT-16, 95-99 (Jan. 1970).

45. G.V. Trunk, "Median Detector for Noncoherent Distributions," NRL Reporti§%,
May 9, 1969.

67



GERARD V. TRUNK

46. D. Schleher, "Radar Detection in Log-Normal Clutter," PhE.D Dissertation, Poly-
technical Institute, June 1975.

47. M. Schwartz, "A Coincidence Procedure for Signal Detection," IEEE Trans. Inform.
Theor. IT-2(4}, 135-139 (1956).

48. J.W. Tukey, "A Survey of Sampling from Contaminated Distributions," in Contribu-
tions to Probability and Statstics, J. tnxm, en. Stanrord University Press, ZSandford,
Calif., 1960.

49. GX.V Trunk, "Trimmed-Mean Detector for Noncoherent Distributions," NRL Report
6997, Dec. 11, 1969.

50, V.G. Hansen, "Detection Performance of Some Nonparametric Rank Tests and an
Application to Radar," IEEE Trans. Inform. Theor. IT-16(3), 309-318 (May 1970).

51. G.V. Trunk, B.H. Cantrell, and F.D. Queen, "Modified Generalized Sign Test
Processor for 2-D Radar," IEEE Trans, Aerosp. Electron. Syst, AES-1(5), 574-582
(Sept. 1974).

52. F.S. Hillier and G.J. Lieberman, Introduction to Operation Research Holden-Day,
San Francisco, 1967, pp. 457-459.

53. H. Chernoff, "A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the Sum of Observations," Ann. Math. Stat. 23, 493-507 (1952).

54. H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I, Wiley, New
York, 1968.

55. G.V. Trunk, "Detection Results for Fluctuating Targets," NRL Report 7039, Feb.
24, 1970.

56. G.V. Trunk, "Noncoherent Detection of Nonfluctuating Targets in Contaminated
Normal Clutter," NRL Report 6858, Mar. 21, 1969.

57. HIM. Finn and R.S. Johnson, "Adaptive Detection Made With Threshold Control as
a Function of Spatially Sampled Clutter-Level Estimates," RCA Review 29(3) 414-
464 (Sept. 1968).

58. R.L. Mitchell and IF. 'Walker, "Recursive Methods for Computing Detection Proba-
bilities," IEEE Trans, Aerosp. and Electron. Syst. AES-7(4), 671676 (July 1971).

59. 1. Croney and A. Woroncow, "Radar Polarization Comparisons in Sea-Clutter Sup-
pression by Decorrelation and Constant False Alarm Rate Receivers," Radio Electron.
Eng. 38(4), 187-197 (Oct. 1969).



Appendix A
ANALYSIS OF SPATIALLY VARYING RAYLEIGH MODEL -

It can be shown from the frequency-diverse FHR data that the conditional densiy
p(xlscx) is not a Rayleigh density. If xi and yi are the independent backscatter samples
from the two frequencies, the conditional densities of the samples are

p(X1i[i)= 2 exp(7 x /2ac) ,..)
ai f

and

py 1ilud) = -f-- exp(-4i/2a ), X X {A)

where ai is a random variable. The same v; can be used for both frequencies, since the
time separation (1/2560 s) is very small and the frequency difference, of the order of the
reciprocal of the pulsewidth, changes ua only slightly.

Since a; changes rapidly with time, only a few samples of x and y. are ava lamAe for
a fixed ai. Consequently, a ratio zj = x/ly1, whose density is easily shown to be

p(zi) = 2zi/(z4 + 1)2, (A3)

is formed. The ratio p(z1) is independent of ai. Thus, even though a1 changes, U e:th
samples can be used to test whether Eq. (A3) gives the correct density for the ratio. Fom 
the FHR data, the sample distribution of independent zi (constructed from 1,024 samples.
taken 12 ms apart) was compared to Eq. (A3) using the Kolmogorov-Smirnov (KS.) one-
sample test.* The results of the test are shown in Table Al; D is the maximum difference
between the sample and theorized distributions and PD is the probability that the diff-
ference will be less than D when the theorized distribution is the true distribution. 12
cases are rejected at the a = 0.002 level (i.e., PD > 0.998), indicating that xandylare
not independent random variables of a conditional Rayleigh density. However, theisur-
prising thing is that the sample density is more peaked (has a narrower spread) than Eq.
(A3). This indicates that either xz and y. are correlated, or the density of x. and yi is
more peaked than a Rayleigh density, like a chi or Ricean density.

