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AN ELASTO-CHEMICAL THEORY OF GRAIN BOUNDARIES

INTRODUCTION

Grain boundaries significantly affect and control the physical properties of polycrys-
talline materials. For example, at temperatures near the melting point, grain boundaries
play a dominant role in irreversible processes such as creep, diffusion, and sliding. To
understand and exploit such phenomena, many models of grain boundaries have been
proposed and analyzed in varying degrees of detail. However each is not without its in-
herent limitations which constrain its range of applicability in real materials.

The earliest attempt to quantify the structure of a crystalline grain boundary was
Taylor's [1] study of plastic deformation by dislocation motion in metals. Taylor viewed
a simple tilt boundary as an areal transition region between two symmetrically rotated
lattices. (Taylor also considered the boundary to be composed of a geometrical series of
regular steplike wedges joined at common lattice points-a possible precursor of the mod-
ern coincident-site lattice theory.) Later Burgers [2] considered the grain boundary be-
tween two crystalline lattices as a surface of misfit in the form of an array of edge dis-
locations. Using this concept, Burgers then determined the elastic stress components and
rotational property of the array.

Read and Shockley [3] followed the formalism of Burgers and developed the well-
known expression for the elastic energy of linear arrays of edge dislocations in an iso-
tropic continuum. These investigators calculated the specific grain-boundary energy as a
function of tilt misorientation. However, salient limitations exist in the theory of Read
and Shockley. In their theory the singular behavior in the stress, strain, and energy-
density fields at each dislocation in the boundary array was removed by postulating an
inner "cutoff" radius ro. This maneuver provides mathematical tractability but prevents
the theory from attaining a truly predictive status, because the radius ro must be deter-
mined from a grain-boundary-energy experiment. Also, the energetic contribution to the
grain boundary energy from the cores of the dislocations in the array is neglected when-
ever a "cutoff" radius is employed; hence all interactions among the dislocations are per
force ignored. This limitation clearly relegates the Read-Shockley dislocation model to
small misorientation angles (to widely spaced arrays of dislocations), despite the apparent
successes [4] achieved in "fitting" grain-boundary-energy data over large misorientations
with the Read-Shockley equation.

Another approach used to describe crystalline boundaries is to consider the rotated
crystal lattices as elastic continua with the common interfacial region described by dis-
crete atomic locations. The interatomic potential between atoms in the interface yields
the necessary boundary conditions to determine uniquely the longer-range elastic fields in
the rotated continua. Van der Merwe [5] applied this method to describe simple tilt and
twist boundaries using a sine force law (Peierls-Nabarro model). Fletcher and Adamson [6]
then modified this scheme by taking the Fourier transform of the elastic displacements in

Note: Manuscript submitted November 29, 1974.
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the continua and retaining only dominant terms. Their procedure leads to a variational
formulation, which holds the number of parameters to a minimum. In all of these calcu-
lations where descriptions based on elastic continua and discrete atoms are mixed, the
knowledge of the effective interatomic potential parameters is crucial but often lacking.

Hasson and Goux [7] employed yet another method to calculate the energies and
structures of grain boundaries. They considered the interface as well as the rotated lat-
tices all to consist of discrete atoms which interact via a Morse potential. The number of
atoms and their configurations are varied to yield the lowest energy over a range of tilt
misorientations. Such methods must be implemented numerically, using relaxation
methods on a large high-speed computer; moreover, despite its sophistication, this ap-
proach generally excludes entropic contributions to the free energy and hence should be
considered only as a calculation for 0 K. Unfortunately most experiments to determine
grain boundary energies are performed at elevated temperatures (usually near the melting
point) to facilitate a rapid approach to equilibrium; thus the correlation between the
theoretical computations for 0 K and experiment is severely limited.

The structure of high-angle boundaries (misorientations greater than about 150) has
been systematically investigated at specific orientations by Ranganathan [8], Brandon [9],
Bollmann [10], and Bishop and Chalmers [11]. Their main emphasis was to determine
the geometrical relationships among lattice points in and adjacent to the boundary at
so-called strong coincident sites, the calculation of boundary energy per se lying outside
the scope of their lattice-geometric models.

By combining lattice-geometric concepts with dislocation-array models, the relative
energy (only that portion arising from the defect array) can be obtained for very small
misorientations about the lattice coincidence positions. The Burgers vector at the coin-
cident sites can be determined as shown by Schober and Baluffi [12]. Unfortunately
again, the reference energy level of the coincident site boundary to which the energy of
the dislocation array is added cannot be calculated for temperatures greater than 0 K.

A modification of the earlier dislocation model for grain boundaries was proposed
by Li [13], who attempted to account for effects arising from the dislocation cores. In
his model Li considered first a single isolated edge dislocation with a circular core of
radius ro that was traction free. He then superimposed the stress fields from these
"hollow" dislocations in a periodic linear array to form a grain boundary. However in
considering finite rotations (wherein the dislocations approach one another) the traction-
free condition of the cores is altered, because the elastic interaction occurring among all
the dislocations is ignored in the superposition method used by Li. To surmount this
difficulty, Li proposed that the core shape was in some way dependent on the stresses
acting near the core. Li's method yields a core radius which is larger than that calculated
from the Read-Shockley model. Again, as in the Read-Shockley model, no truly predic-
tive capability was achieved because of the entirely unknown nature of the parameter
describing the core.

In a development parallel to that of Li, Glicksman and Vold [14] added a phenome-
nological core-energy term of thermodynamic origin and developed the concept of an
equilibrated "heterophase" dislocation. This elasto-chemical approach yielded a predictive
theory dependent only on known phenomenological variables and devoid of the usual un-
known core parameter. Because this treatment formulates the elastic energy in a manner
similar to that used by Li, the elastic boundary conditions at the core were again violated
as the separation between dislocations decreased.
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The purpose of this investigation is to reexamine the elasto-chemical grain-boundary
model proposed by Glicksman and Vold with strict adherence to the elastic boundary
conditions at the core to account for the interactions among dislocations. By proper
specification of the elastic boundary conditions at the core, this model becomes appro-
priate for temperatures near the melting point. Finally, and most importantly, a quanti-
tative theory for the energy of grain boundaries with low-to-medium tilt misorientations
(within ±150) is developed here based on phenomenological and thermodynamic param-
eters such as elastic constants and solid-liquid interfacial free energy.

GRAIN BOUNDARY MODEL AND BOUNDARY CONDITIONS

The grain boundary model proposed by Glicksman and Vold is shown in Fig. 1.
This model consists of an infinite array of edge dislocations (separated by a distance h),
each of which possesses a circular, liquidlike, second-phase core of radius ro. The core
energy is given in terms of a phenomenological quantity y,, which is the specific core
energy and should be close but not necessarily equal in value to YS, the macroscopic
interfacial solid-liquid free energy of the bulk crystal.

-co 0 x X +O
CRYSTAL 2 2//X

Fig. 1-Grain boundary consisting of an infinite array of dislocations on the
x axis. The dislocation spacing is h, and the core radius is ro. A periodic
unit is shown crosshatched, and the tractions acting over the unit's sides and
the mathematically cut plane are indicated schematically.

The core boundary conditions at r = ro are formulated as follows: the shear stress
is zero because of the liquidlike (relaxed) nature of the core, and the normal stresses are
zero for temperatures at the melting point, as shown from "heterophase" thermodynamic
arguments [14]. Thus near the melting point the core is essentially traction free.

At each dislocation a mathematical cut is made normal to the grain boundary to
yield single-valued displacements. Across these cuts there is a discontinuous jump in dis-
placement of b in the uy component of the displacement, where b is the magnitude of
the grain-boundary Burgers vector. The magnitude of b can be determined from experi-
mental data, as will be shown later.

The edge-dislocation array produces only a short-range stress field, which decreases
to zero at large distances from the boundary. Also, and most critically, a constant rotation
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occurs away from the boundary, corresponding to the macroscopic tilt misorientation.
Mathematically these conditions are

-~0

aIXI < °°, IYIe°,(1
IV X ul -+ constant}

where u is the elastic displacement vector.

