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AMPLITUDE FUNCTIONS AND THE ANALOG OF THE KELVIN WEDGE FOR
THREE-DIMENSIONAL INTERNAL WAVES GENERATED BY A MOVING DISTURBANCE

INTRODUCTION

Internal waves in stratified fluids are of interest to geophysicists, planetary scientists, and
marine engineers. Moving atmospheric disturbances and the flow of stratified fluids around ob-
stacles can generate internal waves. Attempts have been made to attribute observed atmospheric
motions on Mars and Jupiter to such disturbances, at least in part. Internal waves excited by
marine vessels propagate energy away from the disturbance, thereby producing wave resistance.

A submerged body moving in a stably stratified fluid can excite internal waves in at least
two ways [1]. First, the flow around the body disturbs the isopycnals, and internal waves are
generated as equilibrium is restored. This is referred to as the hull effect. Second, a turbulent
wake of fluid trails the body, and the collapse of this wake excites internal waves. This is the
so-called ii'ake effect. The relative importance of the two effects is an issue which has not been
completely resolved.

The hull-effect problem for a body on a horizontal course is closely related to the lee-wave
problem of meteorology, for which there is a large literature. Its simplest model consists of a
dipole source in a fluid whose velocity is uniform and horizontal and which is endowed with an
exponential density profile. An extensive analysis of asymptotic solutions for this model is given
by Crapper [2]. Miles [3] considered the equivalent problem in which the body moves in a
stationary fluid in his fundamental paper on the subject.

Lighthill [4] has developed an elegant theory to explain properties of anisotropic wave
motions. The theory is well suited to the internal-wave problem if the course is rectilinear and
the Brunt-Vaisala frequency is constant. Indeed several authors have attacked various portions
of the problem using Lighthill's method. Lighthill himself [5] used his method to study the
wave pattern associated with a vertically moving disturbance. Rarity [6] used the method in
two dimensions to calculate the curve of intersection of the surface of constant phase with a
vertical plane containing a velocity vector of arbitrary orientation. More recently Redekopp
[7] has treated the three-dimensional wave pattern associated with a disturbance moving hori-
zontally.

Peat and Stevenson [8] have derived expressions for the wave patterns around a body
moving in a compressible density-stratified fluid. Their analysis is based on the group-velocity
concept. They also compare their theory to wave patterns obtained from experiments for a sphere
moving on an inclined course in a stratified fluid.

The purpose of this report is to consider both the phase (wave patterns) and the amplitude
of internal waves generated by a disturbance moving on an inclined course. The method of
Lighthill is used for a dipole source of arbitrary orientation. Although the wave patterns have

Manuscript submitted February 10, 1976.
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W. B. HEARD

been calculated by Peat and Stevenson, they are reconsidered here from a different point of view
as a natural consequence of the analysis leading to the amplitude functions developed here.
Furthermore the surfaces of constant phase have an interesting geometry which has not been
discussed elsewhere; namely, there is a conical envelope of the surfaces which is an analog of
the Kelvin wedge for surface waves, and this cone could have important consequences as far as
observations are concerned.

THE MATHEMATICAL MODEL

A general mathematical model for the dynamics of a stratified fluid with a source is outlined
in this section. The model is a standard one (described in Ref. 2, for example) but its description
here is appropriate for the sake of completeness and to introduce the notation to be used in what
follows.

Let us consider the steady motion of a body in a stratified inviscid fluid. The presence of the
body can be accounted for in the equations of motion of the fluid by including a source term in
the mass-conservation equation. The model consists of the linearized conservation equations
for disturbances of a Boussinesq fluid, written in a frame moving with the body, which are

V-v=Q, (I)

Po U V V + pW U' + Vp + gp0 p k=0, (2)

p0 U * Vp+wp"'=0, (3)

where po is the ambient density, which is assumed to be constant except as its derivative po' enters
equation (3) (in accordance with the Boussinesq approximation). The ambient velocity of the fluid
(relative to the body), U = (Ul (z), U2(z), U3(z)) is allowed to vary with the vertical coordinate z.
The Q term in equation (1) represents the body source. Primes denote derivatives with respect
to z. The velocity, pressure, and density disturbances due to the body are denoted by V = (u, v, w),
p, and p respectively. The analysis is facilitated by eliminating u, v, p, and p to obtain a single
equation in the vertical velocity disturbance w. After a straightforward reduction we obtain

