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GREENHILL’S FORMULA AND THE MECHANICS
OF CABLE HOCKLING

INTRODUCTION

In the application of marine cables as tension members, such as in lifting objects
from the ocean floor, serious structural failures have occurred as a result of two phenom-
ena called hockling and bird caging. Both problems stem from the torsional moments
which develop in the cable, usually as a result of its tendency to unwind under load.
Hockling occurs when, for a given torque reaction at the ends of the cable, the tension
becomes insufficient to keep the cable taut, resulting in the formation of a loop or
hockle. When increased tension is subsequently reapplied to a hockled cable, the loop
tends to tighten, causing the cable to fail. Bird caging, on the other hand, occurs when
individual wires or strands unravel under excessive torsional loads that are reverse to the
direction in which the wire strands are wound.

The hockling of cables would seem to be closely related to the well-known problem
of the elastica (thin elastic rod under combined tension and moments applied at its ends).
This problem has received much attention in the literature. Kirchhoff [1,2] recognized
that the deflection curve of the elastica is governed by the same set of differential equa-
tions as the motion of a heavy spinning top. Greenhill [2-4] gave a buckling formula
for the rod subjected to tension (or thrust, if negative} and twisting couples, based on the
assumption of infinitesimal bending deformations. Southwell [5], in a discussion of the
elastica under end forces with zero moments, showed that a column under thrust at and
above the Euler buckling load remains stable, More recently, considerable effort has gone
into studies of the dynamic characteristics of thin three-dimensional beams. An excellent
review and bibliography of this subject through 1972 may be found in Ref. 6. The prob-
lem of rods of variable cross section has been comprehensively addressed by Green, Naghdi,
and Wenner {7].

In spite of all this attention to the problem of the elastica, some puzzling questions
have remained with regard to the hockling of cables: What are the stability characteristics
of small-deflection solutions corresponding to Greenhill’s formula with respect to increasing
torque or decreasing tension? What in fact is the largest torque for given tension to which
a cable may safely be subjected? And, conversely, how far may the tension safely be
lowered for given end torque? When this report’s author first became interested in the
hockling problem, he did a rudimentary experiment, trying to put bending deflections into
a straight rod under twist and modest tension. The rod was twisted until numerous helical
slip lines developed, indicating substantial shear yielding. Yet no significant bending de-
flections were observed. But cables in tension do hockle. Must they be described in a way
essentially different from rods, or can the observed difference in behavior be explained en-
tirely in terms of the much lower bending stiffness pertaining to cables?

Manuscript submitted October 3, 1975.
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The purpose of the analysis deseribed in this report was to obtain some insight into
these questions and if possible to establish a Ioading criterion for the avoidance of cable
hockles. The approach was to oblain computer solutions to the differential equations of
the elastica in nondimensional form for the full range of values of axial end forces and
moments.

STATEMENT OF THE PROBLEM

The problem is to calculate the deflection curve and strain energy of a cable or rod
that is prismatic and straight when unloaded and is “hinged” at each end so as to permit
only an axial moment M and an axial force T. Axial means along the straight line joining
the two end points. Although this presents a two-point boundary-value problem, it can
be solved in reverse as an initial-value problem by assuming a starting angle y between the
deflection curve and the axis and then solving the differential equations step by step un-
til a point possessing appropriate symmetry properties is reached. This point {or alterna-
tively the end point) must be established from the local properties of the deflection curve,
since the length is initially unknown and must be ealculated. When the problem is solved
in nondimensional form, a two-parameter set of solutions is sufficient to cover the full
range of possible loading vaiues.

DERIVATION OF EQUATIONS

A length £ of rod or cable that is straight and prismatic when unloaded and possesses
a bending stiffness EI and torsional rigidity G/ is assumed to lie along a space curve and
is referred to a fixed coordinate system OXYZ with unit vectors i, J, and K as shown in
Fig, 1. The +X axis is vertical upward. Arc length along the cable is denotfed by g and
increases as shown in the figure. The cable is assumed to be “hinged™ at O through some-
thing resembling a univergal joint such that the reaction there consists solely of a vertical
force T and a vertical couple M, both directed downward if positive. T and M denote the
magnitudes of T and M () respectively. At the free end P of the cable, where x(s) =
[x, ¥, 2], the required equilibrating forces are a constant vertical upward force T and a
couple M(s), where

T(si= TGy =T =Ti (la}
and

M(sh = M(0) + T X x{s) = Mt - Tzd + TyK. (1b}

At the free end P of the cable segment OF, Fig. 1 shows the unit vectors of two
other coordinate systems: £, ¢, { and t, n, b. Here { = t is the unit tangent vector to
the space curve defined by the cable’s center line. The vectors ¢ and n are perpendicular
to the tangent and thus He in the plane of the cross section of the cable. They are taken
as principat axes of the cross section and are considered to be inscribed in the cross see-
tion (rotate with the cable).
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On the other hand, n and b are respectively the principal normal and the binormal of

the center line.

'

Fig, 1 — Coordinate systems and free-body diagram
of cable section OP

an “angular velocity’ vector £ which denotes the vector
1 1

It is usual [8] to introduce
rate of twrn of the system &, n, § with respect to arc length s

Since t is a unit vector, its arc-length derivative is thus given by

=Xt

i

dt/ds

Cross multiplication by t yields

where n and b are defined by
(2)

and
tXn
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and Q; = K is the principal curvature of the center line. In terms of the local compon-
ents of the moment vector M the components of § are

Q, = M,/GJ, (3a)
9, =M, =0, (3b}
and
. = M. /FF = F QA
LI B YELH Ix. Lol

Differentiation of (2) further yields the derivative of the normal vector,

n =b' X t-Kt (4)

Taking components of {4} in the t and b directions respectively gives

and
n' b =-b""n. {5)

The quantities n' * n and b’ * b on the other hand are zero, since they represent the com-
ponent of the derivative of a unit vector upon itself. The remaining required derivative
Antnnanant fa h! 0 4 wrbhinh in mara no akiewen e s Felloaesingrs (Gnns 4+ B = 1 1 Faliawe
L-U.l].].t}ull.bl.l.b 10 W Ty WWILILAL LD LTAIWF QO DIlv? ¥éik k}y WRLG EAMALLEYYRLILE [NERRE LUL W § M/ W, Lu LUV YYD
thatt' * b +t* b’ = 0. But since t' is perpendicular to b, then t' - b and hence also t * b’
must vanish. The preceding calculation of the components of the t', n’, b" vectors along
the ¢, n, b coordinates may be summarized as the matrix equation representing the

