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SOME TRANSVERSE RESONANT VIBRATION CHARACTERISTICS OF
WIRE ROPE WITH APPLICATION TO FLOW-

INDUCED CABLE VIBRATIONS

INTRODUCTION AND RELATED INVESTIGATIONS

The increased use in marine construction of light structural elements with little damping
has resulted in the more frequent occurrence of undesirable vibrations. Wire rope, one of
the most widely used marine structural elements of this type, is particularly susceptible to
vibration since its bluff shape can experience alternating transverse forces when a current
flows about the cable and produces alternate shedding of vortices. Furthermore, at a coin-
cidence of the vortex shedding frequency and a cable resonant frequency, large transverse
motions often take place. The authors have recently examined the flow about a resonantly
vibrating cable [1, 2] to relate the properties of the wake to the cable motion and to the
existing information on the flow-induced forces. These investigations have indicated that a
cable strumming model can be developed as an extension of NRL's successful wake-oscilla-
tor model [3] for predicting the vortex-excited oscillations of elastically mounted, rigid
structures.

Some knowledge of the resonance characteristics of wire rope is required in order to
establish an adequate predictive model for these flow-induced cable vibrations. The purpose
of this report is to examine the resonant behavior of wire rope to determine a satisfactory
governing equation for the cable motion and to ascertain the cable damping and added mass
in water. These quantities are combined to form a cable strumming stability parameter that
is analogous to the results with the aforementioned wake-oscillator model.

Wire rope, considered as a structural element, presents the analyst with a complex
internal construction that varies considerably in the number, arrangement, and material of
individual strands. Because of this difficulty, and because wire rope is generally quite
flexible, previous investigators [4, 5] have concluded that the transverse vibration of a cable
is primarily controlled by the steady-state, or static, tension. The cable motion is then
governed by the linear wave equation for an equivalent homogeneous string. More recently,
Heller and Chung [6] included the effect of cable bending stiffness by modeling the cable
as an axially loaded, Bernoulli-Euler beam. Their experiments for a variety of wire ropes
in a fundamental mode indicated that the equivalent homogeneous string was an adequate
representation of vibrating wire rope for their experimental conditions. Both theoretical
treatments are linear, i.e., small displacements are assumed, and from the description of
Heller and Chung's experimental procedures it can be inferred that the experimental peak-
to-peak amplitudes never exceeded 30% of a cable diameter and were generally smaller [7].

This raises a question concerning the magnitude of nonlinear effects during flow-
induced cable vibrations when amplitudes between 10 and 100% of a diameter are known
to occur. It is also of practical importance to know the resonant behavior of such properties
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as the cable damping and added mass, and how they are related to mode shape, wave-
length, and tension as well as to amplitude. None of this information was available before
the initiation of the present study.

EXPERIMENTAL SYSTEMS AND METHODS

The wire rope specimens were mounted in either of two aluminum frames (Figs. 1, 2)
that applied an axial load to the cable while providing the desired boundary conditions at
known locations. The major differences between the two frames were the load ranges
obtained, the lengths of the specimens, and the end conditions. The shorter frame had a
higher load capacity and provided clamped end conditions, whereas the longer frame had
a low load capacity and provided pinned end conditions. The load was measured by a
transducer located at one end of the cable. The driving force for the cable motion was
obtained by placing electromagnetic transducers along the cable at locations favorable to
the desired mode of vibration. These electromagnets were driven by two power amplifiers
and a common signal generator that adjusted the relative phasing between amplifiers
according to the transducer location and the desired mode.

LOADING FRAME

* w CABLE SPECIM
i ELECTRO~~~~~~~~MAGNETIC 

TRANSDUCER____

Fig .1 Loadingframe(5 : X .

