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SATELLITE SPIN AXIS CONTROL

INTRODUCTION

The direction of the satellite spin axis, or attitude, is determined by measuring the
solar aspect angle and the roll angle (azimuth difference) between planes containing the
satellite spin axis and the earth and sun vectors, and calculating the earth aspect angle
using this data plus the position vectors of the satellite and the sun. The solution of a
spherical triangle provides the directions of an orthogonal triad of unit vectors in the
satellite reference system (SR); the same triad defined in the local vertical system (LV)
allows one to obtain the spin axis in that system from the linear transformations between
reference systems.

The spin axis can be brought to any desired direction in LV by means of attitude
control (AC) thrusters that provide periodic impulses on a selected azimuth in SR; the
torque is applied at right angles to the spin angular momentum on a time schedule that
can be obtained from expressions of rigid-body dynamics.

An important purpose of this study is the control of errors, and most of the novel
features arise in this connection. First, the earth aspect angle is found unambiguously and,
combined with error estimates on the measured angles, pointing error bounds in LV are
g'iven Second, because of judicious choice in the case of one of the SR uu'cl.uunb, a matrix
inversion involves negligible computational error. Third, the program for precessing the
spin axis to a direction specified in SR is developed, with consideration given to accuracy
and duration of satellite maneuvers.

GEOMETRY AND NOTATION

The two quantities obtained from the satellite are shown in Fig. 1: the solar aspect

(nr nnim-\ anp’]p o and the roil a'no']n fn'l- azimuth dlffel-enna\ 7 = ‘)—‘r;-ry:(i\.t), where v is the

saf,elhte spin rate and Af is the t1me delay between solar and terrestrial radiation detector
pulses (note the rotation direction marked on the spin axis, conventionally negative).

Earth T has been shown in the (rotating) xz plane to exhibit the roll angle 8. The position

vectors of the satellite at @ and the sun at S are 7Q = r and TS = R, respectively. From

the satellite, one can locate the earth at -r and the sun at R" = R -r. Unit vectors in

these d1rect10ns will be designated -7 and RB'. The angle between QS and QT is Y,

-~

R« (-F) = cos .

Note: Manuscript submitted September 11, 1974.
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safeliite re ference system

The angle between the spin axis @Z and QT is ¥,
< {-F) = cos¥ .

These angles are drawn on the unit sphere centered at & and prmiaee the spherical

triangle shown in F ig, 2; ~' ig the earth aspect angle that is used in the QR_ For use in

I LT SO ull GORpUL Y GMIRLL UAIAY 4D wWOtAs 253 Eee SR
solving the spherical friangle, dihedral angles opposite o and ¥ {denoted o and g,
respectively) are introduced.

The direction of the spin axis is thamed from the linear transformations beiween
an orthogonal triad ceastruetecl from - and R’ and those of the two reference systems
S8R and LV. A unit vector ¢ is defined by

and the intermediate triad is completed with
§X(H=5b

Using
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Fig. 2— Spherlcal triangle extracted from Fig. 1;
¥ is the earth aspect angle.

[

R' = (fcosf + $sinB)sina + Zcosa,
the triad (—r D, @) can be obtained immediately in SR. The transformation can be written
gomn AT g, AT
\-1L.p,q)" = N(X,Y,2)

where K’ is the direction cosine matrix and where column vectors have been represented
(for typographical convenience} as the transpose of row vectors. Another direction cosine
matrix is available for producing the intermediate friad from LV, the transformation in this
case being

(*;,ﬁ»a )T= K(ﬁv as ﬁ))Ts

unit vectors in LV are defined with & parallel to F, i parallel to the orbital angular
momentum
mdr
L=r X —,
dt

and then

v=w X

3
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Therefore K represents a veversal of (not a reflection in) ¥ and a rotation about -7, so that
f}ﬁfﬂ’{efﬁe K1 can be easily written. The spin axis in LV has direction cosines (&2,
v.z, w*z), which will be obtained as the transpose of K-1K'(Q, 0, )T

Suppose the spin axis Z must be processed to a direction 2’ by rotating the angular
momentum vector about the direction of

s

2 Xz =3%sing".
The angular impulse
Ar(-y" X -2)Fdt = X" dJ,

due to the AC thruster delivering an impulse -2F dt at a point -y’ Ar from @, can be
represented as

x'Fdf' = do'(y X 22mi, = -d8'(y X J).