Frenét-Serret differential equations for a space curve:
N
.y - 74 n " -
1n bt 3 o Qy [} .
The quantity ¢, substituted for n' - b in (5), is thus seen to be the geometric torsion,
or tortuosity as Love [2] calls it, of the space curve traced by the center line of the cable

or rod. Differentiating equation (1b), noting that x’ = t and using equations (3), gives along
the t, n, b components
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M"t=M'tEO, (7a)
K(oEI -M,)+T b =0, (7h)

and
EIK' = -T " n, (7¢)

Equation (7a) states that the internal twisting moment, and hence the twist angle per unit
length, is constant along the arc length. M, = M,(0) is one of the three first integrals
available to this problem, analogously with the problem of the heavy top. Equation (7b)
is needed along with equations (3) and (6) to complete the system of equations.

The following non-dimensional quantities are introduced:
S=Ts/M, X=Tx/M, Y=Ty/M, Z=Tz/M, L=TM;

F = MZ2/TEI, H=KEI/M, & = oEI/M,

(*) = d/dS = (M/T) ('), Mg =M,/M = oy (0).

Further the direction cosines, or components «;; of the t, n, b vectors with respect to the
fixed system I, J, K, as well as a set of Euler angles A, B, € to remove unncessary re-
dundacies in the direction cosines, are defined:
07 = cos (t, 1),
(19 = cos (t, J),
etc., and
t cBeC cBsC -sB
[og;] = n = SAsBcC - eAsC sAsBsC + cAeC sAcB |, (8)
b cAsBcC + sAsC cAsBsC - sAceC ¢cAcB

where ¢B means cos B, sC means sin C, etc,
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In these terms the complete system of differential equations defining the space eurve
and other quantities pertaining to the rod or cable consists of equation (8} for the e in
terms of the Euler angles together with the following:

H =qag) - Zagy + Yogg, {9a)
® =My - o /FH, if H#0, (9b)
® = Mqgp/2, it H =0 (by L'Hospital’s rule), {3c}
A% = F(HcAsB/eB + %), {9d)
B* = -FHsA, (9e)
C* = FHcA/cB, (of)
X* =y, (9g)
v* = oy, (o)
7 oy o)

Initial conditions are chosen with Xy = Y, = Z; = 0 and so that the tangent vector
inifially makes an angle v (@ < v < 180°) with the X axis. An appropriate set of initial
values of the Euler angles is

AG = T!}'Z,
Bo = 0,
CQ =%,

thus making the curve begin in the XY plane.

Equations (9) become singular when ¢B = 0. This happens infrequently, and is en-
tirely a difficulty of the particular Euler-angle representation. It is avoided either by
choosing a different initial azimuth (say 44 = 0, By = v, Cq = Q) or by departing from
the Euler-angle formulation whenever ¢B is small and instead using derivatives of a set of
three independent direction cosines.
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FINDING MIDHOCKLE

To determine when midhockle, the point of symmetry halfway between the “hinged”
ends, is reached, we seek an arc length s, at which K(s,, + s) = K(s,, - s) and ¢(s,, +5) =
v(s,, - 5) for any s. This happens when all the odd derivatives K(2N*1) (s) and tp[aN"'l)
() are equal to zero at s = s,,,. It is easily shown that this happens whenever K '(s) =0 or,
by equation (7c), when @y = 0.

An outline of the proof comes in two parts: The first part to be proved is that if
K(2n+1) = 4,(2n+1) =  for n = 0, 1, ..., N-1 and if K(2N+1) = 0, then also p(2N*1) = @,
This follows from successive double differentiations of (7b) and use of (6) and (7c). Each
such doubly differentiated equation consists of terms which are products of derivatives of
order zero up to the order of differentiation. Since the sum of orders for each term is
odd, each term must contain at least one factor which is an odd-order derivative of either
K or y. But by hypothesis all these factors except the highest derivative of ¢ are zero.
Hence also the highest derivative must vanish.

The second part to be proved is that if K{(20+1) = 4,(2r%1) = 0 forn = 0, ..., N-1,
then also K(2N+1) = 0. Since by (7c) differentiated 2n times

it suffices to show that -T - n{2¥)= (0, or that n(2N) has a zero | component. Let the
direction-cosine matrix of (8) be denoted by r and the curvature-torsion matrix of (6} by
X
t
T= n
b
and
0 K 0
X = -K 0
0 - 0
Then (6) may be written as
= xT. (10)

To be shown therefore is that under the assumed circumstances the {2,1} component
of matrix r(2N) is zero. Successive differentiation and substitution of (10) shows that the
higher derivatives of 1 are expressible in the form

7
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n) = [fn(x(n—i Yoo x, x)-\ 7,

where each term of £, is a product of from one to n of the » matrices x through x{r-1),
From the formal process of differentiation it follows that these terms are homogenecus

of (riegree r in each term’s sum of orders plus number of factors. As an example a term
XX %X xx has a total order 6+ 3+ 1+ 0+ 0 = 4 and has five factors and therefore could
belong only to fy. Thus for n = 2N the highest derivative term is x2¥-1 multiplied by no
other factors. Because of the homogeneity of orders plus factors of degree 2N, every term
of f5 5 other than this highest derivative term must also possess one of two properties:
Either it is the product of an even number of factors or it must contain at least one lower
add-order derivative. In either case, the matrix term can be shown to be zero at all “odd”
locations including { 2,1} ; hence the same follows for their sum 7(2N),

From the preceding two parts of the proof it follows that a point at which X' = 0
{or &gy = 0) is always a point of symmetry.

BRIEF DESCRIPTION OF THE FORTRAN LISTINGS

The Fortran routine to accomplish the required calculations consists of the main pro-
gram Hockle and subroutines Deale, Sym, and Step. The listings are given in Appendix A.

