UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7905

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
- An interim report on a con-
DATA SECURITY IMPLICATIONS OF AN EXTENDED tinuing NRL problem.
SUBSCHEMA CONCEPT €. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Frank A. Manola
Stanley H. Wilson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval_ Research Laboratory NRL Problem B02-24
Washington, D.C. 20375 Project RF-21-222-401-4361
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy July 15, 1975
Office of Naval Research 13. NUMBER OF PAGES
Arlington, Virginia 22217 17

14. MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) 5. SECURITY CLASS. (of this report)

Unclassified

15a, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identily by block number)

Access control Data structures Logical structure
CODASYL Data Base Task Group Schema

Data base design Data base management system Strongly typed languages
Data transformations Data base management system architecture Subschema

Data security Extensible languages

20. ABSTRACT (Continue on reverse side if necessary and {dentify by block number)

Modern data base system architectures, such as those based on the CODASYL Data Base
Task Group (DBTG) specifications, stress the idea that the users of the system should interact
with a logical description of that portion of the data base with which they are concerned,
called a subschema, which is derived from a logical description of the data base as a whole,
called a schema. One of the benefits of this architecture is its ability to provide enhanced data
security, since the mapping from schema to subschema may conceal information from the user.
Use of this architecture to enhance data security was studied with respect to schema, subschema,

FORM EDITION OF 1 NOV 65 IS OBSOLETE
DD 1ian'7s 1473 Eoimion of 1 nov 6515 ossoL i UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

UNCLASSIFIED

L CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Cont.)

and design and implementation of application programs. Instances of such use include both
that in the existing DBTG specifications and some proposed extensions to that architecture.

ii UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

INTRODUCTION . . .ottt ittt ittt 1
DATA SECURITY ...ttt ittt ittt e it i 2
A MODEL OF THE SCHEMA/SUBSCHEMA ARCHITECTURE 3

DATA SECURITY IN THE SCHEMA/SUBSCHEMA ARCHITECTURE . 4

A SIMPLE DATA SECURITY PROBLEM 5
CODASYL DATA SECURITY FEATURES oo, 8
USEOF DERIVED DATA i iieianaaanes 9
LIMITATIONS ON THE CODASYL SPECIFICATIONS REQUIRING
EXTENSIONS i i i i i e ianeaaaannns 10
EXTENSIONS TO THE CODASYL ARCHITECTURE............... 11
IMPLEMENTATION i i s e e 12
CONCLUSION ...ttt i it ianasenninnenn 13
ACKNOWLEDGMENTS ... it i i e i 13

iii

DATA SECURITY IMPLICATIONS OF AN EXTENDED
SUBSCHEMA CONCEPT

INTRODUCTION

One of the most important concepts in the CODASYL data base language specifica-
tions (1,2) is that while a logical description of the entire data base, called the schema, is
important for use in the administration function of controlling and optimizing the entire
data base, the user of a data base should have his own logical description of that portion
of the data base with which he must be concerned, called the subschema. The user can
interact with this subschema via program or terminal. The schema/subschema architecture
has important data security ramifications, since it provides the possibility of designing the
subschema so as to conceal from the user information in the data base to which he is not
allowed access. Such a design, in effect, presents the user with a virtual data base which
reflects not only that user’s data requirements, but also his data security constraints.

The data base which the user sees in his subschema is the result of two transformations:
first, the transformation from the storage on physical devices to the logical data base, de-
fined by the schema; second, the transformation between the logical data base and the
user’s view, defined by the subschema. Because we are interested in logical data security
and because, of the two, only the subschema transformation is a logical transformation, it
is the only one that will be addressed in this report. In the CODASYL specifications,
only very limited transformations between schemas and subschemas are permitted—omitting
schema data from the subschema, or renaming schema data. As a result of this and certain
dependencies between the schema and subschema, the concealment which can be accom-
plished via the subschema has been somewhat limited. The amount that can be accom-
plished, however, has been generally underestimated; and, consequently, the data security
possibilites have also been underestimated.

More recent work (3-5), has suggested the possibility of more complex transformations
between schema and subschema and has also suggested that such transformations may allow
for enhanced data security. This has been reinforced by a recent paper by Minsky (6), who
not only suggests that data security requires the ability to form ‘‘abstractions” and to de-
fine appropriate operators on them, but further contends that data security cannot be en-
forced without the ability to control the internal actions of the user’s program.