[D 2A + U3' A - D(U," ax + U2" a,)+N 2 Aj] w =j(DQ)', (4)

in which = U * V and .D' = U' * V, where A is the Laplacian operator and N is the Brunt-Vaisala
frequency defined by

N 2 = -gpo'p/P.

Equation (4) is sufficiently general to model waves generated by a disturbance moving on an

arbitrary rectilinear course in the presence of eitherz-dependent shear current or Brunt-Vaisala
frequency. In the main problem to be treated, U and N are constant.

LIGHTHILL'S METHOD

Lighthill's theory describes the asymptotic behavior of wave motions far from a localized
disturbance. The theory is applicable to wave motions which are anisotropic and/or dispersive.

2
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It is restricted however to homogeneous media or, in mathematical terms, to equations with
constant coefficients. A brief description of the method is included in this report because all of
the results depend on it and because it is not yet considered a standard tool.

Let us consider a general wave whose motion may be described by the linear partial differ-
ential equation

P(a,, ar, am, a,)o = F(x, y, z, t), (5)

where P is a polynomial with constant coefficients. Waves generated by a disturbance moving
with a constant velocity U will be steady in a coordinate frame moving with this velocity. Thus,
we may use the constraint

r - Ut = const

to eliminate the time derivative in (5). In addition the forcing terms for waves generated by moving
disturbances will be steady in the moving frame. The form of the differential equation then
becomes

P(U * V, as, ay, a,)O = F(x, y, z). (6)

Let us denote the three-dimensional Fourier transform of a function f(r) by

f = f fir) e-kr, dr. (7)

If the Fourier transform of F exists, the formal solution of equation (6) is

I C F(k) eik- dk. (8)
(27r)3 JP(U * k, k)

The problem is thus transferred to one of evaluating the integral (8). This evaluation is the core
of Lighthill's theory.

The asymptotic value of (8) depends critically on the singularities of the integrand. If F is
the result of a localized disturbance, F will have no singularities and the integrand is singular
only on the surface

P(U * k, k) = 0. (9)

This surface is called the wave-number surface or the slowness surface and is intimately connected
with the solution of free waves. In the case of free waves, F = 0 and there is a plane-wave solution

=eik r

if k satisfies the dispersion relation

P(U k, k) = 0,

which is identical to (9).

3
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Lighthill shows that the surfaces of constant phase consist of the poles of the tangent planes
of the slowness surface. This occurs because the surfaces of constant phase satisfy

r - k = (D, (10)

and the principle of stationary phase asserts that the dominant contributions to the integral occur
where P = 0 and 1 is stationary. Applying the method of Lagrange multipliers to this optimization
problem with constraints yields the result that r is parallel to VP at the stationary point. From this
it follows that

-k-VPVP

which places r parallel to the normal to the slowness surface and with magnitude inversely
proportional to the distance from the origin to the tangent plane at k. In geometrical language
this states that the surfaces of constant phase coincide with the polar reciprocals of the slowness
surface. There are two possible choices of direction for the normal. The direction must be chosen
so that the radiation condition is not violated.

The amplitude is shown to be inversely proportional to the product of Irl and the square root
of the Gaussian curvature K evaluated at k if K does not vanish. If K = 0, the amplitude can be
inversely proportional to jrjl/2 or IrJ5/6, depending on the geometry of the surface.

THE PHASE

We now apply Lighthill's method to the "main problem" for internal waves to find the phase
of the wave motion. Since the wave patterns consist of surfaces of constant phase, we are con-
cerned here with the wave patterns.

