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FAST COMPLEX CONVOLUTION USING NUMBER THEORETIC TRANSFORMS

1. INTRODUCTION

Pollard [ 1] has recently given results for the circular convolution of sequences of elements
from finite fields or from rings of integers modulo an integer. Rader [2,3] and Agarwal and Burrus
[4] describe number theoretic transforms which can be used for convolution of real integer
seguences and which are most suitable for implementation by digital computer. These transforms,
named the Mersenne and Fermat transforms, can be implemented by a sequence of additions
{or subtractions) and cyclic shifts of bits within a binary word. When these methods are used,
all results are exact and thus there are no errors due to arithmetic roundoff.

Reed and Truong [5] and Agarwal and Burrus [6] define complex number theoretic (CNT)
transforms in a finite field to permit the circular convolution of complex number sequences.
In this report a unified theory of CNT transforms is presented by defining such transforms in a
finite ring. The advantages inherent in the former number theoretic methods are equally valid
nere.

In section 2 a finite ring (perhaps with divisors of 0) with unit is defined that simulates the
complex (Gaussian) integers., In section 3 families of CNT transforms are described, and in
section 4 the convolution theorem is proved. In sections 5 and 6 special CNT transforms are
dealt with that herein are called the complex-Mersenne and complex-Fermat transforms. Finally
in section 7 implementation of the discrete Fourier transform (DFT) using CNT transforms is
discussed.

2. THE FINITE RING

Let m > 0 be an integer and /., be the set of integers

1
I:n=_(—n1—_);..-;_l,05 1!-"5 (EML)’ modd’

2 2 2 2
m m
=—ft—=—1 ey L, W byl TS *
(2 ) 1,0, 1 5 m even

Im is a complete system of residues modulo m; i.e., if @ is an integer, then a is congruent modulo
m to exactly one of the integers in /., which integer will be denoted by ((a)).

Let
Lm = {a+ b]l a., b = Im}
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and, if x = a; + b+j and y = a2 + b,j are members of L., define their sum and product as

x By =(a: + a)) + ((b: + b2))j,
X @ ¥ = ((alag - b]bz)) + ((a1bz + azbl))j.

, ©) is a finite ring with

Let A denote the ring of Gaussian integers:
A= {a+bj| a and b integers}.
"The mapping
[[..]J1:A— Ly
defined by
[[z]] = ((Re 2)) + ((Im z));
may be shown to saiisfy

[[z1+2:]] = [[z:]]

@
]
=

foad

)
e
(R

and

[[z122]] = [[2:]]1 © [[2:]].

It is important to note that if z € A and —m/2 < Re z,Im z < m/2, then
[[z]] =z. (N

Thus, in this case, if z is the result of a computation involving additions, subtractions, and multi-
plications of Gaussian integers, then (1), (2), and (3} indicate that z may be obtained by the.
corresponding sequence of operations in L,. If z is real, then [[z]] = ((2)).

3. THE TRANSFORMS DEFINED

. EEJ AAWIERLN

Let NV be a positive integer for which there exists an integer M such that ((VM)) = 1, Let
a € A such that for each positive integer ¢t < N there is an element 8: € A for which

([t —anBl) =1 {4)
and such that

[[a]l]¥=1. (3)
Let

Lg" = {(309 ZLy nues ZN..]) l 20y Tty oioy TN-1 e Lm}

o
=
=

AV = {(Zo, L1y cany ZN_1) | Z0y Zly veey SN2 e A} N

~
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let T be the transformation from A¥ to LY defined by

m

TQ(ZQ, F-4 O ZN_l) = (Zo, Z], Vrey ZN71),

where for each integer &, 0 < k£ < N,

No1 N ,
[[g~]

and let 77! be the inverse transformation from LY to LY defined by

T;I(Vo, V1, eey VN—]) =(UO, V1, oiey UNfl) ’

where for each integer £, 0 < k < N,

N-1
={[M 2 V"a<—ﬂk>JJ . (7)
n=40

(Here < .,. > is used to denote the least nonnegative integer modulo V.)