This report attempts to discuss briefly the problem of data security in a schema/sub-
schema architecture from a broad perspective. While arguing for facilities for more complex
schema-to-subschema transformations and the ability to define abstractions and appropriate
operators. we contend that these facilities should be used to provide subschemas which
simultaneously reflect user data needs and data security constraints and which keep the
security responsibility within the data base management system (DBMS) software—rather

Note: Manuscript submitted May 1, 1975.

MANOLA AND WILSON

than to attempt to control the internal actions of the user program. This is important if
the widest range of programming languages is to be used in connection with data base man-
agement systems. Some facilities within the existing CODASYL specifications that allow
subschema designs along these lines are also discussed. A general familiarity with the
CODASYL specifications is assumed.

DATA SECURITY

Ideally, to maintain security we must prevent a user’s extracting information from, or
inserting information into, the data base in an unauthorized manner. We may term this the
information security problem. However, data base systems do not deal with information,
but rather with data. Data base users gain information by extracting data from a data base
system, as well as from other sources. Thus, the data security problem, which is the prob-
lem of keeping a user from misusing the data base, is only a subset of the entire informa-
tion security problem, which includes such things as preventing a user’s deducing informa-
tion to which he is not authorized from data in the data base to which he is authorized.
This subject, addressed by work such as Ref. 7, is outside the scope of this report. Simi-
larly, we will not consider the authentication problem (the verification that a user is who
he says he is and the association of that user with a defined set of access rights) or the
operating system integrity problem (the verification that the operating system performs
properly). Rather, we will assume that a user is always associated with his proper sub-
schema, that access to the data base is always through authorized channels, and that physi-
cal data, program modules, work spaces, and such, whose protection is essential for the
reliable operation of the data base system security measures, can be protected. Thus, we
will interpret the data security problem in this context as being the control of the data to
which the user ultimately gains access by means of any programs he may invoke with re-
spect to the data base (e.g., DBMS, operating system, application program, or query inter-
preter).

The type of data security with which we are particularly concerned is logical data
security, i.e., the protection of the data with which the user interacts from unauthorized
access. This means that we are specifically concerned with the protection of data items,
records, and more abstract objects, as opposed to disk tracks or blocks of main memory.
Likewise, we are not concerned with physical attributes of the data in determining the
security criteria (e.g., the physical address of the data on the disk), but we are concerned
with logical attributes. Naturally, these physical units must be protected too, but we are
concerned with statements of security criteria expressed with respect to the logical data
units which the users handle and the legal operations on those data units.

The logical attributes we are concerned with may be based on content or on logical
structure. In the CODASYL architecture, the qualifications, “PERSONNEL records with
the DEPARTMENT data item equal to PURCHASING,” is an example of a content-based
attribute, and “PERSONNEL records in the FEMALE set relationship” is an example of
a structure-based attribute.

Before describing the security mechanism, we will present a model of the system
=ahit ~tie - cithin - hich th m eh niem - 1dll or rat

NRL REPORT 7905

A MODEL OF THE SCHEMA/SUBSCHEMA ARCHITECTURE

That portion of the schema/subschema architecture of concern in this report is shown
conceptually in Fig. 1. The user interprets the real world in terms of a set of abstract ob-
jects u; and conceptual operations on those objects. The data in the data base presumably

USER SUBSCHEMA SCHEMA
Yy D &
TRANSFORMATION | . TRANSFORMATION |
Uﬂ Dm E' .

Fig. 1 — Schema and subschema architecture

is useful to some population of users; hence, the user interacts with the data base to
extract information which he needs or to store information which he has about the real
world for his own use and that of others. This cannot be done directly because the data
base system does not operate in terms of the user’s conceptual objects and operations,
but rather in terms of data objects and operations. Thus, to set up and use a data base,
the user must perform a transformation from his conceptual objects and operations to
the objects and operations of what he perceives the data base to be. The relevant attri-
butes of each conceptual object must first be described in terms of legal attributes of data
objects; then, in order to model some action or sequence of actions in the real world, the
user must transform these actions to a sequence of operations allowed by the data base
and submit these operations to the data base (for example, a program or sequence of
query language statements). The result (the composition of the operations invoked) pre-
sumably corresponds to some real-world result.