Let k = 0((,, ); then the polynomial which defines the slowness surface is

(U- k)2 k2 -N 2 (<2 +1 2) = 0. (12)

No generality is lost by assuming U2= 0, because a rotation of the coordinate system in the
f n plane may be applied to remove the second velocity component. Introducing u IU/N and
2 = U31N and dividing equation (12) by N2, we obtain

P(, e, ) = (ue + 4C)2 (f2 + -2 + C2) - (f2 + n2) = 0 (13)

as the equation for the slowness surface.

An understanding of the surface (13) is fundamental to Lighthill's method, because the solu-
tion is derived entirely from its geometry and the source function. The surface is seen to be
symmetric with respect to the origin and may be visualized by considering its intersection with
various planes.

4
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The curves of intersection with the planes up + a = a lie on the cones

(14)
2 (I -a2)

whose generators pass through the origin and are inclined to the eq plane at an angle , satisfying

tan2p. =I-a 2

a2 (15)

The curves therefore are conics which are hyperbolic, parabolic, or elliptic as lu- tan 1A is
positive, zero, or negative, respectively. The special cases v = 0 and u = 0 yield confocal hyper-
bolas [2, 3] and concentric circles [51 respectively.

Illustrations of the sections of the surface by the coordinate planes at = 0 andf = 0 are shown
in Figs. I and 2 respectively. A family of sections by the planes 4 = const are shown in Fig.
3. The singular point on the self-intersecting curve is a saddle point of the surface. The singular
curve divides the family of curves into two subclasses. The first consists of curves with two
open branches, each with vertical asymptotes. The second consists of curves with two open
branches having a vertical asymptote and a closed ovoid enclosing the origin.

C

k3O'

Fig. I - Sections of the slowness surface by the plane 7i = o for
several values of/3W= arctan (,4/u)
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-I

Fig. 2 - Sections of the slowness surface by the plane f = 0 for
several values of 3 = arctan (4/u)

Fig. 3 - Sections of the slowness surface by planes C = const for u,=4 = I
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The proper choice of a normal direction which satisfies the principle of causality is illustrated
in Fig. 4. This figure is a representation of the three-dimensional form of the surface. The dashed
lines correspond to the level curves of Fig. 3. The broken line is a line of vanishing Gaussian
curvature. The surface also contains the straight lines; = 0 and f2 = i/u2. The Gaussian curvature
also vanishes along these lines.

The equation for a surface of constant phase is obtained by substituting equation (13) into
equation (11). The result is

-2 + 712 + 2 ( a e + 7l (16)

Since the group velocity is C = (NK/k)(k/k 2 - K/K2), equation (16) may be written as -(sgn a)x =
(I /a)(C + u). This is the expression used by Peat and Stevenson [8]. The surface is represented
parametrically. Although three parameters appear, only two are independent by virtue of the
relation

(17)2= a -a 2

which is derived from equation (13).

The intersection of the surface of constant phase and the plane z = const is given by

, ,= - csgna {(z' a -w)[(2 - a2) - af'] + a2 u2}u a3 III

Fig. 4 - An illustration of the slowness surface. The dashed curves
show contours of constant 4. The Gaussian curvature vanishes
along the broken curve. The arrows indicate the choice of surface
normal which satisfies the radiation condition.

7
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Y, = -(sgn a)(z' a -) [U2 -2( -a 2 )- [z'a -w(2 - a2)]212
u a3 J 

where (x', y', z') = (x, y, z)/'1. It is easily shown that when w = 0 we obtain the hyperbola

X ' 2 y'2__- = I
U

2
- z' 2 z'2

(1 8b)

(19)

in agreement with the results obtained by Miles and Crapper [2, 3] for this special case.

Examples of the curves representing equation (18) are shown in Figs. 5 and 6. Also shown,
Fig. 7, is a family of intersections of the surface of constant phase with the xz plane. This section
is the one studied by Rarity [6]; it is shown here for completeness and comparison.