However, it can be shown that the first of these explanations is not possible. To16.......... .
test whether correlation between x1 and y, can account for the observed peaked sample -

density of z, one must calculate the density of z when x and y are correlated Rayleigh

*S.S. Wilks, Mathematical Statistics, Wiley, New York, 1962.
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Table Al - Test of FUR Data
for a Conditional Rayleigh

Distribution

Ildentifier j 

HUL 0.080 0.999
VDL 0.059 0.998
HDL 0.093 0.999
HDS |0224 0.999
VDS 0.161 0.999
VCS 0.152 0.999
HECS 0.166 0.999
VCL 0.059 0.998

HUS O.192 0.999

random variables. Let the in-phase and quadrature components of x and y be xr, 3% 4y
and y. let the in-phase components be independent of the quadrature components and
let both have correlation p. The joint density of the components, then, is

p(x5, Xce Yc Yc) = 2 -___ exp[- (x2 - 2px Y,

+ JV2 +.T 2 -2nx vt + v 112t - n2 11 fA41

(27)(12)(1 -p}
41P c "oVICs rf 3 .i' 8 ~ c5Iu \ Ck. f2i1. ~

Letting a 0 - y and P - 0 and integrating reveal that

_27T

j j exp [2pxy cos (W - y)/ 2 (I - p2 1 da dy

= exp [2pxy cosca2(l - p2)] dotcdo
-Q _

(2ir)2I~ -X (AO}
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Consequently, the joint density of x and y is

p(X, y) = Y exp [-(x2 +y2)/2(l -p 2 )]I0 ( 2) 
(Lenp 2 ) z = x/y a

Letting z =x/y and B = y and integrating over R produces

p J R2 z exp 1- R2 (1 + z2)/2(1 - p2 )]10 Pz ) dR.
rj ( -p 2 )I -- )

To, evaluate Eq. (A8), we use the series expansion of Io.

(x2)

Io { ) =T (hI 
R=0 (k!)2

By substituting Eq. (A9) into Eq. (AS) and letting A (1 + z2)/(1 _ p2 ) and
p2}, we find the kth term in the series to be

p ~~2 ),
Z. _B2k f 4k+3 exp [AR 2 /2] dR.

1-p2 22k(k!)2 a

Integrating by parts 2k + 2 times yields

Z B 2

(Ip2 ) 2 2k (/!) 2
L 22k+ (2k + 1)!1

A2k+2 j

Substituting for A and B gives the density of z as

(AS)

. .p... ... .-
-i -i i I!E

(A1O)

......., . ...

6M : -0): : 

(A ll )
:... . , ,11

.. . .... . .. I

IA12)
.. : iR .. ;.: ....

kttO = E 2(2k * 1)! p!(1 - p2 (2!+I
R-O= (k!)2 1+ 2)2k+F2

The FHR data were used again. This time they were compared to Eq. (A12). The
K-S results are presented in Table A2, where "Opt p 2 ", is the value of p2 at which the
minimum D is obtained. (The only values of p2 used were 0.0 to 0.4, in steps of'O.1.)
Since (a) only 4 of the 12 cases are accepted at the a = 0.1 level, (b) the maximnum-cross-
correlaiP nn eal ulatefpd fnr thic it'Tf ic n 1 (n' P;ircann r-nnrn r1, nm n -nln44r An. . *V --- -.- ---- \/- *VV VV -t '--'a V-F- - - VA
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Table A2 - Test of FHR Data for a
Correlated TVR Distribution

Identifier j Optimum p2 |) J p

0.2 when the frequency difference is the reciprocal of the pulsewidth,* and (d) the
suallest "Opt ~ was uo, iC hypothesis hat. x WIt y are eorre-a^Meu, Ragigh-un,
random variables must be rejected. It is worth noting that the value of p was set by
minimizing D; a procedure which biased the test in favor of acceptance.