Fig.1 1Loading frame (5 ft)
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/

Fig. 2 - Loading frame (15 ft) and water tank

The motion of the cable was detected by backlighting the cable and optically tracking
the displacement with a Physitech 440 autocollimator. The driving and measuring systems
were thus independent and the amplitude could be measured accurately. The motion signal
from the autocollimator was viewed on an oscilloscope, and resonant frequencies were
determined by observing the frequency at which the maximum amplitude occurred at each
load condition. Once a steady state resonant condition was established, the driving forces
were disconnected and the decay of the free vibration was recorded to obtain a measure
of the damping. For frequencies greater than 15 Hz, the decaying signal was processed in
a log converter and plotted on a chart recorder; the damping was determined from the
slope of the printed record. For frequencies below 15 Hz, the actual transient signal was
recorded on an oscilloscope screen and photographed. The log decrement was calculated
from measurements on the photograph according to

y = In +n

Yn+1

in which Yn and Yn+j are amplitudes of successive peaks of the decaying signal. These
experiments were performed both in air and in water to deduce the effect of water mass
loading. After several runs the in-air damping measurements were discontinued for reasons
discussed in the next section.

3
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The added mass effect due to the motion of the surrounding fluid is customarily
treated as proportional, by the added mass coefficient K, to the mass of the fluid dis-
placed by the body. Therefore, the ratio of virtual mass density in water to the body's
mass density in air is given by

-= 1+ K (1)

PA S

in which S is the specific gravity of the wire rope. It is assumed that the fluid loading in
air is negligible. In addition, the ratio of the in-air resonant frequency fA to the in-water
resonant frequency fW at the same load and mode shape is given by (using the string
approximation)

fw ( PA ) ~~~~~~~~~~(2)
The added mass coefficient is determined from experimental results by means of Eqs. (1)
and (2) which combine to give

[(fAw) 2

Since fA and fW are usually close, particularly at low frequencies, a small error (1 or 2%)
in one or both can result in relatively large variations in K (about 10 to 40%). For this
reason it is helpful to also consider the ratio of virtual to actual mass which, according to
Eq. (2), is the square of the frequency ratio fA Ifw. Most of the conclusions in this study
regarding the added mass effect are based on the measured values of [A Ifw.

EQUATION OF MOTION FOR A STRETCHED CABLE

Consider a uniform cable stretched between rigid supports a distance L apart with an
equilibrium position along the x axis and equilibrium tension To (Fig. 3). The cable has a
virtual mass density p, cross-sectional area A, elastic modulus E, and a moment of inertia
I about the neutral axis z; it experiences transverse oscillations only in the xy plane. To
account for the damping, we assume a term in the equation linearly proportional to the
transverse velocity by a damping coefficient I. The coefficient f is taken as the damping
of the system as measured in a stationary fluid of the same properties as the flowing fluid.
That is, : represents the sum of structural, fluid, and externally applied damping as appro-
priate. Longitudinal displacements are neglected and the transverse displacement at the
position x is taken to be 77(x,t). Further, for typical cables and the frequencies of flow-
induced vibrations, shear deformations and rotary inertia are negligible. The potential en-
ergy of the cable is then a sum of bending and stretching potential energies. From elemen-
tary beam theory the bending energy is given by

rL a 27q
1/2 El - dx. (4)

3X2
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y
' ( X,t )

Fig. 3 - A cable in the second mode

We will use the approach developed by Murthy and Ramakrishna [8] to determine the
stretching contribution for the nonlinear vibrations of strings. The development is
identical to the original except that the cable is limited to planar motion. This is a good
approximation for cables that undergo flow-induced "strumming" motions in water. As
an element of cable dx is deformed into the planar element ds, the stretched length of
the element is

ds = (dx2 + dy2) = dx [1 +(_) ] (5)

and the local strain is given by

ds-dx - 1+' ) 21 / (6)
dx L (ax)]

If the amplitudes are small enough for Hooke's law to be valid, then the local tension is

T= To + EAe (7)

and the local potential energy is equal to the product of the average local tension and the
local stretching. Expanding the local strain in a power series of an /ax and neglecting terms
higher than fourth order results in

[1/2 To () + EA-T (I )4 dx, (8)

the local potential energy due to stretching. For all practical cases EA > To and the con-
tribution to potential energy from stretching is

[ 1/2 TO( 2 + EA (i")4] dx.