These figures reveal that the surface of constant phase has a cuspsoidal edge, a locus of cusps
of the curves (18). This edge is the image of the monoclastic curve K = 0 (in Lighthill's termi-
nology) under the mapping (11). It is a closed curve and includes the cusp on the section by the

-2.4

0.2

0.4

0.6

Fig. 5 - Sections of the surface of constant phase by horizontal
planes (. = 1, ,2 = I1/\/3, 8- =M30)

3 2
0

- I

Y

0

Fig. 6 - Sections of the surface of constant phase by horizontal
planes (u = 1, w = 0. 1, 3 = 5.7°)
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z

-3 - ; t 1 2 3

/ S -1 ~~~~~~~~~~=0.01

S = 0 \. D w~~~~~~~~~~~~~~~~~~=0.l

,w= 0 5

Fig. 7 -Section of the surface of constant phase by a vertical plane containing
the velocity vector. The disturbance lies at the origin (u = I)

xz plane (Fig. 8). The envelope of the cuspsoidal edges is the analog of the "Kelvin wedge" of
surface wave theory. According to the general theory, and as we shall see in the next section,
the amplitude of the waves decays slower with distance along the edge than it does at nonsingular
points. To complete the analogy with the surface-wave case, sections of the surface of constant
phase which intersect the cuspsoidal edge can be regarded as composed of an "oblique wave"
component and a "transverse wave" component. The pattern for downward motionsv < O.
may be obtained by replacing z by-z in the preceding.

THE AMPLITUDE

The asymptotic expression for the function O(equation 6) according to Lighthill's theory is

4,7r2I C F(k) eik r

+ r 1PI V/Kj' (20)

whereFK is the Gaussian curvature of the surface P = b and the summation is taken over those
values of k for which r x VeP = o and where C is t i if K < a and +I if K > O. Equation (20) is
valid whenever K 8 e 0.

The application of this expression to the main problem of internal waves is expedited by
expressing the surface P(k) = o in the parametric form

k = Xk, (21)
where

k = (sinO cost , sinO sing , cos.)

and

A = I/(,, COSO + So Coto).

9
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'N. -
-� ------

---- _

Fig. 8 - The surface of constant phase. Point I is the image of
the saddle point on the slowness surface, point 2 is the image

of the straight line, point 3 is the image of the inflection point

on the section by the plane - = 0, and point 4 is the image of
the "point at infinity." The broken curve is the image of the

separatrix. The dotted curve is the image of the monoclastic
curve K = 0 and is the cuspsoidal edge.

The Gaussian curvature may then be expressed as

K = -2 Ic X 12 (sin2o + X 2u2 sinr< + 2XAw cot), (22)
L2 + (X2 + )sin220

where X, = aWa and X2 = aXla4k. The magnitude of VP may be obtained from

IVP12 = 4X2 sin20[( I+ sin20) - 2X. cosk + X2("2 + w42 )] . (23)

The factor F(k) depends in general on the physical mechanism producing the waves. The hull

effect can be modeled by a dipole source, and the collapsing wave can be modeled by a quadropole

source [ 3]. We shall concentrate on the former. Since the three-dimensional structure of the
waves has been emphasized, allowance should be made for an arbitrary orientation of the dipole.

Let the direction cosines for the axis of the dipole be e = (. m, n). Then the source function
Q becomes

Q = M(e * V) 8(r)

= M[18'(x) 8(y) 8(z) + m 8(x) 5'(y) 8(z) + n 8(x) 8(y) 8'(z)], (24)

where M specifies the dipole strength. Substituting (24) into (4) and applying the Fourier trans-

form, we obtain

F(k) = M4(_f + wQ)2(1f + me + u,). (25)

An alternate, compact form of this expression is

F= M(, 2 + w2)X4 cosO cos T COS2 a-,

10
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where Cr is the angle between k and the velocity vector and T is the angle between k and the dipole
axis.