*V. Wv. Pidgeon, "sTime Frequency anzd Spatiai uorrelation of Rvadar Sea Return," rut. Amer. AstrunauL
Soc. Symp. (Boston, May 25-27, 1967), in Use of Space Systems for Planetary Geology and Geophysics
The Society, Tarzana, Calif., 1969, pp. 455-458

72

VUL 0.4 0.015 0.037
HUL 0.3 0.042 0.951
VDL 0.3 0.027 0.558
HDL 0.4 0.037 0.879
HDS 0.4 0.138 0.999
VDS 0.4 0.077 0.999
V t110 o U V.U V9tU.Uo ut

HCS OA 0.088 0.999
VCL 0.3 0.031 0MO4
HCL 0.4 0.046 0.974
HUS O04 0,104 0S99
VUS 0.4 O00O 0.998



Appendix B
BRIEF DESCRIPTION OF ANALYSIS OF VARIANCE

The analysis of variance (ANOVA) procedure will be demonstrated by finding the
variation of the clutter distribution with changing frequency and azimuthal squint-angle.
As shown in Table Bi, the distribution can be represented by a single numbeij: a. "In~ m
analysis of variance, the data 0ifl? are represented by a linear model which consists opf; a,
mean p, a frequency effect F., an azimuthal angle effect A., and a random error e11i5k~ such

that

i~~~~~~~~~~~~~~~~. 1, N
pii + _F. + Ai + Ejik i1, NA

where NF is the number of frequencies, NyA is the number of azimuthal angles, NB, 'Is the

number of repetitions of each frequency azimuth case,

NF NA

> F t.=o >7 Ai=0,

and cilk are independent Gaussian random variables with mean 0 and unknown vaiance X2.

The significance of a change in frequency is checked by testing the hypotheses,

ariatio of t cfor all i (no frequency effect present)

H pFs shw 0, for some i (frequency effect present),

using an F-test (an optimal test for the equality of unknown variances). The test is per-
formed by taking the ratio R of two statistics; Sian unbiased estimator of 2 +4F 

F 2 ) 2 , and S2, an unbiased estimator of X2. Under Ho, the ratio has an F-distriij4
and under H1 the ratio has a noncentral F-distribution. For a type-I error ofO1,t:
threshold value is found in Duncan to be 3.2.* In Table B2, R = 55.8; consequentlythe.
null hypothesis is rejected. That is, a frequency effect is present. The procediurei;sIe..
peated for the azimuthal angle, and the effect is not significant. Interactionst, Wro found

I- - ?_ n I '-- " '-o 1he c' - 1 _ L- -^ ~ _

nuu t LU C Signiiiuaiiu at, LHC U.J. levelI il Ullib Ut aily uiier uauaU Usu III bllSi palper. Uuube-
quently, to avoid unnecessary complications, the results of interactions were not me'n-~.
tioned in the report. Further details about analysis of variance can be found in- ejer.:
Duncan* or Fisher.t.

weJ. Duncan, Quality Control and Industrial Statistics, Irwin, Homewood, nme., 1959.
tRnA. Fisher, Statistical Methods for Research Workers Oliver and Boyd, Edinburgh, 1941.
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Table BI - in Decibels of the Fitted Log-Normal Distribution*

4 FR Radar Azimuthal Squint Angle
Parameters 150 3 J 45i$

Frequency
L band 6.1 6.0 5.4 57. 5,5 6.3 6-1 5.6
X band 4.8 4.4 4.9 4.3 4.6 4w5 5.0 4.1

*From reference L 1.G

Table 332-Results of Analysis of Varianee- The Effect of Various
Parameters on the 4FR Clutter Distributions*

Effect |Mean Square |Varinc~ze Ratio jConclusion.

Frequency 3IF _ 5.64A0 OF, = 55.84 Frequeney effect is present

Azimuthal angle S2 - 0.062 fS2/S2 0.61 Azimuthal effect not present

Sampling error 2=Olt _.

*From reference [ 161.
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Appendix C
ASYMPTOTIC RELATIVE EFFICIENCY OF MEAN

AND MEDIAN DETECTORS

The asymptotic relative efficiency (ARE) can usually be calculated rather easfyby
employing a concept known as efficacy.* That is, the ARE of two detectors c1 and 4

22ARE (d2 , d1) = -, '', .(Cl)

where & is the efficacy of detector d.. Specifically, given a binary hypothesis-tesi
problem (H9:A = AO vs H1:A >A(), if the detector di is based on a statistic Ti. = T1 (x1,X2 ,
... , xn) and if E1T~in = kin(A) and Var{Tjn} = a%(A) and m and 6 are define by-

hi, (Ao) = ... = 4,-)(A) = 0, 4m4(AO) > 0 (C2)

where

a.(mhA~a
m p- (A)

