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ENTIRE SOLUTIONS OF THE FUNCTIONAL EQUATION FROM
PERCUS-YEVICK AND GEL’FAND-LEVITAN INTEGRAL EQUATIONS

1. INTRODUCTION

Among the many mathematical theories which have developed fully in recent decades
is the complex analysis of the functional equation. As F. Dyson pointed out, the progress
of both mathematics and physics has in the past been retarded by our unwillingness to
listen to one another [1]. Therefore it is rather fortunate that the early development of
functional equations met the physical needs arising from the different fields of physics
and engineering science. Since physicists and engineers have become involved in quantum
mechanics and many-body problems, the real picture has turned out to be complicated
and puzzling in many cases. Whereas the system they deal with gets sophisticated and
an exact solution becomes difficult to obtain, the necessity is to find physical insights
into the problem and some sort of rigorous mathematical solutions, even under a simpli-
fication or some approximation of the problem. The functional equation method pre-
sents the general solutions, some of which can serve the physical need in a few problems.

We will consider here two integral equations, the Percus-Yevick [2] and Gel'fand-
Levitan [3] integral equations, which give rise to functional equations. The former plays
an }mpﬁx rtant role in cquulblxuxu statistical mechanics in Ll.nue‘beaﬁLJ.l.ﬂg a certain fluid prop-
erty, whereas the latter has been used in various fields of science, for example, in the one-
dimensional quantum-mechanical potential problem, the plane stratified plasma, the trans-

mission problem of the electromagnetic wave, etc.

Our efforts in this report will be concentrated in rigorous mathematical solutions to
the general class of functional equation of the type®

Y2(z) + go?(z) = h, (1)

which is extracted from these two fundamental integral equations used in physics and en-
gineering science. The derivation of Eq. (1) depends on physical parameters, and no gen-
eral rule has yet been found.

First we will sketch the derivation of Eq. (1) from the Percus-Yevick integral equa-
tion of hard-sphere mixture [5]
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*Special solutions of this type were obtained before by Penrose and Lebowitz [4].
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where

Pifsd Tl < i

0,(r) = s (3)
(p;0;) ! &jr),r = Ry,

n denotes the number of species, and p; is the number density of each species; C;{r) and

8; ;{r} are the direct and pair correlation functions respectively. Furthermore, we consider
a special case of the Widom-Rowlinson model in two component versions, that is,

Rfj = wand Rif =0 in Eq. (3)‘ {4}
Then by defining
iy
Fi(z) = f e a;{rydr, {Ga}
5 J i
0
G;i(2) Ef e g;{r) dr, {§h)
Ry
and
_ ol o
U = (-8 | emar | ooy, (50)
0 r-R”-
we get the Laplace {ransform of Eq, {2}:
ot _~ ;{ Il Pt Ry Ranrd -~
. Flzg) + Gz) = 5 - G(2) {Flz) +F(-=2) } - Ulz) + U(=), (6)

where the tilde denotes the matrix form related with each component and

1
= A5 e o o
=1
is a constant.
hie taolr hova iz fn find Blel 4ol and THal smder tha annditinn
WAL UG 1ATLC 10 LDRNF O LgEiii & ‘ﬁ}f’ ui@f; AL LA U{ﬂ} RALAVIG. L VING UAFRARAERVAAFIL
fig”(r) - 1id?' < w0, (3}

The diagonal elements of Eq. 6 are obtained easily by making use of the Liocuvilie
theorem.
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After some heavy algebraic manipulation for off-diagonal elements of Eq. (6), we
obtain the function equation

where
(2}
¥i(z)
g(z)
and
h(z)

lil

v2(z) + g(2)¢2(z) = h(2),

é {Flz(Z) + Flz(—Z)},

1
+ 3 (z - A11)F5(2),

4u? - 22,

M2 = pAg; - Aqq

= U%z(d) = constant.

(9)

(10a)

(10b)

(10¢)

(104d)

Here y(z) and @(z) are even and entire functions of z such that log {y(z)! and log ()l
have the asymptotic behavior &|Re 2| for large z.

