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NONLINEAR ACOUSTICS: PART I, PHYSICAL PHENOMENA, EXACT BASIC
EQUATIONS, AND PROBLEMS IN FORMULATION AND SOLUTION

OF APPROXIMATE EQUATIONS

1. PHYSICAL AND EXPERIMENTAL BACKGROUND

Physical and experimental evidence of nonlinear acoustics has been exhibited in the
literature [1,2], and several symposia have been devoted entirely to this subject.*

At high acoustic amplitudes or intensities (i.e. the product of acoustic pressure and
particle velocity) or high power (the product of acoustic pressure and volume particle
velocity) or high energy density (acoustic pressure), significant nonlinear effects occur in
gases, liquids, and solids. The physical manifestations of the more important of these
effects in liquids and gases are

1. Sound radiation pressure
2. Cavitation
3. Acoustic streaming (quartz wind)
4. Shock waves
5. Generation of Sum and Difference Frequencies
6. Anomalous Absorption
7. Acoustic Self-Demodulation
8. Acoustic Saturafion
9. Subharmonic generation.

A brief description of the nature of these effects with simple experiments to illustrate
them will emphasize the physical basis of nonlinear acoustics.

2. SOUND RADIATION PRESSURE

In acoustic waves of infinitesimal amplitude which are generated by a piston moving
sinusoidally in a medium having amplitude-dependent compressibility the mean acoustic
pressure over a period does not differ perceptibly from zero, that is, the mean total pres-
sure is very nearly equal to the static pressure. When the waves are given finite amplitude
and are measured at a finite distance from the generating surface, the acoustic pressure
experimentally varies nonsinusoidally with spatial coordinate, and its mean value (or
radiation pressure) over a period is different from zero. An experiment [2] demonstrat-
ing this (Rayleigh) radiation pressure consists in sealing both front and back sides of the
diaphragm of a large electrodynamic low-frequency loadspeaker operating in air to

Note: Manuscript submitted May 22, 1974.
*Conference on Nonlinear Acoustics, Navy Underwater Sound Laboratory, New London, Conn., 1968;

Conference on Nonlinear Acoustics, Applied Research Laboratory, Texas University, Austin, Texas,
1969 [la]; Symposium on Nonlinear Acoustics, Naval Research Laboratory, Washington, D.C., 1971
[lb]; and Symposium on Finite Amplitude Wave Effects in Fluids, Copenhagen, Denmark, 1973.
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form two pressure-tight chambers and connecting to them fluid manometers, one to each
chamber. Upon intense excitation the fluid levels increase in both manometers and by
the same amount, indicating an increase of the mean pressure. When the intensity is
reduced the fluid levels ultimately reach static (or zero-infcrement) condition. Rayleigh-
type radiation pressure is usually observed in closed spaces.

A second type of sound radiation pressure occurs when a high-intensity, finite-area
sound beam (say a sinusoidal plane wave) is launched into a medium at rest. If the beam
were effectively free an observer at rest would measure a decrease in mean pressure over
a cycle of oscillation of the wave (a result analogous to the Bernoulli effect in incom-
pressible flow). When the boundary medium effectively confines the beam an observer
traveling with the beam sees material from the rest medium flowing in and thus measures
an increase in the sound beam's mean pressure level over a cycle, the magnitude of in-
crease depending directly on the acoustic intensity. The observer attributes this rise in
mean (Langevin) radiation pressure to a force exerted at the surface of the beam by the
static medium outside it. This Langevin radiation pressure may be demonstrated [2] by
launching a finite-area beam into a tandem (planar-bounded) series of immiscible fluids
having almost the same characteristic impedances but different sound speeds. The
acoustic intensity in each fluid is very nearly the same, but the energy density (viz, in-
tensity divided by sound speed) differs from fluid to fluid. Inside the beam at fluid
interfaces material from high energy-density fluids is forced into low energy-density fluids
(interfacial bulges). These bulges disappear when the intensity effectively is reduced to
infinitesimal levels. When one of the fluids is a gas and the other a liquid, an interfacial
bulge at very high intensity erupts into a fountain (ultrasonic fountain).

Langevin radiation pressure is also observed on reflection in a gaseous medium. A
plane compression wave, initially at a distance x from a rigid wall, moves x/2 units to-
ward the wall. The volume (of isothermal gas) being halved results in the pressure being
doubled (Boyle's law). If it moves from x a distance x/2 away from the wall, the volume
is increased to 3x/2, and hence the pressure drops to 2/3 of its initial value. Thus a net
static pressure is exerted on the wall (Poynting's explanation). The effect evidently in-
creases with amplitude. In both Rayleigh and Langevin types of radiation pressure there
is a component acoustic pressure proportional to the square of a field quantity (square
of acoustic density in the Rayleigh type and the square of particle velocity in the
Langevin type). This accounts for nonzero mean values over a cycle.

The mathematical description of radiation pressure is obtainable from the hydro-
dynamic equation of motion (in Eulerian variables) (see Eq. (21.6) of this text) and from
the equation of state (see Eq. (24.1)). For an ideal fluid (i.e., thermal and viscous terms
vanishing), if the gross motion of the fluid is assumed irrotational, one averages Eq. (21.6)
over a large interval of time and integrates over space. Since first order terms drop out
in the temporal integration process the averaged pressure is of second order. This second
order pressure is the acoustic radiation pressure. It is more readily obtained by space
time integration of Eq. (24.12), which shows that the second order density (or pressure)
is proportional to the algebraic sum of the first order velocity squared and the first order
density squared. Rayleigh radiation pressure involves both velocity and density terms.
Langevin radiation pressure involves the squared velocity term.

2
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3. CAVITATION

Gases dissolved in liquids under rest conditions come out of solution during the
negative phase of infinitesimal-amplitude acoustic signals and redissolve under the positive
phase. When the wave is intense the gaseous bubbles formed during the negative phase
do not totally disappear during the positive phase. The generation of these voids has
three aspects: (a) Quiet degassing, in which the bubbles increase in size with each period
of the wave by a process of "rectified diffusion" and eventually rise out of the sound
field. Quiet degassing produces no noise in a listening hydrophone. (b) Mechanical
resonance of gas bubbles, in which the sound field, at frequency co, excites the gaseous
voids to vibrate and thus generate offspring sounds at integer multiples (harmonics) and
at integer fractions (subharmonics) of w, detectable by a listening hydrophone. (c) Non-
linear collapse of vapor bubbles, in which small explosive ruptures occur, accompanied by
instantaneous pressures of great magnitude and hydrophone-detectable noise with a wide-
band spectrum. Cavitation generated by sound can be observed by driving a magneto-
strictive transducer in air-saturated water. At an appropriate frequency and intensity a
swarm of small (cavitation) bubbles is seen to hover near the active surface of the trans-
ducer.

Many mathematical models of cavitation have been developed. An extensive review
of the best of these is found in Ref. 3.

4. ACOUSTIC STREAMING (OR "QUARTZ WIND")

In the path of a high-intensity or high-amplitude sound beam in fluids there can be
observed a time-independent flow (acoustic streaming), particularly noticeable near walls,
obstacles, or oscillating bodies. This flow is rotational, i.e., the particle motion is vortical
in nature, with a magnitude generally smaller than the particle velocity in the sound
wave, and stabilized in time by the viscosity of the medium. Such time-independent
streaming is caused by constant (i.e., "direct current") forces in the sound field, directly
proportional to sound intensity, and is determined by higher order nonlinear terms in the
equation of motion of the flow (Rayleigh's explanation). The scale of this vertical flow
is of three sizes: (a) much smaller than a wavelength (Schlichting streaming inside a
viscous boundary layer); (b) of the order of a wavelength (Rayleigh streaming); or (c) much
larger than a wavelength (Eckart streaming). Echart streaming can be observed when a
quartz oscillator radiates high intensity sound whose associated acoustic streaming blows
out a nearby candle.