[\ax/ 8 (a
5
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The kinetic energy of the cable is given by

2P A (7 d) (10)

and the generalized work due to damping per unit length is

A fl L a, dx. (11)

After Hamilton's principle is applied, the final equation of planar cable motion becomes

EI a4- + pA I217 To + 3EA (a7 7 ) 2 a27, aq = 0 (12)
ax4 at2 2 ax ax2 at

It is convenient to transform this equation by

N7T x-x =- 17 7, t = it (3
L a (13)a

where N is the mode number, a is the antinode amplitude, and al is the frequency of
vibration. The resulting equation is

a27 EIN4 7r4 a4 ToN2272 + 3Ea2N 4 7r4 1a, 1 a 2 + 6 a77 = ° (14)

at2 pAOL4 ax4 pAL2CO2 2pc2L4 ax J2 2i at

in which 6 is the log decrement of the vibration.

Consider the ratio of the fluctuating tension to the equilibrium tension,

3 EA a2 N27r2.

2 To L2

It is reasonable to assume that EA/To = Ela - 6 X 103 and a - D/2 for actual cables
that undergo flow-induced vibration. Furthermore LID - 103 is a conservative estimate,
particularly for N > 2, and the ratio thus becomes proportional to N2 X 10-1. With these
estimates and the additional fact that I - (D/2)4, one finds that the ratio of bending
stiffness to equilibrium tension is on the order of N2 X 10-2. The justification for treating
the cable as an equivalent homogeneous string is thus apparent, as well as an ordering of
the assumptions inherent in this approximation. Since the nonlinearity is small, a first
approximation to the nonlinear tension fluctuation Tf can be obtained by substituting the
linear string equation solution into that term, which yields the result

Tf 3=r2 a2 N 2 EA COS2 Nirx sin2 cSt. (15)
2L2 L
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The motion of a particular cable can now be adequately predicted if the required properties
are known. The virtual mass and damping are not readily available, so that the experimental
determination of these parameters is required.

SCOPE OF EXPERIMENTAL PROGRAM

The enormous variety of commercially available wire ropes precludes a generalization
of resonant properties from tests of a few specimens, and also renders a test of all or most
types a tedious task. Nevertheless, for the variety of 3/8 in. diameter cables tested by
Heller and Chung [6], the added mass exhibited a general behavior, whereas the variation
in damping (within one medium) was less than an order of magnitude. Some trends did
appear according to material and type of construction. During the formulation of this
investigation the authors decided not to test a wide variety of construction types but rather
to study extensively several samples of similar construction under more varied conditions.
In this way more parameters of practical importance were examined and the results gen-
eralized for other constructions within the limits cited above. Of additional practical
importance are low frequency measurements (less than 20 Hz) and low tension measure-
ments (loads less than 10% of the rupture strength) up to and including "slack" cables.
Table 1 lists the ranges and types of experimental conditions employed in this study.
Although the parameter ranges are not independent, i.e. low tension plus long wave-
lengths results in low frequencies, the overlap of experimental conditions and the insen-
sitivity of the cable behavior to changes in some parameters allowed the data to be reduced
easily.

RESONANT FREQUENCIES AND ADDED MASS

The measured resonant frequency as a function of tension is plotted for each con-
figuration in Figs. 4 and 5. Figure 4 presents the resonant frequency measurements for a
1/4 in. diameter specimen in a fundamental mode at three nominal lengths of 5, 9, and
13 ft. Also shown are measurements of the second mode frequency for a length of 5 ft.
The predicted homogeneous string resonant frequency is presented in each case for
comparison. Fig. 5 contains the measured and predicted resonant frequencies of a 3/32 in.
diameter specimen for a 15-ft length in the first three modes. The changes in specimen
length or mode shape result in effective wavelength ranges for the two figures of 5 to 26
ft and 9.6 to 29 ft, respectively. Aside from the general agreement with the predicted
frequency, two other observations can be made. First, changes in resonant frequency in
both air and water due to various specimen lengths and modes are - to a good approxi-
mation - linearly related to ratios of specimen lengths or mode numbers. This implies
that the added mass is independent, or nearly so, of mode shape and wavelength. Second,
the essentially equivalent added mass effect at various modes requires the fluid loading to
be also independent, or nearly so, of frequency.