The main program accepts sets of values for F, v, increment of nondimensional arc
length AS, and print interval ({0 permit printing less than every calculation step). If also
calculates initial conditions and determines when midhockle is passed (g, changes sign),
at which time it interpolates for S,,. Endhockle is prescribed to be at § = L = 25,,, and
the option exists to keep calculating that far. The program Hockle contains necessary
nwnd anAd mivmah amabrrinbaee aond eells sslaeaiiddnne ao nanddnasg Awry ireirimbosed casdeisd 1o oo
Ly Qiill pAuliiiedi iiioud WO pitoiis Al Lally dUMVULLIITS ad 1iTTuwTu. LxEE RPN LALLL ULRUMG 13 BT

of values of nondimensional moment u = MYEI = FL and force v = T2/EI = FL2,

€
vy

The subroutine Dealc calculates the distance of closest approach D,;, between pairs
of symmetric points on the rod. This is done because if that distance became zerc in a
real cable, then the mutual lateral forces at the point of intersection would no longer per-
mit representation by the present mathematical model, which would allow the cable to
pass right through itself, The calculation of D ,;, is performed using points only between
zero and midhockle and does not require stepping past midhockle,

The subroutine Sym does require calculation all the way to endhockle and calculates
the degree of symmetry about midhockle of selected quantities such as ¢ and «g,. This
provides a check on the accuracy of caleulation, since in theory the symmetry should be
perfect,

Finally, the subroutine Step performs the basic stepping procedure on the differential
equations and calculates the required guantities: direction cosines, curvature H (both di-
rectly and from a first integral for comparison), ®, etc. When informed by Hockie that
cB is too small {o use the Euler angies, Step uses alternate equations for stepping. The
stepping interval is the inputted AS except either side of midhockle, where steps and
print points are chosen in such a way as to preserve symmetry of the calculations and
print intervals.
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DISCUSSION OF RESULTS

Relation Between End Forces, End Moments,
and Cable Configuration

Once the program has calculated the nondimensional length L of a symmetric space
curve for given values of load parameter F' and initial angle vy, then the values of the nen-
dimensional moment and force

u=MYEI = FL
and

v=TL2/El = FL2

are readily calculated, The results are shown in Fig. 2 for a number of values of y, with
a few F = constant curves also indicated, The y = 0° and y = 180° curves constitute the
two halves of a parabola corresponding to Greenhill’s formula

v= w22 -221, (11)

referred to in the Introduction. The reason for the absolute-value signs and thus the para-
bola with the lower portion reflected in the u axis is that there is the following duality of
solutions: If a (F, v) input yields a (u, v) solution, then a (-F, n-v) input yields the iden-
tical (u, -v) solution. However the concept of positive F and T representing a tension and
negative ¥ and T representing a compression makes sense only for the Greenhill case of

v = 0 (or, for reversed signs, 180°). For example, the elastica, under end force only, can
go with a continuously increasing force from Euler buckling in compression, at (0, n2) in
the figure, to a looped rod in tension, with no clear break in between. To exhibit this be-
havior correctly, ali forces as well as moments are therefore shown in the first quadrant,
with the result that half of the Greenhill parabola is reflected in the u axis. Also, because
of these same symmetries, all ¥ = constant curves are perpendicular to the v axis at u = 0,
In addition the vy = 90° curve is perpendicular to the u axis at v = 0.

An important set of check points is provided on the v axis. Clearly this corresponds
to the elastica with zero moment. As shown by Southwell [5], the relation on u = 0 be-
tween v and v is given by

v =4K2(k),
where
k = sin|(7-v)/2] and

where K (k) is the complete elliptic integral of the first kind. This formula checks the
computer solution for small values of F and hence of u.

9
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fall between the two segments of the Greenhill parabola, (Trivial solutions exist through-
out the yv quarter plane.) All combinations of moment and force inside the 180" seg-
ment of the parabola correspond to the trivial solution of twist only, and zero bending.
Similarly moments outside the 0° segment are unattainable, since only an unstable trivial
solution exists there.

The dashed curve D, /L = 0 along with the portion of the v axis above 21.55 is
the locus in uv space along which the calculated deflection curve of the loaded cable pos-
sesses a self-intersection. This locus provides a barrier to the configurafion of a real cabie.
For example, if a cable loaded by a constant thrust v = 20 is subjected to an inereasing
moment u, a self-intersection will occur when u equals approximately 3, and any config-
uration corresponding to larger moments will not be correctly predicted by the present
i‘hpnrv With reference amen to Southwell’s qnhlhnn the nmm /L = 0 curve meets the o

axis when the ratio of the complete elliptic integral of the second kind &(k) to the one of
the first kind equals 1/2:
E(R)K (k) =1/2.

This in turn occurs when v = 21.55 and ¥ = 49.29° as shown in Fig. 2,

10
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If a rod is subjected to a constant compressive force below the Euler load while the
twisting moment is increased starting at zero, the rod remains straight until the moment
reaches the lower Greenhill value at v = 180°. This point is stable however in that the
moment can be increased beyond this value at least untijl the dashed curve is reached.

If a rod or cable begins in tension, it remains straight until the upper Greenhill value
is reached at ¥y = 0° but at this point no further increase in torque is possible and any
further twisting deformation must be accompanied by a decreased reaction torque. Thus
for a rod or cable in combined tension and twist, Greenhill’s formula does not represent
merely the point of first departure from a trivial twist-only solution. It additionally rep-
resents the maximum torque which can be applied at a given tension, or the minimum
tension necessary to support a given torque, and represents a point of instability if any
attempts were made to increase the torque relative to the force. This instability must be
particularly violent in the case of cables, for the following reason: For a rod or cable in
combined tension and sub-Greenhill torsion, all strain energy is stored in twist, a relatively
stiff mode. As the Greenhill curve is approached and bending becomes possible, a sub-

etantial nart nf thie twicting etrain anaoarov miiat ha trancfarvad inta handing Put a cahla
Stalivlas DAl U1 Wils VWISIlg SBLIAll CIICYgy MWSu OO WansiCiitu VD OCNUINE, DUl a Lokt

is distinguished by its very low bending stiffness, so that the conversion of a given amount
of strain energy would require much larger deflections than would be the case for a rod.