The change of angudar momentum due to rofation of axes is the same, except that here the
spin and angular momentum vectors are antiparallel. From Fig. 3 it can be seen that if
the AC thrusier is located on the y axis, it should be pidsed

PR F RS WL [ SN S . JI SN, SRR . SR S [ 2 VR DV 3 SAUURY L S o L o U S
gsllel LNe 24arin Sensor rdgy Inigated a reierence pluse.  1NesE DSOS, Ul IBUEWUI Ut {5 Li¥

continue until &’ (the polar angle of 2, relative fo z) is reduced to zera, Because

is used for the increment in &', for A8’ the angular displacement of the maneuver, the
duration is

A" 2L A6 A7
p80'  (FANSt ‘

Spherical Triangles

The direction cosine matrix K' requires the angle v', shown in Fig. 2 for § < #. One
might try the cosine retation

cosy = cosweosy + sinasiny cos§;
atthough sin ¥ > 0 because ¥ < 7, cos ¥ can be of either sign:

{(cos vy - cosocos ¥)E = sin 21 - cos Z¥')eos 28,
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1.

al

Fig. 3—The spin angular momentum v;ector
2m(-2), is mgved to the directi(?n {(-2) by
rotation about # through the angle §°.

a quadratic in cos ¥ with the ubiquitous . (Alternative solutions essentially result from
‘the definition of f(mod 2m)). Further progress with this triangle can be obtained by
introducing §' (between « and ), o (opposite o), < 7/2 (when o < 7/2), plus the sine
relation

sin o :sine = sinf:siny = sinf’ :sinvy' .
The latter gives sin o' and o < 7/2, but ¥’ is still combined with §'. The relation

cos ¥ = cosocosy + sinasin ycosf§

does not alter this situation.

The way out of the ambiguity is to find
. . fsinosin B
o = arcsin|———— | < 7w/2
sin

and use it in the two cotangent identities

!

sin@coty = cosacosf + cotfBsinf

sin ycota = cosyecos§ + cota sinf’

5
e
B ]
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{see, for example, D. §. Meyler and O. G. Sutton, A Compendium of Mathematics and
Physics, D, van Nostrand, Londen, 1957, p. 88). Simultaneous solution resulis in

sinacot ycosa' - cos e cos P

cosf§’ = - -
cosweos & - sinocos B cot vy

sinfsiny - sinasing’

. £
sinf = - ; -
caoscesin yeosoy - sinecosfeosy

giving §' unambiguously. Finally, sin ¥ and cos 7 are found from these relations, thus ¥
may be determined.

The case # < § < 27 is eagily handled: if in Fig, Z § is replaced by 27 - j, signs of
8 and 8’ are reversed simultaneously in the frigonometric factors. With these modifications,
v is found from expressions for sin v and cos 7.

The matrix elements of K’ are found as previously indicated; the first row (-1 *x,
-r.y, -F-z} has been given already. Further,

pri=(g-y)eosy
Pry=(@-2)siny -(q-X)cosy
Bei= sy

where
g-x=-sing cosy ,

»Z=gina siny

iy

sin a cos ff cos ' - sin ¥ cos «

Ly
l{)

sin 7y

The array for K is written in the same way:

K=f 0 -cosy¥ sin

0 siny cosy
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where { is the angle between w and q. The inverse of this matrix is the same as K, as
one can show algebraically; it can also be seen using rotation matrices R, (b} for rotation
through the angle & about the ¢ axis:

K Rwr(iﬂ)ﬁu(—lp)

Rqr(iﬂ')R__r(-l-lIJ)

]

K1 where (w' =qandq =w).

The angle  is found from

-~

we(r X RYy=v.R

cos Y sin vy

(@ R)cosy = h-(d X B')siny = (sin ¢ sin ) cos .

The direction cosines of the spin axis in LV are found to be

vez = (G*Z)siny + (¢ y)siny cos ¢
and w2z = (g*2z)cosy - (g y)siny sin ¢
where g-z = sina’sin?y',

(G*y)siny = sinacosfcosy - siny cosw,

~

. w* R
sin =
sin 7y
R
and cos Y = @ ) .
-sin 7y )
By definition,
i+Z=-cosv .