7



Table 1
Range of Parameters

T ~ModeI
Nominal Num- Tension Wavelength Frequency Reynolds (D2 wo AmplitudeCable Length (ft) bers (So Rupture) Diameter (Hz) Number ( 4v ) Diameter

1/4 in. diam 6 X 19 5 1,2 1.5 - 30 40,20 17 - 130 1050 - 8060
preformed 9 1 1.5 - 10 72 10 - 22 620 - 1360 0.5
improved
plowsteel 13 1 1.5 - 10 104 7 - 17 430 - 1050

3/32 in. diam 7 X 19 15 1,2,3 1-25 309 -103 3-55 26-480 0- 1.0S.S. aircraft cable

3/8 in. diam. 6 X 19~*
37 X 19* 5 1 15-60 26.7 20 120 2780-16700 0-.3

*Data from Ref. 9.
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55 - 3/32' DIA 7x19 WIRE ROPE O

MODE AIR WATER
50 NUMBER 

1 0 0U
2 A A

45 3 0/
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Fig. 5 -Measured and predicted resonant frequencies of
3/32 in. diameter 7 x 19 wire rope specimens

These observations are verified in Fig. 6. Here the ratio fA /fw is plotted as a function
of fw for all of the data in Figs. 4 and 5. This ratio, which is related to the virtual mass,
is a weak function of frequency over much of the range tested with a slight upward trend
for decreasing frequency. The frequency ratio shows no dependence on mode shape or
wavelength. Moreover, for the two different sizes of cables, the ratios at all amplitudes
up to 100% of a diameter are indistinguishable within the accuracy of the experiments.
Several points for a 3/8 in. diameter cable from the report by Heller and Chung [6] are
included for comparison. A slight increase appears in fA/fw with increasing cable size
(2-4% for a 4:1 increase in cable diameter), but this variation is within the bounds of
experimental accuracy.
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CABLE MODE LENGTH

6 X 19- 3/32" I , 15' 0

6X19-3/32" 2 15'

6X19-3/32" 3 15' o
6X19- 1/4" 13' _a
6XI9- 1/4" I 93" X
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diAeAAX A A A A A A-~ ~~~~ * .A A A *A A A 

I I I I __ 

.

10 20 30 40 50 60 70
fW (Hz)

80 90 100 110

Fig. 6 - Ratio of in-air resonant frequency fA to the in-water
resonant frequency fW as a function of fW. The square of this
ratio is equal to the ratio the virtual mass in water to the mass in
air

The rather simple conclusion that the added mass is independent of amplitude, mode
shape, and wavelength is not without precedent. King [10], in an experimental study of
the added mass of flexible cylinders, has made the following conclusion:

"It was shown that this 'added mass' effect was independent of frequency,
amplitude, mode shape and streaming flow."

King's conclusion not only tends to confirm the results of this report but also serves to
justify the application of added mass values obtained in still water to the situation where
water is flowing about the cable causing it to oscillate.

The added mass coefficient K was calculated with Eq. (3) after passing a mean curve
through the data in Fig. 6. The resulting curves are shown in Fig. 7 together with the
'probable mean line' of Heller and Chung [6]. The differences in the shape of 3/32 in.
and 1/4 in. cable curves compared to the 3/8 in. cable could be a result of the error
magnification inherent in Eq. (3), whereas the relative displacements in the curves are the
result of a varying specific gravity. The measured values of specific gravities S are listed
in the figure legend. Despite similarities in construction and materials of construction,
the specific gravity increases with decreasing cable size. To see if air trapped between the
larger strands of the larger cables was responsible, several cable specimens were immersed
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RAMBERG AND GRIFFIN

in water and the container was evacuated. There was a slight increase in specific gravity,
but it was not sufficient to account for the changes in S between cable sizes. To avoid
this ambiguity and the introduction of yet another empirical quantity it is recommended
that the virtual mass be computed directly from Eq. (2) in the form

1)W (fA )2 PA
fW

where the frequency ratio is obtained from Fig. 6. In this way the virtual mass, which is
the desired result, can be determined to within a reasonable variation of about ± 5%.