The previous paragraphs also illustrate the double-valuedness of the graph of Fig. 2
in the area between the two branches of the Greenhill curve. Consider a cable loaded by
a nondimensional moment 4 = 7.2 and a nondimensional force v = 52.4, at the point in
Fig. 2 at which v = 15° and F = 1. One possible configuration of the cable under this
loading is the straight cable in tension, with v actually equal to 0° and not 15°. This con-
figuration can result if the tension on an initially unloaded cable is raised to 52.4 and a
subsequently applied moment is raised to 7.2. Since this is below the Greenhill torque in
tension, the cable remains straight. The other possible configuration under the same load-
ing is a hockled cable with v really equal to 15°. This may be produced by “compressing”
an initially straight cable past Euler buckling, forming a loop which is tightened as the
force is increased to 52.4 (now a “tension” because the end points have passed each other),
with a subsequent increase in moment to 7.2, applied in the direction in which the loop
is able to open partially. :

The quarter plane u = 0, v 2= 0 is thus divided into three distinct regions: Inside the
180" branch of the Greenhill curve, only the trivial solution exists, and it is stable. In the
second region, between the 180° and 0° branches, the configuration is double valued for
any given loading. Here, if loading begins from a straight rod in tension, then the trivial
solution is stable, but if the loading begins from compression, then the trivial solution is
unstable and the nontrivial configuration results. In the third region, outside the 0° branch
of the Greenhill curve, only the unstable trivial solution exists, so that such loadings cannot
be sustained.

It is instructive to examine from an energy point of view the possible rod or cable
configurations at the load point in Fig. 2 (u = 2n, v = 0) where all the v = constant curves
intersect. The loading corresponding to this point supports equilibrium configurations for
all values of ¥ from 0° to 180°. The deflection curve corresponding to these configura-
tions would in general be a complete turn of a helix of pitch n/2 - 4. It is a helix because

11
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the force is zero and the internal moment therefore is constant; it contains a full revolu-
tion because the end moments act along the direction of the line joining the end points.
For y = 0° or 180°, the helix is reduced to a straight line in pure twisi under end mo-
ment M; for v = 90°, it is a full circular hoop in pure bending under end moments M
perpendicular to the plane of the circle. OFf all possible equilibrium configurations, the
stable one is that one for which the applied end moments are at the lowest possible level
of potential energy, i.e., the one for which the strain energy is maximum,

For this case of pure moment loading, the total strain energy is

U = M2 /2Ef + M2 4/2GJ,

where GJ is the forsional stiffness. In terms of the applied moment M and the angle v,
My = M sin v and M; = M cos v, so that

U = M2Q/2 (sin2 v/EI + cos® v/GdJ).

The extreme values of U occur when dU/dy = 0, or when

gin 2y (1/EF - 1/GJy =0,

or ¥ = 0°, 90°, and 180°. Which extreme cotresponds to the maximum strain energy then
depends on the stiffnesses, as may be seen by putiing the three values of ¥ back info U:

7 (v = 0°, 180°) = M2Q/2G.J, for pure twist,

and
U {y = 90°) = M2¢/2E!, for pure bending.

Thus for the rod or cable loaded by end moments M/EI = 2z, the stable coniiguration
is the straight twisted one if GJ < EI and is the circular hoop if GJ > EI. For typical
solid rods, GJ =~ 0.7EI, while for cables GJ >> EI. Thus a hinged cable loaded with

v = 0 and u increasing from zero will remain straight until u = 27, when it will snap into
the shape of a closed circular hoop.

In spite of this apparent difference between the configuration of cables and rods at
{u = 2n, v = 0), it should be borne in mind that this point does in any case represent the
limit of stability of the straight form, for rods as well as for cables. This behavior of
rods is also discussed in Ref. 2 {paragraph 272(d}, page 417), where the more general
Greenhill formula is also deveioped.

The main purpose in presenting Fig, 2 is to show the central importance of Green-
hiii’s formuia in evaiuating the stability of rods and cables and to clarify ifs relationship
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to the force-only solution of Southwell. The figure may alsc be used to determine the
possible configuration (or configurations, in the double-valued region between the two
branches of the Greenhill parabola ) when end loads u and v to the left of the v =
branch are given. In this application the barrier locus D ; /L = 0 must be taken into
account.

Why Don’t Rods or Solid Wires Hockle?

Understanding the fundamental importance of Greenhill’s formula, we can now eval-
uate under what conditions a rod in combined tension and torsion might undergo bending.
For a circular steel rod or wire with Young’s modulus of £ = 2 X 1011 N/m?2 and shear
yield strength o, = 350 X 106 N/mZ, the precondition for bending is that any tension be
so low as to keep the actual tensile stress below 0.15 X 108 N/m?2, or a mere 0.027% of
a tensile capability of say 550 X 108 N/m2! Any attempt to induce bending due to twist
at a higher applied tension will cause torsion shear failure instead. This conclusion is ar-
rived at as follows: Assume the tension T is such that bending is just possible by Green-
hill’s formula while at the same time the shear yield limit ¢, = 2M/rad is reached, where
¢ is the radius of the rod. For an infinitely long rod (which would bend most readily),
Greenhill’s formula reduces to M = 2(TEI1/2 = 42 (TEx)Y/2. In the equation o, = 2M/ra3, if
a2(TEn)1/2 is substituted for M and then o, (the tensile stress produced) is substituted for
T/ma2, the result yields

O = 032 J4E.

For the values assumed earlier this becomes g, = 0.15 X 106 N/m2 as stated.

EXPERIMENTAL VERIFICATION
Woods Hole, MIT, and NCEL Tests

Field and laboratory tests to investigate the hockling or “kinking” properties of
oceanographic cable have been conducted by Berteaux and Walden [9], Vachon [10], and
Liu [11,12]. The laboratory tests by Berteaux and Walden concentrated on measuring
rotation rather than torque and therefore cannot be evaluated here without further knowl-
edge of the torsional rigidity.

Vachon measured for a number of cables and loadings the bending stiffness EI (which
he was also able to calculate to good accuracy), the force T, and the hockling torque M
both positive (tightening) and negative (unwinding). His 17-foot cables were long enough
to reduce end effects to a modest 10% or so (which can be estimated from Greenhill’s
formula, equation (11), by dividing through by £2 and comparing #2/82 to T/EI or
(M/2EI)2). This order of magnitude is borne out also by his evaluation of the effects of
end mounting on hockling torque.