Pointing Errors

The dlrectmn cosines are 1mprec1se because of uncertainties in the basic parameters:
u'y, due to 67 (satellite posifion urmerl;amty—acnuauy, the distance of the sun from the
satellite contains the significant error for -7); 88 = 2nv §¢, due to the inaccuracy in
determining the time interval between two radiation detector pulses; and 8w, due to the
arrangement of solar detector components and the treatment of pulses originating from the
various elements. These three angular uncertainties are considered basic; there are inter-
mediate angles (those with primes) appearing in the direction cosine formulas whose
uncertainties can be derived, if needed. There is a dependence of 83 on o:
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{from a study of the manufacturer’s calibration data), because the pulse shape depends on
the radiation entering the detector; g careful arrangement of solar detectors near &« = ¢

or treatment of the pulses produced there can reduce this dependence. Otherwise, the
uncertainties can be linerarly superposed in the relations that follow.

There are two methods available to defermine the statistics for 82 (an abbreviated
notation for the distribution of 2 direction cosines): stochastic, using random variations
to the nominal values of the basic parameters; or deterministic, transforming error bounds
through the equations. For a first-order estimate, the second method is preferable and
recommended; unsatisfactory results can be adjusted by decreasing uncertainties for

selected parameters. An analytical procedure for obiaining the pointing error will now
be developed, based on the direction cosine relation

.+ .+ .= .
:’Oij momj non} CcOos EJ

where

L =u-z L= U2 L= Wz
; ) m; z, n, z,

and the subseript zero designates the nominal case {(not without uncertainties),

The equations leading from {=, 3, ¥) to (ij, m;, n;} are arranged, the subscript j
indicating what uncertainties have been assigned ic the basic parameters. Six or eight
cases can be considered (for three parameters), depending on whether the variations are
singly or triply applied: think of a cube, with center representing the nominal case—
single variations correspond to face centers and multiple variations to the corners. Next,

the six eases can be examined in pairs {7y * §7/2, etc.) to discover which parameter
variation has the iargegt effect. Finally, the pointing error can be determined from

1 1
cos € = 82 COs €; = gz (igij + mgm, + non}.)
i J

where configurations j involve variations to all three parameters, a total of 22 = 8 cases.
The summands have the same signs for reasonably small {i.e., acceptable)} uncertainties
in the basic parameters.

Some remarks on this choice of method might be useful. The angies ¢; are, in fact,
differences; two-dimensional representation {on the unit sphere} has been simpiified, leaving
the average € (or root mean square, for small variations to «, £, and v) a measure of the
pointing accuracy. The effects of separate variations (the 2 X 3 = 6 cases) should be handled
first, if only to verify the average error as meaningful: weighting the different uncertainties
would produce an asymmetric figure to be oriented in LV, (This would be the case for
small o; the hypercone would have a larger semivertex angle corresponding fo larger 33.}

It should be realized that the distributions of errors are probably different in each parameter,
which means that combination of root mean squares may be migleading, Because the
intention of the error analysis is to determine whether the pointing error exceeds haif a
degree or so, these minutiae should be of marginal usefulness.
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SPIN AXIS DISPLACEMENT

The satellite spin axis is unaffected by the main gravitational field (inverse square
term) becaunse it is in free fall, In the absence of other external forces, the reference

system aligned with the spin axis (assumed to be aligned with the angular momentum},
and passing through the centroid @, is equivalent to an inertial reference. Then

_dd _dduy _ g Jdd
dt dt dt dt

because

[ —

— Axlf Sy v 1D
N L[y ) el e

produces dJ/dt perpendicular to J and leaves
] = 2ml,

unchanged. The case for misaligned AC thrusters must be treated using Euler’s equations
of rigid-body dynamics (see Appendix).

-~ -~ ~,

-
The rotation of J ahout v' moving 2 to z' by

ation of J about y', moving 2 means of torques applied in SR, tilis
the xz reference plane; in addition, th orblta.l mot1 n of the satellite will shift - during
the course of the maneuver. The rotation of x about 2 is

@52 g
w*zZ)— - e = (o
dt 3

where p is the true anomaly of the satellite and @ +2 = cos §. The largest value of ¢
is for the synchronous orbit, when

= 0,73 X 107 rad/s.