The analysis presented here will be separated into three steps. First the elastic
energy of the system will be calculated using linear isotropic theory. Second the chemical
energy from the core contribution will be formulated. Last the elastic and chemical en-
ergies will be minimized to yield via thermodynamics the equilibrium grain-boundary struc-
ture and energy.

ELASTIC SOLUTION

The discontinuity of displacement arising at each dislocation will produce stresses
around every core boundary. However every core boundary is to be traction free. There-
fore a linearly independent stress field with associated single-valued displacements is re-
quired to cancel the dislocation stresses at the core boundary. To distinguish these two
elastic fields, those elastic quantities associated with the multivalued (dislocation) displace-
ments will be denoted by either a subscript or superscript m, and those associated with
the single-valued (core) displacements will be denoted by either a subscript or superscript
s. The elastic field which maintains the dislocation cores traction free must also satisfy
the following far-field conditions for a stress-free grain boundary:

U(S) e X, < A, IY e (2)

IV x U(S)I - o

Review of Relevant Elasticity Theory

We digress here to review elements of linear isotropic elasticity theory which will be
used heavily in this analysis. This approach uses the complex variable methods developed
by Muskhelishvili [15], who introduced two complex elastic potentials ¢(z) and \(z),
where z = x + iy, from which any two-dimensional elastic field can be obtained. The ex-
pressions relating O(z) and 4(z) to the various elastic fields are derived by Muskhelishvili,
and only the results will be presented here.

The stresses in a Cartesian xy coordinate system are given as

Oxx + 0yy = 2 [¢'(z) + &(z)] (3)

and

aYY - aXX + 2iaxy = 2[-z2"(Z) + w'(Z)] , (4)
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where a prime denotes differentiation with respect to z and a bar denotes a complex con-
jugate. The displacements and forces between any two endpoints of an arc AB are

2G(u' + iuy)BA = [K(z) -z A(t) - (z)] (5

(X + iY)| = --i[ (Z) + Z0&(Z) + P(Z)]I ' (6)

where u, and uY are the elastic displacements in the x and y directions respectively and
X and Y are the corresponding components of the resultant force vector acting on AB in
the x and y directions. The quantities G and K are material parameters: G is the shear
modulus, and K = 3 - 4v, where v is Poisson's ratio.

The general results of Muskhelishvili must be specialized when the elastic fields are
periodic. Mikhlin [16] developed the necessary modifications of the forms for ¢(z) and
;i(z) for the periodic case. Mikhlin showed that by considering a periodic invariance in
the stresses and displacements of the form

aij(x nh, y) = aij(x, y)'
. n = +1, +2, +3,

ui(x nh, y) = U(x, y) J

in Eqs. (3) through (5), ¢(z) and 4(z) are modified as

¢(z) = 0o(z); q00(z ± nh) = O(z), (7)

(z) = Oo(z) - zkO(z); 4/o(z + nh) = 4o(z), (8)

where the subscript zero denotes the periodic case. When Eqs. (7) and (8) are inserted
into Eqs. (3) through (6), the elastic fields are periodic and are given as

UXX + ayy = 2[fO(z) + Ij]' (9)

GYY - Oxx + 2iaxy = 2[-2iyO0(z) + 4'o(z) - OO(z] X (10)

2G(ux + iUy)AB = [Ko(z) - 2iyO0(z) - °Po(Z)]lA (11)

and

X + iY |A i[ 0o(z) + 2iyko(Z) + A(z)71A (12)

Expressions (9) through (12) now permit us to proceed with the analysis of interacting
grain boundary dislocations.
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Elastic Potentials for Multivalued Displacements

The elastic potentials associated with periodic dislocations with multivalued displace-
ments are obtained by generalizing the results of Muskhelishvili for a multiply connected
elastic body. For a single dislocation at the origin of the xy coordinate system, the ap-
propriate ¢(z) and ;(z) are

O(z) = a In z (13)

and

/(z) = 3 ln z, (14)

where a and : are complex constants. For 2N + 1 dislocations on the x axis and spaced
a distance h apart, Eqs. (13) and (14) become

N
E an In (z + nh) (15)
-N

and

N

4' L T On ln (z + nh) . (16)

Let us examine Eq. (15) first. Because of the 2N + 1 identical dislocations we can
set a = a, (complex constant) for all Inl < N. Then

N
a= a In (z + nh),

-N

which can be rewritten as

= a ln F I| (Z2 - n2h2)]

or

|a In { 1 - Z2] + a ln [I (-n2h2 )

Let

[N = N [ - A]

and

N
C = a ln II (-n2 h2 ).

1
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Since we have an infinite array of edge dislocations, we let N -*oo and recognize

00

f = fN =Zl[ =sin 7-r

But as N - 00, C increases without bound. However C has no functional dependence on
z; hence it has no effect on the stress or energy density distribution and may be inter-
preted as arising from an extraneous rigid-body translation. As such, the singular behavior
of C as N - 00 is of no consequence. Thus for an infinite periodic array of edge disloca-
tions the elastic potential 4 becomes

Omo(Z) = a ln sin --Z (17)

Similarly for 4 we find

Om0 (Z) = ln sin W- . (18)

The forms of these potentials, Eqs. (17) and (18), exhibit the proper periodicity to within
a complex constant.

Complex elastic potentials of the form given by Eqs. (17) and (18) have been em-
ployed by other investigators for similar problems. Howland [17] and Schulz [18] used
an analogous form in their investigations of stress distributions in plates containing an
infinite array of circular holes. Their series method was handicapped by rather poor
convergence and by the need for laborious matching of coefficients in the expansion. As
a consequence they were able to solve specific problems only when the holes were widely
separated from each other. Burgers [2], on the other hand, using mathematical techniques
employed in hydrodynamics, was able to develop explicitly the necessary elastic field equa-
tions for a linear array of dislocations arbitrarily oriented in a crystal and obtained results
similar to the multivalued potentials derived here.

The complex constants, a and ,B appearing in Eqs. (17) and (18) are evaluated from
the conditions that each dislocation has a constant multivalued displacement vector and
that a zero resultant force act on each dislocation. These conditions yield the two in-
dependent equations required to solve for a and f.

Mathematically a cut must be made at each dislocation to render the displacements
single valued in the elastic body. On each side of the cut different values of the displace-
ment are assigned. For the moment consider the zeroth dislocation, at the origin of the
xy coordinate system (Fig. 2). We arbitrarily set ux = 0 and uY = 0 as t -* -(3/2)ir for
any r > ro and set ux = 0 and uY = b as t - 7/2 for any r > ro. The quantity b is the
discontinuity or jump in displacement: the magnitude of the dislocation's Burgers vector.
Mathematically this is given as the line integral

b = -U ds, (19)Yas

7
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x

Fig. 2-The zeroth dislocation with a mathematical
branch cut. LO is any contour enclosing the dislocation.

where u = (ux, uy), b = (0, b), and s is any closed path enclosing a grain boundary dis-
location. Equation (19) has its complex analog given in terms of the complex potentials
0'mO(Z) and 4 mO(z). Thus from Eq. (11) we find

2G(UXm) + ium))IL = [KO'mo(Z) - 2iyM 0 (z) - MO l (20)

where Lo is any contour around a dislocation. When Eqs. (17) and (18) are inserted into
Eq. (20) and evaluated (Appendix A gives the details), we obtain the result

2G(ib) = 27ri(Ke+fA)

or

Ka + G= bŽ (21)

The condition of zero resultant force on the boundary dislocations requires that the
tractions be zero on any contour enclosing a dislocation; thus Eq. (12) yields

(X + =Y L [4m 0 (z) + 2iy MO + 4', Lo)

When this equation is evaluated (as shown in Appendix A),the following result is obtained:

a = ,. (22)

8
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Solving for a and j3 from Eqs. (21) and (22) yields

- = = Gb
4ir(1 - v)

which is a real constant and is identical to the energy factor for an isolated edge disloca-
tion in an isotropic medium. In accord with the usual convention in the theory of dis-
locations, we define