Wi~nm)(AOJ~ aAm A AO0

and

lim nm '( C>O (03)
n-+oo (Gin (A 0 )

then the efficacy of detector d is

'~ Ln (AO)j

subject to certain regularity conditions.t When dealing with the class of translation
alternatives, the following conditions generally apply: m = 1, 6 = 1/2, and theevaluation
of Eq. (C4) is very simple. However, when dealing with other alternative classes- (e.g.,
noncoherent detection), generally m = 2, 6 = 1/4, and the evaluation of Eq. (C4) is not
always simple.

1948.
tG.E Noether, "On a Theorem of Pitnan," Ann. Math. Statist. 26, 64-68 (1955).
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An expression for thie efficacy of thie mean against the log-normal densit is derived
from

[a 3 2 f xp(x. A) dxl (5

by taking the second derivative inside the integral and dropping terms that when evaluated
at zero signal strength are zero. The efficacy of the mean can be written as

6. = [LT n) _ 1) 16(o2 Qn x; (Rn x2 (

a~~~~~~~~~ 2

X (2wu2 -1/ 2 exp [- 2(Rn x) 2Io27 l 12 

where, for the efficacy of the sample mean1 F1 (x) = nxT = and a, = (neO (e-
1)1/2.

The expression for the efficacy of the median is derived by first noting that making
a decision when the median is greater than a threshold value T is entirely equivalent to
making the decision by counting the number of samples greater than T. Thus, as the
number of samples approaches infinity, T approaches the median value of the distribution,
since the median detector is consistent. Hence, if

EtTn n = np = , p(x, A)d, (C

the efficacy of the median is

which reduces to Eq. (C6) with F2 (R) = 1, T2 = 1, and a2 = 0.5/yE

Now, if one repeats the previous procedure, one obtains for the efficacy of the mean
aginst the contaminated-normal density

U4 -(23 , 2202 exp2
+ _ (+ X_ eXp _-

K4 u4a 21202) x i(;t2 ) (Continued)
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+ 2y(- f [(+ x2Cos2)(2(2 -)
2 co 2

X exp ( [x + (K - )2 Cos 0)

+ K1 1 + x2Cos2 cos2
\K2a2 )

(-(xK2 - W(ua dj }dx) (09)

where Fl(x) = nx, T1 = A, and a, is the standard deviation of the sample mean for the
noncoherent contaminated-normal distribution with A = 0, which is (12 - r/2-)1/2 .u/
for 7 = 0 and is 1.11 u./W for y = 0.25 and K = 2.25. The latter value for was
found by numerical integration.

The efficacy of the median against the contaminated-normal density reduces to Eq.
(C9) with F 2 (x) = nx, T2 = the median value of the noncoherent contaminated nonnal
distribution (which is (2 Vn 2)1/2 a for y = 0 and is 1.41u for y = 0.25 and K = 225),'
and 02 = ° 

For the Rayleigh case (ey = 0), the integral in Eq. (C9) can be performed. It yields
1
- 7rn

d; = 8 -- = O.91 5n2(1 - r/4)

and

2 = (Qn 2) 2 n = 0.48n

for the efficacies of the mean and median, respectively. The ARE is

ARE (median, mean) =- = 0.52 5.
FS1

This implies that in the limit asA -* 0, in order to maintain the same r)rr 1n 1 1iI i or
false alarm and detection, the mean requires only 52.5 percent as man,. - ;i. , tE
median. Thus, the mean is the better large-sample detector for the Rayleigh distbuon

For the noncoherent contaminated-normal (-y * 0) and the log-normal densities,
Eqs. (C6) and (C9) have been evaluated numerically; the results obtained are given in
Table C1. These show that, in all cases, the median is the better large-sample detector.
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Table C1 - Asymptotic Relative Efficency of the Mean
and Median Detectors

Distribution Efficacy of Efficacy of ARE
Sampled Mean Median

Log-normal (a = 3) 0.286n 5.334n 18.6

Log-normal (a = 6) 0.0103n 1.333n 129

Contaminated-normal
(y =92i 5nd K= q 92 5 = n i01 fl7n -O2a1n 1.76

__ _ _ _ _ __ _ _ _ _ _ __ _ _ __ _ _ _ ( ____ ___ __ f _______

E. K. AL Hussein* has solved the integral in Eq. (C9) for F 2 and has obtained

(010)

Substituting a LO2303a(dB) into Eq. (CIO) with a = 3 dB and a -6 dB, one obtains
5.334n and 1.333n, respectively.