In three dimensions a similar analysis shows that

and

with p(2) and Y (z) similar to Eqgs. (10a)

g2) = 4h(z) - 28

h(2)

and (10b).

p2 - 0f, ()22,

(11a)

(11b)

When we deal with different models, we will find different h(z). For example, in
the nonadditive mixture of hard spheres [5], we have (in three dimensions)

h(z) = a(z)A(z) = h2%
=0
and
g(z) = 4a(z) - 2
and the same functions as in Eq. (10) in the case of one di

>

. (12a)

(12b)
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Next we derive Eq. (1} from the Gelfan’d-Levitan integral equation [8]:

X
B(.')C 'Py) + F(x: y) + f F{x, U)B{U + y) du = {13}
maxl-x, -¥]
where
K(x,y) forx =y
F(x,y) = (14)
| (B(x,y)  forx <y

and K(x, ¥) and E(x, v) are the precursors of inverse scatfering and of the propegating
wave through the medium when y = of {¢ = velocity of light; # = time). Since B{x} is the
Fourier transform of the reflection coefficient b(k), we obtain the following Laplace
transform

Alz)e?* + A(2)F(-z} + Fiz2) + G{z) = Q {15)
iy Aofining
by defining
Alz) = bl-ik), (168}
X
F(z) = j F(x, y)e ™ dy, {16h}
=X
and
6@ =[ Faemay. (16¢)
X
The task in Eq. {15) is to find F{z) and G{z) when A(z) is known. For example, we

know A(z) to be
Afz) = - L ('\/z2 + k% -z)z n

in the case of the step potential. In this case, we recover the functional eguation of the
same type with Eq. (10), namely,

V@) - (2 + kD) = 1, a8
where
We) = 3 (F2) + Flz) + &5 +.05% ) (9w)
4
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and

o) = oo (Fe) - F(=2) + e - e ). (19b)

Given A(z), we find in general a functional equation of type (1).

2. STATEMENT OF THE RESULTS

We investigate in the following sections solutions to the functional equation
Y2 + gp? = h, (20)

where g and h are nonzero polynomials and  and p are to be entire functions. We con-
tent ourselves in this report with outlining proofs to Theorems 1 through 4 that follow to
keep the many details from obscuring the ideas. Full proofs will appear later in a paper.

Theorem 1 is an existence theorem. Theorem 2 shows the existence of a convenient
canonical form for those equations of type (20) actually having entire solutions. Theorems
3 and 4 describe the general solution. In the last section, after our condensed proofs, we
consider applications.

Theorem 1. There always exist entire solutions ¥ and  of Eq. (20), unless for some
complex number a and positive integer «, z - a divides h to the exact power 20 - 1 while
(z - a)2 ¢ divides g.

The following definition is needed for the statement of Theorem 2. Definition. A
functional equation

Y2 + g2 = hy, (21)

where g, and h; are nonzero polynomials with g; dividing g and hy dividing h, will be
said to be constructively equivalent to Eq. 20 if and only if one can construct an algo-
rithm for producing two polynomials p(z) and £(z) such that whenever y; and ¢ are
entire solutions of Eq. (21), then y = p(2) Y, and ¢ = §(z) p; are entire solutions of Eq.
(20) and conversely, every pair of entire solutions of Eq. (20) is of the form p(z)Y; and
&(2)p, for entire solutions ¢, and g, of Eq. (21).

For the canonical representation we have:

Theorem 2. Each equation of type (20) which actually has at least one pair of entire
solutions is constructively equivalent to some equation of the form

Y2 + gpy? = qqq , (22)

where p, q, and q are relatively prime nonzero polynomials and q has no multiple zeros.
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We next proceed to describe the structure of the general solution of Eq. {(22).

Theorem 3. Let us choose branches of \/qp and v/quy. A puair of entire functions
and ¢ is ¢ solution of Eg. {(22) if and only if it is of the form

¥V = +/qqy sin /gpy(2))
v = /P gy cos /apv(2)),

where 'y(z} may be any multiple velued function which is analytic and singie vaiued on

e

the Lu;upm..m y»unc with suitable cuts f!UHL the zeros u; Pag; i z = oo rgmoved such tnal.
{a) at each zero z; of q, ¥(z) - nj’ﬂ'(-\/__ii)“l is analytic for some integer n;; (b) at each
zero zy, of p, ¥ - Ui + {1/2)1 n(/qp)~? is analytic at z = z_ for some mteger L :felat
each zero z, of o4 of multiplicity m,, y(z) + (1f2)tr1 log {z - Zy) (\/’_ Y1 is gnalytic for
some mteger f.,-m, <t < m,, such that {m, % t,)/2 is an integer; (d} given a solution
pair y and ¢, and any associated v, say 7y, then v, is another associgted 7y if and only

if /Qp {71 - ¥p) = 2037 for some integer n, .