4. THE CONVYOLUTION THEOREM

Theorem: If
Talzos 21y ooy 2n-1) = (Zo, Z1, ooy Zn-1),
Tolwo, wi, ..o ww-1) = (Wo, Wi, ..., Wa-1),
and
Co =2, OW,, 0=k <N,
then
T, (Co, Cyy ooy Cyo1) = (Co, €1y oeny Cx—1)
where
N-1
= E ZpWeal—n> || . (8)
R=0
Proof: 1f
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then

T wes
=M N ZWia<—kn>

k=0

=t M :g: (2 z,,a:?”‘) (gﬁ w,a“‘) <= ""{”

= r}; é: p zMNgl a<pri- “>"J]

= 2;‘:] tgﬁ pw,,j, H:(M :go a<pti- n>k)]j) ) {9)

Consider the sum i

-1

_fi'f

l =

e e e e L s

If <<t> =0, then So = ((\)). If <t> # 0, then using (3) and the fact that
[[} —a¥<>]] =

we obtain
S<!> = [[B({)(I - a‘:t))jJ @ {{S{!}}}
= [[B«=]] © [[{1 — a<t>)8,5])
=[[B<>]]1 © [[1 —a¥<*]] =0.
Hence

rr I‘V_k -}"
HM 2 <Pl n>kJJ =(MN) =1, if<p+f-—n>=0,
if <p+ £~n>#0,

and, using (9),

This completes the proof.

Let {zg, 21, ..., 2w-1) and (wo, wn, ..., wy—1} be periodic Gaussian integer sequences with

period &, max {2l = 7, and max [a;| == &, If 8N < m/2, then
01

£
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N-1 N—1
—mf2 < Re 2 Zp'w<n—p>,1m E ZpWan-p> < mi2
p=0 p=0

and, as in BEq, (3),for0 = n <N,

[T

Ccy = [[ E zpwq_p;‘:ﬂ = :ii Zptn—p; (10)

p=0
hence the result of the computation given by the theorem is the circular convolution of the two
sequences. To obtain (10) it is sufficient to have
m > 278N, (1D

EX-MERSENNE TRANSFORM

aas

Let m be the Mersenne number M, = 27— 1, p prime,and let ¥ =p. Then with M =(2—27)/p,

@my = ((p(35%))) =@=2n =@ ~mn =1.

For ¢ = 2 it can be shown that for each integer ¢, 0 < ¢t < N, the ged (1 — 2%, M;) =1; hence
there is an integer B, such that

(((1—29B9) = 1.
Furthermore

(@) =(2N=(Mp+ D)= 1.

The conditions of section 3 are now satisfied by m, ¥, and «, and the transforms T: and
T;* as given in (6) and (7) take the following forms respectively: If z,=a»+b.j, 0 = n< N, then

for0=k <N
N-1 N-1 N-1
Zk = [[ 2 z.uznk:l:l = (( E anznk)) + ((2 bnznk))j- (12)

IfV.=An+B.j,0<n<Nthenfor0 <k <N

N-1 N-1 N-1 .
v = M Z Vn2<—nk> = M E A"2<—nk> -+ M 2 B"2<~nk> J’ (13)
n=0 n=0 =0

Here ((...)) means modulo M.

The implementation of (12) and (13) requires only additions and cyclic shifts of bits within
the binary words a., bx, 4A,, and B, The real and imaginary parts of Z and vx may also be
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computed concurrently. There is no roundoff error in these computations, since all quantities
are represented modulo M.