The mathematical description of acoustic streaming can be approached via use of the
basic hydrodynamic equation of motion (in Eulerian variables) (see Eq. (21.6) of this text)
and the equation of continuity (Eq. (21.7)). To better display the vortical nature of the
fluid motion, the second term on the left-hand side of Eq. (21.6) is rewirtten as

(v V)v= 2 VV2 -vx(Vxv).
2

This relation is substituted into the hydrodynamic equations of second order, Eqs. (23.8)
and (23.9). The latter equations are then averaged over time. These time-averaged,
second-order equations of motion and continuity then serve as basic models for the
acoustic streaming process.
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5. SHOCK WAVES

A traveling plane wave of infinitesimal amplitude which is sinusoidal at the generating
surface remains nearly sinusoidal during propagation to great distances. When its ampli-
tude is greatly increased the associated particle velocity becomes no longer negligible
relative to the propagation speed of the wave. During the positive phase of the wave
these two speeds add, and during the negative phase they subtract. The wave becomes
asymmetrical in sonic velocity. In addition, at high amplitudes the medium is more stiff
during the positive phase than the equilibrium stiffness, and less stiff during the negative
phase. The propagation speed therefore exceeds infinitesimal wave speed during one half-
cycle and is reduced below this value during the next half-cycle. As a result the positions
of the maxima in space shift ahead while the positions of the minima shift behind. At
any fixed point in space the maxima occur earlier than the comparable time of the in-
finitesimal wave, and the minima occur later. When the propagating wave has high enough
amplitude, a region of space is eventually reached in which the spatial distribution of
pressure shows the maxima coinciding with the minima (viz "shock") at intervals cor-
responding to the frequency of the original sinusoidal wave. At a fixed point in space the
time history of the waveform is sawtooth-like. Part of the wave energy has thus been
transferred from the fundamental (drive frequency) into higher harmonics. This transfer
of energy to the higher harmonics is counterbalanced by increased attenuation loss due to
viscosity (and possible heat conduction) which is proportional to the square of the fre-
quency in the first approximation. The energy in the initial high amplitudes is thus
eventually lost to the surrounding medium and the wave ultimately becomes infinitesimal
once again.

Shock waves can be formed experimentally [2] by attaching a very long hard-walled
hollow tube of small bore flared at one end to a source of very highly pressurized com-
pressed air regulated by a valve. When the valve is suddenly opened, the pressure at the
valve reaches a maximum in a finite rise time and the waveform is shaped accordingly.
After propagating down the tube the waveform between the resting medium ahead and
the high-pressure medium behind steepens and the rise time shortens, until eventually a
shock wave is formed. This is heard as a sharp clap when the wave exits the flared end
of the tube.

The mathematical description of acoustic shock waves is found in Sects. 29, 30, and
36 of this report. Although several mathematical models are discussed in these sections
the validity of each model must be ascertained for particular cases. This caution is neces-
sary since a shock wave can be modeled either as a zero-width or as a finite-width dis-
continuity. The development of harmonics and their subsequent propagation is particu-
larly discussed in Sec. 30 where a number of mathematical models of harmonic formation
and absorption are treated.

6. GENERATION OF SUM AND DIFFERENCE FREQUENCIES

When a beam of high-intensity sound at frequency w is launched into a gaseous or
liquid medium, and a second acoustic wave at frequency w2 is made to propagate along
the axis of the first, in the same direction, a receiver of sound placed in the beam detects
not only wh and co2 and their harmonics, but also the sum frequency w + 2 and the
difference frequency c1 - 2. The pressure level and directionality of the new fre-
quencies depend on the amplitudes or intensities of the original beams, on the width of

4
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the high-intensity beam, on the location of the receiver relative to the location of the
high-intensity source, and on the nonlinear properties of the medium. An experimental
demonstration of this effect can be made by generating two coaxial high-intensity ultra-
sonic beams in water at slightly different frequencies (say a difference of 5% of the mean
frequency of 1 MHz) by means of a single transducer and placing a probe hydrophone at
the Rayliegh distance in the beam. Low-level sum and difference frequencies together
with harmonics of the main beams will be observed. A mathematical model of the genera-
tion of sum and difference frequencies can conveniently be based on the source density
equation of Westervelt; see Eqs. (24.18) - (24.21) and Eq. (24.30). These equations have
served as starting points for numerous scientific articles on practical applications on non-
linear acoustics [1].

7. ANOMALOUS ABSORPTION

Upon initiation of an explosion a shock wavefront initially composed of many fre-
quencies is radiated outward. As the shock progresses the higher frequencies are dissipated
at the shock front. By agency of the nonlinear reaction of the medium to high-amplitude
sound, new high-frequency energy is resupplied from the low-frequency content of the
propagating wave. This process of resupply continues until a distance is reached at which
the amplitude of the low-frequency content becomes so low as to effectively shut off
nonlinear conversion. An observer at a distance from the source he considers to be
acoustic (i.e., low amplitude) finds that the signal contains an anomalously excessive con-
tent of high-frequency energy compared to that predicted by low-amplitude theory and
an anomalously deficient content of low-frequency energy. He measures nonacoustic
behavior on this type at ranges where linear theory should prevail. Unless aware of non-
linear processes, he deduces, as a consequence, attenuation coefficients which are too
small at high frequencies and too large at low frequencies [3]. Excessive absorption of
low-frequency energy due to finite amplitude is called anomalous absorption. A mathe-
matical model which treats anomalous absorption is briefly noted in Sec. 28 of this report.
Greater detail is found in Ref. 3 as noted.

8. ACOUSTIC SELF-DEMODULATION

An acoustic pulse consisting of a high-frequency carrier wave modulated by an
envelope is given a large amplitude at the source and then made to propagate through a
nonlinear liquid medium. At a distance from the source where the carrier wave has been
reduced by attenuation ultil it is negligible, the residual signal is detected by a hydrophone
and examined. In the examination a transient signal appears whose time history closely
coincides with the onset and cessation of the pulse envelope, and is essentially vanishing
in between. A spectral examination of this transient shows strong difference-frequency
components arising from the nonlinear interaction of the carrier frequency and the
dominant frequencies of the envelope. The transient amplitude of the signal is found to
be proportional to the second time derivative of the square of the envelope amplitude.
The suppression of the carrier by attenuation in the nonlinear medium and the nonlinear
generation of a transient related to (but not identical with) the pulse envelope is called
self-demodulation, in loose analogy to the demodulation of a pulsed carrier in radio tech-
nology by use of a nonlinear electronic detector. The process of acoustic self-demodula-
tion has been mathematically modeled by use of the source density equation of Westervelt

5
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(see Eqs. (24.18) - (24.21)). Here the first order pressure is taken to be a (known) high-
amplitude, well-collimated, plane-wave pulse with a pulse envelope f(t - x/co). By use of
an appropriate far-field Green's function, one solves Eq. (24.20) by quadrature. The
resultant scattered (second order) pressure is then seen to be proportional to d2 /dt2

[f2 (t - x/c)] and predicts self-demodulation as noted above.