{Note if v corresponds to the solution ¥, ¢, then v + 7{/qp)~! corresponds to
the pair -5 , -y, and —y corresponds fo the pair -y, , p.)

Theorem 4. Let s(z) equal the product of the distinct zeros of qi{t). For each p, g, 43
and sets of integers nj, 4, . and t, as in Theorem 3, there exists a function vy, (z) satisfy-
4 M aonning An’r;r\ Frivthor t\r, 2% 310 ba nmg!tgn ‘:"12 ‘4“&&

ing the conditions of Theorem 3 concerning ¥( Further, v;{2) may wy

form

n@ = &/FEE) f VBN () de

for some polynomial £(t} and some complex number a which is not g zero of pay; .

If is clear that any vy{(z} as in Thecorem 3, corresponding to a particular set of n;, 2, ,

and i,, and the v {2z} in Theorem 4, corresponding to the same set of n;, x:k, and ip, ﬂlﬁer

by an entire function.

ETHOD AND PROCEDURE

(,JD
i?;’

We first prove the nonexistence of solutions under the conditions asserted in Theo-

rem 1. Clearly {z - @)2%"1 divides {2, so {z - a)* divides ¥ and {z - a)2% divides both y?
and g. But then (z - a)2% divides h, contrary to the hypothesis, so there are no solutions.

The remainder of Theorem 1 is a consequence of Theorems 2, 3, and 4.

We shall sketch a proof of Theorem 2 after the following example. Consider

We may write this as
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W2 + [22(z-1)(z - 2)1[(z - 3)2] 2 = [22(z-1)%(2 - 2)][z - 4],

where the polynomials in square brackets are each relatively prime except for the first and
third, which indeed have all their distinct linear factors in common. If the first and third
factors above had no multiple zeros, we would have the desired form already. Instead we
notice that z(z - 1) must divide y and, using this, that z — 1 divides . Then setting
=2(z - 1)y and ¢ = (z - 1)¢;, we have

Y2 + [(z-1)z-2)][(z-3)219? = [2-2][z-4], (24)

which is in the desired form. As we see from this example, the only difficulty in the
preceding procedure is in dealing with multiple zeros which occur in either the first or
third square brackets. It is possible to prove that  or ¢ is always divisible by factors
which allow us to carry out cancellation as in the example. (If we cancel out a factor
completely on one side but not on the other side, then it is no longer a common factor,
and it should be moved to either the second or fourth square brackets respectively.) This
indicates the proof of Theorem 2.

4. CONSTRUCTION OF THE SOLUTIONS
Next we shall sketch the proof of Theorem 3. Suppose that ¥ and ¢ are two entire
functions which are solutions of an equation of Eq. (22) type. We may factor Y2 + gpp2

into

(¥ +ivap ©)(¥ - iv/ap ).

If we set

U+ iNap v = iNga; eV e (25)
and

U - i@ = -i/ag; e VP rE) (26)

this will define a multiple-valued function ¢{z) which is then certainly analytic on the
complex plane with suitable cuts, from the zeros of pgg;to z = o0, removed, as required
by the statement of Theorem 3.

We next analyze the behavior of +(z) at z;, a zero of g. Analytically continuing
Eq. (25), once around z;, we necessarily obtain Eq. (26). Thus we are eventually led to
the conclusion that vy(z) - nm &/ap)~1 is analytic at z = z; for some integer n;.