The user’s perception of the data base is defined by his subschema, and he interacts
with the data base by invoking a sequence of operations with respect to the data objects
d; in his subschema. Data to be transmitted to the data base must be placed in a sub-
schema data object, and data transmitted from the data base will be materialized in one
of these data objects. The data base itself is defined by the schema, which provides a
set of data objects e; and a set of operations on them. We assume that a central authority,
the data administrator, defines both the schema and the subschemas: the schema to re-
flect the data requirements of all data base users, and the subschema to reflect the data
requirements of a particular data base user or set of data base users.

Just as a transformation must be performed by the user betwen his conceptual ob-
jects and operations and the subschema objects and operations, so the data base system
implementation must perform a transformation between the subschema objects and
operations and the schema objects and operations. This transformation may be defined
in many ways. In the CODASYL specifications, the transformations allowed are so simple
that they can be specified implicitly by examination of the differences between the schema

MANOLA AND WILSON

and subschema. However, more complex transformations would require some combina-
tion of definitions in the schema, in the subschema, or in a separate definition. Because
the purpose of the subschema is to define the user’s perception of the data base, these
transformations, if designed and implemented properly, will permit only objects defined
in the subschema to be transmitted to and from it. Thus, the transformation between
his conceptual data and the subschema data is the only one with which the user should
be directly concerned.

Viewing the overall transformation from schema data to the user’s conceptual data,
we see that there are choices of (a) how much transformation must be performed and
(b) where the bulk of the required transformation is to be performed. For example, the
complexity of the user’s transformation from real world to subschema natually depends
on the degree to which the objects and operations in the subschema match his conceptual
objects and operations. If there is little correspondence, then the transformation will be
extensive, which we may interpret as requiring a large program or sequence of query
language statements and extensive computations based on the resulting data, since much
of the burden of performing the transformation is placed on the user. If there is sub-
stantial correspondence, then the mere retrieval or storage of the data may be sufficient
to satisfy the user’s requirements, since no transformation may be required. For example,
the user may require the average age of all male persons in the United States. If one of
the subschema variables d; happens to contain that data directly, a simple retrieval of that
value will satisfy the request. If, on the other hand, the subschema contains only the
value of age for each person, and one such record exists for each person in the United
States, then the user will have to retrieve all the records for male persons, extract the age,
and compute the average.

Similarly, the difficulty of the transformation between the subschema data and the
schema data depends on the degree to which the objects in the subschema match the ob-
jects in the schema. In this case, the fact that the schema must reflect the data require-
ments of all users, rather than only a single user, is an additional complication. Continu-
ing with the example above, suppose that we choose to materialize for the user a sub-
schema variable containing the average age of all males in the United States. Again, we
are faced with a choice. If one of the schema variables ¢; happens to contain that data
directly, then again the transformation is trivial. On the other hand, if only this informa-
tion is available, it may be inadequate for other users who require information on specific
people and on females as well as males. So, as an alternative, we may choose to define
individual person records in the schema and perform the complex transformation required
to materialize the average male age for that particular user in the schema/subschema trans-
formation. Alternatively, we may define both and accept a possible penalty for redundant
storage.

DATA SECURITY IN THE SCHEMA/SUBSCHEMA ARCHITECTURE

In the context of the previous discussion, the application of logical data security con-
straints to the data base may be viewed as the application of a transformation from what

NRL REPORT 7905

is defined in the schema to what the user is permitted to access. As with the transformation
to produce the subschema, the degree to which the schema data matches the data the user is
permitted to access determines the complexity required in the security transformation. At

the same time, the degree to which the subschema data matches the data to which the user

is permitted access on the basis of his security constraints determines the amount of the
security transformation implemented simply by means of the transformation which produces
the subschema data. This implies that if we can carefully design the operations and data
objects of the subschema so as to match not only the user’s data requirements but also his data
security constraints, we can simultaneously satisfy the demands of security and those of data
independence and simplicity.

Our ability to perform such a design is not, however, unlimited. It depends on the de-
gree to which we can specify data objects in the schema and subschema, operations on the
subschema objects, and the schema-to-subschema transformations. No system allows com-
plete generality in this regard, and the limitations of particular systems determine the degree
to which such designs can be accomplished. Generally, the user’s perception of the data
base is limited to subsets, or simple transformations, of standard data base objects—such as
data items and records. The consequence of a design not tailored to the user is that the
user assumes more of the responsibility for the transformation from the data base to his
conceptual objects and operations. When this occurs, usually the user must be given access
to more data in a manner which is more difficult to control than if the data base system
itself were responsible for the transformation.