When these end effects are ignored, by putting ¢ = « in the Greenhill formula, and
each experiment is assigned a Greenhill number G = M2 /4TEI, which theoretically should

13
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then be equal to 1, the results show G to range from about 0.5 to 5, These values of G
are al least the right order of magnitude and have a reasonable mean value. Vachon’s
results show a rather wide divergence in positive and negative hockling torques for iden-
tical cables and tensions. If the torque had been consistently higher in the positive di-
rection, one might be tempted to ascribe this divergence to increased bending stiffness

for a tightened cable. Unfortunately, in half the cases the divergence goes the other way,
and no explanation can be offered at this time. In the one case in which the positive and
negative hockling torques fell to within about 10% of their average, the calculated Green-

LLINITY a3l Cii TragT

hill numbers turn out to be an encouraging 1.2 and 0.8 respectively.

Reading about the explosiveness with which some of Vachon’s kinking experiments
were completed (‘“‘a 3/16 inch thick circular ring, supporting the water can [used as a
weight], was straightened out, thus dropping the can fo the floor”) is more amusing than
having obgserved it. But in retrospect, this explosive behavior is quite consistent with the
instability of the Greenhill loading in tension combined with the substantial energy stored
in the relatively stiff twisting mode at the instant when that instability occurs. Vachan
was well aware of the energy consideration, which he reviewed in his report.

The applicability of Greenhill’s formula to cable kinking has also been recognized by
Liu, whose recent experiments described in Ref. 11 appear to be well correlated with the
formula over a wide loading range. Reference 12 is a more detailed report of his resuits.

NRL Tests

In view of the incomplete knowledge at NRL about the conditions under which
hockling tests at other Laboratories were conducted and, even more, {o get some engi-
neering insight into the phenomena under study, a few rudimentary measurements were
made at NRL. The most sophisticated measuring tools were fish scales and weights
{(steel, to keep the floor dry), and the time allowed for the experiment was about 2 days.
Nanetheless the results showed good agreement with theory.

The no-load small-deflection bending stiffness EI for a sample of 1/4-inch cable was
measured by loading several lengths of it as cantilever beams. Calcutated values of EJ
ranged from 0.051 to 0.063 Nm2, with 0.057 as an average value.

A 12-foot tength of this cable was suspended from the ceiling, Because of a lack of
safety devices, toading was kept at light tensions up to 18 N and torques up to 2 Nm.
For four loading cases Greenhill numbers G = M2/4TEI of .97, 0.72, 0.97, and 1.10
were obtained. In view the closeness of these observations to the thecoretical G = 1, more
comprehensive and hetter instrumented hockling experiments are anticipated, with a view
to developing a usable method for specifying torsional properties of marine cables.

CONCLUSIONS
The conclusions are as follows:

s The importance of Greenhill’s 100-year-old formula for determining the elastie
stability of rods in combined axial foree and twist far surpasses merely defining the onset
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of possible bending modes. For rods or cables in tension the Greenhill condition repre-
sents the largest torque which can be applied for a given tension or the lowest tension
capable of supporting a given torque. It represents a point of instability with respect o
increasing torque or decreasing tension. This instability is expected to be particularly
viclent in the ecase of cables, because of their low bending stiffness.

e Tor applications in which a cable remains substantially straight, such as the lifting
of objects from the ocean floor, the Greenhill formula, modified by an appropriate safety
factor, should provide a valid criterion for estimating the onset of hockling,

e For applications involving initially curved cables, such as in towing, where the in-
fluences of gravity and drag are strong, the situation is less clear. It is known that the
Greenhill condition cannot be exceeded, but it is possible that instabilities might already
occur at much lower values of torque or higher values of tension, since the relevance of
Greenhill’s formula depends on the relatively large twisting stiffness of the initially un-
benit and straight cable, The stability of initially curved cables thus is an interesting sub-
ject for further research.
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Appendix A
FORTRAN LISTINGS FOR PROGRAM HOCKLE

PROGRAM HOCKLE
DIMENSION FF (100),8AM (100} ,0S0(100)
COMMON /BLOK1/ Al1+A12+AY39FsHaPHIsAsBICIXsY2Z1SeA210AZ1¢A3204A33y
1 DAsDR:DC:DX DY DZ0aRAR: TFHHNT-HNFU.A11ﬂ.uAMH-.TﬂEI1F
COMMON /BLoKEI KOUNIchMPVI(ISDO}cSYHALF(ISGD)
CgHHON /BLOK3/Z XS(1900)975(1500)+Z511500) 1LSsDMINSDSSMINNSTERS
REAL L
THE FOLLOWING FUNCTION CALCULATES GREENHILL LENGTH

¥l x

n L
e L <]

[}
!

WE NOW READ IN NUMBER OF SYEPS: BETWEEN PRINT LINES AND STOP SIGNALI

000 00

DS=0.
100; READ ZONSTEPS!NSTOP

rvnmnl‘n& i

IF(NSTOP.GT.G) GO TU 002
WE NO¥ READ IN UP TO 100 PDINIS?F,GAMMA,DS

aoonn

READ 1oNFoNGeNDSe (FFILI}pI=14NFY 5 (GAMIJY =Y oNG) » (DSD(KQ) yKQA=14NDSH

FGRHAi\J;J.‘!orLV.u:;

FOR QUTPUT PURPOSES WE NOW COMPUTE THE LENGTH OF. THE PRINT INTERVAL
AND INTTIALIZE THE' CASE NUMBERs PRNyNCASE

At

OO0

NCASERD

WE RUN THE CALCULATION 1HROUGH THE F,GAMMA PAIRS,

I IS A COUNTER TO STEP IHROUGH THE VALUES OF F

J IS A cCUNTER TO STEP 1FROUGH TFE VALUES OF GAMMA
KQ IS A COUNTER YO STEP THE VALUES ofF D5

coono0on

DO 1000 Icl,NF

FeFF (D

ses- CHECK TO SER IFtF- IS [N THE! INTERVAL {0,4) AND IGNCRE' GREENHILL)
LENGTH IFI IT IS,

0nao

GL=g
Ir( (FelLTepo) oORe (FOGTQFD)., GLRXL(F)

*ad INNER LOCPE ON J ANU KO

s Nely)

DD 1000 JaY, NG
B0 10600 KQ=1,NDS
DS=pSD (RQ)
PRN=NSTEFSHDS
IBFLASRD

sMng,

SMINzg,

R”D.

RN=O.

