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GREENHILL'S FORMULA AND THE MECHANICS
OF CABLE HOCKLING

INTRODUCTION

In the application of marine cables as tension members, such as in lifting objects
from the ocean floor, serious structural failures have occurred as a result of two phenom-
ena called hocklina and bird caging. Both problems stem from the torsional moments
which develop in the cable, usually as a result of its tendency to unwind under load.
Hockling occurs when, for a given torque reaction at the ends of the cable, the tension
becomes insufficient to keep the cable taut, resulting in the formation of a loop or
hockle. When increased tension is subsequently reapplied to a hockled cable, the loop
tends to tighten, causing the cable to fail. Bird caging, on the other hand, occurs when
individual wires or strands unravel under excessive torsional loads that are reverse to the
direction in which the wire strands are wound.

The hockling of cables would seem to be closely related to the well-known problem
of the elastica (thin elastic rod under combined tension and moments applied at its ends).
This problem has received much attention in the literature. Kirchhoff [1,2] recognized
that the deflection curve of the elastica is governed by the same set of differential equa-
tions as the motion of a heavy spinning top. Greenhill [2-41 gave a buckling formula
for the rod subjected to tension (or thrust, if negative) and twisting couples, based on the
assumption of infinitesimal bending deformations. Southwell [51, in a discussion of the
elastica under end forces with zero moments, showed that a column under thrust at and
above the Euler buckling load remains stable. More recently, considerable effort has gone
into studies of the dynamic characteristics of thin three-dimensional beams. An excellent
review and bibliography of this subject through 1972 may be found in Ref. 6. The prob-
lem of rods of variable cross section has been comprehensively addressed by Green, Naghdi,
and Wenner (71.

In spite of all this attention to the problem of the elastica, some puzzling questions
have remained with regard to the hockling of cables: What are the stability characteristics
of small-deflection solutions corresponding to Greenhill's formula with respect to increasing
torque or decreasing tension? What in fact is the largest torque for given tension to which
a cable may safely be subjected? And, conversely, how far may the tension safely be
lowered for given end torque? When this report's author first became interested in the
hockling problem, he did a rudimentary experiment, trying to put bending deflections into
a straight rod under twist and modest tension. The rod was twisted until numerous helical
slip lines developed, indicating substantial shear yielding. Yet no significant bending de-
flections were observed. But cables in tension do hockle. Must they be described in a way
essentially different from rods, or can the observed difference in behavior be explained en-
tirely in terms of the much lower bending stiffness pertaining to cables?

Manuscript submitted October 3, 1975.
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FELIX ROSENTHAL

The purpose of the analysis described in this report was to obtain some insight into
these questions and if possible to establish a loading criterion for the avoidance of cable
hockles. The approach was to obtain computer solutions to the differential equations of
the elastica in nondimensional form for the full range of values of axial end forces and
moments.

STATEMENT OF THE PROBLEM

The problem is to calculate the deflection curve and strain energy of a cable or rod
that is prismatic and straight when unloaded and is "hinged" at each end so as to permit
only an axial moment M and an axial force T. Axial means along the straight line joining
the two end points. Although this presents a two-point boundary-value problem, it can
be solved in reverse as an initial-value problem by assuming a starting angle y between the
deflection curve and the axis and then solving the differential equations step by step un-
til a point possessing appropriate symmetry properties is reached. This point (or alterna-
tively the end point) must be established from the local properties of the deflection curve,
since the length is initially unknown and must be calculated. When the problem is solved
in nondimensional form, a two-parameter set of solutions is sufficient to cover the full
range of possible loading values.

DERIVATION OF EQUATIONS

A length £ of rod or cable that is straight and prismatic when unloaded and possesses
a bending stiffness EI and torsional rigidity GJ is assumed to lie along a space curve and
is referred to a fixed coordinate system OXYZ with unit vectors 1, 3, and K as shown in
Fig. 1. The +X axis is vertical upward. Are length along the cable is denoted by s and
increases as shown in the figure. The cable is assumed to be "hinged" at 0 through some-
thing resembling a universal joint such that the reaction there consists solely of a vertical
force T and a vertical couple M, both directed downward if positive. T and M denote the
magnitudes of T and M (O respectively. At the free end P of the cable, where x(s} =
lx, y, z], the required equilibrating forces are a constant vertical upward force T and a
couple M(s), where

T(s)E T(0O= T = TL (la}

and

M(sl=i M(0O + T X x(s) = MI -TzJ + yK. (11Ž

At the free end P of the cable segment OP, Fig. 1 shows the unit vectors of two
other coordinate systems: t, t7, ¢ and t, n, b. Here ¢ - t is the unit tangent vector to
the space curve defined by the cable's center line. The vectors t and ty are perpendicular
to the tangent and thus lie in the plane of the cross section of the cable. They are taken
as priflcipul Laxb Ui uiit!Lu 1btCUUEtUIU dhe CUII5LUBteu to be ienscrrneU in the croes sec-
tion (rotate with the cable).
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On the other hand, n and b are respectively the principal normal and the binormal of
the center line.