_0 Gb
4Xr(1 - v)

Then Eqs. (17) and (18) (the complex potentials) become

4 'mO(Z) = E 0 In sin (23)

and

4 ' mO(z) = E 0 In sin -. (24)

Elastic Field and Rotational Properties of the Dislocation Array

The stresses and displacements for an infinite periodic array of edge dislocations can
be determined by substituting Eqs. (23) and (24) into Eqs. (9) and (10). Some algebraic
manipulation yields for the Cartesian stress components

a(M) = a0 2j (1- cos - cosh 1 )' (25)

(m) 27rx h 2iry 27rx 2iry 27ry \
(in) = uo sin 2 cosh cos h- h sinh h (26)

and

G(i) = ao sin 2i kcosh - cos 2hx + - sinh h2 ' (27)

where

2EO 7r

00 = °h

l 27ry 27rx 2
(osh C - cos 2 x

The stresses, a(in) are invariant under a translation x = x + ph, p = 0, 1, 2, 3,..., and decay
away from the boundary plane (a.. -* 0 for Ixl < 00, lyl -0). Equations (25) through
(27) are similar in form to those derived by other methods by Li [13] and by Hirth and
Lothe [19] for a dislocation array along the y axis.

9
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The Cartesian components of the displacement are

sinh 27r
O [(K - 1) In M + i y h (28)

x - 2G h M2 J

and

E ______~anh 7r Iry ______7r

(M) - (K + 1) tan1 (29)
02 tan-7r h 

where

M2 sinh2 -+ sin2-.
h h

Burgers [2] developed expressions similar to Eqs. (28) and (29), except that his coordinate
system is rotated by 7r/2 from the coordinate system used in this analysis. The elastic
fields of the single isolated edge dislocation can of course be recaptured by letting h - 00

in Eqs. (25) through (29), as shown in Appendix B.

The rotation of the elastic body is given as

c =-IV X ul

which is the antisymmetric part of the general deformation tensor. Muskhelishvili has
shown [15, p. 127] that the rotation can be written in terms of the complex potential
mio(z) as

W= K+ 1 I r i
2G Im [4io(Z)J]

where Im [.. denotes the imaginary part. Substituting for Omo(z) from Eq. (23) yields
the rotation field

sinh 27ry

Co(X,y) = b h
2 cosh 2-ny - Cos 2rx]

which, as y e ±00, yields the "strain-free" (constant) rotations far from the boundary
plane:

-b
ye + 2h

and
bCon =¢ =b

y-j o

10
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This result is consistent with the boundary conditions of Eq. (1). The total tilt misorien-
tation 0 between the two grains is therefore

0 = _ I - b (30)

which agrees with the result of Burgers [2] and Nabarro [20] who used a continuous
distribution of dislocations to simulate an infinite array. The rotational behavior of the
dislocation array was developed without any consideration of the latticelike nature of
the rotated crystals. Equation (30) devolves entirely from the theory of elasticity with-
out lattice geometrical considerations. Also Eq. (30) provides an operational definition
of the Burgers vector of tilt boundary dislocations: The Burgers vector remains normal
to the boundary plane and is of magnitude Oh, where both 0 and h may be obtained via
independent experiments.

Elastic Potentials for Single-Valued Displacements

The boundary conditions for our grain boundary model require traction-free dis-
location cores. The dislocation stresses arising from the multivalued displacements are
canceled along the core boundary by a linearly independent stress field possessing single-
valued displacements. Thus a second set of complex potentials 45so(z) and '5 0(z) are re-
quired from which the compatible single-valued elastic fields can be determined.

Differential Boundary-Value Equation

For the moment let us consider one hole in an infinite elastic medium. Mathemat-
ically, as indicated in Fig. 3, we have an infinite region S bounded by a simple internal
contour L, where n is the normal to L at point a. Let Xn(0) and Yn(3) be the vector
components of the tractions applied on L. From the relationship between the boundary
tractions and the real Airy stress function, Muskhelishvili showed [15, p. 145] that the
boundary condition in terms of complex potentials is given as

'a(f ) + 4'a(,) + 4'a(X) = + if2 (31)

Fig. 3-An arbitrarily shaped hole L L
in an infinite medium S /

11
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for all X E L. The subscript a refers to this special case, and f, and f2 are functions of
the tractions Xn(3) and Yn(j). Equation (31) is similar to Eq. (6).

Generalizing this special situation to the periodic array in the same manner as in the
section titled "Review of Relevant Elasticity Theory," the governing differential equation
becomes

00(i) + 2iy40(i) + 4o(%) = F1 + iF2 + complex constant, (32)

where X is any point on any dislocation core boundary of the array and F1 and F2 are
functions of the applied tractions. The complex potentials are the sum of the contribu-
tions accounting for the multivalued and single-valued displacements:

00(i) = Os0(G) + OM0(O)
and

¢/0(X)= sO(O) + 4VIO(. ).

When the boundary is traction free, then

F1 = F2 = 0,

and Eq. (32) becomes

0so(%) + 2iysO,(X) + 4'SO(%) = F(%) + complex constant,

where

F(%) = -[m o(i) + 2iy4O ( i) + 4'Oo(i)]. (33)

If we have periodicity in the "single-valued" potentials, that is,

O'so(%) = Oso (;±nh) and 4's0( ) = 4so ( ±nh), n = 1,2,3,...,

then the constant must be the same for each hole and hence can be set equal to zero.
Therefore the differential equation to be solved is

0o(,3) + 2iy4'-o(T) + 40o(%) = F(%), (34)

where F(5) can be evaluated explicitly, since Omo(3) and 4 mo(3) are now known. At
this point the problem has been reduced to an infinite set of periodic holes, each subjected
to identical (zero) tractions. The elastic field obtained from Oso(z) and 4s50 (z) must also
satisfy the far-field conditions given in Eq. (2).

Method of Solution

Equation (34) could be solved as given, but this would require an infinite set of dif-
ferential equations, one for each hole. A more tractable scheme was developed by
Mikhlin [16] in which each periodic unit or strip is conformally and identically mapped
into another plane. In this new plane the resulting differential equation is converted via

12
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the mapping transformations into a complex Fredholm integral equation of the second
kind which can be easily solved numerically. The solution of the integral equation yields
values of the complex potentials along a closed contour. The potentials anywhere else in
the plane can then be found by application of Cauchy's formulas. (The case of the single
or isolated dislocation with a traction-free core in an infinite medium can also be analyzed
by the integral equation approach, as shown in Appendix C.)

Our objective now is to determine the elastic energy contained in one of the periodic
strips. It will be shown in later sections that this energy can be formulated in terms of
the single- and multivalued complex potentials.

Mapping of a Periodic Strip

Mikhlin's [16] method involves mapping a periodic region in the z plane (z = x + iy)
to the t plane (t = u + iv) by the transformation

t = e2 7rizlh. (35)

This relation takes any strip (h/2)(2n - 1) 6 x < (h/2)(2n + 1), n = 0, ±1, 2, ..., and
IyI 6 oo and maps it into the entire t plane. Therefore only one differential equation is
required for the complete determination of elastic potentials in the t plane.

Let the zeroth strip (the one containing the origin of the xy axes) be mapped into
the t plane via Mikhlin's transformation. The circle i = roe it in the z plane becomes in
the t plane

T = exp (2ripeit), 0 6 6 2a , (36)

where T represents points on the kidney-shaped boundary in the t plane (Fig. 4), u = rolh,
in which h is the width of the strip (h is also the spacing between dislocations), and t is
the polar angle in the z plane. As shown in Fig. 4, L is the contour of the kidney-shaped
hole in the t plane; SI is the region inside this hole, and S- is the surrounding elastic
medium.

The differential equation to be solved, Eq. (34), can now be transformed into the
t plane. Let

4)o(r) =_ ¢0, [i(T)] and 4I'0(r) =_ Ao [i (T)] -

Using the chain rule for differentation, we have

asO a4io 3T

as3 3 ar a,,'

where aT/as can be determined from Eq. (35). Thus Eq. (34) becomes

4s0 (r) 2Ti ln I rI|o(r) + ' 80(r) = F(r), (37)

where F(r) = F[,(r)], as given by Eq. (33), and the prime means differentation with re-
spect to r.