Simiiarly, longer sequences may be convolved with the complex-Mersenne transform by
using-‘the values of @ and N in Table 1. Each of the pairs {e, N} in Table 1 may be shown to
satisfy (4) and (5). The table entries for & = 2 and « =— 2 were covered by Rader [2] for the
real-Mersenne transform. The entries for « = 2j and @ = 1 + j are discussed in Appendix A.
Transforms with these values of « are straightforward even with o = 1 -+ j, since powers of «,
expressed as of, are of the form 2%a + 2%bj, e and b taking on values of 0 and = 1 and s being the
integer part of ¢/2. In addition, since the values of NV can be somewhat composite, some advantage
may be obtained by using a fast Fourier transform (FFT} procedure.

TABLE 1 — Multipliers «
and sequence lengths N

form=M,

a N
z p
-2 2p
2j 4p
1+j 8p

Let n be a positive integer, let m=F, = 2"+ 1, N=2"1 and let M = 22" -1, We see
that

((NM)) = ((22") =((2") = ((Fr — 1)} = 1.

For 0 < ¢ < N, it can be shown that ged (1 —2¢, F)=1. Thus, with a =2, there is for each integer
t, 0 <t <N, an integer 3: such that

((1—298)) = 1.

The conditions of section 3 are now satisfied by m, N, and «, and the transformations T: and.
T;* are given by (12) and (13) with ((...)) now meaning modulo F ..

Agarwal and Burrus [4] give other values {@, N} for the real-Fermat transform. These
pairs are also valid for the complex-Fermat transform. In particular

{a=2"%22"" = 1), N =2n+3}
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gives a transform whose length /¥ is twice that given when o = 2. Another pair
{a=1+j, N=2"1%

may be shown to satisfy (4) and (5) (Appendix B); furthermore using these values for {a, N}
the transforms may be implemented with a cyclic shift of bits within a binary word together
with additions (or subtractions). Since ¥ is a power of 2, the complex-Fermat transform may be
implemented with an FFT type algorithm. To convolve long complex sequences, the multi-
dimensional methods described by Agarwal and Burrus [7] may be applied.

7. COMPUTING THE DFT

The discrete Fourier transform may be implemented using the CNT transform via the
method of Bluestein [8]. Let V be an even integer, let 2 =(zy, ..., zv-1) be a sequence of complex
numbers of period N, let W = e~27!¥ and let T be the discrete Fourier transform. Then Iz =
Zo, Z1, ..., Zn_1), where

= 2 ZH(WI,’Z)an

n=0
N-1

= (W 2y’ 2 (2o WPy tk-m¥/2

=0

N—1
=(W1."2)k2 2 dngr—n,

n=0
where

du = 2,(W'2)" and g, = (F-12)a*. (14)
Since N is even,

dusn = d, and En+N = &n.

Finally, if #'2, d,, and g. are scaled so that they are members of A and if m is chosen subject
to (11}, then the computations may be carried out using the transforms of section 4 or § and the
theorem of section 3.

Example: Consider the DFT of (zo, 21, 22, z3) =(1, 1, 1, 1). Let m=F,=2%+ |, N=22, M=
2%, a=28(?=—1, a®=—2% o*=1), and #'* =(.7-0.7/ (quantized to one significant decimal
digit}.
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Each of the terms in (14) are multiplied by 10 for scaling purposes, and we obtain

(do, dl, dz, da) = (10, T— 7j, '_10, 7 "‘7])

and

(003 81 &2, 03) = (101 7 + 7.;',_10: 7+ 7.:’)

for the sequences to be convolved. If we use (12), the transforms of these sequences are respec-
tively

(Do, D, Dy, D3y ={14— 14}, 20,— 14+ 14}, 20)
and

(Go, G, Go, G3)= {14+ 147, 20,—14— 14, 20}
(Naturally all computations are moduio 2" + 1.) Taking the product of these transforms, we
have

(Vo, V1, V2, V3)=(392, 400, 392, 400),

and, using (13} for the inverse transform, we obtain
{vi}, v, Vg, 1}3) = (3985 07_"4r 0)= (]S)

Multiplying each member of (15) by the appropriate term, {(F¥3)*2, and rescaling, we obtain
the DFT '

(Zoy 21,22, 2£3)=(3.98,0,0.04,0) = (4,0,0,0).