We can write, using Eqs. (25) and (26),

V(z) = +/qqq sin (\/qp ¥(z)) (27a)
and
7
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9(z) = /p-1g, cos (v/ap Y(2)). (27b)

By use of several trigometric identities, we can show that if the functions J{z} and
w{z} are to be analytic at z = 23, a zero of p, then

vie) - {4, + 2 Veey/art
\ a g

is analytic at 2 = 2, for some integer R, . (The cases of z; having even and odd multiplic.
ity are considered separately.) One of the major problems is showing that

1@ - (% +3 Ve

does not have a pole at z = z;, after we know that it is single-valued there.
Let z, be a zero of g3 . In Eq. (25) let ¢ + i4/qpy vanish to the order {(m, + 1,)/2
at z = z,. Then ¢ - i\/qpy vanishes to the order {m, ~ £,)/2. Also, from Eq. {25},

r 1 1
V4 exp L\/"qu(z) - 5trlog (2 - 2,) J

is analytic and nonvanishing at 2 = z,; hence

1
VaprR) ~ Gt log(z ~2,)
is analytic at z = z.. Obviously f, is an integer and so is (m, * £,)/2.

One must then go through carefully to show that the necessary conditions are
indeed sufficient.

We next sketch the préof of Theorem 4. We shall indicate how we can show the
existence of a polynomial f(f) such that for some a in C, which is not a zerc of pgg,,

and for each j, &, and r as in Theorem 3,

2

r j F iy are e A RPN 1 oA =

} A pllgiiy iste)) Ly at = nmm, {28) :
a z

RN-orG (g +1)

[ Voo sy ae = (843 )r, (29)

a
and

+/Pq (5)71f has a residue of ¢,i/2atz = z,. {30)

1t is possible $o verify that Egs, (28) through (80) together imply the stalement of
Theorem 4. Suppose that we have indexed the set of z; and 25, by z,. Then we can

B
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show that it suffices to find a collection of polynomials f,, such that

[ votoamits, o at = i1, (28)

where 6:“1 is the Kronecker delta. Indeed, we can set

F =0 cufuse) + ) it (/PEaE) Ys(e)(z ~2,)7

u r

for appropriately chosen constants ¢, . The existence proof for the f, s is fairly compli-
cated. We assume that no such polynomials exist; this is shown to be equivalent to the
matrix

( j NGOl dt)

with an infinite number of rows, corresponding to & = 0, 1, . . . , and a finite number of
columns, corresponding to the different z,’s, having rank less than the number of its col-
umns. Changing variables so that the paths of integration are all from 0 to 1, we have

that some linear combination of square roots of differing polynomials (the p(£)g(f) after

the differing changes of variables), with not identically zero coefficients, has every moment
on [0, 1] equal to zero. We can prove that this means that the linear combination of
square roots must be identically zero. If+/pgq is not a polynomial and the point @ was
chosen “appropriately’ previously, we can show that the differing square roots are line-
arly independent functions. (We analyze the locations of the singularities of the square
roots.) This gives the desired result if \/pg is not a polynomial. The case where \/5&

is 8 polynomial is an easier but separate one. This completes our outline of the proof

of theorem 4,

5. APPLICATION TO SPECIFIC CASES

We next apply the results stated in the second section to the cases of greatest phys-
ical interest.

To aid us, we shall need the following results:
Corollary (to Theorems 1 through 4). Set § = (1/2) deg (pq). Let us choose arbitrarily
a polynomial F in z. (a) If 8§ > 1 is an integer, there exists some /Pavy, as in Theorem 3,
such that, at z = oo, \/pqy is asymptotic to F + O(z0-1). (b) If 6 > 1/2 is not an integer,
there exists some A/pqy, as in Theorem 3, such that, at z = % ,\/pqy is asymptotic to vz F+
0(z8-1). (¢) If & equals 0 or 1, then there exists some \/DPq7, as in Theorem 3, such
that, at z = oo, \/pqy is asymptotic to F + O(log z). If § = 1/2, then there exists some
V'PqY, as in Theorem 3, such that, at z = «,/pqy is asymptotic to VzF + 0(1). (d) If

o
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5 > 0 and both \/pqy; and +/pgvy, are asympiotic to either F or \/EF for some polyno-
mial F, up to the error term given abouve for the appropriate value of 8, and if further vy
and vy both give rise to the same consiants ny, %, and &, then v; = ¥5. {(¢) In parts
{a) through {c), given any allowable set of values of the constants n;, &y , and %, {see The-
orem 3}, we may require also thal the v to be constructed there corresponds to thesge