13
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Fig. 4-Mapping of the zeroth strip in the z plane into the t plane

Transformation to Integral Equation

Equation (37) can be converted to a complex Fredholm integral equation of the
second kind as shown by Mikhlin. First we take the complex conjugate of (37) and re-
write it as

T ()= F(T) - 480 (r) + 2,r In I TI 4)'0(,r) . (38)

If *118 (Tr) is to be the boundary value of some function holomorphic in S_ and continu-
ous in S- + L (including t = co), then [15, p. 285, Theorem II]

1 jC P0(T) d 1 = F(T) - 4 0o(T) + 2T ln IT 4o(T =

L rt L

for any arbitrary point t' C S+ (a point inside the hole), where 'sfO(c) is a constant.
Thus -I'o(r) and '1 15O(T) can be determined to within a constant. To fix this constant, let
Iso(-o) = 0; then Eq. (39) becomes

dT - 1 f o) dr = A(t'), (40)
27iL 27iL

where

A(t') = 2(r), dL. (41)
Once Eq. (40) (or its equivalent form) has been solved for 4 0so(r), then ' 8O(T) can be
calculated from Eq. (38).

14
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Since 4),o(t) and 'Pso(t) are holomorphic in S- and continuous in S- + L, they are
related to 4, 0 (T) and 4' 0 (T) by Cauchy's "outside" formula [15, p. 268, Eq. 70.1] (for
the infinite region S-):

-) -2i f T -t dT + 4)SO (-) (42)"Do (0 = -2iriLT-t

and

1
"sO~t) ~ 2171

f " - di-
i-- t

L
(43)

(recalling that Tso(,) = 0), where

4so(,) = 27 fi tr d-t,

Equation (40) can be converted to a Fredholm equation of the
48so(t) is regular in S-, and since t' C S+, by Eq. (42)

1 if &o( d-

second kind. Since

= sO (cc) = constant.

Thus

1T a I [ Do( c)] = f 4 80 (ir ) di = 0,~-Iri Tt 27riL (r-t)

which, after integration by parts, becomes

[ so (r ) |
++1 f 4),i r di -= 0 .

2T'i J - td
L

But

41so (r) =0;

'r t L

thus

(45)1 J sO (-) dT = °
2ri L T - td

We multiply (45) by 2t' ln It'j, with again t' C SI; then

2t' In It'l V (r) di -= 0.

T - t

15
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We let c be a fixed point inside L (c is arbitrary, and for convenience we choose c 1);
then

1 f4o (i-) dT -- s -) dT = 0. (47)
27ri Li-t 27ri Li-t

Adding Eq. (46) and the conjugate of Eq. (47) to Eq. (40), we get

1 (h 4(T) d 1 f 2,r In I T I zls'o (,r1 fF i -dir -- ~- ~ ~-niIIo) di-
2iri L i -- 2iri L T --

1 f 2t' ln t'kFo 0 (-)O 1 O__)+ -- di-+ di-
27ri i -27ri Li -1 fiT tL T t

2iri i -c dT = A(t') t' C S+ (48)

In Eq. (48) we would like to recast 4I)sO(T) in terms of cDso(T). Then integrating by parts,
where g(T, t') is any regular function, we get

g(T, t'),s'O(r) dd = 4~0(T)g(T, t') - -dio(T) a- dT.
L ~~~ ~~LI L a

But

t48 o(T)g(i t') L = 0;

thus

fg(i-, t')4s'o(T) dT -= - () a dT. (49

Using (49) in (48), we get

1 , 4)O() di -1 -4)S (T) - d -+ n | i- I-- In It'|\27i-- i i - 7j4 f (i-()d (L L- L -T L - L +T

2 fl J r C dr = A(t). (50)

We let t' - To, where io E L, and let f denote the principal value of an integral; then
from Plemelj's formula [15, p. 262]

1 Jf(T) dT 1 1 fi(T) di
2ri L T - t 2 f( O) + 2ri J f - tot'-o TL

provided f(i) is Holder continuous in the neighborhood of io of L. Then (50) becomes

16
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&f10 (i d_ 1 C ' d(i-

50(7-o) - -- t- rdi-+ - di-
27in i --i-o 2'ri 7i- T

+ f 4sO(-T)d- T T ) + - dT = A(TO). (51)

Equation (51) is not solvable, because the homogeneous equation has a nontrivial solution
(Fredholm's alternative theorem). Savin 121] and Sherman [22] have pointed out that
by adding to the left-hand side of (51) the term

In T-o Re ['go(i-) 1T 0 
21 To (--c) 2 di-] = 0,X

the homogeneous solution becomes the trivial one and therefore, by Fredholm's alterna-
tive theorem, a solution exists for the inhomogeneous equation. The integral equation
now has the form

s'so(i-o) + 2TsiDO(T)d (In r- -To)

(i- 5° (1 T 1 -o )

+ 2 In io Re Lf -(C di- + f 2 - dr = A(TO). (52)

The inhomogeneous term is expressed as

A(i-o) = F1i ) d-= (2°) + F ( -) di, (53)
t,'+To

since F(T) is Holder continuous on L. Equation (52) is now in a form amenable for
numerical computation; its solution will be discussed later.

Elastic Energy

The solution to Eq. (52) yields 4(iso(-) along the boundary L; hence one can deter-
mine IS'(T). From these potentials, (DO(t) and *IO(t) can be obtained for any t C S.
We will now develop expressions for the elastic energy contained in any strip in terms of
the complex potentials, first in the z plane and later in the t plane.

The elastic energy of a strip in the z plane is given by Clapeyron's theorem [23] as

Eelas = 2 f TijujdL, (54)
L

17
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where Tij = apiz is the ith component of the traction acting on surface L with normal P
and direction cosines vj. The elastic field quantities 0ij and ui in Eq. (54) are the sum of
the single and multivalued contributions for the stress and displacement respectively,
that is,

aij = (rln) + a{>) and ui = (in) + u(s)

Because ui is in part the multivalued displacement from the dislocations, a branch cut is
required when evaluating the Clapeyron contour integral, Eq. (54), as illustrated in Fig. 5.

x

Fig. 5-Path of integration for elastic energy
in the z plane. The total closed path is
P =P1 + P2 + ... + P7 + P8 -

P8

The elastic energy is the sum of eight integrals evaluated on P1 , P2, ... , P8. Let us
examine the contributions from P3 and P5 along each side of the branch cut. Applying
Eq. (54), we have

Eelas - j Wlx=O+ dy
ro

and

EP5 1 = 
Eelas = 2J

P3+Pr, 1 i00
Eelas = J (WI x=o WI x=O+) dy,

where W = axxux + OxyUY. The integrand of Eq. (55) can be rewritten as

18
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x=0
lAW = (JxxUx

x =+

x=o
+ Uxy Uy

x=0+

However the only term in Eq. (56) which yields a nonzero contribution is

x=0
lAW = Oxy(X, y)Uy(x, y)

x =+
= axy(0,Y)AiUY)

But as shown in Eq. (19)

AU(M) = b.
y

Thus

P3 +P5 b C00

Eelas = J oxy(OY)dy,
rO

where axy(0, y) is the sum of the single and multivalued shear stresses. The contributions
from P1 and P7 are in a similar manner

P 1 +P7 1 +0 0

Eelas = J_ (Wl xh 2 - WI x=-h/2 ) dy,

where W = axxux + axyuY. Again the integrand of (57) can be written as

h/2
AW =xx x

-h/2

h/2
+ oxyUY

-h/2

Because of the periodicity of the elastic fields,

aij(h/2, y) = aii(-h/2, y)

and

ui(h/2,y) = ui(-h/2,y),
P 1+P 7

and Eq. (58) becomes AW = 0. Hence Eeas 7 = 0. The stress boundary conditions at
P4 demand that arr = Ut = 0 for r = ro. Hence Eelas= 0.