x

~~~~~~~~U(s)

0 z~~ 2
M

Fig. 1 - Coordinate systems and free-body diagram
of cable section OP

It is usual [8] to introduce an "angular velocity" vector Q2 which denotes the vector
rAte of thurn of the system rs+,n+ tn inrrth s.

Since t is a unit vector, its arc-length derivative is thus given by

dt/ds -t = Q X t.

Cross multiplication by t yields

Cl = Kb + flt,

where n and b are defined by

t = Q2 X t = Kn (2)

and

b=tX n

3



FELIX ROSENTHAL

and QS2 = K is the principal curvature of the center line. In terms of the local compon-
ents of the moment vector M the components of QZ are

=t = Mt/GJ, (3a)

f2n = Mn =0, (3)

and

nU =Ar ts'rr-. / Qo- \

Differentiation of (2) further yields the derivative of the normal vector,

n = b' X t - Kt. (4)

Taking components of (4) in the t and b directions respectively gives

n t = -K

and

n' * b = -b' n. (5)

The quantities n' * n and b' b on the other hand are zero, since they represent the com-
ponent of the derivative of a unit vector upon itself. The remaining required derivative
Com.A1nent- is £0 * *Li Y. t -V£SUIL £0 .' A -OS) I-Y± L4Wh LJJJJX__ t * '-=( _ L'J 0t1_-
that t' bb + t bt = 0. But since t' is perpendicular to b, then t' ~ b and hence also t b
must vanish. The preceding calculation of the components of the tV, n', b' vectors along
the t, n, b coordinates may be summarized as the matrix equation representing the
FrenetSerret differential equations for a space curve:

I~~~ ~~ n'K=1_= n t Inl a

Lb | o 01 bJ

The quantity y, substituted for n' b in (5), is thus seen to be the geometric torsion,
or tortuosity as Love [21 calls it, of the space curve traced by the center line of the cable
or rod. Differentiating equation (lb), noting that x' t and using equations (3), gives along
the t, n, b components

4
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(7a)M' t= MyO -,

K(pFlI - Me) + T b = 0,

EIK' = -T n.

and

(7b)

(7c)

Equation (7a) states that the internal twisting moment, and hence the twist angle per unit
length, is constant along the arc length. Mt - Mt(0) is one of the three first integrals
available to this problem, analogously with the problem of the heavy top. Equation (Ib)
is needed along with equations (3) and (6) to complete the system of equations.

The following non-dimensional quantities are introduced:

S = Ts/M, X = Tx/M, Y= Ty/M, Z = TzIM, L = TQ/M;

F = M 2/TEL If = KEJIM, (1' = qOEI/M,

(*})- d/dS = (MIT) ('), MT = Mt/M E all (0).

Further ALe direc'tioE cosines, Or components etai of the t, n, b vectors with respect to the
fixed system 1, J, K, as well as a set of Euler angles A, B, C to remove unncessary re-
dundacies in the direction cosines, are defined:

all = Cos (t, 1),

a1 2 = COS (t, J),

etc., and

cBcC

sAsBcC - cAsC

cAsBeC + sAsC

cBsC

sAsBsC + cAcC

cAsBsC - sAcC

where cB means cos B, sC means sin C, etc.

5
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FELIX ROSENTHAL

In these terms the complete system of differential equations defining the space curve
and other quantities pertaining to the rod or cable consists of equation (8i for the a11 in
terms of the Euler angles together with the following:

H = C131 - ZC32 + Y2133' (9a)

4' MT -cx3u/FH, if H t °, (9b)

' = MT/2, if H = 0 (by LHospital's rule),

A*8 = F(HcAsB/cR + 4),

B* = -FHsA,

0* -P,^s-A II-,

=* a11 I

Y*= a 1 2,

Z* = a1 3 -

MTrPIT hT. CflNnfTFTfnl

Initial conditions are chosen with XK = Yo = Z0 = 0 and so that the tangent vector
initially makes an angle -y (0 < -y < 180 } with the X axis. An appropriate set of initial
values of the Euler angles is

AO = r/2

Bo = 0,

CO = Y

thus making the curve begin in the XY plane.

Equations (9) become singular when cB = 0. This happens infrequently, and is en-
tirely a difficulty of the particular Euler-angle representation. It is avoided either by
choosing a different initial azimuth (say AO = 0, Bo = y, Co = 0) or by departing from
the Euler-angle formulation whenever cB is small and instead using derivatives of a set of
three independent direction cosines.

6
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FINDING MIDHOCKLE

To determine when midhockle, the point of symmetry halfway between the "hinged"
ends, is reached, we seek an arc length sm at which K(sm + s) = K(s - s) and 4o(s + s)
s°(Sm - s) for any s. This happens when all the odd derivatives K(2'+1) (s) and {OaNX+)
(s) are equal to zero at s = sm. It is easily shown that this happens whenever K'(s) = 0 or,
by equation (7c), when 021 = °i

An outline of the proof comes in two parts: The first part to be proved is that if
K(2n+-) = ,,(2n+1) = 0 for n = 0, 1, ..., N-1 and if K(2N+1) = 0, then also ip(2N+1) = 0.
This follows from successive double differentiations of (7b) and use of (6) and (7c). Each
such doubly differentiated equation consists of terms which are products of derivatives of
order zero up to the order of differentiation. Since the sum of orders for each term is
odd, each term must contain at least one factor which is an odd-order derivative of either
K or sp. But by hypothesis all these factors except the highest derivative of p are zero.
Hence also the highest derivative must vanish

The second part to be proved is that if K( 2 r,'1) = ,(2n+l) = 0 for n = 0, ..., N-1,
then also K(2N+1) = 0. Since by (7c) differentiated 2n times

EIK(2n+l) = -T . n(2n)