values of ny, %, and t,.
Proof. We use the formula

v
VPEGEE) = | /AOaEst) it dt + VPGS
(e

where g is an entire function. Now

has an expansion about z = v in descending integral powers of ¢ if § is an integer, or
descending odd integral powers of t1/2 if § is not an integer. Thus the integral is of

the same form as the integrand, except that if § is an integer, there may now he a log 2
ferm, and if § is not an integer, there may now be a constant term, If § is an integer,

set the terms where the power of 2z is nonnegative equal to G. If § is not an integer, set
the terms where the power of z is positive equal to G. We can find a series &, in descend-

ing integval powers of 2z, such that
h = (VpqyHF - G)
if & is an integer or
ko= (VPO EF - G)

if § is not an integer. Let the polynomial g be defined to be such that A - g vanishes at
z =%, Then '

\/Pgg = F-G + 0(z8-1)

if § is an infeger, and

VvPag = \/zF - G + 0@-1)

if § is not an integer. With this choice of g we obtain the desired asymptotic form for

/P47, up to an error which depends on the nature of 5. ¥ & is an integer, the errox is
the larger of O{z°-1) and O(log 2). If § is not an integer, the error is the larger of
0(z8-1) and O(1). This proves parts {a) through (¢} of the Corollary. We next prove

part (d).

Troo £l o semmn gl oo e A meen onn p
DY 1€ reinafK gitelr Lnedfenl &, Weé 8€e i

VPAYT ~/P9Ya T A/ PYE,

10




NRL REPORT 7911

where g is entire. Also1/Pgg is asymptotic to O(z8-1), O(log 2), or O(z°~1/2). In the
first and third cases,

lim lg(z)l = 0,
Z—roe

S0
g=0.

Also, if & = 1, the same conclusion holds. This proves the Corollary, Lemma. If, for
any two solutions  and ¢ of Eq. (20), \/pqy is asymptotic to a/z + O(1), where a ¥ O
is real, then on any angular sector about z = 0 not including the negative real axis, we see
that [ Wiand (p|are asymptotic to

exp (@|Re/z| + O(llogzl)),atz = .
Proof. Trivial
As an example, we now consider a more general Penrose-Liebowitz equation:
V2 + (@22 + b)g? = r(z?), (81)

where a@ and b are complex numbers, @ ¥ 0, r(z2) ¥ 0 is a polynomial in 22 with complex
coefficients, and (az + b) does not divide r(z}. We are required to find even entire solu-
tions of Eq. (31), { and y such that, for some real « ¥ 0, log ¥ and log v are each
asymptotic at 2 = o to

alRe z| + O(llogz!)

on any angular sector about z = 0 not containing either the positive or negative imaginary
axis.

Set w = z2. By Theorem 1 we always have a solution. By the Corollary, with
6 = 1/2, and the Lemma, we have that for each integral choice of ny and the allowable
choices of ¢, there are entire solutions Y (w) and ¢, (w) with log |, (w)! and log oy (w)l
each asymptotic to

alRe+/wl+ O(llog wl)

on any angular sector about z = 0 which does nol contain the negative real axis. Then
Y1 (22) and ¢, (22) satisfy the desired conditions.

From Theorem 3(d) and the comment after the statement of Theorem 3, we see
that if our only free parameter is n;, then the only solutions are Y, and *y,. This
will be the case if q; is a nonzero constant. If ¢; is linear in 22, then we have two
choices of ¢y, that is £; = *1. By interchanging v and -v, if necessary, we may take
t; = 1. Then by the comment after the statement of Theorem 3, the uniqueness of

11
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¥y and ¢;, up to mgn, follows. If g4 {w) has degree larger than one, we cannot have
uuu.fl.i‘r.‘:i’iess, even up to aigu

H we weaken the asymptotic condition slightly, there is also not uniqueness. Thetre
exists an entire function E{(z) which is bounded on every ray out from zero but which is
not a constant and is not even of finite order of growth. (The bound is not uniform, of
course.) Adding any such function {we can construct many) to {1/gp)~17, we would
abtain new solutions { and ¢ with log || and log || each asymptotic ta

afRe+/w!+ Ofllog wl)

on every ray out from zero, except the negative real axis.
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