This suggests that the design principle for a subschema should be that its objects and
operations be as close to the conceptual objects and operations of the user as possible, and
that the security constraints should be imposed in the transformation to the subschema so
that the user’s view of the data includes these constraints. This minimizes the total amount
of transformation which must be performed and minimizes the amount of unnecessary data
which must be given to the user, because the data base system performs most of the neces-
sary transformation. This principle provides two additional advantages. The transformation
is implemented below the subschema level; hence, the security function is more centralized
and may be easier to protect. Also, the user is not restricted to a particular programming
language that must be used when accessing the data base. Additional advantages are that
the user becomes independent of the exact method used in implementing the security
transformation, which may need to be changed as the data base itself changes; and, as addi-
tional declarative facilities for directly specifying security constraints become available, it
may be possible for the system to optimize the data base structure, taking into account
each user’s security constraints without impacting the users.

A SIMPLE DATA SECURITY PROBLEM

To study the use of schema/subschema transformations in a data security problem using
these principles, let us examine one of the examples from Minsky [6]. A file of personal
data records, with attributes ay, ..., gy, is to be used in performing a statistical study. The
user is provided by the data base with a set of statistical procedures p1, ..., pn. The security
constraints are that the user is to be restricted to selecting a relevant set of records using
attribute a1 (which he is free to see) and to performing the statistical study. He is not to be
allowed to see attributes ag through ay.

MANOLA AND WILSON

Minsky points out that if the user performs his task by selecting a set of records
using a7 in a program and then feeding the records to the statistical routines, there is no
way to enforce the security constraints in common programming languages. This is because
once a record is retrieved, there is no way to force the user to restrict himself to feeding
the record to one of the procedures; he may instead print out the entire record. As a re-
sult, it is argued that control of the internal actions of a user program with respect to output
from the data base must be provided.

Minsky suggests that “strongly typed” languages could be used for this purpose. In
such a language, every variable has a type which defines its set of legal values and operations
[8, 9]. Transfers of information between two variables of the same type are not affected,
but transfer of information between two variables of different types requires explicit conver-
sion. The compiler must be able to determine the type (and, thus, the legal set of expres-
sions and assignments) of a variable at compile time. In this particular example, the feature
would be used to define the types of the variables containing outputs from the DBMS in a
manner that would allow them to be used as inputs to the statistical procedures, but would
not allow them to be viewed by the user (i.e., they cannot be stored in other variables or
printed out). This allows the compile-time enforcement of the necessary security constraints—
provided, of course, that users are restricted to using only compilers with these features and
that the output of the compilers can be protected from modification. It is argued that such
features are a requirement for languages which interact with data bases, because in some
cases this is the only way in which the necessary security can be maintained, and in others
it is the only way security can be maintained with reasonable efficiency.

Interpreting this example in light of our model of data base transformations, we find
that the above interpretation assumes that the only place where the user interface may be
defined is at (a) in Fig. 2. This means that, while the DBMS is responsible for producing

STATISTICAL
PROCEDURES
c b a
DBMS
LOGICAL
STATISTICAL PERSON SCHEMA
VALUES | RECORD RECORD

Fig. 2 — Effects of defining user interface at various
points in the data transformation process

the logical record, the user is responsible for the subsequent transformation from logical
record to statistical values. Even though some of the programming support is provided to
him, making the user responsible for this transformation requires giving him access to infor-
mation which is inconsistent with the security requirements—namely, data about individual
persons.

NRL REPORT 7905

Naturally, given this interpretation, there is a requirement to control internal actions
of the user’s program and, thus, for features such as strong typing. However, Fig. 2 also
shows that there are at least two other places, (b) and (c), where the user interface can be
defined to solve the same problem, but in such a way as to deny the user inappropriate
access to the logical records and the transformations necessary to derive statistical values
from them. This technique then eliminates the need to control internal operations in the
user’s program.

At interface (b), the user is given access to special statistical operations (e.g., AVER-
AGE) which take as inputs the attributes to be averaged and a selection expression
on a1. The operations act as the composition of a record retrieval and the passage of the
record to one of the statistical routines. Thus, while the user sees the definition of the
logical record, he is allowed to invoke only statistical operations on those records; thus, he
cannot gain access to inappropriate data.