NPRINT=g
NTEST=g
51uSgu53354m09
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ABAR=0
KOpyNT=1
MIDFLAGwD
ICOUNTay
GAMMARGAM{.J)

as# PRINT INITIAL) CONDITIONS AND CASE NUMBER

NCASERNCASE+]
PRINT 3yNCASE!

3 FORMAT(}HIy0=moomm===nINITIALI CONDITIONS FOR CASE NO.%:14//)
PRINT 4, F3GAMMA

& FORMAT(1H L10Xs#Fr®eF6.2¢ 1 DX*GANMAR® \F6,2//)

so# CONVERT GAMMA TO RAUIANS FOp CALCULATION
GAMMARGAMMA #* 3,1415926536/180.
INITIALIZE ANGLES: AND CUORDINATES

| A®}1,5707963268
Brpa
CuGAMMA

ALTERNATE INITIAL VALUES &=Q.y BRGAMMA, Cnmpe INSERT HERE

X=q,

Vgo [
I3p,.
539,
RNMAX=( o
Rivrge
L=y

CALCULATE INITTIALI VALUES OF AL,

Al1=COS(BysC0S(Cy § AllQmAl]}
ABAR=ABAR+AY)
ICOUNT=ICOUNT ey
Arp=CO5 (B} #SIN(C)

alngnﬁtuln;
LI e AR =D

A2lesIN{A)#gIN(BI#COGIC) = cos(A)'SINtCI
#BIECOS(#}GSIN(B}*CUS$C! + SIN(AJESIN(CY
h32=cﬁ$(g;*$tﬂi3}¢51N£c} . SIN{A!°COS£CJ
A33=C05(A) #C0S5 (B)

ALTERNATE: A2] INSERT HERE
CALCULATE! INITIALI VALUES OF HyPHI,PSI HNEW

HEA3}1«ZaA324 Y2433
Prlsge5%411 ,
IF(ARS(H)wm 00000001) 5agesal
41 PHI= AY] o A3] /7 (F®H)
5 HNEWsSORT{{2e/Fi e {CUS{GAMMAY =ATY} * SIN(GAMMA}#w2)
95139!
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ITESTi=O
ITEST2m0
PUNCH &0¢NCASE
60 FORMAT(® INITIAL VALUES FUR CASE%+16)
PUNCH 61954pHIsXsYsZoRNsHrpsI
PUNCH 61,A11,A12,A13,A21,A3]1,A32,4A33
61 FORHAT(BFlo.bi
64 FORMAT(4F14.Bev2F1240}

PRINT ouTPUT HEADERS,

PRINT &

6 FORMAT (/4&H Ss6X93HPHI 95K e 1HX e 6X9 JHY 16X s JHZ 95X ¢ 2HHO 95X 3HPST 15X
1YHA 96X o 1HBy X0 JHC 16X 0 JHH e 2Xp IHALL 04 X0 IHAL2 34X 9 3HAL 3904 X0 3HA21 04Xy
23HA31!4X!3HA32o6X|3HA33/1

IFFL=

PRINT INITIAL! VALUES:

7 PRINT 8,5, PHI.K YoZoHNEW,PST1,4,B4C,H,A11,A12,A13,421,A3]1,4A32, A33
8 FORMAT(1H .1BFT.¢’

RNzSQRT (Y##Z2eZN0Z)

IF(RN«GT«RNMAX} RNMaXBRN

NPRINT=NPRINT#]

CALL SYM(IFFLaSI.S?nS3iS4)

IF(MIDFLAG.EQs1) GO TO 50

XS (LS)mX

YS{LS)ayY

Z5{LS)mZ
LsulSe]
50 CONTINUE
WE NOW BEGIN To STEP OUK WAY ALONG THE CABLE
ISP IS A COUNTER CONTROLLING PRINY
WE ARE LOOKING FOR MIDHUCKLE
15Payg
9 A210LD=Ap]
CALL STEP(DS)
#en TEST FOR MIDHOCKLE
IF(((A218A210LD) oLT o0} o AND (MIOFLAGEQ.0) )60 TO 13

suu- WE ARE NOT AT MIDHGCKLE,
HAVE WE COME T0 THE: END OF THE CABLE.

10 IF (MIDFLAG.NEWY) 60 TO 11
IF(NPRINT,EQ.NTEST) GO TO 25

WE ARE NOT AT END OR MIUHOCKLE, CHECK V0 SEE IF IT IS TIME TO PRINT
11 15PelSPs+]

KE ARE NOW READY TO PRINT S50 WEI NEED TO COMPUTE. HNEW,PSI,PH1
PSI=ASIN{ Z/SQRT(Ze#2eYnec) )
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IF{ISP.LT NSTEPS) G0 TO %
60 TO 7

WE ARE AY MIDHOCKLE

13 PRINT 14
14 FORMAT(//2/71H yhemr=rumaes MIDHOCKLE wermema=end&///)

WE NOW FIND gt THE LENGTH 70 MIDHOCKLE
KIDFLaBel
DSME=A219DS/ (A ~A210LD)
CALL STEP(DSH)
RNuGQRTIY t4o2e7 a¥#2)
IF(RN+GT+rNMAX} RNHAX®RN

XS{LS)uX
YS(LS]mY
Z5{L5) =2
CURRENT VALUES OFi VARTABLES IN COMMON ARE MIDHOCKLE VALUES SM=S,
PSIRASING Z/SGRT(Z*%2 +Y9923 }
Lezsds
FloFal
FLesFiab
CALCULATE TWIST AND BENUING ENERGIES
ENTLeFeFLZa 0+ 52005 (BAMMA) #u2
ABAReABAR/ICOUNT
ENBSFLorCOS (BAMMA} «FAFL2%0, e SIN(GAMMA) #82eF L2 %ABAR
SHas

CuGAMMA®IBG,/3,14159265836
PRINT KEADERS FOR: MIDHOCKLE PRINTOUT

PRINT 17
17 FﬁRMﬂT{iﬁ 22X HPRINT#¢3Xe0GREENHILLS +2X ¢ oMIDHOCKLE®, 3X,2TOTAL S,
124Xe5THIST BENDING®)
PRINT 18
18 FORMAT{IH SKedF#16A, @CAMMAR 14X, #STEP SIZE 1NTERVAL$ *p3{8 LENGTH
1 “3i#Xy“FL*v6xt*FL?’ITxt*hNERGY ENERGY®) *
PRIN? 19:F; QQS'PRN'GLfSMtLHFLfFLZ;ENTLiENB