9. ACOUSTIC SATURATION

When a piston is driven sinusoidally at low amplitude to radiate sound into a medium
with amplitude-dependent compressibility, the generated field pressures are sinusoidal. As
the amplitude is increased the far-field pressure (i.e., the source level) increases linearly.
When the amplitude becomes large enough (determinable in any specific case by frequency,
piston size, and the nonlinear properties of the medium) the waveform of sound pressure
generated begins to lose its sinusoidal nature and takes on higher harmonic components.
The far-field pressure increment is no longer linear with increment of piston amplitude,
since the higher harmonic components of the wave are rapidly attenuated with distance
from the source. Further increase in piston amplitude beyond this point shows the funda-
mental component of the acoustic pressure in the far field departing widely from linear
dependence on amplitude, eventually levelling off to a steady value independent of source
amplitude. Any increase in source power at these levels only transfers energy to harmonics.
Since these vanish with distance, increased power does not result in an increase in the
far-field source level. The medium is said to be acoustically saturated. A mathematical
model of acoustic saturation is described in Sec. 30 in the sequence of equations starting
with Eq. (30.23). As with all models of nonlinear acoustic processes, the domain of
validity of these equations must be observed in practical applications.

10. GENERATION OF SUBHARMONICS

A piston vibrating sinusoidally at frequency w is set to radiate into a cavity contain-
ing a medium with amplitude-dependent compressibility. Since the radiation is never
strictly monochromatic, the piston motion excites weak-amplitude cavity modes. When
the piston amplitude increases it has been observed that beyond a threshold the amplitudes
of cavity modes suddenly increase to significant amounts. Examination of the cavity-
trapped radiation shows the presence of subharmonic components whose origin is traceable
to the nonlinear properties of the cavity medium. Subharmonic generation usually occurs
in pairs of frequencies such that the sum of a pair is the parent driving frequency.

A mathematical description of the generation of subharmonics is briefly noted in
Sec. 48 in connection with nonlinear acoustic waves in tubes. Additional mathematical
treatment is to be found in discussions of the theory of resonant interactions in Sec. 49.

CONCLUSION TO SECTIONS 1-10

All the physical manifestations of nonlinear effects discussed above are, together,
events of relatively small magnitude, if observed over short distances or times (on the
scale of distance or time to shock formation). However, over long distances and long
times (similarly scaled), the physical manifestations may become prominent and must then
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be taken into consideration. When they are considered it soon becomes evident that
great difficulties arise in attempts to formulate the problem and boundary conditions in
mathematical terms and to find methods of solution. We trace the origin of these dif-
ficulties, first, to the need for accurately describing the material properties of the nonlinear
medium; second, to the need for describing the deformation of the medium as finite
deformation; and third, to the nonlinearity of the basic constitutive equations and the
hydrodynamic equations of motion with accompanying difficulty of solution. We take
up these points sequentially in the following sections.

11. MATERIAL PARAMETERS AND THERMODYNAMIC EQUILIBRIUM

The distortion of the waveform during its propagation in a nonlinear medium (fluids
or solids) is attributable to three classes of effects, namely diffusion, convection, and
nonlinearity. In diffusion the waveform undergoes reduction in amplitude over range
(attenuation or absorption) due to viscosity and heat conduction and/or a transfer of
energy between degrees of freedom of the medium (relaxation). Diffusion of wave energy
with corresponding distortion also occurs during propagation when the component wave-
lets of a wave packet travel at different speeds depending on frequency (dispersion). In
convection, the waveform is distorted when the particle velocity convects the wave, i.e.,
adds to, or subtracts from, the wave speed depending on the phase (plus or minus) of the
wave. The sequence of speed-up (plus phase) and slow-down (minus phase) results in a
wave distortion (namely wave steepening) which corresponds to a transfer of energy from
low-frequency to high-frequency components (development of harmonics). In nonlinearity
the waveform distorts because a change in acoustic pressure is accompanied by a non-
linear change in acoustic density, which causes harmonics to appear in the signal wave, as
in the case of convection.

The rate and magnitude of distortion depend on certain parameters of the medium.
The most important of these are (a) dynamic viscosity and bulk viscosity; (b) the disper-
sion curve (phase velocity vs frequency) and absorption curve (absorption vs frequency)
of the medium, caused by relaxation (these curves also define the relaxation frequency
and relaxation time); (c) the coefficient of thermal conductivity; (d) the phase velocity of
mode propagation of the medium vs frequency (dispersion of mode); (e) the compressibil-
ity, thermal expansion, and mass density of the medium; and (f) the sound speed. The
magnitudes of these parameters depend, in general, on pressure, temperature, amplitude,
frequency, component concentration, molecular constitution, boundaries, etc. In practical
cases values of material parameters are determined only by relying on the simplest hypo-
theses.

These material parameters form the physical basis for defining the relationships among
acoustic field quantities (pressure, density, etc.). In formulating these relations the ques-
tion arises, are these relations in thermodynamic equilibrium? This question is now treated
briefly.

In the hydrodynamic equations to be presented later, formulas appear involving p, p,
and s arguments (i.e., pressure, density, and entropy, respectively) based on equilibrium
thermodynamics. However, a continuum having velocity and temperature gradients is not
in thermodynamic equilibrium. Thus the nonequilibrium (subscript ne) quantities Pne,
Pne, sne will contain not only equilibrium quantities (subscript e) but also quantities

7
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proportional to powers of the gradients. In the case of fluid pressure in the presence of
viscosity (say, bulk viscosity ¢) it is known [4] that in the first approximation,

Pne Pe + tv is t positive. (11.1)

Thus the difference between the equilibrium Pe and nonequilibrium pne values of pres-
sure is of first order in the velocity gradient. A similar argument applied to entropy s
shows this difference to be of second and higher orders in the temperature gradient, but
not of the first. Since viscosity coefficient ¢ and thermal conductivity coefficient X are
parameters of the fluid describing first order effects of velocity and temperature gradients,
their appearance in the hydrodynamic equations indicates the limits of validity of such
equations, namely, to the cases where higher order space derivatives of velocity, tempera-
ture, etc., are negligible. When these derivatives are large one must remodel the equations
so that

Pne Pe + rviai + ¢'(vi 2 + ¢"(vi i)3 + (11.2)

s = s + X'(Ti) 2 + X"(T) 3 + (11.3)ne e S' +s' +
The hydrodynamic equations will then contain the additional material parameters ¢', c",
X", etc. However, systematic inclusion of these parameters greatly increases the difficulty
of solving the equations of motion that use them.

12. CONSTITUTIVE RELATIONS

The addition of terms containing these higher order material properties to the hydro-
dynamic equations can be formulated as a set of more generalized constitutive relations,
i.e., relations between stress and strain in the field of viscoelastic deformation, and pres-
sure, density, and entropy (or temperature) in the field of thermodynamics. These
enlarged constitutive relations are considered next.

