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FROM ITS QUANTUM BREMSSTRAHLUNG

iv.

INTRODUCTION
The filter method, used to measure temperatures of a low-Z (hydrogen or helium),

Maxwellian plasma through its bremsstrahlung emission, has been widely used gince it was
first applied by Jahoda and coworkers to the Scylla &-pinch [1, 2]. The method conve-
niently diagnoses the electron temperature beyond the normal range of other commonly
used diagnostic methods such as Thomson scattering of laser light [3]. The first attempts
at systematization of the method was done by Elton and Anderson [4], later extended by
Elton [5]; other works exist by Peacock [6], Adams and Taylor [7], and Bogan [8], to

cite a few. References 4 through 8 assume a classical bremsstrahlung, In an effort to
include the gquantum-mechanical alterations to the classical bremsstrahlung spectra, Robouch
and Rager [9] have used the free-free transition Gaunt factors [10] in their calculations,

as well as to account for the energy-dependent efficiency of real detectors, namely silicon
solid-state diodes. The present work uses an adequate quantum-mechanical theory for the
bremsstrahiung spectrum, so that Gaunt factors are not needed, and presents graphs of

the bremsstrahlung emission transmitted through various thicknesses of a number of
absorbers and detected by Kodak No-Screen Medical X-ray film*.

COMPUTATION
Considerations of the Spectral Power Density

The spectral power density of the bremsstrahlung emission as a function of the
photon energy hv and the plasma (Maxwellian) temperature kT, including the detector
response, is

O

nen; f dE EY2 BAT o5(hy, E) v, () —L . d(hv)
- R ()

P, (T, hw) d (bw) = » (1}

f dE El/2 ¢E/T
0

Note: Manuscript submitied May 30, 1974.
*Film and developer are available from Eastman Kodak Co., Rochester, NY, 14660.
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where ¢g(h, E) is the bremsstrahlung emission cross section, E is the electron energy, Ve
{E) is the electron velocity, and n, and n; are the plasma electron and ion densities respee-
tively; R(hv) is the photon-energy-dependent film efficiency. For low-Z (L or 2) ions and
electron energies less than 100 keV, a detailed evaluation [11] of the relativistically correct
guantum-mechanical treatment [12] of the cross section shows that the single-electron
spectrum can be approximated to within 10% by the nonrelativistic Born-approximation

rnorsle l"l Q'l
Yesuun j1og:

Z2y2 18 1 . P, +P;

hy, E) = ——— — —
o B " Ter 3 B p-p |, )

where
P =[EE +2) [V2,
* L -y
Py = [Ef(Ef + 2)]1‘[2,

E; = E — hw,

and ry is the classical electror radius. Use of Eq. (2) in Eq. (1) gives a spectral power
density varying more steeply than e *?4T which one obtains from classical calculations
101,

L=>a*

Numerical Considerationg

A computer code was employed to evaluate numeriecally the integral of the gquantum
bremsstrahlung since the use of individual integration steps facilitates the inclusion of
attenuation-coefficient and film-response data. The integration range in electron energy
was taken from {wo orders of magnitude less to one order of magnitude greater than the

famnearature ¥T of the Maywellign plasma in 150 intecration stens. The iruneation arror in
wmperature X1 ©1 e M aXWellall piasma IIn 10U MILe@ration s1eps. 1nf wrancaslion orrer 1n

the evaluation of the integral has been shown to be less than 1% over the range of temper-
atureg [11].

Calculation

The present investigation is restricted to a temperature range of 1 to 100 keV. Three
absorbers, aluminum, copper, and carbon in the form of polyethylene CHy are used as

filtare, Thicknesses range from O io 1 cm Attenusation consfficiants tizcad in the calenlatinn
TS, L1IICKnesges range iroin U 1 ¢, ALLeNUALIOI CoellICISnts Useq in 9 faidiuauion

were taken from Allen [14}. The ealculated integrated bremssirahlung emission is normal-
ized to n.n;Z2 and has the units of W/em?, power density emitted into 4w steradians.