2.4

2.2 -

-Y-:2.0
w

L 1.8
uJ0

un 1.6
0)

D 1.4

0
1.2

1.0

10 20 30 40 50 60
fw(Hz)

70 80 90 100 110

Fig. 7 - The added mass coefficient K

Since the added mass appears to be independent of wavelength, the theoretical added
mass coefficient for a rigid cylinder serves as a useful comparison. The expression for this
coefficient is [11]

K = 1 + 2 2R, R = wD (16)
4v

where R is the vibration Reynolds number based on the cable diameter D, w is the vibration
frequency, and v is the fluid kinematic viscosity. As can be seen from the values of R
given in Table 1, the predicted values of K fall below the measured values for all cases

12
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including the 3/8 in. cable data of Heller and Chung [6]. This is in conflict with Fig. 6
of their report, which shows good agreement between a predicted curve and the measured
"probable mean" curve beyond 100 Hz.

To facilitate a comparison between measured and predicted resonant frequencies, a
best fit according to

fA = ao + a, T (17)

was obtained for the in-air resonant frequencies. A listing is given in Table 2 of the curve
fit and predicted coefficients ao and a1, as well as the standard deviation a and the ratio
of fA /fS for all configurations. The results in this table are intended to serve as a valida-
tion for the equivalent homogeneous string model and to give a quantitative measure of the
accuracy of that model. During the experiments the tension was often sufficiently low to
have a small amount of "sag" in the cable. However, the weight of the cable specimens
never exceeded 5% of the applied tension, and so it is likely that nonlinear effects due to
very slack or catenary cables were absent.

CABLE DAMPING

The overall damping at resonance will in general be a result of energy dissipation
through the combined effects of internal and interstrand friction, radiation, transmission
to the supports, and viscous losses in the surrounding fluid. Moreover, the overall damping
could likely be a function of frequency, amplitude, mode shape or wavelength within each
medium. The functional dependence of the overall damping was determined from the
experiments, but no attempt was made to partition the dissipated energy and, further, neg-
ligible losses were assumed at the supports. If the damping is dependent on amplitude but
is small in magnitude then difficulty is introduced only into the damping term itself. The
damping was in fact a function of amplitude during the initial experiments in air. Yu [12]
has suggested that the damping mechanism of a stranded cable in air with no axial load is
primarily interstrand friction. The interstrand friction depends on the contact forces,
which are a function of the amplitude (local tension) and the equilibrium tension itself.
The damping measurements in water did not exhibit amplitude or tension dependence
since external losses greatly overshadowed the internal losses, and so the investigation of
the in-air damping of cables was discontinued. The in-water log decrements for all con-
figurations are presented as a composite in Fig. 8. It is evident from the results in the
figure that the decrement is independent of wavelength and mode number, and that the
decrease in decrement at higher modes is therefore principally a result of the higher
frequency. This implies that the product 5f must be constant or nearly so. Generally,
the computed values of 6f increased slightly with increasing frequency. For the 3/32 in.
cable 5f increased about 20% for an order of magnitude change in frequency, while for
the 1/4 in. cable bf increased approximately 10%. It is worth noting that 6[f - f3, the
damping coefficient, so that the damping coefficient in water is independent of amplitude,
wavelength and mode shape for the range of parameters tested. Furthermore, the damping
coefficient is only slightly dependent on frequency.