We consider first the viscoelastic stress-strain relations and refer all deformations to
rectangular coordinates X. Two tensors of importance in generalizing the stress-strain
relations are the (a) generalized deformation-rate (or Rivlin-Ericksen) tensor A(M)(T) which
is read "Mth order derivative with respect to time r of the generalized deformation-rate
tensor"; (b) the stress-rate tensor t(M) which is read "Mth order time derivative of the
generalized stress rate." Their definitions in terms of tensor components A.0, ta0 are [4a,
4b]

M-1
AM) = v(M) + vM + E (v(M-K)v(K_ M = 1,2.... (12.1)

ao UO pla K=1 M 

DMt M DM-Kt v
t:m) - UO ()D K E (K) VLK-H)U$H (12.2)

DrM K=1 tim dri

in which the vector velocity v. and its M + 1 time derivatives are given by [4c] in the form

8
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Dv aT ( )(3 aV(M+1)(T) = CD = [a + Vl)(T) a-JV)(T) (12.3)

With these definitions the generalized stress-strain constitutive equation is written in the
form of a functional, i.e., functions of functions (bracket notation), fa [ I = 0. This
means the value of fago depends continuously on the entire range of the parameter
dependence of the functions in the brackets. The functions appearing in the bracket are
deformation gradient, velocity gradient, deformation rate, stress rate, etc. An explicit
formulation (one of several possible formulations), would be [4d]

fadXL ( r);A >(T), .,A(' (T) ; t?"(T), t(1) (0) .-

t8)( =] ,( ) (12.4)

Here r takes on all values between 0 and t (where t is the present), in agreement with the
concept of a functional. It is noted that AM), tM), and vam+') are all nonlinear when
M > 1. In this equation one also understands that the functional form implies the possi-
bility of multiterm products of the functionals with each other and with themselves.

Among the models of viscoelastic behavior the most commonly used is the simple
viscoelastic material. To specify this material we begin with a broad class of materials for
which M = 0 for stress flux; i.e. the behavior of these materials is independent of time
derivative of stress. Recalling the definition of A(M), we see that the constitutive equation
reduces to [4e] pq

tpq = Fpq [XXL (); V( ) (r) * *,X (Tr)1, (12.5)

where Fq is again a continuous functional over the range 0 < r < t, and is an ordinary
pq~~~~~~~~~~~~~~~~~~pfunction at T = t. For regular functions one can make a power series expansion of tp in

a polynomial in XQk L 1), etc., the coefficients of which are continuous functionals of
XXL(T), V(1) (T), etc. Tfie result is [4f]

t
tpq = Fq X? L(T); xk A('1) ... A'(N) .(26

Tr=0

Of this class of materials we select a stress-strain model independent of the history of
displacement gradients (that is, we do not include XXQ(r)). Then [4g]

tpq =Fpq[X ; KAQ1) X . A im] (12.7)

Next we take the model to represent an isotropic material. Then xk K and AM can be
replaced by deformation tensors c and d so that the functional equation is reducible to the
ordinary function [4h],

9
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t = F(c, d); c = c[CkQ]; d = d[dkQ]

CkQ CKLXKkXLQ; dkk = 2 [vk, + vV k] (12.8)

in which c is Green's deformation tensor and d is the Euler deformation rate tensor.
Since F is an isotropic matrix polynomial of two symmetric matrixes, it can be expressed
in a canonical form (i.e. in finite powers of c, d) with coefficients ak Q. The result is the
constitutive equation for a simple viscoelastic isotropic material, [4i], where I is the
identity matrix;

t= a0 I + a0 c + a20C2 +

+a d+a 2 d2

+ al1 (cd + dc) + al 2 (cd2 + d2c)

+ 21 (c2d + dc2 ) +a2 2 (c2 d2 + d2 c2 ). (12.9)

The linear part of this constitutive relation is

t = a001 + a0 ld (12.10)

in which, for compressible viscous fluids, one has [4j]

a00 = - Tr + XId; a0 1 = 2p,

where Id(= d. -) is the first invariant of deformation rate tensor d, and Xv, pv are viscosity
coefficient (Sec. 20). This is the conventional model of a single viscoelastic material, and
the one commonly used in the theory of nonlinear acoustics.

The stress-strain constitutive equation is one of a set of equations of state needed
for solution of the hydrodynamic equations. A second set describes the thermodynamic
relations between the thermodynamic pressure 7r, density p, and temperature T or entropy
s and their increments A7r, As, etc. Near the equilibrium state we can write

p = p(Or, s)

P ==Po + 0( 7r ads)7T A

! /a2p (A72) + 12 ( a2p) (S)2 (12.11)
+ - I Air ~-- (As)2r_2! F? ),2

10
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or

ir = 7r(p, s)

7r = 7 + ~ ( p + 1 /a2C) (Ap) 2

1 (a 2 7r)
+ 2s)As + (a2 (As)2 + (12.12)

The number of terms to be included in this power series depends on the order (first,
second, etc.) of acoustic quantities to be used in a required approximation. We discuss
approximations in Sec. 16. The second and third terms (r.h.s.) of Eq. (12.12) are con-
veniently written in the form

(ŽlAp =A AP (a22r) = B (Ap)2

A=Po ("); B = ( ap c2 \ (12.13)APp I 0 L P 

The ratio B/A which has special significance, i.e.,

B Po a2C2)A 2 t apJ X (12.14)

is the crucial material parameter in the modeling of the nonlinear properties of fluids. For
later reference we note here that the ratio B/A in the theory of fluids is related to the
ratio of specific heats My in the theory of gases. When nonlinear processes are under con-
sideration one can interchange the group (1 + B/A) which is applicable to fluids with
the symbol -y which is applicable to gases.

13. ATTENUATION

Attenuation (or absorption) is a basic phenomenon in nonlinear acoustics. Its
numerical value depends on material parameters, frequency, amplitude, and wave shape.
We touch briefly here on plane waves exhibiting moderate absorption over long distances
and derive the classic formulas for this type of diffusion.

From the energy equation (Eq. (22.7)) we consider here energy loss in a plane wave
per unit volume due to viscous absorption and heat conduction (dimensions: (N-m/s)/m 3).
If the intensity 10 (dimensions: (N-m/m 2 )/s) of a plane wave is initially distributed over
an area AO, we can define an attenuation 2oa (intensity loss per unit distance) by the ratio
[4k],

11
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(T + 2uv)I - 4 pvIId + ph
2a~= (13.1)

10

where Id, lid are invariants of d (see Ref. 5) and h is heat conduction per unit mass. In
the case of a plane wave vX = v0 exp(ikx - icot), we have

i2 = k2 v2

II0d =. (13.2)

When the heat source can be described by the process of heat conduction,

ph = (XT,k )'k

ph=(T T 'Tk)'k

X = thermal conductivity, (K) (13.3)

When computing the average ph (i.e. when integrating over the finite volume of sources)
the last term in Eq. (13.3) reduces from a volume integral over the divergence of the
quantity (XTk )/T to the surface integral over the normal component of this quantity. By
making the surface large enough we make Tk vanish so that

Phi-TX IT, 12. (13.4)

Since 10 for plane waves is given by pclv 0 12, the attenuation coefficient for plane waves is

2oa = [v 2K v + T 2 1 (dimensions: m-l). (13.5)
PC + p T k2 v2 

Assuming that the compression of the medium due to the passage of the wave is adiabatic,
we write the incremental temperature rise as

dT= T aT) dP,

or in terms of incremental quantities, dT = T' and dP = j;

To= OaT\PT-p

12
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Thus for plane waves in the x direction,

'x= (a-p)hpcvo

Using the thermodynamic relation that

(aT) (e 1) K

where

ly =CP s =1 .ap~ ~1 (ap

i V p 'sp) = P (aMP

Cp, C, = specific heat at constant pressure, volume

one arrives at

X Igrad T'12 X k 2 p 2 c 2 V2 y 1)2
T T 2

Now for any material
T3 2 C -CC

' -KCp C=

Hence,

X grad T' 2 =xlkvol 2(y- 1) (13.6)

The classical absorption coefficient for plane waves due to viscosity and heat conduction
is thus given by

oa == 3 17 + 71 + X (C - C-)] =fco 2. (13.7)
2p3 L3 C C p/

The relation between wave number and frequency in this one-dimensional case now be-
comes

k =-+ ifco2. (13.8)
c

These classical formulas for plane wave sound absorption are valid only if the absorption
is small over one wavelength of propagation. They serve, however, as models for deriving
attenuation coefficients for non-plane-wave fields.