it suffices to show that -T (n2N)= 0, or that n(2N) has a zero I component. Let the
directon-co in ldlatix uf u8 e ueniuueu uy- wf an 'e curvibuure-uuisiuzi llt)l ur(}iy

X: 1:

r n

and

X= -K O 

X -K ~O

Then (6) may be written as

r - xr. (10)

To be shown therefore is that under the assumed circumstances the { 2,1) component
of matrix r(2N) is zero. Successive differentiation and substitution of (10) shows that the
higher derivatives of T are expressible in the form

7
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T(n) = It (XW-,), *--> X" X) I T,

where each term of 4n is a product of from one to n of the ni matrices X through X(n- >
From the formal process of differentiation it follows that these terms are homogeneous
of degree n in each term's sum of orders plus number of factors. As an example a term

½ knc, 4-.-4-'d -AAei. fl-n+ +n=A 1L P±.. _i nr3xx "X 9x. Wa " Ul Ir er 0 LICL + = U I-t a1 has five uatuurs uwid therefore could
belong only to ft. Thus for it = 2N the highest derivative term is x2N-1 multiplied by no
other factors. Because of the homogeneity of orders plus factors of degree 2N, every term
of t2N other than this highest derivative term must also possess one of two properties:
Either it is the product of an even number of factors or it must contain at least one lower
odd-order derivative. In either case, the matrix term can be shown to be zero at all "odd"
locations including { 2,1); hence the same follows for their sum r(M).

From the preceding two parts of the proof it follows that a point at which K' = a
(or 0x21 = 0) is always a point of symmetry.

BRIEF DESCRIPTION OF THE FORTRAN LISTINGS

The Fortran routine to accomplish the required calculations consists of the main pro-
gram Hockle and subroutines Dcalc, Sym, and Step. The listings are given in Appendix A.

The main program accepts sets of values for F, y, increment of nondimensional arc
length AS, and print interval (to permit printing less than every calculation step). It also
calculates initial conditions and determines when midhockle is passed (a21 changes sign>,
at which time it interpolates for Sm. Endhockle is prescribed to be at S - L = 23 m , and
the option exists to keep calculating that far. The program Hockle contains necessary
pLr t Bud punch Jink- tieons and c all su-r-z4-nes as neede_. An -.ff-oit -pln -4-etpfl.1 pWnL h fICIC IIotkuc.WJI %A1. OLCUS ZILiULLYLU11C1VO iVutL. PILL11t IIIJULOAL1 UUI4JL&, 3 -!CocI

of values of nondimensional moment u = MV/EI = FL and force v = TQ2/EI = FL 2.

The subroutine Dcalc calculates the distance of closest approach Dmin between pairs
of symmetric points on the rod, This is done because if that distance became zero in a
real cable, then the mutual lateral forces at the point of intersection would no longer per-
mit representation by the present mathematical model, which would allow the cable to
pass right through itself. The calculation of 1 3min is performed using points only between
zero and midhockle and does not require stepping past midhockle.

The subroutine Sym does require calculation all the way to endhockle and calculates
the degree of symmetry about midhockle of selected quantities such as 4' and 021. This
provides a check on the accuracy of calculation, since in theory the symmetry should be
perfect.

Finally, the subroutine Step performs the basic stepping procedure on the differential
equations and calculates the required quantities: direction cosines, curvature H (both di-
rectly and from a first integral for comparison), 4), etc. When informed by Hockle that
cB is too small to use the Euler angles, Step uses alternate equations for stepping. The
stepping interval is the inputted AS except either side of midhockle, where steps and
print points are chosen in such a way as to preserve symmetry of the calculations and
print intervals.

8
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DISCUSSION OF RESULTS

Relation Between End Forces, End Moments,
and Cable Configuration

Once the program has calculated the nondimensional length L of a symmetric space
curve for given values of load parameter F and initial angle a, then the values of the non-
dimensional moment and force

u = MV/EI = FL

and

v uTk2/E = FL 2

are readily calculated. The results are shown in Fig. 2 for a number of values of y, with
a few F constant curves also indicated. The y 00 and y = 180 curves constitute the
two halves of a parabola corresponding to Greenhill's formula

v = I (u/2) 2 _ r2 1, (11)

referred to in the Introduction. The reason for the absolute-value signs and thus the para-
bola with the lower portion reflected in the i> axis is that there is the following duality of
solutions: If a (F, 4 input yields a (u, v) solution, then a (-F, 7r-7) input yields the iden-
tical (i, -v) solution. However the concept of positive F and T representing a tension and
negative F and T representing a compression makes sense only for the Greenhill case of
-y = 0 (or, for reversed signs, 1800). For example, the elastica, under end force only, can
go with a continuously increasing force from Euler buckling in compression, at (0, it 2 ) in
the figure, to a looped rod in tension, with no clear break in between. To exhibit this be-
havior correctly, all forces as well as moments are therefore shown in the first quadrant,
with the result that half of the Greenhill parabola is reflected in the u axis. Also, because