The integrals from P2 , P6 , and P8 for y j ±cc, xl < h/2, are zero due to the stresses
vanishing. In this far-field limit, Gjj and uim) assume the forms

U(M ) - e- 4X IYjl/h
xy I

5(M) sin 2irx e-2ry/h
xx h

and
U(M) ~ constant.

19
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From Eq. (2) the single-valued terms must vanish in the far field. Thus, because of the
VP2 - 6 EP8exponential decay of a~m) as y - ±cc, it follows that Eelas = elas = elas = 0. Hence, as

one might expect, the elastic energy of a strip is

P3+P5
Eelas - Eelas

b f
= 2 J axy(0,y)dy.

Transformation to the t Plane

The elastic energy, Eq. (59), is expressed in terms of variables in the z plane. Since
the single-valued potentials are determined in the t plane, it is convenient to transform
Eq. (59) to the t plane. Again each strip including the branch cut is mapped from the
z plane into the entire t plane by the transformation given by Eq. (35). As shown in
Fig. 6, only segments P3 and P5 of the t-plane contour contribute to the Clapeyron
integral.

P1

Fig. 6-Path of integration in the t plane

Separating Eq. (35) into its real and imaginary parts yields

u(x, y) = cos 2rx e-27ry/h
h

and

v(x, y) = sin 2irx e-27ry/h
h

and inserting these into Eq. (59) when x = 0 and y > ro yields

Eelas = - fU°
C-. 0

h dXY(u u ) u I (60)

where Sxy(u, 0) is axy(0, y) transformed into the t plane. The upper limit in Eq. (60) is

-2wrii

where pi = ro/h; hence Eelas is a function of p. only.

20
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Sxy(u, 0) can be determined through Eq. (10), which relates the shear stress to the
complex potentials in the z plane. Transforming Eq. (10) into the t plane using Eq. (35),
using the chain-rule relationships

a_ am at
az at az

and

a20 a2a lat 2 as a2t
aZ2 at2 \az/ at az2

and then inserting these results into Eq. (60) gives the elastic energy as

Eelas 2 J 6 'iRe eRe -2 ln U(4FieU + V )] du, (61)

where the prime denotes differentiation with respect to u and the subscript Re means the
real part. Equation (61) can be integrated by parts to yield

Eelas = (TRe + 4R- 2u ln u 4)Re |

However, if we recall that

4 = 4)s0 + Im O

and

4 t0 + *MO 0

then the expression for elastic energy may be written as
=ea (in) + elas)

Eelas = Eelas elas

where

elas- 2 ( Re,sO + 4)Re,sO -2u ln u (to.e so (62)

and

E bn UO
elas 2 (Re,mO + 4)ReiO - 2u ln u T4Re mo (63)2 l~~~~~~~~~~~e-*0,

Equation (63) can be evaluated immediately, since Omo and 4 mO are known (Eqs. (23)
and (24)). Using the transformation given by Eq. (35), Eq. (63) becomes

elas(/) = Eob[7ir coth 7rpu- ln(2 sinh ir~u)], (64)
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which is equivalent to the form derived by Read and Shockley [3], Li [13], and Hirth
and Lothe [19]. This is to be expected, as E'7-(g) is the elastic energy of the edge
dislocation array without any consideration of the core boundary conditions, that is,
without any elastic interactions.

The single-valued energy, Eq. (62), may be simplified further by examining its be-
havior as u - 0 (or e -* 0). Points near the origin in the t plane are mapped into the
z plane as points y - cc. In the z plane 0 50(z) and i50 (z) must be bounded as y - °°
to insure that a.() and u(s) are well behaved (Eq. (2)). Thus, in the z plane, if Os(z)
and 0580(z) are bounded, then in the t plane as t - 0, '18 o(t) and Iso(t) and also bounded.

In view of these considerations, we conclude that u In u 4()eso(U) e+ 0 as u - 0.
(Numerical calculations performed subsequently show that indeed ()Re so(O) = 0.) This
leads to the expression for the single-valued energy contribution, Eq. (62):

Ela(s) - 2u 0 Reu4,,O U
elas(p) = [LRe,sO(UO) + 4)Res0(u0) - 2u 0 ln u ,sOxO;J

j[PRes0(0) + 4)Re,sO(O)] * (65)

The solution to the integral equation, Eq. (52), yields 48so(i-) and hence 41FReso(uo), from
which IRe,s0(uo) and DRe&O(uo) can be determined immediately. The boundary values
of '%O(ir) and iso(-) can then be used to calculate IRe,sO(0) and 4FResO(O) by Cauchy's
"outside" formula; thus

'hRe,sO(0 ) = Re [- f i dr + 1 if --- dr] (66)
L riL 27iL J 

and

''Re,sO( 0) = [- 1Re f -dr + -1 _ di . (67)
Re[ i -di -+ L T (67)d 

Therefore, in principle, only the solution to Eq. (52) is required to determine the elastic
energy completely.

The elastic energy may be recast into simpler form by examining Eqs. (62) and (63).
Rewriting the form of these equations, we obtain

Eelas() = b [FRemi(UO) - FRe,im(e - 0)] (68)

and

Eelsas()= b [FRe,(Uo) - FRe,s(e e 0)] X (69)

where FRe,tX(u) = 4'Re XO(u) + IPRe X(U) - 2u In u 4)e, 7o(U), X = m or s, and u = 0 or
u0 . (FRe x can be thought of as the shear force on the cut plane.)

22



NRL REPORT 7851

Combining Eqs. (68) and (69), we obtain

Eelas = 2 [FRem(uO)+ FRes(UO)- FRem(O) FRe,s(O)]

But FRe,im(uo) + FReS(Uo) = 0 by the boundary conditions (as seen by examining Eq. (37)).
Thus

Eela(A) = h [FR,'m(0) + FRem(0)]

where FRem(0) = Eo ln 4 and FRes(O) = 4¾Re,so(0 ) + 41 ResO(O), which yields

Eelas(11) =2 [=b ResO( 0 ) + *ResO(0) + Eo ln 4] (70)

In this equation the terms 4IReeso(0 ) and *Re,s0(O) can be evaluated from Eqs. (66) and
(67). It is reemphasized that the elastic energy is a function only of A = ro/h.

The elastic interactions among the dislocations are entirely accounted by Eelas()
since the core boundary conditions are obeyed exactly. Let us first consider the disloca-
tion at the origin (zeroth dislocation) when the dislocations are widely separated; h >> b.
The stresses from the adjacent dislocations acting on the core boundary of the zeroth dis-
location would then be negligible. However, as h decreases, the contribution from adja-
cent dislocations eventually becomes substantial. Since the core boundary must remain
traction free, the stresses a(s) and a(') increase to cancel the growing contribution from
adjacent dislocations. Hence aui, includes the interaction from all other dislocations as
well as the self-stress.

Numerical Solution

The integral equation, Eq. (52), can be solved for § 0(i-) only by numerical means,
precluding any closed-form solution. Equation (52) becomes a system of two, real,
coupled, Fredholm integral equations of the second kind when it is separated into its
real and imaginary parts.

Equation (52) can be recast into an alternative form by parameterizing r with respect
to t, where t is the planar polar angle from the positive x axis in the z plane; this param-
eterization is given by Eq. (36). Letting

4s0[i-(r)] = p(Q) + iq(t) (71)

and separating Eq. (52) into real and imaginary parts yields

p~to) + [KA( , to)p(Q)] + [KB(Q, 0)q(Q)] = Ar(t°) (72)

and

-qQO) + 2 [KCQ, to)p(Q)] + $-[KD(t, to)q(Q)] = A1(Qo), (73)

where
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27T

[- -]= (...)dt, Ar(Q0) = Re[A(Q0 )] , A1(Q0) = Im[AQ0)],

and A(Q0) is given by Eq. (53).