13
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14. RELAXATION THEORY

The bulk viscosity, (see Sec. 20) is associated with deformation of the medium in
which volume changes occur. Since deformation is a thermodynamic change of state and
states of thermodynamic equilibrium are reached reversibly only by quasistatic processes,
changes of state in finite time (where equilibrium is not simultaneously achieved at all
points of the medium) are reached in an irreversible manner, i.e., with the consumption
of energy. A measure of energy consumption is given by the time required for the
medium under deformation to reach thermodynamic equilibrium (relaxation time r). We
illustrate the concept T by assuming that if the instantaneous pressure at a point has a
time history f(t), the equilibrium pressure at the same point has a time history f(t + T).

If T ~ 0, then equilibrium is restored almost instantaneously and the energy loss is very
small. If T is large, the equilibrium state is not reestablished immediately, and consider-
able energy is lost (i.e., an entropy increase occurs caused by the lag of the pressure
relative to the change in volume, both varying at different rates in finite time). This dis-
sipation of energy is associated with the second (or bulk) viscosity coefficient 77'.

When the medium exhibits relaxation [6,7] during time-varying deformation the
equation of state is made to contain an additional parameter t which is a thermodynamic
coordinate characterizing the internal state of the fluid. Thus the equation of state has
the form

P = p(p, s, ). (14.1)

We consider first the case in which the entropy coordinate is negligible. Beginning with
the identity at equilibrium,

aP a = (pI C2 (14.2)
ap \aP/EQ -0

we add a second term to each side which accounts for nonequilibrium changes in pressure
caused by time-varying deformation. Defining the normalized time to = t/T, we write

ap a \ I -p \EQ at0 \+ ( (14.3)

For sinusoidal time (exp (jwT),

ap - 1 [(p + 3l-(PN

ap = + jwr LPa)EEQ + aTX,

1 +JWT [c2 +jcrc2 i]. (14.4)

14
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Here the term jc-rc2 is an increment in acoustic velocity because of temporal nonequilib-
rium of the medium.* The symbol c. is defined by

2 ( P) (14.5)

i.e., c. is the velocity of sound for nonequilibrium processes. Now the difference in fluid
pressure from nonequilibrium deformation changes is given by

Ap -ap (ape
Ap ap - \apIEQ

= 1. [cO + jrc 2 ] -CO

1 + j.wr [C° o _ . (14.6)

From the equation of continuity,

a
at (P ) = -p 0 div v

or
-P 0 div v

Ap= .- (14.7)

Thus,
'rp0(c0 ce)

AP - 1 +j. div v. (14.8)

From the hydrodynamic equations of motion this difference of pressure is identified with
the viscosity term

¢ div v
so that

2 20
= 'rp 0 (Co - Cia)

1 +jCr T (14.9)

i.e., the viscosity coefficient t is associated with the concept of relaxation.

*Note that c= in Meyers and Neumann [2] is the unrelaxed velocity, i.e., speed at w - .
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When the constitutive relation for the medium has nonlinear terms, we modify the
above procedure in the following way,

aLp a /ap= 21 (a2 p\ P, a 2 aM/P\ 
ap ato (\ap/)C+2 \ap2 4 ato [C. ap Fap~P] (14.10)

or 2p0 {c p(2 P) P -C + a(2.) div v

AP pC 2( ap 1 a i .(aP) (14.11)

If the time variation is not sinusoidal, then [6]

AP + aa P (P) C2 + 1 (a2p\ _ [C2 + a (ap) p . (14.12)*a0 (0 2 ap2) LcTa 5 )p

On a molecular scale the process of relaxation tells how an increase in internal
energy of a volume of matter results in an increase in three forms of energy of its mole-
cules, viz, translation, rotation, oscillation. When a fluid is suddenly compressed the work
of compression increases its internal energy in the form of translation, which corresponds
to an increase in pressure. Translational energy is then partially converted to both rota-
tional and oscillatory forms. After a definite time (relaxation time) all three forms of
energy reach equilibrium (i.e., no further internal increase or decrease of any form of
energy). When equilibrium is reached the final pressure is less than the instantaneous
initial pressure because translational energy is a lesser part of the total internal energy.
When the fluid is "relaxed" it is less stiff, i.e., its sound speed is less. Hence the speed of
sound in the fluid depends on the degree of relaxation (i.e., the fluid is dispersive because
relaxation is a function of frequency). If it is "unrelaxed" its speed is cO,,. If it is com-
pletely relaxed its speed is c0 (< ce,). Defining the relaxation frequency as WR = T-1 we
see that when the fluid is excited at X << CcR its sound speed approaches c0, and when
CO >> (WR, its sound speed approaches c.. The frequency width of the transition region
from c0 to c. depends on the absorption. For gases the width is of the order of some
three octaves and the attenuation per wavelength at wR is of the order of 8%. For
co << CR the absorption in liquids is low, and it varies as the square of the frequency
(classical absorption). Near cWR the absorption is larger by factors of about 10 or more.
For w >> cRthe absorption falls again to low values.

By incorporating relaxation and viscosity effects into one formula and using empirical
coefficients, one can write the absorption coefficient for seawater in the form [8]

2X2 +gw 2 (14.13)

*See Appendix F for a mathematical formulation of a more general treatment of relaxation in the basic
equations of state and propagation.
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in which

a = constant [Ref. 3]

b = relaxation frequency

g=[4 I + ( 1 1 3)/2

The first term accounts for relaxation attenuation associated with the chemical dissocia-
tion process of magnesium sulfate in seawater. The second term is the attenuation due to
thermal conductivity and viscosity. The theory of relaxation (briefly touched on here) is
very extensive. A detailed guide is provided in the book by Herzfeld and Litovitz [9].