Therefore, the correction to the AC thrusting rate 1/v is

wcosd
2r 1 7 1 1 2m
— = — =¥ - —cosl -— = : ,
wg v 2m v @
vy - ~—— cosf
Y & /

less than timing errors 8¢ connected with 88 = 27w §¢. The change of ¢’ due to ¢
during the maneuver may not be negligible, as the followmg estimate shows: a 40-min

maneuver with satellite orbital inclination less than 30° relative to the ecliptic plane
produces (¥ = 60 RPM = 1 Hz)

Ao’ > 40 X 60 X 0.73 X 10~ x‘—/;&%xzxgradmmo.
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. A method of determining the azimuth ¢' will now be described. For the motion of
z, one needs the final spin axis z’, the rotation axis ¥' (fixed if z ~ 2’ along a circumference
of the unit sphere), and the angle #'. These guantities are combined to give

s o ang
z = R 8Nz .
Starting at z', a rotation about y’ through -0 produces z. In the same manner,

-+ = R, () (%)

where -7 is a unit vector in the direction of satellite apogee, @ is parallel to the orbital
angular momettum, and ¢ is the true anomaly of the current positionr. The unii vectors

DU, IR |

~7 and 2 are then combined to give

~

+z

)

cos Y ,

¥ oIz X (R} = (¢ 3)siny = cos¢siny,

3% [2 X (-] =% X (¥siny') = zsing siny

23" (=M1 + (3 -2y = 2F ).

From cos ¥’ one obtains v < 7 (unambiguously), whence sin v is available for the
remaining eguations, thus giving y'.

RELAXATION OF §t' << 1y

In this section the adjustments for 8¢ when it is not small vs 1jv are developed, and
optimum values of the AC thrusfer pulse are explored. The time delay

At =
2y
has been determined for the impuisive case, while in fact the AC thrusfer has rolled
through

i

2mv 8t = by .

If

!

4 -o=9

b A

represents the AC thruster azimuth in SR for the impulsive case (81" << 1),

[Ty
<
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5J

fdt'(FAr) cos (@ - ¢)

dy' ~ ,
FArfz—:V cos(y -~ ¢)

FAr | 8¢
= ——2sin
2my 2
is the result for arbitrary 8¢'. The net rotation of J is 86’ = 8J/{J|, but reduced somewhat
from the previous value. Expanding
5y’ 1 (5(19') 3
2sin— = 8¢ - = |{— + ...
2 ¥ T3\
gives

FA 5¢')3 8¢')?
6J=u__r[3w._(¢) +] =FAr[1_ (8¢') +_._}6t.’
2np 24 24

the second term in square brackets being the correction factor. For

(5¢')2
24

v = 1Hzand 6t = 0506, =0.000672 = 0.006:

this indicates that Af is about 0.6% longer than in the impulsive approximation.

The optimum value of 8¢’ must lie between zero (minimum fuel waste) and
1/(2v) (minimum duration for maneuver). Let

. 8J 8¢’ 12
J = — = AFAr)sin ——
57 (FAr) sin %

represent the efficiency condition and

9" = v80' = FAr

the efficacy condition. Optimum 6t would maximize the product

_ (FAN? sin? (8¢'/2)

Jeg' =
2r?vl,  by'/2

11
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Substituting

_s¢

g = it

in radians, {(sin §)2/S is extremal for Sy such that

| sin®5 -1 2 sin § { . sinS)

0 =— 55 = S sin®s + ZsinScosS = o (2cosS -
i 2 §in sin § cos 3 co 3

kd

with solutions Sy = kr (k an integer different from zero) and the zeros of
28, - tanS, = 0 # 8§;.

The transcendental equation has its first zero somewhat greater than w/4 (at about 1.165
rad or 66.75°), a much larger value than the 0.067 = 0.19 used. A plot of
J 2 By

For 8¢ 0 2

is shown in Fig. 4, which illustrates the decrease of the correction factor with increasing
mwbt = 8y'/2; it can be seen that fuel conservation is an important consideration.

1o
ey
i
©
h., ‘S., 0.5
|

AN
'\ /g nvd ?'
N

Fig 4—Normalized thrusting rate, equal to the corvection factor (57i5¢ ) PAr
for nonimpulsive thrusting; the duration of one pulse § = 8({1(2?1’»‘)

12
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The term

ad d d . d
— = F' - + 3y — +z—(w
at ¥ dt(I"wl) Y dt(i’wz) dt(z 3)

involves partial differentiation neglecting the motion of the principal axes. The Euler
equations are

. B o '
Lw, + wy,wg - wa.l’yw2 =N, =yF, - sz ,

. — - I
Iyw2 +wal w, - wilwg = N, = 2F . - xF,,

. '
Tw, + wlw, - wJIw, =N, =xF_ s -yF_,
g a 1"y 2 2°x 1 3 ¥ x

with an obvious notation for the torques described in the body reference system.