The numerical solution to Eqs. (72) and (73) was obtained by approximating the
integrals as a numerical quadrature (Simpson's rule was employed). The interval
t C [0, 27r] was divided into N + 1 points, converting Eqs. (72) and (73) to a system
of 2N + 2 linearly independent equations, which may be written in matrix form as

FA BKjkwk + 5jk Kjkwpj Ar

l 'kWk Kjkwk - ] (;qj) ) (7A

where the wk terms are the weighting factors of the quadrature scheme.

A computer code was developed to calculate the kernels and to integrate A(to)
numerically. A standard matrix inversion code employing the Gauss elimination method
was used to solve the (2N + 2) X (2N + 2) system of linear equations for pj and qj. Be-
cause of the symmetry of the kernels and A(o), the limits of integration were reduced
to a half range, permitting a finer point density of t to be used without exceeding
machine capacity.

Values of pj and qj were calculated in intervals of At = 2.250 over t C [0, ir] for
many values of p. For each p calculation of Ort at r = rO in the z plane was performed to
check the results and verify the accuracy to which the boundary conditions are met.
Excellent agreement was obtained for the cancellation of these stresses at r = rO as re-
quired by the boundary conditions. This led to high confidence of the numerically
determined potentials 48so(r) and ' 8so(r), because the stresses were obtained from these
potentials by numerical differentiation. Most numerical differentiation methods tend to
magnify any error incurred in the calculation of the function.

From the numerically computed boundary values of 4sOs(i) and TsO("), E(S) was
calculated from Eq. (65) in increments of lAp = 0.025 for 0 < p < 0.5. (At p = 0.5, the
cores impinge upon one another.) The resulting data were then fitted with a least-squares
polynominal to yield

7

Eelas(p) = E0b T any (75)
n=O

where the coefficients an are listed in Table 1.

As a final check the total elastic energy was calculated two ways. Equation (75) was
summed with Eq. (64), for the multivalued energy, to obtain values of the total elastic
energy. These were then compared to the values obtained from Eq. (70), the simpler
form for computing the total elastic energy. Both methods gave answers that were iden-
tical to six significant figures.
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Table 1
Coefficients in the Expansion of

Eeias(A) Elas(p)

7

+Eo b E aun, where
n=O

Eelas(p) - Eob[irp coth (iry)

-ln (2 sinh irp)]

n a,

0 -0.49999
1 -0.00205
2 1.7178
3 -0.89875
4 0.95565
5 -9.7085
6 29.630
7 -28.344

The total elastic energy per strip of grain boundary, Eq. (70), is shown as a function
of p in Fig. 7, along with the results of Refs. 3 and 14. The present exact analysis and
that of Glicksman and Vold are indistinguishable for p < 0.3. However, the treatment by
Glicksman and Vold eventually leads to negative energies at p g> 0.4, because in their ap-
proximate analysis the boundary conditions at the dislocation cores are violated (that is,
the grain-boundary dislocation cores near p = 0.5 no longer remain traction free). The
present analysis yields an elastic energy that is always positive definite and approaches
zero as p approaches 0.5. When p = 0.5, the cores impinge upon one another and crystals
1 and 2 (Fig. 1) are then joined continuously by the "core" phase, which according to
our model cannot store any elastic energy, because all stress components are zero; thus
Eeias(0.5) must be zero. In contrast to the present theory and that of Glicksman and
Vold, the Read and Shockley treatment (Eq. (64)) yields an elastic energy which is
always larger, because no interactions are taken into account. A critical aspect of the
present theory is the detailed behavior of Eelas(u) as pu - 0.5, since the derivative
aEelas/ap will be used subsequently to calculate the total grain-boundary energy.

CORE ENERGY

At temperatures near or at the melting point of the solid, dislocation cores are con-
sidered here to behave as a liquidlike second phase. The chemical (nonelastic) energy of
an individual core can be written in a phenomenological form as

Echem(rO) = 2 7ycro , (76)
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Fig. 7-Comparison of the normalized elastic energy as a
function of p obtained from Eq. (70) (equivalent to the
sum of Eqs. (75) and (64)) with that from Ref. 3 and from
Ref. 14. The insert is an expanded portion of the plot for
0. 3 < p < 0. 5.

where ro is the radius of the core and y, is the specific free-energy of the core per unit
area of core-crystal "interface." Equation (76) may be rewritten slightly in a form com-
patible with the previous elastic-energy analysis, namely,

Echem(P) = 217y * (77)

GRAIN-BOUNDARY ENERGY

The total free energy of the system is the sum of the chemical and elastic energies,

Et(P) = Echem(P) + Eelas(P) X (78)

where Echem(P1) is given by Eq. (77) and Eelas(A) is obtained from the sum of Eqs. (64)
and (75). The only remaining "free" geometric parameter which can vary in our model
is ro, the core radius; thus for thermodynamic equilibrium we seek

aEt 1 aE= 
aro h a 0

or

aj_ = 0 = K + L nan n 1 - r2 p coth 2 rp, (79)

where h is fixed, K = X/0, X = 2ry,/Eo, and 0 = b/h (from Eq. (30)).
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For a given K the value of p = pA* which satisfies Eq. (79) was determined numeri-
cally by the "regula falsi" technique [24]. Figure 8 is a plot of p* for 0 < K < 24. In
that figure y'c decreases monotonically from a maximum value of 0.5 as K increases.

0.5

0.4

0.3 

0.2 

0. I

0 2 4 6 8 10 12 14 16 18 20 22 24

K 2ryc/EO 

Fig. 8-Normalized equilibrium radius Ail = rO/h vs K = X/O = 27y,/OEo

The solution to Eq. (79) yields u* = f(K), and when this is inserted into Eq. (78),
the minimum free energy of the grain boundary system is obtained. The energy per unit
area of grain boundary is then

rB = Et(p*)/h. (80)

Normalizing Eq. (80) with respect to E0O yields

T- K=pK + E an(P*)f + 7rju* coth r7.p* - in (2 sinh 7rp*) (81)

This equation contains only one material parameter K, which is the ratio of two phenome-
nological quantities yc and Eo-reflecting the elasto-chemical nature of this theory.

A "master curve" of the normalized grain-boundary energy was obtained by plotting
Eq. (81) as a function of K as shown in Fig. 9. From this plot, the grain boundary energy
FB, vs tilt misorientation, 0 can be deduced for a given 'y and E0 . The chemical and
elastic contributions to the grain boundary energy can easily be determined.

The sensitivity of FB with varying X is illustrated in Fig. 10. For X = 5 the elastic
energy is always larger than the chemical contribution. At this large value of X equilib-
rium demands a small value of r0 , since yc is rather large compared to EO; hence the
Echem contribution is small relative to Eelas. However at X = 0.5 the opposite behavior
is noted. In this case the elastic energy reaches a broad maximum and decreases slowly
with increasing misorientation. The curves for A = 0.5 are similar to those of van der
Merwe [5]. In spite of the differing behavior for the two values of X used, one distinct
conclusion may be drawn: The elastic energy always dominates over the chemical energy
contribution from the cores when 0 < 10, that is, when the dislocations are widely sep-
arated (h > 60b).
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Fig. 9-"Master plot" of the normalized grain-boundary energy.
For given E0 , ye, and 0, K can be computed and, rB using
Eq. (81), FB iEOO can be determined.

For small tilt misorientations the dislocations are widely separated (p 0) and the
interaction effects become negligible. As u -e 0 the elastic energies reduce to

E(Ma - EOb(1 - ln 27rp) (82)

and

E(M) - -Eob/2. (83)

Equation (82) can be manipulated to yield the low-angle Read-Shockley (RS) formula [3,4]

FBRS = Eoo [ARS -In O],

by using the relation p = (ro/b)O and by choosing
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Fig. 10-Elastic, chemical, and total grain-boundary
energies as a function of tilt misorientation 0, indi-
cating the sensitivity of these energies on the parameter
X = 2+ry(/Eo

or~~~~~~~~~~~~~~~~1r

ARS = 1- ln - 1r . (84)

The Read-Shockley formulation does not account for boundary conditions at each dis-
location core.