The film response R(hv), in the form of exposure factors, was measured by Dozier et
al. (15] for Kodak No-Screen Medical X-ray film over the photon energy range of a few

2
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keV to 1.3 MeV. Except for the Ag and Br edges, the film sensitivity decreases with
increasing photon energy. The film factors used in the calculation ranged from 0.1 to
0.002 from 1 to 1000 keV respectively.

RESULTS AND DISCUSSION

Results of the calculation are given in a series of graphs. Figure 1 gives the total
emitted power density over the entire temperature range with no absorbers (open), with
and without including the film response. The transparency of the film at high energies is
evident from the lower curve. One can calculate the absolute power density at any
temperature from the open, no-film-factor curve by multiplying its value at the temperature
by the factor n.n;Z2, where the densities are particles cm™3and Z is either 1 or 2. When
the volume of plasma emission and the solid angle of detection are known, one can calcu-
late the power incident on a unit area of the film. The number of incident photons
required to give a film neutral-density exposure of 1.00 for example ranges from 1.5 X 107
em—2 to 2.25 X 108 em™2 as the photon energy goes from 1 to 100 keV [15].

Figures 2 through 7 are plots of the integrated bremsstrahlung emission transmitted
through various thickness of absorbers over the range of electron temperatures. Absolute
power densities transmitted through various foils can be calculated from these cufves, as
previously discussed. Figures 2 through 7, which compare to the curves of Elton [5], can be
used in constructing ratios for temperature measurements using detectors whose efficiencies
do not depend on photon energy, i.e., ideal detectors. The present results, however, lead to
ratios that differ, by an amount detectable experimentally, from those of the classical approach.
The differences in ratios for two combinations of aluminum absorbers are shown in Fig. 8. At
a ratio of 20, for combination 2 for example, the two calculations yield electron temperatures
that differ by about 20%.

The results plotted in Figs. 9 through 14, include the energy-dependent efficiency of
the Kodak No-Screen Medical X-ray film. These curves can be related absolutely to the
preceeding curves without the film response if they are multiplied by 10 to account for
the normalization to 0.1 chosen in the calculation. Thus in Fig. 1, for example, the two
curves would approach each other at 1 keV, where the film response is nearly unity. These
curves have been used in constructing a few yield ratios using varicus absorber combinations
and have been plotted as Fig. 15. The choice of the absorber material and thickness for
each “‘channel” of the detector depends on the temperature range of interest. Selections
can be made to give a rapidly changing ratio at any temperature, thus assuring that even a
relatively large error in the ratio measurement results in only a small error in the temperature
determination.

The range of yield ratios plotted in Fig. 15 goes from 1 to 100. In reality the useful
range of ratios is determined by the accuracy of the instrument used to measure the neutral
density of the exposed films. If one uses a microdensitometer with a resolution of 0.01
neutral density, the useful range of ratios could be as large as 1 to 200, i.e., 2/2 to 2/0.01.
The absolute measured neutral density of 2 is taken as an upper limit, since the film no
longer responds linearly with exposure beyond this density {15] and this nonlinear response
is not considered in the calculation. The standard development procedure for Kodak
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No-Screen Medical X-ray film is wet processing for 5 min in fresh Kodak Liquid X-ray
Developer at 20° C, rinsing for 30 s in water, fixing in Kodak Liguid X-xay Fixer for
10 mm, and washing in running water for 30 min.

INTERPRETATION

Since the film integrates exposure over time, care has to be taken in the interpretation
of the measured temperature. I the plasma temperature changes rapidly over the integration
time, the measured value will be a weighted average of all the temperatures. However, cal-
culations using specific electron-temperature time-history models show that for the most part
the measured temperature will be close to the peak temperature achieved at any time in the
time history.

CONCLUSION

The filter and film method of plasma-temperature measurement provides a fast, compact,
and inexpensive aliernative to other methods such as scintillator-photomultiplier combinations
or §i solid-state diodes. The calculations presented here should be applicable to most hot,
dense, low-Z Maxwellian plasmas, especially those with Tokamak or other fusion-device par-
ameters,
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Fig. 2 — Transmitted integrated bremsstrahlung emission in W/em?® vs aluminum absorber
thickness, without film response, for a range of electron temperatures
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