oil Lleseu bsalsyrnbirL trllebs, dli 7 - coUnSaUdliL Curves are perpendiclwar LU UiiC U dIS ;A L - U.

In addition the y = 90° curve is perpendicular to the u axis at v = 0.

An important set of check points is provided on the v axis. Clearly this corresponds
to the elastica with zero moment. As shown by Southwell [5], the relation on a = 0 be-
tween u and y is given by

v = 4K2 (k),

where

k = sinl[(r--y)/2] and

where K (k) is the complete elliptic integral of the first kind. This formula checks the
computer solution for small values of F and hence of a.

9
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E I

z

CO~

Fig. 2 - Nondimensional end moments and forces on an elastica for
various end angles y and load parameters F =M2 /TElor u2 ju

in Fig. 2 al nontrtiLvial solutions to this proble11 as eXptwsaeu }U RI h UU quaLiel PLane
fall between the two segments of the Greenhill parabola. (Trivial solutions exist through-
out the uc quarter plane,) All combinations of moment and force inside the 180P seg-
ment of the parabola correspond to the trivial solution of twist only, and zero bending.
Similarly moments outside the 00 segment are unattainable, since onlv an unstable trivial
solution exists there.

The dashed curve Drnin/L = 0 along with the portion of the v axis above 21,55 is
the locus in au space along which the calculated deflection curve of the loaded cable pos-
sesses a self-intersection. This locus provides a barrier to the configuration of a real cable.
For example, if a cable loaded by a constant thrust v = 20 is subjected to an increasing
moment u, a self-intersection will occur when u equals approximately 3, and any config-
uration corresponding to larger moments will not be correctly predicted by the present
theory. With reference again fo Son hwell's solunhtion, the D-i /L = 0 curve meets the u
axis when the ratio of the complete elliptic integral of the second kind .(k) to the one of
the first kind equals 1/2:

P-0)[K(2) = 1/2.

This in turn occurs when u = 21.55 and y = 49.290 as shown in Fig. 2.

10



NRL REPORT 7940

If a rod is subjected to a constant compressive force below the Euler load while the
twisting moment is increased starting at zero, the rod remains straight until the moment
reaches the lower Greenhill value at Y = 1800. This point is stable however in that the
moment can be increased beyond this value at least until the dashed curve is reached.

If a rod or cable begins in tension, it remains straight until the upper Greenhill value
is reached at y = 00 but at this point no further increase in torque is possible and any
further twisting deformation must be accompanied by a decreased reaction torque. Thus
for a rod or cable in combined tension and twist, Greenhill's formula does not represent
merely the point of first departure from a trivial twist-only solution. It additionally rep-
resents the maximum torque which can be applied at a given tension, or the minimum
tension necessary to support a given torque, and represents a point of instability if any
attempts were made to increase the torque relative to the force. This instability must be
particularly violent in the case of cables, for the following reason: For a rod or cable in
combined tension and sub-Greenhill torsion, all strain energy is stored in twist, a relatively
stiff mode. As the Greenhill curve is approached and bending becomes possible, a sub-
co.nl+-l pnr+ nf fIhi, +4-.z,;,,nc o+-roh anorg- ulr.+ he +-fnra-"-A mn+n han-dn B a-+ o nala
is distinguished by its very low bending stiffness, so that the conversion of a given amount
of strain energy would require much larger deflections than would be the case for a rod.

The previous paragraphs also illustrate the double-valuedness of the graph of Fig. 2
in the area between the two branches of the Greenhill curve. Consider a cable loaded by
a nondimensional moment a = 7.2 and a nondimensional force v = 52.4, at the point in
Fig. 2 at which y = 15° and F = 1. One possible configuration of the cable under this

loading is the straight cable in tension, with 7 actually equal to 00 and not 150. This con-
figuration can result if the tension on an initially unloaded cable is raised to 52.4 and a
subsequently applied moment is raised to 7.2. Since this is below the Greenhill torque in
tension, the cable remains straight. The other possible configuration under the same load-
ing is a hockled cable with y really equal to 15°. This may be produced by "compressing"
an initially straight cable past Euler buckling, forming a loop which is tightened as the
force is increased to 52.4 (now a "tension" because the end points have passed each other),
with a subsequent increase in moment to 7.2, applied in the direction in which the loop
is able to open partially.

The quarter plane u > 0, v > 0 is thus divided into three distinct regions: Inside the
1800 branch of the Greenhill curve, only the trivial solution exists, and it is stable. In the
second region, between the 1800 and 00 branches, the configuration is double valued for
any given loading. Here, if loading begins from a straight rod in tension, then the trivial
solution is stable, but if the loading begins from compression, then the trivial solution is
unstable and the nontrivial configuration results. In the third region, outside the 00 branch
of the Greenhill curve, only the unstable trivial solution exists, so that such loadings cannot