Before discussing the amplitude in more detail, we should examine the curves of vanishing
Gaussian curvature on the slowness surface. This curve limits the applicability of equation (20)
and determines the internal wave cone analogous to the Kelvin wedge which has been alluded
to before. The equation K= 0 is satisfied if one of the two factors on the right-hand side of equation
(22) vanishes. The first factor vanishes only for 0 = 7T/2. This corresponds to the straight line which
lies on the slowness surface and produces point 2 on the surface of constant phase illustrated
in Fig. 8. The internal wave cone is determined by the vanishing of the second factor:

sin 0 + X2
.2 sin2o + 2X4.2 cotO = 0. (26)

Equation (26) is seen to depend on . and , only in their ratio 4/42. Consequently the internal
wave cone depends on the direction of motion but not on the speed. Examples of the boundary
of the cone are illustrated in Fig. 9, where r is expressed in spherical coordinates as

r = r(cosi, cosf, cosO sin<, sinO).

The cone contains the line collinear with the direction of motion as a generator.

150 160 170 180

10

A= arcton (up)=1°

0

Fig. 9 - Boundaries of the
internal wave cone analogous 0
to the Kelvin wedge for ship
waves. The filled circle is
directly aft of the disturbance. -20

(27)
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Now let us return to the calculation of the amplitude. The task remaining is to find those k
such that for a given r

r x VP(k) = 0.

For the case of horizontal motion (w = 0) we may quote Miles' [3] result

k = I [cosO sin0 cosfp(sin2
t0 + cos20 sin2

p),
u(sin 2A + COS2A sin2(p)312

-cos
3 Asin Pcos

2 ( sin;, cos2 0 sin2 y + (sin2d + cos2 0 sin 2q0) sin2 0].

For the general case

cos6
VP|I U- 0,

where = ak/aB, and the condition to be satisfied becomes

(-cosB) r x = r X U. (28)

No analytic solution to equation (28) has yet been found, so we must now resort to numerical
methods. Furthermore the solutions are no longer simple. Solutions of multiplicity three occur
inside the internal wave cone, and directly aft of the disturbance the solution is of multiplicity two.

Figure 10 illustrates numerical solutions in the domain of simple solutions for the case u = = 1.
The solutions are presented as a family of curves of 0 and 0 versus 0 and p. Details of the structure
in the domain of triple solutions, bounded by the internal wave cone, are shown in Fig. 11 for the
same case u = 4 = 1. The occurrence of the multiple solutions is explained by the form of the
surface of constant phase, as illustrated in Fig. 8. The mulitplicity is simply the number of times
a ray from the origin in the direction of r intersects the surface of constant phase.

Finally we illustrate the calculation of the amplitude by plotting contours of the angular
dependent portion. From equation (20) we may write

2= (4)2 A (29)

where

A=F 2 /IVPI 2 IKI (30)

in the domain of simple solutions. Figure 12 shows contours of log A for three different orientation
of the dipole: (a) parallel to the direction of motion, (b) perpendicular to the direction of motion
but in the plane of the velocity vector, and (c) horizontal and perpendicular to the direction of
motion. The dashed curve in these figures outlines the boundary of the internal wave cone.

12
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Fig. 10 - Curves representing solutions of the equation VP x
r = 0 for the case u = 4 = 1. On the solid curves k is constant,
and on the dashed curves 6 is constant. The hatched region is
the domain of multiple solutions enclosed by the cuspsoidal
edge.

Fig. II - Detail of the domain of multiple solutions
ofVPxr= 0(u== 1)
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Fig. 12 - Contours of log A
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(c) For e I U, e I k, ,G = 15°

Fig. 12 (Continued) - Contours of log A

The spherical propagation (r-' decay of the amplitude) is not valid along the boundary of
the internal wave cone. In these directions Lighthill's results for a general monoclastic curve
apply. It is shown that in this case the amplitude decays like r-5I6, intermediate between cy-
lindrical and spherical propagation.

CONCLUSION

A salient feature of the wave patterns is the internal wave cone. The most intense waves
should occur on the boundary of this cone. The cone may or may not intersect the surface,
depending on the inclination of the course of the disturbance. The extent of the cone is critically
dependent on the inclination, being most pronounced for nearly horizontal motion, but is in-
dependent of the speed. It is conceivable however that the amplitude at the waves on the cone
could depend on the speed.