8. SUMMARY

A family of transforms were defined that generalized the recently given number theoratic
transforms (NTT) of Rader, Agarwal, and Burrus. These new transforms were used for circular
convolution of finite sequences of complex numbers. The computation of the DFT was given as

an examble
mple.

Several multipliers o« were defined that can be used even with real number sequences 1o
allow for the convolution of sequences longer than those previously considered.

As with a real NTT, the principal advantages of these transforms are that they may be
implemented with an FFT procedure, without computational roundoff, employing only circular
bit shifts within words and additions (or subtractions).

It was shown that a characteristic of these methods, when used for circular convolution,
was that the computation word size linearly depends on the sequence length.

o
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 Appendix A
PROOF OF (4) FOR THE ENTRIES ¢ = 2 AND o« = 1 4+ j IN TABLE 1

The purpose of this appendix is to prove (4) for @ = 1 +j and o = 2j with modulus A ,. Let
m and NN be positive integers and ¢ be an integer 0 < ¢t < N, Let

ME =1+ )N =1 - /).

The following tabulation allows one to compute with A«

(): (1— 242, t=28n, 0 < n < N/8,
{(ii): (1= 24m)2 4 (24m)2, t=8n+1)
(iii): 1+ (24n+1)2) t=8n+2
\o Ja o as 2emt1)2 4 (Q4nt1)2, t=8n+3 L o<n<n.
(v): (1 + 24n+2)2 t=8n+4
(Vi): (l + 24n+2)2 + (247!-{-2)2’ t= 8n + 5
(vii): 1+ Qs t=8n+6
(Viﬁ): (1 —_ 2¢n+3)2 + (24n+3)2’ = Sn + 'f J

If ged (A, m) = 1 (so that A7’ ' exists modulo m), then, by defining

B AN (L — (1=,
we see that
(1= (1+7H)8:=\"A = 1.

This is (4) for @ = 1 +j and modulus m.

Definition: We say that a belongs to the integer ¢ modulo m (we write ¢ —> ¢ mod m) if and only
if ¢ is the smallest positive integer s such that a* = I mod m.

The foliowing results may easily be proved:

Lemma I: If e — ¢t mod m and ¢* = 1 mod m, then ¢|n.

Lemma 2: If a Z 1 mod m, & = 1 mod m, and ¢ is a prime number, then ¢ — ¢ mod m. ';-"jj'
Lemma 3: If ¢ = b mod m, then gcd (a, m) = ged (b, m).
Lemma 4: If ¢|b and ged (b, m) = 1, then ged (a, m) = 1.

Lemma 5: ged (x, m) =1 if and only if gcd (2%, m}= 1.

10
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For each ¢ we shall show
ged (A, m)=1. (Al)
In all cases except (i) and (v), A/ is of the form
2+ 1 (A2)
or, by virtue of the identity
(22541 2541 - Y2241 — 2541 4 [y == 24842 4 | (A3)

A¢ divides an integer of the form (A2). Using Lemma 4 in cases (ii) through (viii) and Lemma 5
in case (v), we shall prove (A1) by showing that

gcd (2 + 1, m) = | for all values of 4. (Ad)

We will show case (i) independently.

Let m=M,=27—1, let p > 2 be a prime, and let ¥ = 8p. Then 27 = 1 mod M, and, using
Lemma 3, it wiil be sufficient to prove {(Ad) for 4, 0 < & < p.

Assume ged (2% + 1, M,) = qd > 1, where ¢ is prime. Then

21] 1 mod o and 22k
moa § ani 2

1

"\‘\ﬁf{ Fed
LaEN ip .