L e W s o - frea AN

FORMAT lln ak LU&D!r f‘di-‘”\l"l"ll}o:’f’l!l

..u

CALL ﬁﬂALC
PRINT 51 OMINsSMIN

§) FORMAT(1H +# MINIHUM DISTANCE IS ®sF1246¢% SEW9F1245)
PRINT g
PRINT BeSspHIaXsYeZoeHNEW)PSEsAsBsCrH AL A2 A3,A214A3],432,A23
PUNCK g2

62 FORMAT(®HIDHOCKLE®)
PUNCH 61!FoGAMHA'DSVPRNFGLiLlRNIRNMAX
PUNCH g43FLaFL2+ENTLJENSUNINSSMIN
PUNCH ﬁ}'a‘PHI;K'Y!l'RN;HlPSI
PUNCH 681oA110A12:A13,A21¢R314A329A33

HE NOW Q0 TO POINY SYMMETRIC WITH PRINT VALUE. PRECEEDING MIDHMOCKLE
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Ds2=DseDsM

CALL STEP(DSZ)

KzelSp

DU 24 Kml,Kp

CALL STEP({DS)

CALL SYM{IFFL»51,52+53,54)

PRINT BeSePHIsXe Yo Z+HNEWoFSToAsBsCoHoAIL10A120A130A210A311A320A3)

CALCULATE YO END OFt CABLE WITH ORIGINAL Ds

IFFLa2
1SP=0

SAVE NUMBER OF STEPS TO MID HUCKLE FOR END TEST

NTEST=NPRINT
NPRINT=)

WE GET TO HERE WHEN WE HAVE CUME TO THE END OF THE CABLE

25

26

27

28
63

IFFlL=3 ]

CALL SYMUIFFLYSyeS2053454)
PRINT 254951052 7
FORMAT{////41H s#=e=gYMMETRY FACTORGw==#)pSXs#pHI®F12,5410%2A2 0y
IF12.5/777) .

PRINT 27,83,54

FORMAT (//1H s#v==RMS VALUESm==®y 15X cF1245113X9F12.5)
R1251/53

REmg2/gé

PRINT 28B,R1.R2

FORMAT{//1H s%vmemRATIOSm=ea®y 18XsF 12,50 13X0F12,.5)
PUNCH &3

FORMAY (#*ENDHOCKLE®)

PUNCH glsSyPHIsXsYeZyRNyHIPSI

PUNCH 61+a11¢A1Z0AL3sA21sA3194320433

PUNCH 61ygls52153454¢R11R4

IF THERE ARE MQRE! PALRS ¥ GAMMA Ta BE DONE. RESET AND GO AGAIN

OTHERWISE STOP,

1000 CONTINUE

GO TO ioo01

1002 STOF

END
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SUBROUTINE DCALC
COMMON /BLOK3/ XS{1500)yYS(150032Z5(1500) +LS+DMIN» DS SHINANSTERPS
DIMENSION p{i%00)

THIS SUBROUTINE CALCULATES RELATIVE MINIMUM OF DISTANCE:
BETWEEN PAIRS OF STMMETRIC POINTS

OO0

00 8 Julyls00
5 Didim=yy
DMIN==2,
XM2XS{LS})
YHeYS{LS)
ZM=2LS LS
MIN=LSe}]
MMaw] o
DO §p I=1emiIN
JEL 8w .
T myuedasZyais
IF(TYsLT.0,0000001) GO TO 10
TE2RiYMUZGS (I mZuH S L) L NG
TIz{XMnxSJ) ) 0og
DL s+ #SQRTAT2/T1¢T3)
10 CONTINUE
PRINT 100y (D{J)y J*1els}
100 FORMAT{(1H ,10F10.5!)
c
€ LODK  FOR MINIMA
c.
TESTRD LSy
IsLSal ,
z0 IF(D{D),LT,TEST) GO TO 3p
TEST=0(1}
21 I'Ilu'i
IF(1+EGep) GO TO SO
60 YO 23
30 IF(O{IV.LT,04) 6O TO 2}
al TEST=D(I}
InJuy
az IFCQ{I!.GT.TEST} GO TO 490
TEETnD(L)
nlay
GO T0 ap
40 DMIN=TEST
SHIN=d 147)epSHNSTERS
RETURN
50 PRINT 51 |
5} FORMAT{1H.& D HAS NO RELATIVE: MINIMUM &
RETURN
END
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SUBROUTINE SYM{I+S51¢S29530154)

COMMON /BLOK1/Z AL19A129R130FsHsPHIvA+BeCoXoYsZ9S0A210A310A32043
1 DAeOR'DCyDXoDYsDZ9vaBARIICOUNTHNEWA110,GaMMA ¢ IBFLAB

COMMON /BLOKZ/ KDUNI!SYHPHI(1500)|5YMALF(1500’

THIS SUBROUTINE IS CALLED AT EacH PRINT STEP AND CALCULATES SYMMETRY
FACTORS AT END OF! CABLE.

GO YO (311203} 01
WE ARE STILL IN FIRST HALF OF CABLE, WE ACCUMULATE VALUES OF PHI,A21

1 SYMPHI(KOUNT) =PHI
SYMALF (KOUNT ) ®ma2)
53=S3¢PHIG¢2
Sgnsgogalnoz
KOUNT=KOUNT*1
JSKOUNT
IF{XOUNT.ER.1500) GU TO &
RETURN

WE ARE IN SECOND HALF: OF CABLE.