*E.K. AL Hussein, Cairo University, Giza, Egypt in a letter received April 8, 1976.
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Appendix D
IMPORTANCE SAMPLING

A straightforward method of determining the required threshold for a givWen isto
perform a Monte Carlo simulation. Unfortunately, for P = 10-6, more than one million
repetitions would need to be run, and the computation tine on any computer would be
large. However, a simulation that uses importance sampling can be used.* The main pur-
pose of importance sampling is to modify the probabilities that govern the outcome of
the basic experiment of the simulation so that the event of interest (i.e., a false alarm)
occurs more frequently. This distortion is then compensated for by wei' ' . '." 4.*
by the ratio of its probability if the true probabilities had been used to * ,.. I
with the distorted probabilities. Consequently, by proper choice of disti ' a
tines, t-he number of raeetitionn can be reduced gfreatly. Fnr instanne, in . I.e
mean of a function Q(x)

E[Q(x)] =fQ(x) dP(x), (Dl)

where P(x) is the distribution of x; the mean can be estimated by selecting m independent
samples x; from P(x) and associating the probability 1/M with each event. Then, E[Q(x)]
can be estimated by

M

ME Q(Xi). (D2i?
i=1

The importance-sampling technique used the Radon-Nikodyn derivative to express the
mean value of Q(x) by 7

r rlP(rl
E[Q(x)] =JQ(x) YG'&') dG(x), (D3)

where G(x) is a distribution function. Now, E[Q(x)] can be estimated by seleeting M
independent samples from G(x) and associating the probability dP(x )t1MdfGr(x1rA wMi4t
event Q(xi). Thus, E(Q(x)] is estimated by

M dP(xj)

M Qi(X) iG x) ,
1=1 ' i'

*F.S. Hillier and G.J. Lieberman, Introduction to Operation Research Holden-Day, Sanhrancisco, 1967,
pp. 457.459
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Since Eqs. (D3) and (D4) are both unbiased estimates of Q(x), it is possible to select
G(x) so that the variance of Eq. (D4) is less than the variance of Eq. (D2).

To illustrate, let us generate the distribution function (and hence curve of threshold
T vs P ) for the trimmed-mean detector against the log-normal density with a 6 6 dB.
If JUiT are independent and uniformly distributed on (0, 1), then the variables {x4,
such that

ex = pu[- 2 £n(u it)11/2 sin (2wuT2u , (2)5P

have a lognormal densitywith xm = 1. Recalling* that the a in Eq. (DS) is in natural
units (a = 0.2303o (di)), choose oH' which is greater than a. To simulate the trimmed
mean for n1 = 2, n2 = 5, and N = 10, generate 10 samples x;, using Eq. (D5> with o
replaced by (Y. Order the (x}j and form the sum

n2

L xi,
i=nI

Since this procedure is repeated M times, denote log-normal samples by x-- and trimmed-
mean samples by S. The estimated cumulative distribution of S, for the Yog-normal
model with parameter a is

M
(Si <T)= L 8j (D6

where
5j 1 S < T M

O1 SJ>T

N 2 exp - 2 [Qn(x.1H 2/2}/(2jra 2xu~l Ž1/2

= 1 2 expl- 2[Qn(xij)} 2I)I/(21rakx j 112

This reduces to

=( N exp t (2 - 2) (D f)n (911. (11)

While, a priori, the desired value of a1 is unknown, an appropriate value can easily be
found since the variance of the estimate fl(T) is given by

*S F. George, "The Detection of Nonfluetuating Targets in Log-normal Clutter," NRL Report 6796, Oct.
4, 1968.
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1 ML . -_(T)2).

( ) : : ::: :

(D9A)

That is, every value of a allows us to calculate the density accurately in a particulari ::

interval. Equation (D9) is used to find the accurate interval. A much simplier heuristic

method is to plot b(sj < T). In the regions where the function is smooth, the e:tj;$
is accurate.
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