15. DISPERSION

In relaxing media (as noted) the phase velocity of sinusoidal waves is a function of
frequency (dispersion). Other examples of frequency dependence of phase velocity are
found in the propagation of sinusoidal acoustic waves in tubes with soft walls and the
propagation of flexural waves in elastic beams. Dispersion is mathematically accounted
for as follows. Let £ be the Lagrangian of the wave system and q a generalized coordinate
(say displacement). We assume wave solutions of the form

q =Aq(O) (15.1)

0 = kiti - cot, i = 1, 2, 3 (15.2)

in which A is an amplitude function, q(0) is a phase function, ki is the wave number in
the ith coordinate, and w is the frequency. In the case of harmonic wave trains it may
be directly shown [10] that the application of Hamilton's principle leads to a statement
that the velocity of energy transport U has components Um (m = 1, 2 ...) which satisfy
the equations

by= L UTmkm (15.3)
m

a(aq)

Um = (15.4)

where the symbol () signifies time average over harmonic period. The velocity U is the
group velocity. It points in the direction of the flow of energy. In the general nonlinear,
nonhomogeneous case, A = A(a, hi, co), i.e., A is a function of amplitude, wave number,
and frequency. To account for dispersion we use the following method of Whitham [11].
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For every x ,t the phase 0 has a specific value when a, ki, c are specified. Averaging £
over 0 (i.e., over xi,t) yields the averaged Lagrangian density

Te = 21r f "dO, X = £(a, ki, co) (15.5)

Applying Hamilton's principle

(15.6)6 5fT D= 0
T

leads to the conservation laws

(15.7)

a as - a as=
at aco ax ak

(15.8)

If there are n generalized coordinates (say n displacements), Eq. (15.7) is replaced by a
system of n homogeneous equations in n unknowns an,

as
aan

(15.9)

A solution of Eqs. (15.7) or (15.9) gives the characteristic equation of the system, i.e.,
defines co as a function of ki and ai. These are the dispersion equations of the system.

Simple cases of nondispersive and dispersive wave trains can be illustrated by writing
the one-dimensional propagation of waves governed by the operator equation

L {u} = 0, L = differential-integral operator (15.10)

and choosing solutions in the form of plane progressive waves in one direction, i.e.,

u = exp [i(kt - cot)]. (15.11)

The dispersion relation (solution to (15.10) using (15.11), then has the form

k= f(co). (15.12)

Since the frequency X and wave speed c. of an elementary wave are related by kc, = co,
the (phase) speed of a single wave is given by

(15.13)Cq5= cof(co)

18



NRL REPORT 7772

The group speed of a collection of elementary waves is

dco
cg df(c) (15.14)

Simple cases of waves trains are

1. Nondispersive,

1 a2
cLfV2 - , f - c. =Cgconst.

c2 at2 C c g

2. Dispersive,

L V2 - 1 a2

c2 at2

f(co) = 
c

co
Co = co 2 + (15.15)

Thus nondispersive wave equations of given order in the differential operator can be made
dispersive by adding homogeneous terms of different order. The simplest technique is to
introduce complex attenuation coefficients. In the more general case, for a differential
homogeneous equation of first or second order, dispersion can be introduced by insertion
of third or higher order derivatives. This is illustrated by the Korteweg-deVries equation
to be discussed in Sec. 44.

Dispersion has an important bearing on the transmission of pulse signals. If the
medium is dispersive a solution of a pulse train in the form of a superposition of
elementary progressive waves in one direction shows that different components are propa-
gated at different speeds. Hence the composite wave will change its shape as it propagates.
If the medium is also nonlinear, the concept of group velocity becomes cloudy and must
be redefined. This has been done by Whitham [11]. Nonlinear dispersive wave trains
will be discussed in Secs. 40 through 43 when we review the work of Whitham in greater
detail. Dispersion also greatly disturbs the phase relation between a propagation funda-
mental and its daughter hormonics in a nonlinear medium. Where present its importance
in this regard should not be overlooked.

16. THE (aplas)P s' TERM IN THE EQUATION OF STATE

As noted in Eq. (12.11), the equation of state can be written in a form which
mathematically describes pressure as an expansion in powers of density and entropy. For
purposes of physical measurement the entropy term (aplas)ps' appearing in this expansion
must be related to measurable quantities, viz., to thermal conductivity and specific heat.
This is done in the following discussion.
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The energy equation (see Eq. (22.7)),

pT (as + v s) k a' Vuat ik ~L +X7 (16.1)

may be linearized by noting that T = To + T', p = p0 + p', s = so + s', and that T', s', v,
p' are of the same order of smallness. Thus to first order in this smallness one has

pOTO at =XV2 T'.

Now for an acoustic wave having a potential so,

T'= (aT),kap4

(16.2)

( T af
\ap/ at

(16.3)

and therefore

Vp = v (16.4)

with the result that

From thermodynamic relations [12]

Tk (T Oap-s/p
1 [( _ 1 s] ( IT
T TL" ! JYK-TCJ/

1 1

CU Cp

Cp
I- = -

1 (aT)

T kap S

KT = Ks'-Y

YPp = [~' Et 

or

OA s = - XFas )

20

,S
(16.5)

in which

Hence

(16.6)

(16.7)

(16.8)

V2T'= - (aT� PO a V-V'
� ap) at

(TX) (�U-)"V-v

V - Tip I V-V.
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In linear theory, by definition of the pressure and particle velocity in terms of the
potential sp, one has

Vv= CPo (16.9)
p0

Hence, the magnitude of the following ratio is determined;

e2p = -C-) ,,02 (16.10)

It is required next to form the ratio of the viscosity terms to c 2 p', i.e., the ratio

1?V2 V (16.11)

Since

V2v = V *Vv - Vp' (Note: means "of the order of") (16.12)
p0

it is seen that

77 V2V _ ic (16.13)

MVp Poc2

For irrotational flow VV * v = V * Vv. Following the same procedure used above, we
see that

1(3 ) |7Vdi (37 ) 7 Cj (16.14)

Since for most substances 71 - C

4 7+ V2V
lps)pSI t(3 1+¢) V~v| (16.15)
C2 p' (Vc 2p')

and

1. a is of order po7 2 (16.16)

2. (3 ) is of order col (16.17)
Ve2p' poe2 (117
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Since the dissipation per wavelength is always considered small, we will take

7or = << 1, c = kc. (16.18)

We next consider the ratio

(Mach Number) 2 M2 U2 V= M co (16.19)

Reynolds Number Re 2 LU p c2

TQ consider all cases of this ratio, we select three ranges for investigation;

1. M«<<

2.1 M ct o r12 - co* (16.20)

3. M>>

Further discussion of these choices will be undertaken in Secs. 17-26, following a presenta-
tion of the basic hydrodynamic equations.

The constitutive relations for a viscoelastic material and the thermodynamic equation
of state both present nonlinear terms. It has been found desirable to assemble these terms
into a conveniently identifiable parameter of nonlinear acoustics. This can be readily done
in the case of plane waves. The theory is presented in the next section.

17. THE DIMENSIONLESS PARAMETER OF NONLINEAR ACOUSTICS

The constitutive relation between acoustic pressure, density, and velocity for a heat
conducting viscous fluid is given by

2 a P2 1 1 ldivv
p' P -c('+ ) X au '2-

or

p c2p' [1+ (' a-p -x [5- - Ip]divv (17.1)

(see Eq. (12.12) and Sect. 16). Substituting this into the Eulerian form of the hydro-
dynamic equations of motion (see Sec. 20) we obtain

tCase 2 corresponds to a "weak shock" solution (Ref. 13, p. 298).
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a[t +v VIV -24 1 c (tp)S} X[CU Cp]

+ nV * (Vv) + (77 + 77') V(V v). (17.2)

Restricting attention to irrotational fluid flow, we write

V * Vv = V(V * v). (17.3)

(It will be shown later that curl v is at the least a second order quantity, i.e., fluid motion
in the first approximation is potential in nature.) We next form the ratio

4,q + '+ -] V(Vv) (17.4)

c2V{p' 1+ P /acl

S states the relative importance of viscosity and thermal forces to the pressure forces.
Applying this formula to plane waves for which the amplitudes of pressure, density, and
particle velocity are given, by

p' = - icpopo

v = -V4)0

D= (D exp(ik * x - icot), (17.5)

we find that

V.v = -V 2 Do =k * k(ko = k2 D 

Vv= O (17.6)
- icopo

We now make the conventional linear approximation that p'z c2p', so that

Vv= = V cop0 - ip. (17.7)