At interface (c), the user is given access to a logical record which is a transformation
of the logical person record and contains only the statistical values which would be output
from the statistical routines. Thus, the user would see only certain attributes (e.g., Average
Age, Average Salary) and an attribute containing the selection expression based on attri-
bute a; of the original logical record. Examples of such records are shown in tabular form
in Fig. 3.

Selection Expression Average Age STD Deviation Age Sum Salary
a1 GRT 10 41 138751
5LEQga1 LEQ 50 37 248988

Fig. 3 — Examples of statistical records in the user subschema

The motivation for using this approach is that the user is authorized to see only sta-
tistical values and in order to ensure enforcement of this constraint, the DBMS must retain
responsibility for materializing the values. (Also, statistical routines must be written in such
a way that they do not give an output for very small sample sizes; otherwise they would
be susceptible to attack using techniques such as those described in Ref. 10. This is true
no matter where the interface is defined and will not be discussed further.) The run-time
burden is the same in any case, since the same statistical procedures must be invoked at
either of the interfaces. If the interface is at (a) in Fig. 2, it is virtually impossible to per-
form all the compile-time and run-time checking necessary to use existing programming
languages. On the other hand, if the interface is defined at (c), there are no compile-time
checks necessary. The DBMS at run time would ensure that only legal operations and
objects were used in user requests, and these run-time checks are straightforward. This
technique, however, does require extensions to the facilities described in the CODASYL
specifications. These will be discussed later.

MANOLA AND WILSON

In general, the problem these solutions address is that the transformation from schema
data to the user’s conceptual requirements often must be done by means of several smaller
transformations; and there must be some way of ensuring that the output of one transforma-
tion can only become the input to another, if the user is restricted to the output of the en-
tire process only. This problem is illustrated in Fig. 4. The use of compile-time checks to

TRANS- TRANS-
USER — | FORMATION FORMATION F——
2 3

These points in the tronsjormahon
must be protected from “taps” by
the user

Fig. 4 — Overall transformation from schema to user

ensure the integrity of the interfaces is one solution; we believe that a better one at present
is to require that the DBMS perform as much of the transformation as possible prior to
presenting data to the user. While the DBMS itself may be required to perform the overall
transformation in several steps, it is better able to protect and conceal the existence of the
interfaces between the transformations, thus denying the user access to them. This solution
also allows the user to employ existing programming languages in accessing the data base;
this is an economy which must be balanced against the cost of the run-time checking in-
volved if a realistic evaluation of competitive data security techniques is to be made.

CODASYL DATA SECURITY FEATURES

Within the three languages specified in the CODASYL specifications, there are essen-
tially four facilities which are important in the provision of data security:

1. Definition of password protection for data items, records, sets, areas, and schemas
and subschemas themselves, using the PRIVACY clauses.

2. Invoking of data administrator-supplied procedures for more complex security
checking, using the PRIVACY and ON clauses.

3. Concealment of data in the schema from the user by not including that data in
the user’s subschema, using the schema/subschema architecture.

4. Definition of derived data in the schema which can be an arbitrarily complex
transformation of other data, provided by the SOURCE and RESULT clauses. The data
may either be materialized at run time or stored redundantly in the data base.

NRL REPORT 7905

Although these facilities work together in providing data security, the ability to apply
the design principles we have been discussing depends mainly on the ability to invoke the
necessary transformations below the subschema level in the architecture so as to materialize
the data in accordance with the user’s requirements. This in turn depends on the ability to
conceal these transformations by means of the subschema, to define schema/subschema
transformations, and to define derived data.

USE OF DERIVED DATA

The ability to define derived data (using the SOURCE and RESULT clauses) and the
ability to control the implementation of that data (using the ACTUAL and VIRTUAL speci-
fications) allows the data administrator, in effect, to define some types of schema/subschema
transformations in the schema. This allows the data administrator to handle those cases
where the user may not be allowed access to the data as defined in the schema but may be
allowed access to the output of some transformation of that data. This is accomplished by
forcing the user to access only the output of the procedures which implement the transfor-
mation. The statistical routines discussed in a previous example are examples of such pro-
cedures. Situations in which a user should be restricted to only certain statistics of data,
rather than the data itself, are fairly common. Ordinarily, in an environment where security
is important, the routines that produce the statistics from the raw data would be either
written by trusted personnel or carefully screened by such personnel to ensure their con-
formity to their specifications and security constraints. The problem is to force the user
to use these procedures. This may be done in the CODASYL specifications as follows.