In this low-angle regime the heterophase dislocation model with equilibrated cores
yields an A constant different from the Read-Shockley case. At these small misorienta-
tions the present theory reduces identically to the formulation of Glicksman and Vold 114].
The total free energy of the system is the sum of Eqs. (77), (82), and (83):

Et(y) = 2ir'ycph + E0b (-.)- In 27fp

or

Et (ro) = 21rfycro + E 0b(-')- In 2ir .0 (85)

Again, for equilibrium we set D~t/aro = 0, which leads to

= b (86)
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Inserting Eq. (86) into Eq. (85) and using the definition of the grain boundary energy,
Eq. (80), leads to the formula derived by Glicksman and Vold (GV)

rBGV = EOO (AGV -ln 0), (87)

where

AGV = 3 - In 2irr. (88)

Equations (84) and (88) differ by 1/2, which is the effect of the equilibrated core condi-
tion as reflected through Eesas, Eq. (83).

APPLICATION TO EXPERIMENT

In Fig. 11 are shown experimental grain-boundary-energy data [25,26] for {110}
tilt boundaries in bismuth near its melting point. Also shown in that figure are results
from the theory of Read and Shockley and from the present theory, Eq. (80). The Read
and Shockley theory, being in a sense nonpredictive, required the theoretical curve to be
fitted at low tilt misorientations to evaluate the unknown parameter (ro/b = 1.15). This
theory yields a maximum in the energy occurring around 0 = 80, whereas the experi-
mental data clearly indicate a gradual and continuous upward trend. For the present
theory the best fit through the entire set of experimental data was accomplished with the
value X = 0.45. At this value of X the ratio yc/ysi - 0.8, which supports the hypothesis
that the core material resembles to some extent the liquid phase at high temperatures.
Since {Yc t yslo one could use as a first approximation a value of X = 2'ysl /E0 to estimate
a priori the grain boundary energy in materials near their melting point.

In contrast to the Read and Shockley theory, where ro/b is fixed, the ro/b calculated
from this theory is a function of 0 and varies from about ro/b = 2.25 at 0 << 10 to
ro/b = 1.4 at 0 t 150. This result indicates that it might be difficult to extend an elasto-
chemical theory to larger tilt misorientations, since it would be tenuous to ascribe thermo-
dynamic properties to dislocation cores containing just a few atoms.

0.18- ELASTO-CHEMICAL
THEORY x)=045-

0.16 -

0.14 -

w 0.12 - READ-SHOCKLEY

0 - 0.08 {OiT} TILT BOUNDARIES IN

3, 0.08 < g BISMUTH AT TzTmp

Z0.04 i
0.021

1 2 3 4 5 6 7 8 9 10 1 112 13 14 15
e (DEGREESUTILT MISORIENTATION

Fig. 11-Comparison of experimental data points for
bismuth [ 25,26] with theory
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The data of Fig. 11 are replotted in Fig. 12 as a function of FB/OE0 . The present
theory (X = 0.45) is the solid line, which is linear (slope = -1.0) for small 0 (Eq. (87)),
and the dashed line is the extension of this linear region. The salient feature of this
result is that the deviation from linearity occurs at 0 > 2.0°. This means that extremely-
low-angle grain-boundary-energy data (O < 2.00) must be used to determine the A constant
correctly. By contrast, when a "best fit" linear segment was fitted through the experi-
mental data points for bismuth in Fig. 12, this line (dashed-dotted line) is shifted to the
right, yielding a smaller (erroneous) value of A and hence a smaller ro/b. Thus extremely-
low-angle grain-boundary-energy data are essential, as pointed out earlier by Gjostein [27],
and as a consequence the approximate formulas have a severely limited range of validity
(less than 20 of tilt misorientation in the case of bismuth).

0 (DEGREES)
0.01 002 0.05 0.1 0.2 0.5 1.0 20 5.0 10.0 20.0

8.0 w. I l

7.0-

6.0 - X=0.45

5.0 {011} TILT BOUNDARIES IN
BISMUTH AT T - Tmp

_0-4.0-

3.0

2.0-

1.0

-9.0 -_8.0 -71.0 -60O -5.0 --4.0 -3.0 -2.0 -1.0 0
Jn 0

Fig. 12-Normalized grain-boundary-energy as a function of In 0. The
solid line is the present theory, and the dashed line is the extension of
the linear region. the dashed-dotted line is the best fit through experi-
mental data points.

SUMMARY

In summary:

* The theory of heterophase dislocations provides a thermodynamic basis for de-
termining absolute grain-boundary energies at temperatures near the melting point. The
concept of a liquidlike dislocation core was proven to be a valid approximation for bis-
muth, since 'syc

-A major aspect of this theory is the inclusion of elastic interactions among dis-
locations. This leads to a formulation of grain boundary energetics in terms of the core-
crystal energy and the elastic moduli, which are estimable phenomenological parameters.
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* The elastic energy contribution dominates over the chemical (or core) contribu-
tion only for boundaries with tilt misorientations less than about 10, where the disloca-
tions are spaced more than about 60b apart.

* If the assumption, "y - ty,, is made, the theory provides a first estimate of the
excess grain-boundary free energy, when interfacial free energies and elastic moduli are
known independently. Entropic contributions to the grain-boundary free energy arising
both from the elastic and core contributions are entirely accounted for with this thermo-
dynamic formulation.

* The tendency for the dislocation core radius to shrink as the dislocations ap-
proach each other imposes a limit on the validity of the model at large tilt misorienta-
tions. Specifically, an upper limit of approximately 10° to 15° is found for typically
metallic cases, where the core radius falls to about one Burgers vector. At smaller tilt
misorientations, where the cores are larger (2 to 3 Burgers vectors in radius), the thermo-
dynamic treatment appears to be on firmer ground.

* The application of the low-angle formulas requires extremely-low-angle experi-
mental grain-boundary-energy data (0 < 2°). Thus these formulas are valid only over a
limited range of tilt misorientation, much smaller than recognized heretofore.

* The present model uses continuum concepts throughout, and lattice geometrical
effects such as coincidence site boundaries are excluded from consideration. The present
theory should best be thought as accounting for rotations between crystals arising from
localized elastic strain centers which may interact with each other through the short-range
elastic fields surrounding the boundary. The rotations arising from the elastic distortions
may be thought of as providing a relatively wide and continuous range (up to ±150) of
tilt misorientations about any strong lattice coincidence.

* Despite the finite rotations of the adjacent crystals, no ambiguity arises in the
definition of the Burgers vector for the boundary dislocations. The Burgers vector always
remains normal to the boundary (for tilt boundaries, as considered in this report) and is
of magnitude Oh. As a practical matter the product Oh will appear to remain constant
and, to within experimental precision, will appear to be the magnitude of a small lattice
vector. However, the theory as developed here imposes no requirement that the Burgers
vector of a grain boundary dislocation be a (strain-free) lattice vector, and it is the con-
fusion over the point that leads to an apparent ambiguity.
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Appendix A

EVALUATION OF THE COMPLEX CONSTANTS a AND /

In this appendix, we evaluate the complex constants, a and /, which appear in the
expressions for the complex potentials, Eqs. (17) and (18), namely,

OmO(Z) = a ln sin Th (Al)
h

and

pm O(z) = / In sin 7. (A2)

These constants are evaluated from the multivalued displacements and zero-resultant force
conditions.

The displacements are given in Eq. (11) in terms of the complex potentials. When
Eqs. (Al) and (A2) are substituted into Eq. (11), we have

2G[u~i)+iu~,ij = (axK In sin -r- 2iy hr & cot RZ - / ln sin Z (A3)

where A and B are the endpoints of an arc.