be sustained.

It is instructive to examine from an energy point of view the possible rod or cable
configurations at the load point in Fig. 2 (i = 2nr, v = 0) where all the y = constant curves
intersect. The loading corresponding to this point supports equilibrium configurations for
all values of Y from 0° to 1800. The deflection curve corresponding to these configura-
tions would in general be a complete turn of a helix of pitch 7r/2 - y. It is a helix because

11
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the force is zero and the internal moment therefore is constant; it contains a full revolu-
tion because the end moments act along the direction of the line joining the end points,
For y = 00 or 1S0'_ the helix is reduced to 2 straight line in npure twi.st inder end mo-
ment M; for y = 90", it is a full circular hoop in pure bending under end moments M
perpendicular to the plane of the circle. Of all possible equilibrium configurations, the
stable one is that one for which the applied end moments are at the lowest possible level
of potential energy, i.e., the one for which the strain energy is maximum.

For this case of pure moment loading, the total strain energy is

U = M 212EI + M? Q12GJ

where G( is the torsional stiffness. In terms of the applied moment M and the angle -y
Mb = M sin Y and Mt = M cos y, so that

U = M2Q/2 (sin2 y/EI + cos2 7/GJ).

The extreme values of U occur when dUl/dy = 0, or when

sin 2 'y (1/El - 1/GJ} = 0,

or z = Or, 90°, and 180°. Which extreme corresponds to the maximum strain energy then
depends on the stiffnesses, as may be seen by putting the three values of y back into U:

U (-y = n1 8S00) = M2{/2GJ. for pure twist,

and

U (y = 900) = M2 2/2EI, for pure bending.

Thus for the rod or cable loaded by end moments MV/EI = 271, the stable configuration
is the straight twisted one if GJ < El and is the circular hoop if GJ > El. For typical
solid rods, GJ - 0.7E, while for cables GJ >> EI. Thus a hinged cable loaded with
u = 0 and u increasing from zero will remain straight until u = 27r, when it will snap into
the shape of a closed circular hoop.

In spite of this apparent difference between the configuration of cables and rods at
(u = 2wa, U = 0), it should be borne in mind that this point does in any case represent the
limit of stability of the straight form, for rods as well as for cables. This behavior of
rods is also discussed in Ref. 2 (paragraph 272(d), page 417), where the more general
Greenhill formula is also developed.

The main purpose in presenting Fig. 2 is to show the central importance of Green-
hil's formula in evaluating the stability of rods and cables and to clarify its relationship
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to the force-only solution of Southwell. The figure may also be used to determine the
possible configuration (or configurations, in the double-valued region between the two
branches of the Greenhill parabola) when end loads i and v to the left of the y = 0
branch are given. In this application the barrier locus Dmin/L = 0 must be taken into
account.

Why Don't Rods or Solid Wires Hockle?

Understanding the fundamental importance of Greenhill's formula, we can now eval-
uate under what conditions a rod in combined tension and torsion might undergo bending.
For a circular steel rod or wire with Young's modulus of E = 2 X 101l N/m2 and shear
yield strength ua = 350 X 106 N/m 2 , the precondition for bending is that any tension be
so low as to keep the actual tensile stress below 0.15 X 106 N/M2 , or a mere 0.027% of
a tensile capability of say 550 X 106 N/m2 !1 Any attempt to induce bending due to twist
at a higher applied tension will cause torsion shear failure instead. This conclusion is ar-
rived at as follows: Assume the tension T is such that bending is just possible by Green-
hill's formula while at the same time the shear yield limit US = 2M/ra3 is reached, where
a is the radius of the rod. For an infinitely long rod (which would bend most readily),
Greenhill's formula reduces to M = 2(TEI)1/ 2 = a2 (TET)1 12 . In the equation uS = 2M/na3 , if
a2(TEvr)1/2 is substituted for M and then at (the tensile stress produced) is substituted for
T/ira2, the result yields

at = %2/4E.

For the values assumed earlier this becomes a, = 0.15 X 106 N/rn2 as stated.

EXPERIMENTAL VERIFICATION

Woods Hole, MIT, and NCEL Tests

Field and laboratory tests to investigate the hockling or "kinking" properties of
oceanographic cable have been conducted by Berteaux and Walden [9], Vachon [101, and
Liu [11,121. The laboratory tests by Berteaux and Walden concentrated on measuring
rotation rather than torque and therefore cannot be evaluated here without further knowl-
edge of the torsional rigidity.

Vachon measured for a number of cables and loadings the bending stiffness EI (which
he was also able to calculate to good accuracy), the force T, and the hockling torque M
both positive (tightening) and negative (unwinding). Ils 17-foot cables were long enough
to reduce end effects to a modest 10% or so (which can be estimated from Greenhill's
formula, equation (11), by dividing through by V2 and comparing vr2/Q2 to T/EI or
(M/2EI) 2). This order of magnitude is borne out also by his evaluation of the effects of
end mounting on hockling torque.