THRUST MISALIGNMENT

The torques are now perturbed by thrust misalignment, which can enter through
8(Ar), variation in the point of application Ar, and also the direction 8F of the nozzle,
These quantities can be used with the structural tolerances estimated by the fabricator, but
they must be put into Cartesian form for use here.* The thrust -zF is nominally applied at
Ar = —y'Ar + zI (relative to the centroid @), with §(Ar) distributed on a disk in the x'y’
plane and 8F distributed within a cone whose axis is along 2. Then

SN, < F& (Ar) + IF8F = F[(I6F + 5 (Ar)] > 6N,
(to first order)
8Ny < 28 (Ar) F 8F

(of second order). The effect of the misalignment is to introduce an uncertainty in

Ar less than [ X (semivertex angle or nozzle angle error) + {lateral error disk radius), a

torque of magnitude less than F times this same quantity in the second equation

{involving w,), and a somewhat smaller torque SNz perturbing wg. Because the'body is
nearly axisymmetric (I, = I,), the last Euler equation shows that wg = { + ¢ cos 0

is least perturbed by thrust mlsahgnment under the same symmetry conditions, the “wobble”
arising from misalignment or the situation that @ # 2y initially can be treated dlrectly

using the Euler equations.

“WOBBLE”

In the absence of torques, the angular momentum is invariant in an inertial description.
It is possible for spin angular momentum (8 = zI,wy) to contribute to the total angular

*Compare the treatment of R. 8. Armstrong, “Errors Associated With Spinning-Up and Thrusting
Symmetric Rigid Bodies,” Jet Propulsion Laboratory Technical Report 32644, Pasadena, Calif.,

Takh 15 1Q8K &anst T A
LrEN. 1J, LJ0J, OECL. 1LYy

15
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momentum J , and when z #* rf, there is usually a relative motion of these two vectors.
This bears a resemblance to the precession of a body spinning about a constrained axis due
to gravitational torgues, illustrating the gyroscopic effect of applied forces. In free-fali,

moiion of the gnin axis zhout the inveriant anoular momentum divection is due to
‘vll\l “““““““““ IJ LAV W, a Al ZAIVFIITCIIPLTILS LA LALILL LD VAMY LU ALUIIHGSV

gog and/or Eig, initial values of precession and nutation that are damped out if the spinning
body is supporied.

For the case I, = [,, wy and w, are essentially the same except for a phase factor
represented by the functions of Y. If

exp (tiy) = cos ¢ £isin ¢,

w, tiw, = (B t ip sinf)exp(TiY) = w,

is a convenient combination, using complex number notation (i2 = -1). If

the equations
Fwy, ¥ awg(l, - I'wy = N, =N, tiN,
and
Twg, = I —{cﬁCGSB + ';f,‘} = = x'Fyr - yF,
are produced {rom the Euler equations to facilitate the discussion of “wobble™ and its
relation to the spin rate.
Notice first that in the absence of torques, wy = 0 = N., and

dw, L fwg
=+ -8

integrates immediately to

5
————,
&g
.,
w
Il
4
E.
[
w""‘:""m
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e
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In the constants w, and 960 cos 8 + Vg, it is possible to take @o ¥ 0 = ¢y and

90 = 0 # 0 because of the axial symmetry of the body. (Alternatively, it is possible
to take Bo % 0 =0, and gy = 0 # gy. In this case spin about the body Z axis is
combined with tumbling about a space axis.) The angular velocity in addition to the
spin is “wobble.”

Finally, it is of interest to examine how wobble and spin are influenced by thrust
misalignments. The spin rate is affected least because 8Ny is of second order; however,

N, = F[l+ 8F + §(AN](@ + i)
produces an impulsive change to the harmonic solution

N, &t
dw, = 7

This result is obtained from the nonhomogeneous solution

s N, I, - r
w, = ———— |1 ~ exp [% zwst
T Fiwg(, - 1) I

by setting t = §¢', the duration of a pulse, and expanding the exponential function to
obtain a first-order factor. Because the AC thrusters are fired periodically, 6w. can
produce a resonance change to wg, and this has been used in a wobble damper that
decreases Iw | by modifying the firing schedule. The spin angular momentum is thereby
brought to a new direction at the same time the wobble angle (between J and Z) is
decreased, without changing the spin rate appreciably.
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