Expanding sin irz/h as

sin T= Ae' (A4)
h

and letting 17 = 7rx/h and X = 7ry/h, we find that

A2 = sin2 17 + sinh2 w (A5)

and
(cos q)(sinh w)

tan'y - (sin q)(coshw) (A6)

By substituting Eq. (A4) and using the relationship

sin 271 - i sinh 2w
cosh 2T - cos 2w (A7)

where
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IT= Z = 7h (X + iy), (A8)

Eq. (A3) becomes

2G [u(m) + uml B = [ln A(Ka - )+ (K +h - 2iaw sin 2 + isinh 2W 1B (A9)
X Y iy~~~f)cosh 2w - cos~i 'IA

In particular let A and B be the endpoints of an arc (or contour when in the com-
plex plane) Lo which encloses one dislocation (for convenience the one at the origin) and
such that YA = YB (Fig. 2 of the main text). Mathematically a branch cut is made along
the y axis to render the displacements single valued. Thus the polar angle t is defined for
-3/27r 6 t 6 ir/2. The prescribed displacements on the branch cuts are as follows:

Ux UY

right branch: 7r/2 0 b r

left branch: -3/2ir 0 0 r

where b is the magnitude of the grain boundary Burgers vector. Thus

[u(m) + iu(m)| = ib (AlO)

When the right-hand side of Eq. (A9) is evaluated around Lo, the only term which
is not zero is

i(UrK + )y = 0.

Thus

2iGb = i(aK+ ,71 (All)
!Lo

To evaluate 71LO, consider the mapping

y' = cos isinh w

and

x' = sin cosh X,

where z' = x' + iy', so that

,y I = tan1 cos i1 sinh w tan-l 7
Lo' 0 sin 7 cosh co X L

and where L' is Lo mapped into the z' plane. In the z' plane,
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tan- 1 1, = 21r;

hence

YIL = 2ir. (A12)

Thus from Eqs. (All) and (A12),

aK + = Gb

The resultant force acting on the dislocation must be equal to zero for equilibrium.
Thus inserting Eqs. (Al) and (A2) into Eq. (12), we must have

(a ln sin - + ln sin -h + 2 iy a cot - l . (A13)

Using the previous results we find that

(a-/3)-ILo = 0.

But 'YILO = 2XT; hence

The constants ac and : can be individually determined from Eqs. (A13) and (A12) to
yield

Gb
w h i a rl cn4s(l - P)

which is a real constant.
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Appendix B

ELASTIC FIELD OF A SINGLE ISOLATED EDGE DISLOCATION OBTAINED
BY LETTING THE EDGE-DISLOCATION SPACING APPROACH INFINITY

IN THE PERIODIC CASE

In this appendix aij and ui arising from the discontinuity in displacement for the
isolated case may be recovered from the periodic elastic fields by letting h -* -. In this
limit these field quantities are the same as those often developed in many texts on the
theory of dislocations.

First we consider the Cartesian stress components u(m) 0 (M) and U(m) From
Eqs. (25) through (27)

aG(M) = co(2w)(1 - cos 2,q cosh 2w),

a(M) = aO sin 2i7(cosh 2w - cos 271- 2w sinh 2w),

U(m) = Uo sin 277(cosh 2c - cos 2 + 2co sinh 2o),yy~ ~~-o2~2sn~)
where 0O = 2EO(7r/h/(cosh 2w - cos 271)2, W = 7ry/h and i7 = irx/h. We let h - 00; then

aO 2 (-h r4, r2 = x 2 + y 2 ,

1 - cosh 2w cos 2r7 -

cosh 2w cos 27 -*

2 (T7) (y 2 - x 2 ),

2(h) r2,

2w sinh 2w -+

2

4 (hr) Y2 

Thus

U(m) 2Eo 2 2
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a(m) - 2Eo ( 2 -2)

and

aM) 42E0 x(x2 + 3y2) (B10)

The displacement components ux and uY . Eqs. (28) and
h - oo

(29), become in the limit as

U(M) -.o EG [(K - l)n r2 + r2 ]2G L2 

and

u(M) e EO a(K + 1) tan 1 K r 3]

where EO = Gbl4ir(1 - v) and K = 3 - 4v.

(Bll)

(B12)

To convert Eqs. (B8) through (B12) into the coordinate system that is commonly
used in the various texts, where the slip plane is horizontal, a rotation of 7r/2 is required,
namely, x' = y and y' = -x. Under this rotation the stresses become

(B13)

(B14)

(B1 5)

where

aO3 = 2EO 2-

[(XI)2 + (y)2]

The displacement components after rotation of 7r/2 are

Ux= u= = 2- {tan -1 
It X y

[2(1 - v) (X')2 + (y') 2 ]
(B16)*1}'

UY = x 2 4(1- ) {ln [(X)2 + (yt)2]
(XI)2 - (yl)2+ (X)2 + (y+)

38

(B9)

and

(in) = (in) I ,, ,xF? = yy = oy [3(XI)2 + (y')2] ,

(iM) = 0 (m) = a ,yI(x)2 - (y')2] ,

(?i) = 0 () O(axM C()= 0 L1X)[X)2-('2 

and

1}. (B17)
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Since the last terms appearing on the right-hand sides of Eqs. (B16) and (B17) are rigid-
body displacements, they do not affect the strain and stress distribution and may there-
fore be neglected. Equations (B13) through (B17) are in agreement with those of Hirth
and Lothe [19, pp. 74-75].
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Appendix C

AN INTEGRAL-EQUATION APPROACH TO THE SINGLE ISOLATED
EDGE DISLOCATION WITH AN EQUILIBRATED CORE

When p -* 0 (the ratio of the core radius to dislocation spacing approaches zero),
each dislocation acts as if it were isolated in an infinite medium. In this limit t -÷ 0,
the periodicity effects are negligible and the appropriate multivalued potentials are given
by Eqs. (7) and (8) of the main text, namely,

Om(z) = Om0(Z) = E 0 [lnz + ln h] (Ci)

and

lm(z) = lmo(z) zmo~(z) = E0 [lnz + ln _ ]. (C2)

The equilibrated core conditions, arr = 0 and art = 0 at r = ro, are inserted into the
force balance to yield

= ¢(") + 4,s(%) WfO(,)X (C3)

where X is any point on the circular core boundary X = r0 e, t is the polar angle defined
from the x axis, and f.(%) is given as

Em ( i) -[M (Gi) +X a(O i) + Vm X

or

Em1 G ) = -E 0 [2In 7T/ - 1 +( , H = ro (C4)

The solution to Eq. (C4) yields f(X) and Os(%), from which the "single-valued" elastic
fields can be determined.

In a similar fashion as in the periodic case, Eq. (C4) is converted into an integral
equation,

1 ij S e- 4 + 2 d + 4 = A(%(), (C5)
wher O) + is a p on t c b ds

where %0 is a point on the core boundary and
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A (3 ) = 2 fm~ +~ 27Tif f+f (-0 ) (C6)

The term A(,o) can be evaluated from Eq. (C4) to yield

A (o) = -E 0(2 ln irp - 1), (C7)

which is a real constant.

In view of the simple form for A(, 0 ), the integral Eq. (C5) does not have to be re-
duced to the Fredholm form. Since A(50 ) is a real constant, it suggests that a solution
of the form

0s)= a, (C8)

which is a real constant, will satisfy Eq. (C6). Inserting Eqs. (C8) into (C6) yields

2 a T+ fa - -EO(2lnirp-1). (C9)

But f (d4( - 0 o)) = iir; hence

a = -E 0(2 ln lri - 1), (C10)

and from Eq. (C8)

Os () = a = -E 0(2 n irit - 1) . (Cll )

Applying Cauchy's "outside" formula, for a point z in the elastic medium, we find Os(z)
and 41s(z) as

2

(E0ro\
~(Z) = Eo( z--) (C12)

and

(z) = -Eo(2 ln 7rMu - 1) . (C13)

The stresses arr and art can be calculated from the results of Muskhelishvili [15,
p. 1381, namely,

arr - iart = 2 Re [0'(z)] - e2i [Z~t(Z) + 4'(z)]

where O(z) = Os(z) + Om (z) and 4(z) = 51's(z) + Om (z). Thus

[ /2]
arr - ir = 2Er [i _ O e-

a ir tnr =h ou [

and if r = ro, then arr = at= 0 and the boundary conditions are satisfied.
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