Suppose that we wish to restrict the user’s access to information about employees to
the mean and standard deviation of their salaries by department. The data base could then
be defined as shown in Fig. 5.

The user’s subschema definition would contain only the DEPARTMENT record. Here,
the MEAN-SALARY and STD-DEV-SALARY data items would be declared using the RE-
SULT clause, which indicates that the value of the data item is that produced by the com-
putation of a named procedure (in this case, one of the trusted procedures described above,
which accesses the EMPLOYEE records and computes the value). The data administrator
can at the same time decide whether to maintain redundant data (by declaring the items
ACTUAL and speeding retrieval) or to materialize the data only as required (by declaring
them VIRTUAL and saving storage space). In either case, consistency is maintained by the
DBMS, since it knows the relationship of the data items from the declaration. Even though
this is a rather simple example, the fact that a procedure may be invoked means that arbi-
trarily complex transformations on data may be performed before the data are delivered to
the user. This example also illustrates the importance of anticipating security requirements
and incorporating them into the logical data base design. (This, of course, is important
regardless of the security architecture used.)

The SOURCE clause is very similar to the RESULT clause and specifies that the value
of a particular data item is to be maintained the same as the value of some other data item.

Like a RESULT item, a SOURCE item may be declared either ACTUAL or VIRTUAL.
The SOURCE item is useful in constructing what are in effect virtual records whose data

MANOLA AND WILSON

DEPARTMENT DEPT- NAME
DEPT %
BUDGET

MEAN- SALARY
STD-DEV-SALARY

EMPLOYS

EMPLOYEE NAME
EMPLOYEE %
SALARY

Fig. 5 — DEPARTMENT and EMPLOYEE records in
a schema. Only the DEPARTMENT record is included
in the subschema of a user who should not have ac-
cess to individual employee salary information.

items are taken from other schema records, parts of which are prohibited to certain users.
These users can be given free access to the virtual records, which effectively denies them ac-
cess to those prohibited parts of the schema records, as well as knowledge of the existence
of the schema records. Facilities are available to maintain consistency if updating of the
virtual records is permitted.

LIMITATIONS ON THE CODASYL SPECIFICATIONS REQUIRING EXTENSIONS

While the facilities described in the CODASYL specifications certainly provide the
possibility for enhanced data security through careful data base design, currently there are
limitations in the specifications which can make certain types of control awkward to apply.
While the CODASYL architecture allows the data administration to define views of the data
base involving arbitrarily complex transformations from the schema objects and operations,
in many instances this cannot be done using the subschema mechanism. Instead, an appli-
cation program must be written to materialize the view. To the extent that these programs
can be written in a secure way and the programs and their interfaces to the DBMS ade-
quately protected, this is a satisfactory approach. However, the ability to do this with
commonly available programming languages is often restricted. For example, Conway [11]
has described a number of techniques that may be used with Fortran, Cobol, and PL/1 that,
in effect, allow the user to escape from the language syntax restrictions and execute in an
uncontrolled manner. The measures which must be taken to have compilers of these lan-
guages perform checking in a manner that guarantees reasonable security may be very

10

NRL REPORT 7905

costly or involve unacceptable or, at least, undesirable restrictions on the facilities of the
language which can be used. It is our belief that, in such cases, it may be less expensive
and more secure to perform sufficient transformation below the subschema level, coupled
with such run-time checks as are necessary, to ensure that the user is presented with a sub-
schema which he can use safely even via assembly language. While the limitations which we
will discuss are contained in the CODASYL specifications, they are not inherent in the
general CODASYL approach and, thus, may be corrected by extensions to the specifica-
tions. These limitations are briefly described below.