When these end effects are ignored, by putting V = co in the Greenhill formula, and
each experiment is assigned a Greenhill number G = M2 /4TEI, which theoretically should

13
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then be equal to 1, the results show G to range from about 0.5 to 5. These values of G
are at least the right order of magnitude and have a reasonable mean value. Vachon's
results show a rather wide divergence in positive and negative hockling torques for iden-
tical cables and tensions. If the torque had been consistently higher in the positive di-
rection, one might be tempted to ascribe this divergence to increased bending stiffness
for a tightened cable. Unfortunately, in half the eases the divergence goes the other way,
and no explanation can be offered at this time. In the one case in which the positive and
negative hoekling torques fell to within ahout 1 0% of their average, the ealeulated Green-
hill numbers turn out to be an encouraging 1.2 and 0.8 respectively.

Reading about the explosiveness with which some of Vachon's kinking experiments
were completed ("a 3/16 inch thick circular ring, supporting the water can [used as a
weight], was straightened out, thus dropping the can to the floor") is more amusing than
having observed it. But in retrospect, this explosive behavior is quite consistent with the
instability of the Greenhill loading in tension combined with the substantial energy stored
in the relatively stiff twisting mode at the instant when that instability occurs. Vachon
was well aware of the energy consideration, which he reviewed in his report.

The applicability of Greenhill's formula to cable kinking has also been recognized by
Liu, whose recent experiments described in Ref. 11 appear to be well correlated with the
formula over a wide loading range. Reference 12 is a more detailed report of his results.

NRL Tests

In view of the incomplete knowledge at NRL about the conditions under which
hockling tests at other Laboratories were conducted and, even more, to get some engi-
neering insight into the phenomena under study, a few rudimentary measurements were
made at NRL. The most sophisticated measuring tools were fish scales and weights
(steel, to keep the floor dry), and the time allowed for the experiment was about 2 days.
Nonetheless the results showed good agreement with theory.

The no-load small-deflection bending stiffness El for a sample of 1/4-inch cable was
measured by loading several lengths of it as cantilever beams. Calculated values of El
ranged from 0_051 to 00i,56 Nm 2, with 0 0.57 as an average value.

A 12-foot length of this cable was suspended from the ceiling. Because of a lack of
safety devices, loading was kept at light tensions up to 18 N and torques up to 2 Nm.
For four loading cases Greenhill numbers G = M2 /4TEI of 0.97, 0.72, 0.97, and 1.10
were obtained. In view the closeness of these observations to the theoretical G = 1, more
comprehensive and better instrumented hockling experiments are anticipated, with a view
to developing a usable method for specifying torsional properties of marine cables.

CONCLUSIONS

The conclusions are as follows:

* The importance of Greenhill's 100-year-old formula for determining the elastic
stability of rods in combined axial force and twist far surpasses merely defining the onset
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of possible bending modes. For rods or cables in tension the Greenhill condition repre-
sents the largest torque which can be applied for a given tension or the lowest tension
capable of supporting a given torque. It represents a point of instability with respect to
increasing torque or decreasing tension. This instability is expected to be particularly
violent in the case of eahles3 because of their low bending stiffness.

* For applications in which a cable remains substantially straight, such as the lifting
of objects from the ocean floor, the Greenhill formula, modified by an appropriate safety
factor, should provide a valid criterion for estimating the onset of hockling.

* For applications involving initially curved cables, such as in towing, where the in-
fluences of gravity and drag are strong, the situation is less clear. It is known that the
Greenhill condition cannot be exceeded, but it is possible that instabilities might already
occur at much lower values of torque or higher values of tension, since the relevance of
Greenhill's formula depends on the relatively large twisting stiffness of the initially un-
bent and straight cable. The stability of initially curved cables thus is an interesting sub-
ject for further research.
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Appendix A
FORTRAN LISTINGS FOR PROGRAM HOCKLE

PROGRAM HOCKLE
DIMENSION FFcQO)tGAHMj100nDSDc100)
COMMON /BLOK1/ Al1IAl12Al3,FwHKPHIA*BtCXtYZtStA21 A3lA32,A33,

I fk.fl.flrr.flY.n.fl^n7.aDf.Tr~flhtt.kJNFW.AIln..fAMU..TMcL .aA w H wV * VhMJ w1ww 

COMMON /BLDK2/ KOUNBSYMlPHI~l500hSYMALF(1500)
COMMON /BL0OK3/ XS(lbOO)I9?5(1500)oZS(l500),LStDMINDSSMINtNSTEPS
REAL L

C THE FOLLOWING FUNCTION CALCULATES GREENHILL LENGTH
C

C XL iX,- 6£,Ce3A n532w72 SRT 'X Cf lXD4;t

C WE NOW READ IN NUMBER °F STEPS: BETWEEN PRINT LINES AND STOP SIGNALI
C

DS=o.
lool READ 2,NSTEPS9NSTOP

- rvIM4 1-&1 I
lFCNSTOP.GT.0) GO TU l00Z

C
C WE NOW READ IN UP TO 100 POINTSF ,GAMMA,DS
C

READ 1sNFNGtNDSCFFCI)elfIlNF),(GAM(J1,JzSNG),(DSO(KQ),KQclNOSI