Using Lemma 2, 2 — p mod ¢. Using Lemma 1, p|2%. Since p is odd, then p|% and hence & = p,
which is a contradiction. Thus we have proved (A4) for all cases except (i). In this case, we need
only show via Lemma 5 that

ged (1 -2 M)y=1, 0<n<p. (A3)

Once again if we assume that gcd (1 — 2%, M,) = gqd > 1, ¢ a prime, then
2% = | mod g and 27 = 1 mod 4.

Using Lemma 2, 2 ~* p mod ¢. Using Lemma 1, p|4n. Since p is odd, then p|n; hence n = p,
which is a contradiction. Thus we have (A5) and have proved (Al)for each ¢, 0 <t < N, Therefore
a = | + j has property (4) mod M.

Letm=M, N=4p, a =2}, and

o £ (1= (2)H)(1 — (=2j), 0<t<N.

Then

—
[




VEGH AND LEIBOWITZ

@: (1— 2%, t= 4n, 0<n<p,
s A
{: 1+ 28n+2 t=4n + 1
o= ,0=n<p.
©: (1+2mm2,  p=dn+2
L) 14 28n+s, t=4n+3,

We see using (A4), and also Lemma 5 in case (¢), that

ged (o, Mp) =1

|

in cases ®, ©, and (@. By Lemma 5 and (A5) we have @. Thus o7 mod M, exists. Now B

defining i
;

B,=o7 (1~(~2j)h,
we have

(1= Bi=awi’=1, Q0<t<N.

Thus a == 2 has property (4) mod M.

12




Appendix B
PROOF OF @) FOR a =1 + j, N =22, AND m = Fy

The purpose of this appendix is to prove (4) for & = | +j with modulus Fy = 225+ 1. We
use the notation of Appendix A. If we use the identity (A3) and cases (i) through (viii) of Appendix

A, we find that A, divides the. following integers in these respective cases:

(i): (1 —24m32, t=8n, 0 < n < N/8.
(ii): 26n+2 4 | t=8n+1
(ifi): 28n+2 | t=8n+2
(iv): 216“+:+ 1,2 t=8n+3 0= <N
(v): (224 1)2, t=8n+4
(vi):  218r+10 4 | t=8n+5
(vii): 28#+6 4 ], t=8n+6
(vili): 2'6rt1d + t=8+7

Letm=Fi, k> 1, and N=2%2 If ¢ is a prime divisor of I+, then

* = —1 modqgand 22 =1 mod q.

22
If 2 - ¢t mod g, then using Lemma 7 we have
tl 2k+1

or t = 2* for some positive integer £ < k- 1. If £ < k+ 1, then

22! = | mod ¢

(222! = | mod ¢

or

22% = 1 mod q,
which is a contradiction. Thus ¢ = 2%+* or

2 — 2% mod q. (B1)
In case (ii) assume for some n, 0 < n < 2%~ that

ged (21802 4 | Fry=4q9d > |, g prime.

Then

216r+2 = — | mod ¢q

13
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and

232+ = 1 mod ¢.

Hence, by Lemma 1 and (B1), 2¥+1|32n + 4. This is possible only if £ < I, which is a contradic-
tion. Thus

ged (2188724 | Foy=1, 0n <261

Fach of the cases (jil) through (viii) leads to the same conciusion.
In case (i), assume for some n, 0 < n < 2%-1,
ged (1 — 22, Fp)=qd > 1, gq prime.

Then 24* = 1 mod q and, by Lemma 1 and (B1), 2¥*%4n; or n = 2¥*, which is contradiction.
Hence ged ((1 — 24")%F,) = 1. Thus, for 0 < ¢ < N, A, divides an integer which is relatively
prime to F, so that, by Lemma 3,

ged (A, Fey =1, 0 <t<N
Thus A7 ! exists modulo Fy, and, as in Appendix A, with
B &N - (1=
we see that
(1= (1 +)IBe=r"N=1;

so = 1 + j has property (4) mod F\.

14