2 KOUNT=KOUNTw}
QYMDHI(KDHMTI:!EYMPHTtKnUNT\-PHTI*ia
SYMALF(KOUNT)“(SYHAhF(KOUNT)*AZI)*“z
S1eS)1+SYMPHYI (KOUNT)
s2eg2+gYMALF (KOYNT)

RETURN

WE ARE AT THE END' OF THE CAB
3 S1=SQRT(5) /(Je1) )
S2aSQRT(52/(J+1))
S32S0RT (S3/(J*1))
S54=SQRT (547 (Je1))

aFwiin
ReTURN

5 PRINT & )

& FORMAT(]H y#rvomncemaoKOUNT OVER LIMITwremcvraneit)
sTop
END
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SUBROUTINE STEP{DSI]
COMMON /BLOKI/Z AL1+A120A13+FsHrPHI»A9BaCe N YsZe50A210A3 043254330
1 DA DBeDCDXsDYoDZABARCICOUNTHHNEN ;AL 0GMMa 2 BFLAS
COMMON /BLOK2/ KOUNTLSYMPMI(1500) sSYMALF (1500}
THIS SURROUTINE STEPS THE CALCULATION FROM POINT TO POINT ALONG THE
CABLE,
INPUT DS = STEP SIZE: FOR CALCULATION

CE g

=ANGLES
*

+COORDINATES
L 4

ouTPUT

N e .3 o

CHECK IBFLAG., .
16FLAGR] IF B T0U CLOSE TO 90 DEGREES
. 1F 8 TGO CLOSE TO 9g WE USE ALTERNATE FORMULAE

1F (IBFLAG,EQsl) 60 TO 500

QOO0 HOODODOODOGOOOO000

F & H * gIn(Al) % D5
‘4 tH & COStAl o SINTB}/CDSIB} + PHI} = DS
Foo

H
4 % COS{A}/COS(BY) 08

#ow WE ADD INCREMENTS TU PRESENT VALUES Y0 OBTAIN VALUES
AT & POINT DS-UNITS_FURT&ER‘ALGN§ THE CABLEe

OGO

AnpeDA
B=g+DB
Lag+Dl

SIGNCB=SIGNt1+eCOSB}}
CHECK 1o gEE IF B TOO CLOSE TO 90 DEGREES

OO0

CB=ABS{COS(B))
IF{CBLTv0,.1 } 80 TO 100

#8 WE ARE NOW READY TO CALCULATE INCREMENTS To COORDINATES

noo

DxeAll # Dg
DY4AlZ & DS
DZeAl3 * DS

exs- WE ADD THE INCREMENTS TO THE PREVIOUS VALUES oF THE COORDINATES
TO OBTAIN VALWES AT A POIRT DS=UNITS FURTHER ALONG THE CABLE.

ﬂ!"‘nﬂ

XaxeDX
YryepY
IsZepn?

ax® FINALLY2WE CALCULATE NEW C4BLE LENGTH

s EsXs!
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SxS54D§
CALCULATE! NEW VALUES FOR A21+A319A329A31]

AZ1xSIN(A)#SIN(B)®CUS{C) = COS{A)®SIN(C)
A31IRCOS{AY#SIN(RI*CUSIC) * SIN(AIRSINIC)

A33aC0S(A)aC0S(B)

CALCULATE: NEW VALUES FOR AllsAl2vAl3 AND RETURN

Al1=COs{B)&COS(C)
Al12=C0S¢B)+SIN(C)

A13==STIN(B)

H* Adj=Z®A3p+Y®#A33

ABARXABAR+al1 § ICOUNT=ICOUNT+]
PHI=0.5%A110

IF (ABS (H}=,00000001) 16,16,15
PHI=A110=A31/ (F#H)
HNEW=0.

HNEW2e (24 /F) #{COS(GAMMA) =AY ]} o SIN{GAMMA) #atp
IF (HNEWR o GT+ 04 ) HNEWTSQRT (HNEW2)

RETURN

I

TO HERE WHEN B TOO CLOSE FOR FIRST TIME.
SAVE CURRENT VALUES OF AsBaC
THEN SET IBFLAB=1e A=C=0,

ASAVE=A
BSAVE=B
CSAVESC
IBFLAG=)
Am(e
Cape
B'o.

CALCULATE: a22v423 FOR FIRST YIME THROUGH

A22=gIN(AgAVE) RGIN(BSAVE) *SIN{CGAVE) +COS(AGAVEY #COS(CGAVED

AZ23=SIN(ASAVE) #COS (BSAVE)

HE NOW CALCULATE NEW VALUES FOR XsYsZrS

Z00

NOW

RXBY4+A1]1%DS
YuYepl24ns
Z=Z+Al34Dg
SuS4DS

CALCULATE! NEW VALUES OF AlI,J)

DAlinFeH®AZ]#Dg
DA12=FaMaARZwDS

DA =F# (wHEAY) ¢PHI®A3]) #DS
DA135=F&Hea23%05
DA31S=«F4PHI®p21#DS
DAg2SEuFepuItAg2%DS
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FELIX ROSENTHAL

All=A1}s0A1)

Al2=2172.0412

A21=h2Y+DARY

A1aSzA33¢DA]3S
A13BSQRT(1'-A11GI2-AlailZ)
IF((AT3%A13ST+LT.0.) Alam=ail
h313zh3}¢eg315

A3 nSORT(T,wAllondeA)and}

IF{(A319A315) el Tu00) A31R=A3])

AR3m{eplle 13221 ¢402%231)/ (1, ~al1%02)

ARZm{AIZMADI~AIL) FALD
A328=2A32+D328
A3peS0RT (], =AlpRe2=Ap20#)
IF{(A329A355) «LT40e} A32=~A32
A33s{Al1®A3 I €ALZRA32) /A1y
GO 1O 308
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iy TR urae {
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B STILL' TOO CLOSE,

500 CBESQRT(1,mA13%#2)
IF(CB.LT40.1  } BU TO 200

GET TO HERE IFf g NO LONGER TOU CLOSEa
¥E RESTORE B To PROPER UUADRANT

IF{SIGNCB.GTeDa} CBm=(B
SBomiAla

DETERMINE: Beaof UP TD ROTATIONS

8=AC05(CB)

1F (SEILT Oy BeeB
CA= 433/CB
SAzp23/c8
A=ACOS(CA)
IF{SALT+0,} Am=A
CC=a11/C8
SC=p1z/C8

rm.r-n':. :r-m

L e A

iF tSC.LT-n.} CR=g:
NOW DETERMINE ROTATIONS:

BROTa{B-BSAVE) /64283185347
NRgROT40.5
B=B4N#6,283105307
CROT=(CeCSAVE} /64283185307
NzCROT4ges
C=C+N*pe283185307
ARDOT=(a=ASAVED /64283185307
NeARDT+0e5
A=A+N¥6.283185307

CONTINUE WITH oRIGINAL FORMULAR

IBFLAGRYD
GO 1O 4g0
END
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