1. Only the simplest transformations are allowed between the schema and subschema,
and even those allowed in the schema (via the SOURCE and RESULT clauses) do not allow,
for example, other than data items to be derived in a straightforward way. This has two
effects.

a. Even simple transformations, such as those in the examples, must be declared
in the schema. This means that the schema becomes cluttered with application-specific data
declarations and that the schema becomes sensitive to changes in user requirements, since
the schema would have to be modified in such cases. This is particularly important in the
case of transformations for security purposes, because these requirements may often change
more frequently than user data requirements. While a schema change need not necessarily
trigger data base reorganization or impact other subschemas, it is not something that is de-
sirable on a frequent basis.

b. The data administrator is limited in defining an abstract view of the data
base tailored to user requirements via the subschema. Thus, the user may be forced in the
subschema to see records and data items, rather than application objects. This means that
the user must supply programming to effect this transformation with the resulting possibility
that he may require access to more data than he really needs.

2. Operations specific to the subschema cannot be defined. This is a serious de-
ficiency in a situation where one would like to define abstractions, as described above, and
tailor operations to work on them. However, this is often useful even when ordinary rec-
ords are involved. If, for example, a user could be presented with a subschema in which
the STORE operation was not defined, attempts by that user to use the STORE operation
could be more easily checked.

3. Dependencies in the CODASYL specifications (specifically, between the schema
declarations and the subschema operations, as in Ref. 12) mean that, in certain cases, in-
formation cannot be concealed from the user, since he needs to know it in order to write
appropriate operations. For example, if a record is a member of only one set, unless it is
declared as an entry point in the data structure, the set must be known to the user in
order that he may use the name in the operations (even though the set name required to
access the record is implicitly known from the declaration).

EXTENSIONS TO THE CODASYL ARCHITECTURE

The extensions to the CODASYL architecture to remove such limitations fall into the
following general categories. '

11

MANOLA AND WILSON

1. The ability for the data administrator, by declaration, to control more precisely
the use of various operators defined for the subschema. This involves two things:

a. Added syntax to allow more precise declaration of security constraints for a
subschema in terms of legal operations on data defined in the subschema.

b. The ability to control the responsibility for checking specified conditions.
Thus, the data administrator should be able to inform the system that the output from a
particular compiler is to be considered trustworthy with certain types of constraints, that
the DBMS is to do the checking of the output, or that he will supply a procedure to per-
form the checking. This involves providing a mechanism for identifying the output of each
language translator and protecting it from unauthorized modification.

2. The ability to define more complex schema/subschema transformations, so that
data objects (including not only derived data items, records, etc., but also more abstract
objects such as reports, warehouses, etc.) tailored to the user’s application may be defined,
and so that special operations appropriate to these data objects may be defined.

For example, a user concerned with shipping and receiving might be given access to a
data object WAREHOUSE and such operations as STORE PART x IN WAREHOUSE y,
rather than to the more data-base-oriented objects such as records and data items which
might be used to define the data at the schema level. Such a subschema definition would
not only make run-time security checking easier, it would also help to enforce desirable
access patterns for concurrency control and would make the user independent of the data
structures used at the schema level to support the warehouse data.

IMPLEMENTATION

The present subschema languages are essentially extensions to existing host languages.
In order to provide for the more flexible types of subschema descriptions which we are
proposing, we must have essentially an extensible language facility available. However, the
compiler modifications needed are not extensive. While a preprocessor approach or the use
of any extensible language facilities available in the compiler might be considered, they
assume that the compiler is essentially “trustworthy” and that the compiled code can be
adequately protected from modification. If the language is not trustworthy, as for example
Fortran, more of the responsibility must be borne by the DBMS itself. In this case, all
that would be required of the compiler or preprocessor is that calls be generated to an ap-
propriate entry point in a system-provided transformation particular to the subschema for
the new operations. Thus, a MEAN operator in a program would either be recognized as
legal, and a call to the entry point for MEAN in the system transformation generated, or
the operator would simply be recognized as nonlanguage syntax and a call generated to a
single entry point for the transformation with the operator as one of the parameters. The
system-provided transformation would then be responsible for ensuring that the particular
user involved entered the system transformation only at one of the proper entry points de-
fined for him and, at such an entry point, that the parameters passed in the call (either
operator or operands) were legal for that user’s subschema. In this case, all the compiler
would have to know is how to generate the call to the system entry point. The extent to

12

NRL REPORT 7905

which the compiler is expected to detect syntax errors depends on how extensively the com-
piler is modified to do so. However, the real responsibility for security checking resides in
the system transformation, not in the compiler. Even if the user knew how to access the
system entry point (e.g., in assembly language), sufficient checking would be performed by
the transformation to ensure that no illegal actions could be taken by that user. The user

is free to use whatever language he wishes with respect to such an interface. Naturally, to
the extent that the data administrator wishes to delegate security responsibility to a com-
piler, the user wolild have to be restricted to that compiler, and adequate measures would
have to be taken to protect the compiled code and to identify modules compiled by the
compiler when they call the transformation.