Forming the approximation

V {P [i+(c a-)]}P ap)j VP (17.8)
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shows that for plane waves

cob

C2Po [1+' ( ac]

and

41 1
b=-n+n'+X(-- C-) * (17.9)

3 CV CP

We next compare S with the Mach number M = U/c, where U is an acoustic particle
velocity, and choose U = Ivimax* (Note that Gol'dberg [14] defines a scaling factor N -
UTIX and selects X/r '\- U/c = M.) We have the three cases

1. 8 >>M 2. S ;M 3. S <<M (17.10)

The first case corresponds to very small-amplitude acoustics (i.e., the linear case). The
second and third cases correspond to finite-amplitude cases. Particular attention is given
to the second case, roughly, the condition under which a finite-amplitude wave will
develop a discontinuity, i.e., a shock (see Gol'dberg [14] ). Considering this case, we
write

cob U (17.11)

c
2

PO [+ PL (ac)] 

Since for a plane wave

U _ P' _ c p' ~ P(17.12)
c PO C2 pO C2Po

the condition for the formation of a shock is

Pr ax [1 C aPC)s

Q= b 1. (17.13)

One can define finite-amplitude acoustics by the statement that the maximum amplitude
of the pressure wave in a viscous, thermally conducting medium obeys the relation

Pmax >' /+ ac\V (17.14)

[1+ ap).J

When viscosity and conductivity are negligible, i.e., when fluid is ideal, any pressure ampli-
tude greater than zero defines finite-amplitude acoustics.
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CONCLUSION TO SECTIONS 11-17

The assembly of material parameters, constitutive relations, and themodynamic equa-
tions of state has now been completed. We turn next to a description of the laws of
conservation of mass density, momentum, and energy.

The basic hydrodynamic equations, as noted earlier, can be presented in two forms,
Eulerian and Lagrangian. Although these forms describe the same physical process, their
structures are very different, and as a consequence they yield different information. In
addition, it is common experience of analysts that in specific cases of boundary-value or
initial-value problems the preference of one set over another leads to more tractable
methods of solution. We therefore continue by presenting the two forms sequentially.

18. EULERIAN AND LAGRANGIAN DESCRIPTIONS OF DEFORMATION

Introduction

The theory of nonlinear acoustics rests upon the theory of finite deformation of
continua. In the latter, great care is given to the coordinate systems used to define states
before and after deformation. With such care considerable ambiguity in theoretical results
is avoided. We begin therefore with a statement of the description of appropriate coordi-
nate systems.

Coordinate Systems

Before deformation the material particles of a continuum occupy material coordinates
XK (i.e., a trio of numbers serving as material point identification tags) which refer to the
body but not to space. In the absence of.the body the spatial coordinate system is xk.
When the continuum undergoes elastic deformation in time, the material coordinate sys-
tem XK (by definition) deforms with the body. In contrast the spatial coordinate system
Xk (by definition) remains fixed. All material points in the deformed body occupy the
positions relative to deformed XK as they did in the undeformed body relative to the
undeformed XK. Hence in the XK system the particles have not moved from their coordi-
nate points, although the coordinate points have been separated or contracted relative to
each other. This separation or contraction of XK is measurable in the fixed xk system.
Thus displacement in XK is describable by the identify XK = XK(xk, t). Similarly, dis-
placement in xk is measurable in XK; i.e., xk = xk(XK t).

An alternate statement, much used in the theory of continua [5], is this. Deform-
able material bodies occupying points in coordinates X, 0, can be deformed to occupy
points in coordinates x, t, where X, x are two local coordinate systems (with unit ortho-
gonal vectors IK' ik ) whose origins are separated by a vector distance b. The process of
deformation is stated in geometric terms to be x = x(X, t), which is to be read as "material
initially at X reaches x in time t;" and X = X(x, t), which is read "material known to be
at x at time t can be traced back to X." The transformation of points in the neighbor-
hood x0 from x to X is the unique inverse of the transformation of X to x in the neighbor-
hood X0 , provided the Jacobian j (= Iaxk/laXK) does not vanish at x0 and at X0. If a
and A are areas in the two systems, and if v and V are comparable volumes, a finite
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deformation (viz, mapping of points in one system with points in the other) leads to the
statement*

axk
dak =j (axK) dAK (18.1)

which is to be read, "an area initially dAK is now dak; and

dv =jdV (18.2)

which reads, "a volume initially dV is now dv."

By current convention X system is called the material or Lagrangian coordinate, and
x system is called the spatial or Eulerian coordinate. The description x = x(X, t) is called
the Lagrangian description of motion, i.e., the observer identifies a particle X and moves
with it. The description X = X(x, t) is called the Eulerian description. The observer re-
mains stationary and observes point (x, t) in space-time, ignorant of which particle occupies
that point. Using these definitions, we can have two possible time derivatives of a fluid
property F,

DE _ [aF(x, t1 ]spatial derivative (18.3)
Dt [at I
DE = [aF(X, t)] material derivative (18.4)
Dt [ at J

The velocity vector can be defined in two ways, i.e.,

material: v= V(X, t) = [ax tv)] identity of particle known (18.5)

spatial: v = V(x, t) = [axX, t)1 identity of particle unknown (18.6)

(In convected (= X) coordinates the spatial velocity vanishes.) Similarly, the acceleration
has two forms,

avk avk(xX, t)
spatial: a = a(x, t) or ak = at + VkQv = at (18.7)

material: a = A(X, t) or aK = a t (18.8)

(In convected coordinates the material acceleration vanishes). A similar terminology
applies to all quantities which are respectively capitalized or uncapitalized. After deforma-
tion the material body has a set of stress vectors (tk, TK) such that the force over area

*Repeated subscripts signify summation on 1, 2, 3.
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dak is tkdak, and the force over area dAK is TKdAK. Each stress vector is a sum of
components over stress tensors tkV, TKL,

tk = tkQ'V or TK TKLIL. (18.9)

The stress tensor tkQ is to be read as component 9 of stress vector at x computed relative
to the deformed area dak at x. Similarly, TKL is the component L of the stress vector at
X computed relative to the undeformed area dAK at X.

The equations of motion during deformation can be written in x coordinates as

tkQ ,(X, t) = Pvk (x, t), pO = P- (18.10)

Here all area and stress tensor components are measured in the deformed state. The
shape of the deformed body is not known a priori. Hence the (finite-amplitude) boundary
conditions when expressed in coordinates x are ambiguous, and the problem is nonlinear.
Ambiguity also arises from the expression of stresses at x in terms of the a priori unknown
deformation area dak at x. In contrast the equation of motion in X coordinates is

TKL,L(X, t) = PobK(X, t). (18.11)

Here the initial shape of the undeformed body is known. The stresses are pictured,
however, as computed relative to undeformed coordinates (i.e., TKL is the stress com-
puted in the X system relative to the undeformed area dA K' both quantities related to
the true location x of the stress and true area dak through transformation rules, viz, x =
x(X, t), etc.)