13



Table 2
Comparison of Measured and Predicted Resonant Frequencies

Nominal Mode Curve Fit Results, fA String Prediction, fS
Cable Length Num - fA -fS

(ft) ber ao a, a ao a[

3/32 in. diameter 15 1 0.17 1.49 0.14 0 1.45 1.027 + 0.12/VT
7 X 19

15 2 -0.32 3.01 0.19 0 2.90 1.038 - 0.11/VT

15 3 0.58 4.44 0.17 0 4.35 1.020 + 0.13/VT

1/4 in. diameter 5 1 -0.08 1.67 0.97 0 1.65 1.012 - 0.05/VT
6 X 19

5 2 1.30 3.34 2.5 0 3.30 1.012 + 0.4/vT

9 1 0.83 0.95 0.79 0 0.93 1.021 + 0.88/VT

13 1 0.33 0.68 0.31 0 0.67 1.014 + 0.48/VT

0

z

0
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Fig. 8 - The log decrement of the free vibrations of a flexible cable in water

A similar result for a length of piano wire in air was published by Leehey and
Hanson [13] in a paper that considered the sound radiation from a resonantly vibrating
wire. From that paper, the damping quality factor, Q = 2ir/6, of the first four modes
of a piano wire yields essentially the same value when divided by the corresponding
resonant frequency. Both the quality factor Q and the quotient Q/f = 27r/6f are listed
in Table 3 for comparison purposes.

Table 3
The Damping Characteristics Of A Piano Wire*

Mode 1 l 1
Number | Frequency (Hz) Q= 27r/6 Q/f = 27r/6f

1 470 515 0.91
2 923 920 1.00
3 1387 1387 1.00
4 1683 1950 0.96

*From Leehey and Hanson [13].
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Once again a comparison can be made with the results of Heller and Chung [6].
Several representative data points from Chung's dissertation [9], for a 6 X 19, 3/8 in.
diameter wire rope, are plotted in Fig. 8. There is good agreement on the effects of
frequency and the suggestion of a diameter effect for the three cable sizes. Attempts to
collapse the damping data onto a single curve using the vibration Reynolds number were
not successful because of the several loss mechanisms that contribute to the overall damping
of a cable during transverse vibrations in water.

APPLICATION OF THE RESULTS TO FLOW-INDUCED CABLE VIBRATIONS

In the absence of Reynolds number and Froude number effects, the amplitude x of
a cylindrical structure undergoing vortex-excited oscillations can be expressed as a function
of certain parameters,

x = f(fn, M, D, 6, V, p), (18)

where

fn = natural frequency

M = body mass plus added mass (virtual mass) per unit length

6 = logarithmic decrement of damping

D = body diameter

V= free stream fluid velocity

p = fluid density. Dimensional analysis leads to the following nondimensional param-
eter groupings:

D (7fnD pD2

Vickery and Watkins [14] have shown that two of these groups can be combined into
a single parameter (called a combined stability parameter),

k, =(AwM \ I (20)
FpD2)

when the energy dissipated by damping at resonance is equated to the energy input from
fluid forces. Griffin, Skop, and Koopmann [3] have shown that the equations of NRL's
wake-oscillator mathematical model lead to another form of the combined stability
parameter,

27rS 2 k5 , (21)

16
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where S is the Strouhal number, r is the damping coefficient 6 /27r, and bU is a mass
parameter,

= pD2

87r2 S2M
(22)

Since the Strouhal number S = [5D/V (f[ is the vortex-shedding frequency from a stationary
body) is constant over the practical range of vortex shedding, the two forms of the com-
bined stability parameter are linearly related.

It has further been shown that the peak amplitude of resonant vortex-excited oscil-
lation of an elastically-mounted, rigid cylinder of flexible cylinder is only a weak function
of V/[fD, with the peak value of amplitude in the transverse, or crossflow, direction to the
incident current generally occurring in the range

V 5.5 to 6.5.
f[D

Thus the peak amplitude of vortex-excited oscillation is a function of only the com-
bined stability parameter as shown in Fig. 9 where experimental data from NRL and else-
where are plotted together with a predicted curve generated with the wake-oscillator
model [3].
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STABILITY PARAMETER, C = 27 S2 k5