CONCLUSION

It is our belief that only when security checking is considered to the exclusion of all
other considerations is the necessity obvious for compile-time checking and languages with
features such as strong typing. While such facilities are clearly useful, the existence of asso-
ciated security costs (the cost to protect the compiled code, to ensure that users only use
specified compilers, and to check the source of any code executed) and other nonsecurity
costs (the requirement to convert existing applications and packages to new languages, and
to retrain programming personnel) makes the evaluation of the tradeoffs fairly complicated.
Further, present security requirements, we feel, will not wait until such languages are in
common use. As a result, we feel that design techniques such as those suggested here,
which simultaneously provide enhanced security, user convenience, and data base system
control, need to be employed to the greatest extent possible.

Work on extended schema/subschema transformations is currently under way by the
CODASYL Data Description Language Committee (DDLC) Subschema Task Group (SSTG).
The DDLC itself has created a subgroup to investigate additional data security facilities.
This work, in addition to current research efforts under way at several universities and cor-
porate research centers connected with increasing security facilities, provides hope that addi-
tional capabilities for controlling data security will be placed in the hands of data adminis-
trators.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of John Shore, Naval Research Labora-
tory; John Berg, National Bureau of Standards; and Tax Metaxides, Bell Laboratories;
during the preparation of this report. The authors also acknowledge the contributions to the
ideas in this report from various internal documents from the CODASYL Data Description
Language Committe’s Working Group on Environment, and the ANSI/X3/SPARC Data Base
Systems Study Group.

13

10.

11.

12.

MANOLA AND WILSON

REFERENCES

CODASYL Data Base Task Group, April 1971 Report, Association for Computing
Machinery, New York.

CODASYL Data Description Language Journal of Development, June 1973, NBS
Handbook 113, U. S. Department of Commerce, National Bureau of Standards,
Washington, D.C. (SD Catalog No. C13.6/2:113).

R. F. Boyce, and D. D. Chamberlin, “Using a Structured English Query Language as
a Data Definition Facility,” IBM Research Report RJ 1318, IBM Research Labora-
tory, San Jose, Calif., Dec. 10, 1973.

I. Palmer, “Levels of Database Description,” Information Processing 74 (Proceedings
IFIP Congress 1974), North-Holland Publishing Company, Amsterdam, 1974.

C. J. Date, and P. Hopewell, ‘‘File Definition and Logical Data Independence,’ in
Proceedings of the 1971 ACM-SIGFIDET Workshop on Data Description, Access
and Control, Association for Computing Machinery, New York, Nov. 1971.

N. Minsky, “On Interaction with Data Bases,” in Proceedings of the 1974 ACM-
SIGMOD Workshop on Data Description, Access and Control, Association for
Computing Machinery, New York, May 1974.

R. I. Baum, and D. K. Hsiao, “A Data Secure Computer Architecture (Part I),”
Report OSU-CISRC-TR-73-10, Computer and Information Science Research Center,
The Ohio State University, Columbus, Ohio, July 1974.

D. Parnas, “Use of the Concept of Type Classes to Simplify CS-4,” private com-
munication, Darmstadt, Technische Hochschule, Darmstadt, W. Germany, 1975.

B. Liskov, and S. Zilles, ‘“Programming with Abstract Data Types,” ACM SIGPLAN
Notices 9, No. 4 (Proceedings of an ACM SIGPLAN Symposium on Very High
Level Languages), Apr. 1974.

L. J. Hoffman, and W. F. Miller, “Getting a Personal Dossier from a Statistical
Data Bank,” Dateamation 16, No. 5, 74-75 (May 1970).

R. W. Conway, W. L. Maxwell, and H. L. Morgan, “On the Implementation of
Security Measures in Information Systems,”” Communications of the ACM, 15,
No. 4, 211-220 (Apr. 1972).

R. W. Engles, “An Analysis of the April 1971 Data Base Task Group Report,”

Proceedings of the 1971 ACM-SIGFIDET Workshop on Data Description, Access
and Control, Association for Computing Machinery, New York, Nov. 1971.

14