trnR"Aja i.Y *0 ,nrn nit S [ru rIMIm 3J73, or vulC 1 OMi33,/-;,}

C FOR OUTPUT PURPOSES WE NqOW COMPUTE THE LENGTH OF.THE PRINT INTERVAL,
C AND INTIALIZE THE£CASE NUMBER, PRNNCASE
C

NCAsEnO

C WE RUN THE CALCULATION MHROUGH THE F,GAMMA PAIRS.
C I IS A COUNTER TO STEP 1HROUGH THE VALUES OF F
C J IS A COUNTER TO STEP 1HROUGH THE VALUES OF GAMMA
C KQ IS A COUNTER TO STEP THE VALUES OF-OS
C

vO 1000 ac10Nrr
f UFF 1C I)

C
C *e* CHECK TO SEE IFIF IS IN THEINTERVAL (0,4) AND IGNORE GREENHILLI
C LENGTH IFi IT IS,
C

GLwO
IF( CF.LT,6.) SOR. (FtGT%4.P.) GLOXL(F)

C
C *e' INNER LOOPS ON J ANU KQ
C

DO 1000 J,. ,NrG
DO 1000 KQ=INDS
DS'DSD CKQ)
PR N NS T EP S D S
I8FLA040
SMnO5
SMINsO.

RN30 ,
NPR I NTor6
NTESTvo
SiuSlaSa'sS4:oo
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ABAR=0
KOUNTA1
HIOFLAGWO
ICOUNTg0
GAMMAsGAM (J)

C
C a... PRINT- INITIALI CONDITIONS AND CASE. NUMBER
C

NCASEPNCASE+1
PRINT 3,NCASE'

3 FORMAT(1Ml, --------- INITIAL1CONDITIONS FOR CASE NOt*;4//)
PRINT 4,F.GAMMA

4 FORMATC1K lOXp*FP*tF6.2,1CX*GAMMA=*tF6S2//I
C.
C *** CONVERT GAMMA TO RAUIANS FOR CALCULATION
C,

GAMMASGAMMA * 3.14Ib9b6S36,1BG.

C INITIALIZE ANGLES AND CUORDINATES
C

hAq .5OT9632z68
5t0 ,
C'GAMMA

C,
C ALTERNATE INITIAL VALUES An,, B1GAMMA, Cuoe INSERT HERE
C-

)(MO,

Su 0 0Kg.

RNMAX 0o&
RN=oo
LSx a

C.
C CALCULATEi INTIALI VALUES OF A(IoJ)
C.

A11COS BR)iCOSCC) S AlOctAl1
ABAR-ABAR#AiT
ICOUNTWICOUNTO 1
A1L2vC0S(810SIN(C)
' 1 ` -i-c.s 

AZLcSIN(A)*sIN(B)*CU$(C) 0COS(A)*SIN/CC
A3l=COS(A)*SIN(g)*CS(C) 9 SIN(AWCSIN(C)
A32 CA0S)(A $IN(B1*S1NiC)- SIN{A).CGS(CI
A33=Cos (A) *C0s(B)

C
C ALTERNATE A21 INSERT HE8E
C
C CALCULATE INITIALIVALUES OF: HPHI,PSIHNEW
C.

H8A31*AZ*32'Y*A33
PgkI-0CSAl 1
IF(AoSCH-.O0000001) 5'5'41

41 PHI8 411 A A31 / (F)H}
5 HNEW=SORT((z/fFte*(CCS(GAMMA)-All) + SIN(GAMMA)*.2)

PSI=O.
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ITESTImo
ITEST2mO
PUNCH 6O0NCASE

60 FORMAT(* INITIAL VALUES FUR CASE*w16)
PUNCH 61,s~pHI.XwY9LRN.HppSI
PUNCH 61,AjlAl12AjUA21t,3ltA32,A33

61 FORMAT(BF1o*6)
64 FORMAT4I F4.Bt2F126b)

C
C PRINT OUTPUT HEADERS.
C

PRINT 6
6 FORMATC/4H S,6X,3HPHI,5XlHX,6XKlHY,6XlHZ,5Xt2HHOSX.3HPSIpSX.

llHAv6X9,HBs6XlHC sXlHlIIX,3HAllo4X,3HA1294x,3HA13,4x,3HA21,4X,
23HA31,4X,3HA32,4X,3HA33/)
IFrLdl

C,
C PRINT INITIAL'VALUES:
C

7 PRINT 8,S.PHI XtYZHNEWeSI,A,B,C,H,AllA12,Al3,A21,A31,A32,A33
8 FORMAT(I l,1B8F7T.4)
RNUSQRT (Y**2.Z**2)
IF(RN.GT.RNMAX) RNMAXPRN
NPRINT=NPRINT~i
CALL SyYMCIFL0SIS2iS3tS4)
IF(MIbFLAGEO.1 G GO TO 50
XS (LS) 1X
YS(LS) ny
ZS CLSI .Z
LS-LS. j

SD CONTINUE
C
C WE NOW BEGIN TO STEP OUR WAY ALONG THE CABLE
C ISP IS A COUNTLR CONTROLLING PRINT
C WE ARE LOOKING FOR MIDHOCKLE
C

9 A21OLD2Apj
CALL STEP(DS)

C.
C *** TEST FOR MIDHOCKLE
C

IFuIcA2i1A21ILD).LTaO).AND9cMIDFLAG.EQO.DGO TO 13
C
C *** WE ARE NOT AT MIDHOCKLE.
C HAVE WE COME TO THEiEND OF THE CABLE.
C

1D IFCMIDFLAG.NE'.1) GO TO 11
IF(NPRINT.EQ.NTEST) GO TV 25

C hIE ARE NOT AT END OR MIUHOCKLE. CHECK TO SEE IF IT IS TIME TO PRINT
C

11 ISPI:SP+1
C
C WE ARE NOW REAOY TO PRINT SO WEINEED TO COMPUTE. HNEW,PSIPHI

PSI=ASIN( ZfSORTcZe*2aY,**C
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IF(ISP.LT.NSTEPS) (0 TO 9
GO TO 7

C
C WE ARE AT MIDHOCKLE
C

13 PRINT 14
14 FORAT// *-- MIDHOCKLE -------- *///

C
C WE NOW FIND 5M THE LENGTH TO MIDHOCKLE

MIDOFLAGr-I
DSMw-A2 I*DS/ (A2l-A21OLD2
CALL STEP (DM)
RNSSQRT(Y **2,Z 0*2)
IF(RN.GT!RNMAX) RNMAXPRN
XS(LS)uX
ys (LS) aY
ZS(LS7z2

C CURRENT 'VALUES Or'VARTJMOLES I"N COMMON ARE MIUDULCKLE I ALUES SMwS.
PSI=ASIN( Z/SQRTCZ**2 *Y*l )

FL=F*L
FL2'FL*L

C
C CALCULATE TWIST AND BENUING ENERGIES
C

ENTLwF*FL2*0*5*COStbAMMA)**2
ABARIIABAR/ICOUNT
ENBz9L2 *COS(GAMMA) F0FL2*Q*5*SIN(GAMMA)**Z-FL2*ABAR
SHinS
GUGAMMA*18a,/3.1415926536

C
C PRINT HEADERS'FOR MIDHOCKLE PRINTOUT
C

PRINT it
IT FORKAT(H ,32X 4PRIT*.3Xi§GREENHIL *2X§MIDHOCKLE*#3X#*TOTAL*t

124Xt*TWIST BENDING*)
PRINT 18

18 FORMAT(If ,5K,*F*,6¾*GAMM.A*,4X*STEP SIZE INTERVALt *,3(*- LENGTWt
I *lf4X#*FL'v6X#*FL2*tTXf4ENERGY ENERGY*) &

PRINT 19,FG ,DstPRN, GLtsMLIFLFL2,ENTL' ENB
LY FORu4AT(iH *Fiju*5r'cva3avrFurr5t'fr

C
CALL OCAL-
PRINT 51 OMINtSMIN

51 FORMAT(1H ,O MINIMUM DISTANCE IS *,FI2.6,* SS*,Fl2.S)
PRINT 6
PRINT BtSPHIXKYZIHNEWPSIABtCKAllAl2tAl3tA21,A31tA32,A33
PUNCH 6?

62 FORMAT(1MIpH0CKLE%)
PUNCH 6 1tFGAMMADS#PRNGLLIRNRNMAX
PUNCH 6 4?FLtFL2tENTLtENdtSUMN#SMIN
PUNCH &iSPxHIKX;YLteRN#i8PSI
PUNCH 6lA1IA12,Al3JAalA3,lA32,A33

C
C WE NOW GO TO POINT SYMKLTRIC WITH PRINT VALUE.PRECEEDING 4IDNOCKLE.
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C
DS2c O~ DDSM
CALL STEPICDSa)
K2 ISP
DO 24 KfljK2

24 CALL STEPIODS
CALL SYM(TFFL!.Sl.S2tS3oS4)
PRINT 8PSPHIKXtYZHNEWr4SIABtCHAIlAl2Al3tA2lA3lA3 2,A33

C
C CALCULATE TO END OF¶CABLE WITH ORIGINAL OS
C

IFFLi2
I SP=O

C
C SAVE NUMBER OF STEPS TO MID HUCKLE FUR END TEST
C

NTEST:NPRINT
NPRINT=j
%w I v9

C
C WE GET TO HERE WHEN WE HAVE CYME TO THE END OF THE CABLE
C

2$ IFFLR3
CALL SYMCIFFL'.Sj.S2;5354)
PRINT 26ISfi52

26 FORMAT(////,1H **---SYMMETRY FACTORSW--*,6X,*PHIsFI12.S,1OX,*A210,
1F12.5///)

PRINT 2T,S3,S4
27 FORMAT(//jH ,4---RMS VALUES---*,5XtFl2. 5,13XF12.5)

RIPSI/53

PRINT 28,RiR2
28 FORMAT I//JH ,*-e--RATXOS--.-*,1B8XFl25,.13XF12.5)

PUNCH 63
63 FORMAT (*ENDHOCKLE*)

PUNCH 6 1,SPHIXYLRNHPSI
PUNCH 61,AIltAl1rAl.A21,IA 3 1fA32.A33
PUNCH 6lsl#52s3ts4IRlRa

C.
C IF THERE ARE MORE! PAIRS, ,GAMMA TO BE DONE- RESET AND GO AGAIN,
C OTHERWISE STOP.