Although the geometrical explanation of the internal wave cone is entirely satisfactory,
it would be illuminating to determine a physical reason for its existence. In the case of ship
waves Whitham [9] shows by a simple construction that the Kelvin wedge arises because the
group velocity for water waves is parallel to the phase velocity but the group speed is 1/2 the
phase speed. This physical property alone confines ship waves to the well-known wedge of half-
angle 19°28'. In the case of internal waves the group velocity lies in the vertical plane containing
the phase velocity but is perpendicular to it. If we denote the phase velocity by c, the group
velocity by C, and let

c = c(cosx cosq/, sinX cosqj, sinip),

then

C = (c tan qi)(cosX sinq+, sinXsinmf, - cosO). (31)

15
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Following Whitham's argument, plane internal wave fronts can be stationary relative to the
moving disturbance only if the projection of U onto c has magnitude c, as illustrated in Fig. 13.
Thus, the locus of admissable phase velocities is a sphere with diameter U. Equation (31) yields
the attendant group velocities which are admissable. The geometrical construction is shown in
Fig. 14 when the plane containing U and C is vertical. A similar construction valid in any vertical
plane is obtained replacing the circle of diameter U by circle of intersection of the sphere of
admissable phase velocities and the given plane. The locus of group velocities shown in Fig. 14
is illustrated in Fig. 15 when / = 15°. This locus may be interpreted as defining the domain-
of influence for waves originating at 0 (as in Fig. 14) and propagating until the disturbance moves
from 0 to P. A series of such loci is shown in Fig. 16. These figures are the internal-wave analogs
of the water-wave loci shown in Figs. 12.2 and 12.3 of Whitham [9]. The loop is formed from
plane wave components for which the sense of the vertical component is opposite to that of U. The
portion of the curve outside the loop is formed from plane wave components whose vertical com-
ponent of group velocity has the same sign as that of U. The waves inside the internal wave cone
correspond to group velocities which form the loop. Figure 14c shows that the loop enlarges as f3
is decreased and that the lower extremity is directly aft of the disturbance. These features have
already been noted in the discussion of Fig. 9. The inclination of the ray from the origin to the
upper extremity of the internal wave cone can now be seen to be the same as the stationary value
of the inclination of the vector p = C - P. that is, the value of 0 which renders the following
expression stationary:

f cos/ sinO cos 20 + sinfl(1 + sin2O) cosO

- costs cos3 0 + sing sin3B (32)

To summarize the physical argument, the wave pattern is the result of a superposition of suc-
cessive anisotropic wave groups of the form shown in Fig. 15. The internal wave cone is the
envelope of the family of looped portions of these waves, in contrast to the analogous families
of circles which lead to Mach cones for acoustic waves and Kelvin wedges for surface waves.

The directional dependence of the amplitude of the waves is quite different for various
orientations of the dipole. This directional dependence is best described by the orientation

Fig. 13 - Admissable phase velocities
\ \ Ufor a stationary wave pattern

/

.5.

16
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(a) A < 0 < 7T/2

.1~~~~~~5

IC4C~c2 Ci 11

~C4 C 3 C 2 C II

N
m,

rr

3~~~c

(d) 74/2 < 6 < ,8 + 7T/2

(c) 3 - 4/2 < 6 < 0

Fig. 14 - Construction of admissable group velocities

U sin) 
- = - -- 

Fig. 15 - Locus of admissable group velocities when = 15°
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INTERNAL WAVE CONE

Fig. 16 - The internal wave cone as the envelope of
admissable group velocities

of "sidelobes" which lie below the internal wave cone in the illustrative example. The amplitude
is also seen to fall off quite rapidly with angular displacement from the internal wave cone.

Finally, we should emphasize the idealized nature of the model. Many important physical
effects have been omitted. For example, we have used the Boussinesq approximation, the Brunt-
Vaisala frequency has been fixed, nonlinear terms are neglected, the shape of the body is not
accounted for, and no account of the surface of the fluid is included. However, it is precisely
these idealizations which render the model useful, because the main features are preserved in
the problem and a detailed picture is derived without recourse to large-scale numerical calculation.
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