Fig. 9 - The maximum amplitude of vortex-excited oscillation for a rigid,
elastically mounted cylinder. Experimental data (air): NRL, +; University
of British Columbia, 0 ED; University of Maryland, i. Experimental data
(water): University of Padua, *. The prediction of the NRL wake-oscillator
model [3] is denoted by the solid line.
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For values of t/pu greater than about 3.4 to 4.0, the amplitude of oscillation falls
below 2xO/D = 0.10, which is the threshold usually associated with the onset of resonant,
vortex-excited oscillations. The interesting and practical result indicated by the figure is
that beyond a critical, or cutoff, value for the stability parameter, vortex-excited resonant
oscillations do not occur. A combination of structural and flow properties which combine
to yield a value of t/'U such that' ' )critical

characterize a system that will not resonantly vibrate under vortex excitations. Such be-
havior has been observed for both flexible cylinders [15] and elastically mounted rigid
pendulum structures in both air and water [141, which suggests that an equivalent com-
bined stability parameter t/p or k, can be specified for a strumming underwater cable
once the damping and added mass have been determined.

The natural modes of the cable vibrations can be determined from the frequency law
for a stretched string

FT=2]/, 1, 2, 3*--2L M' =,,..

where L is the cable length, T is the tension, and M = pA is the mass per unit length. The
virtual mass in water can be deduced from the ratio of the natural frequencies in air and
water at corresponding values of tension and wavelength. This ratio of natural frequencies
is plotted in Fig. 6 as a function of the natural frequency fw. A typical virtual mass
computation at fw = 20 Hz is given by

MA = ( = (1.13)2 = 1.28 (23)

which represents a 28% increase in the apparent mass in water from the in-air value.

These results can be used to determine the combined stability parameter k5 for the
strumming vibrations of cables as shown in Table 4. The strumming response of the
cable was measured by Dale, et al. [16]. The cable lengths for the experiment were 3 and
6 ft and the cable diameter was 0.1 in. (D - 3/32 in.). Thus the cable damping and
added mass results for the 0.1 in. cable in Figs. 5 and 7 can be used to compute k,. The
four values of frequency in Table 4 correspond to resonant strumming vibrations in the
second through fourth modes for the 3-ft cable and the fourth through ninth modes for
the 6-ft cable. It is interesting to note the decrease in k, and ¢/Pu as the frequency in-
creases; this is a result of the decrease in the cable damping as the natural frequency is
increased from 10 to 30 Hz in Fig. 7. The values of k, in Table 4 correspond to a range
of peak-to-peak, resonant strumming amplitudes between 1 and 3 diameters [3,16].
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Table 4
The Damping Characteristics of Strumming Cables

Combined Stability Parameter 2

Frequency 1 , fW

(Hz) k (2M 27rS2k

31 0.56 0.15

28 0.80 0.22

21 1.20 0.33

14 1.60 0.44

lFrequency data from Dale et al [16]. Cable diameter = 0.1 in., cable length 6 ft, 3 ft.
2Cable damping and virtual mass from Figs. 5 and 7. Cable specific gravity = 7.25.

CONCLUSIONS

The equivalent homogeneous string is an adequate representation of the transverse
vibration of stranded wire rope for peak-to-peak amplitude of vibration up to at least a
full cable diameter. For tensions between 1 and 60% of the cable rupture strength the
predicted resonant frequency in air will be 1-4% below the actual natural frequency.

The added mass effect in water is independent of amplitude (up to 100% of a
diameter), mode shape, wavelength, and is only slightly dependent on frequency. The
virtual mass is most conveniently and accurately determined from

/fA\ 2

P W Vf}PA

where the ratio [A/fW is obtained from Fig. 5 of this report.

The damping or log decrement 6 of free vibrations in water at resonance is also
independent of amplitude (up to 100% of a cable diameter), mode shape, and wavelength.
In addition, the damping coefficient 3 increases very little with frequency so that the log
decrement is, to a good approximation, inversely proportional to frequency.

The damping and added mass can be combined to form a "stability parameter" that
governs the onset and magnitude of vortex-induced cable vibrations. This stability
parameter can be used to estimate correctly the maximum amplitude of transverse motion
at the antinode of a vibrating, flexible cable.
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