C

1000 CONTINUE
GO TO lOi

1002 STOP
END
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SUBROUTINE DCALC
COMMON /BLOK3/ XS(1NOOhY5(15GOh)ZS(1500tLSiDMINDSoSHMttNSTEPS
OIKENSI10t o(t50)o

THIS SUBROUTINE- CALCULATES RELATIVE MINIMUM OF DISTANCE
BETWEEN PAiRS-OF SYMMETRAC POINT§

00 5 J.I,1500
5 DtfJ} AnI 

DMINa-z
XM=XSILS)
YMtpYS (LS)
ZM=ZS(LS)r
MIN=LSw1

00 10 lnIMIN
JLS- I
,t tYR**z*Zso*?
IF(TX.LT.,000001o) GO TO 10
TZIC YMUZS(J)-Z4*YSMtJ)**2
T3t(XMwXS.(j I)*t 
DljZ Bi!*SQATt72/T1+13)

10 CONTINUE
PRINT 100, (O(J}i JrzlLS)

100 FORMAT(IH ,iOFI&05)

LOOK FOR MINIMA

TESTO0 (LSI

2 IF(D(I1.LT.TEST) GO TO 30
TESTO t(I)

21 IUelnj
IF(I.EQOo) GO TO 50
GO TO 26

30 IF(DII).L'r.O. GO TO 21
31 TEST:D(I )

32 Ir(D;I).GT.TEST, GO TO 40
TESTnD(I
I"I-j
GO TO 32

40 DMINaTEST
SMIN-( 'jIilOS*NSTEPS-
RETURN

50 PRINT 51
51 FORMAT(1H,* 0 HAS NO RELATIVEt MINIMUM N-

RETURN
END

22

C
C
C
c

C
C
C



NRL REPORT 7940

SUBROUTINE SYM(I*Sl#52,S3s54)
COMMON /BLOKl/ All Al2Al3,FtHPHItAtBtCCXYZtSA2l A3l1A32A33,

1 DADBDCOXoYOZABARICOUNTHNEWIAllQGAMMA.I6FLAG
COMMON /BLOK2/ KOUN1tSYMPFICl500D),SYMALFCISOO)

C
C THIS SUBROUTINE IS CALLED AT EACH PRINT STEP AND CALCULATES SYMMETRY
C FACTORS AT END OF! CABLE.
C

GO TO Cl1z,3)0l
C
C WE ARE STILL IN FIRST HALF oF CABLE6 WE ACCUMULATE VALUES OF PHIgAZ1
C

I SYMPHI (KOUNT)BPHI
SYMALF(KOUNT)"A21
S3m$33PHI*2k
S4A54.A21ao4
KOUNTzKOUFje1
J=KOUNT
IF(KoUNT.rEs onn) GOU TO 5
RETURN

C
C WE ARE IN SECOND HALF: 0 CABLE.
C

2 KOUNTaKOUNT-1
SYMPHI(KOUNTJ=ISYMPHI(KOUNTI.PHI)**z
SYMALF(KOUNT)u (SYMALF(KOUPNT)AZ1**2
SlaS1.SYMPHI(KOUNT)
S2S2+4 5 YMALF (KOUNT)
RETURN

C
C WE ARE AT TW_ ENDn:OF THi CArLE.
C

3 Sl-SORTESI /IJ#1) I
S2uSQRT IS/IJ* 1 ))
S3aSORT(53 /(J11))
S4=SQRT (S4/, JJ*l))
Pt-I vJ~ll

5 PRINT 4
4 FORMAT(H ,.…--------eKOUNT'OVER LIMIT ----- ^----*

STOP
END

23



FELIX ROSENTHAL

SUBROUTINE STEP5D)i
COMMON /BLOK1/ AlI.Al2rAlJFHpPHItAtSCtX.YsZtSIA2ItA31lA32,Af33

I DAtDOBDCDXtDYOZtAkBARIICOUNT.HNEWIAllO GAMMA#ItFLAS
COMMON /BLOK2/ K0UNTtSYMkHIU15001 SYMALF(lS0O1

C THIS SUBROUTINE STEPS THE CALCULATION FROM
C CABLE.
C INPUT DS - STEP SIZE:FOR CALCULI
C . *S _.-

C
C OUTPUT A
c .8 -ANGLES

C X C
C Y *COORDINATES
C Z +
C
C CHECK IBFLAG.
C IBFLAGwl IF a TOu CLOSE TO 90 I
C IF a ToO CLOSE TO Qv WE USE ALTERNATE FORHUl

IF{IDFLAG'.EO1; 00 10 500
C
A1%a rifler ur C~t i-Ill AY, tIurD=baCNTr rflf ANaI eS

POINT TO .OINT ALONG THE

t&TION

)EGREES
LAE

400 8. (-wF O' H *- SIN (A)) * OS

DArn F * (8 * CcS(Ai * SINIi/COS(Bl * PHfl * DS
DC. ( F ' H *' COS{A)/COSIB)1 *OS

C
C *** WE ADD INCREMENTS TU PRESENT VALUES TO OBTAIN VALUES
C AT A POINT DOSUNITS FURTHER ALONG THE CABLE.
C

AMA*DA
BNB*Du

CHECK TO 5EE IF B TOO CLosE TO 90 DE§REES

** WE ARE NOW READY TO CALCULATE INCREMENTS TO COORDINATES

DXrA1I *-nS
DYsAIZ * DS
DZaA1S3 it DS

**'- WE ADD THE INCREMENTS TO THE PREVIOUS VALUES oF THE COORDTNATES
TO OBTAIN VALUES AT A POIRT OS-UNITS FURTHER ALONG TE CiBLE.

X'tX.OX
Y"Y#DY
ZmZoDZ

*** FINALLY.WE CALCULATL NEW CABLE LENGTH

24

Cs=ABS (COS (R1)
IF tCe iLT*G.1 y so TO 1°0

C
C
C

C
C
C

C
C
c
C

C
C
C
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SNS*DS
C
C *** CALCULATEI NEW VALUES FOR A2IA31aA32,A33
C

A21SIN(A) SIN(B) *CSIC)U - COS(A) SIN(C)
A31UCOSIA)-SIN(B)*CuS1C) * SINA)*SINiC)
A37o _ Al oqTNtR) 'SlNIC) - SINCA)1 COS C)
A33.COS CA) COS CS)

C
C *;* CALCULATE NEW VALUES FOR A11,A121A13 AND RETURN
C

All=COS(B) 4C0S(C
A12=COS(B)4SIN(C)
A13=-SN(B)

300 HO Aj~-Z*A324Y*A33
ABARSABAR*All S ICOUNTICOUNT1
PHI-O. 5*A1 10
IFCABS(H)-.00000001I 16,16,15

15 ouIA!LsO=A3!r'l{,*Hn)
16 HNEWZO0

HNEw2st2./F)*(CoS(GAMMA)-1I),5SIN(GAMMA)**2
IF(HNEW2.GT,O0.IHNEWWSQRT HNyEWZ)
RETURN

C
C GET TO HERE WHEN B TOO CLOSE FOR FIRST TIME-.
C WE SAVE CURRENT VALUES OF AtboC
C WE THEN SET IBFLAB=1, A=C=Q,
C

00 ASAVE'A
BSAVE=B
CSA V EMC
IBFLA~ui
AEoC
COD*Buo.

C
C NOW CALCULATE- A220423 FOR FIRST TIME THROUGH
C

A2=SIN(A 5 AVE)DSINXbSAVE)SINlCSAVEE)COs(ASAVE)*COS(CSAVE5
AZ3'SI N CASAVE- *COS (h5AVE)

C
C WE NOW CALCULATE NEW VALUES FOR-X,Y,ZIs
C

200 XAX+All*OS
YUYsA12*Os
ZcZ.A13*Ds
S54S+DS

C
C NOW CALCULATE'NEW VALUES OF AII,J)
C

DAl lFOH*A2l*DS.
DAl2?F%4* A22*DS
DA21 sF* CWH0AII4PHI*A31)*DS
OA 13 SF 11`A23*DS
DA31Stl-F*PHl*A21*DS
DA32ScwFIvPHII*Aa220DS
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AllAllOA.l
A12rA1PaOAiZ
A21.!AZ .DA21
A1 35zA1 3+DAi 3S
A13mSQRT l 1 .-Aj**2-A12*2)
IFI WA30A13S LlT-00 A139,413
A31S=A31 tDA37 S
AkigtSQRT (i .Al1 S* * A 2 }I* *2)

IFu(A3j*A31SttLrr Q) A31*-4A31
A23wt-AII*AI34Aal*AI2*A31)./,(I,-Allv*21
A?2UIA12AZ3.A31)fAl3
A32SSA3290A3tS
A32eSQRT (1-AlZ**2-A22**2)
IF((A32*A3WS) .L".&. A32--A3?
A33C(A}l*A3l .Al*A3t) 1.twAl31
GO TO 36O

C
V. trY ¶X He°Er Ic tia &~a1
C CHECK TO SEE IF S STILLITOO CLOSE*
C

500 CBSSQRT:(1..A13**2
IF(CB.LT.O.1 G UO TO 200

C GET TO HERE IF a NO LONbER TOO CLOSE!
C WE RESTORE B TO PROPER aUlADRANT
C

IF(SIONCB.GT.Qdv CBR-CB
SB.Al3

C DETERMINE? BAtc UP TO ROTATIONS.
C

BXACOS (CB)
IF(S8.LT 6o. BcaB
CAs A33/C9
SA=AS23/CB
ARACOS (CA)
IF(SA.LT.O.t Am-A
CC=A11/CB
SCIAI?/C8
crx:Ar-n terr.,
IFiSC.LT .so.) Cs-C

C~
C- NOW DETERMINElROTATIONS
C_

8ROT.s-( R-BSAVE4 /6283 18530T
NPBROT40+5
BZB+Nm6. 2831 0530T
CROTm:(C-CSAVE. /6.28318530T
NZCROTOes
CwC.N*6e.83 185307
AROT- (-AS aVEIl /f2a385s30T
NCAROT.O*5
AmAsN*6.283i853o7

C CONTINUE WITH ORIGINAL FORMULAE)

IBFLA0 o
GO TO 400
END
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