It is clearly desirable to take the forces to be at x and to compute stresses relative to
areas in X because in this system the boundary conditions are unambiguously statable
since the shape of the undeformed body is known. When so defined the stresses are
Piola stresses [5a]. The equations of motion are then written

TKkKg(X, t) = Vk (X, t) (18.12)

in which TKk is the Piola stress. The independent position variable is X which is not the
point (namely x) where the actual stress (in the deformed body) appears, but is related to
that point through x = x(X, t). Piola (or pseudo) stresses, while advantageous, may be
difficult to write explicitly.

If a material point moves a vector distance U measured in the X system from initial
(undeformed state) to final (deformed state), the strain calculated in the reference (or
underformed) system of coordinates is

E =- axaK a UL aUM aUN (18.13)
KL 2 axL aXK MN aXK aXL

or

EKL U(K,L)+ 2 (U(ML)+ U[MLI)(U(MK)+ U[M K]) (18.14)
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in which the UK L tensors are segregated into symmetric ( , ) and unsymmetric [ , ]
parts. Similarly,' if the vector deformation displacement is u (measured in the x system)
then the strains in the x system are given by

ekQ U(kQ) - 2 (U(mk) + U[mk]) (U(mQ) + U[mQ])- (18.15)

The cross-product terms originate in the procedure of obtaining deformation change in
the element of length in oblique coordinates. Also, the strain tensors in both the X and
x systems are nonlinear. In the general theory of finite deformation the strain tensors
may therefore be reduced to the sum of one linear term and four nonlinear terms; thus,
in the X system, one has,

Linear Nonlinear

U(KL) U(ML)U(MK)

U(ML) U[MKI

U[ML] U(MK)

U[ML] U[M,K]. (18.16)

Similarly, in the x system,

Linear Nonlinear

U( k,VQ) U( m k)aX m Q)

U"(mk)U[m Q]

U[m k]U(mQ)

Ut m,k1 UE m,9] *(18.17)

The Jacobian j can also be written in terms of a sum linear and nonlinear components,
viz,

( = ( 2Ie + 4 IIe - 8IIIe) -1/2

j = (1 + 21E + 411E + 81IIE)', (18.18)

in which IE, IIE, M'E are the invariants of the strain tensor in the X system and le, He,
IIe are the invariants of the strain tensor in the x system. Explicitly [5b],

IE = sum of diagonal terms of EKL-
HIE = sum of all 2 X 2 determinants of EKL.

MIE = 3 X 3 determinant of EKL-
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All of these forms have nonlinear components. The deformation gradients XKk, xkK in
the theory of finite deformation may similarly be written in terms of symmetric and
antisymmetric parts,

XKk =['1mk - (U(mk) + U[mk] )] 6mK

XmK= [6 MK + (U(MK) + U[MKj)] 6 MK- (18.19)

Using these forms, one can express Lagrangian strains in terms of Eulerian strains [5c],

EKL = ef axk aXV
KL - 3aXK aXL

aXK aXL

ekQ EKL aXk axQ (18.20)

These equations show that the interrelation between EKL and ekV is nonlinear. While
strain tensors may be described in the X or x system as needed, the stress tensor tkQ is
most properly defined in the x system, since that is the deformed state. However, the
stress distribution in the deformed body may (as noted above) be described by two
pseudostresses TKQ, TKL (Piola stresses). The possible advantages in the use of these
stresses has already been noted.

The Eulerian and Lagrangian descriptions of finite deformation discussed above are
essential tools in the building of a theory of nonlinear continua. They have been eluci-
dated by examples based on the properties of elastic bodies. These descriptions of stresses
and strains are now combined with the constitutive relations to form the conservation
equations for mass density, momentum, and energy. By noting the origin of all com-
ponent parts of these conservation equations one can surmise their limits of applicability
in the cases of nonlinear motion, to be analyzed in later sections.

19. HYDRODYNAMIC EQUATIONS IN MATERIAL (LAGRANGIAN) VARIABLES

A physical quantity deformed by strain, stress, motion, etc., if referred to XK, is
labeled L(X, t). The same physical quantity if referred to xk is labeled E(x, t). Consider
a plane-wave deformation in Lagrangian coordinates,

x(X, t) = X + t(X). (19.1)

It reads that a material point at X remains at X during a deformation but is carried to a
point in x which is equal to X plus a displacement t which is a function of X. The two
descriptions of the same physical process are related by

L(X, t) = E(X + (X), t). (19.2)

We choose next t(X) to be small but finite, and expand the r.h.s. in a power series of t;
i.e., after deformation [3],
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L(X, t) = E(X, t) + O(X, t) ax + 2! aX2 (19.3)

Now for a plane wave traveling in the X direction,

aE
= kE. (19.4)

Since

,k c _ =V (19.5)
c c

and since we always choose v/c << 1, a necessary result is

,k << 1. (19.6)

We thus approximate the series expansion by the statement

E (X, t) a~L (X, t) -t(X, t) aE(X, ) .(19.7)
ax

When the second term on the r.h.s. is small we can replace X by x in this approximate
relation;

E(x, t) t L(x, t) - t(x, t) a(, t) (19.8)
ax

This is the (approximate) equation relating the E and L descriptions to second order,
referred to the spatial variables x.

The Jacobian j of transformation x = x(X) is the determinant

=aXK (19.9)

For a plane-wave deformation,

j= 1+ aVX, . (19.10)

The equation of continuity in material (body) variables is

PO = Pi. (19.11)
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Hence, the density in the deformed state is

i 1 + a~(Xt
ax

or

p = p0 - a

(19.12)

(19.13)(ax) ... .

When abIaX is small (as we have chosen) we can truncate the series as shown. This
material description of p has a counterpart in the material description of the velocity and
acceleration, namely,

V~,= at(X. t)IV(X) at', 
X = const.

a(X)= av(x)t
a(X) at X= const.

(19.14)

(19.15)

As noted earlier, the equations of motion in material variables are given by [5a]

p0 a = TK,K- (19.16)

For a plane (acoustic) wave with viscous losses and zero vorticity, this reduces to

POav(x, t)
at I

= ap 
\aXlt ( 3 ')

aX2 (19.17)

Now from the constitutive relations,

p' tc 2 p'I+ 1 (a22 '2;Z2 \~apI5 p (19.18)

at + 002

ax 5ax) I

2 \ap SPO L ax

1 _ 1\ a a2x
- (CV C-p atax

+ (ax) 1
2

(19.19)
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and

apt 2 a2 2 (ac2\ 1

_a=x c So ax2 L 2c 2
Vap ,IfO]

+2c2P at a24 [+ 3 (facP

- O X (C p tx 1.0

0ax ax 2 [ 2c2 \Dp

- X CP) ~ ~~~~~~~~(19.20)

The equations of motion thus become

a28(X' t) 2 a2 [ Po (ac2)1
at2 '0ax 2 L 2 s

ax aX2 [ 2c2 ap

[3 + +x (1 )] tX 2
= (19.21)

This is the equation of motion in material variables of a viscous heat-conducting medium.
In comparison with the equation of motion in spatial variables, it is quite complicated.

The above derivation, restricted to plane waves, can be generalized to three dimen-
sions. As before let xi, Xi be the Cartesian components of the spatial point x and the
particle identifier X. We assume that a transformation from x to X is available, i.e.,

x = x(X, t). (19.22)

Let the Jacobian of this transformation be written in the abbreviated notation,

a(X, X2, x3 ) =[x X X]
a (Xi, X 2 , X3 ) 1 2 3

ax1 ax2 ax3

axi ax2 ax3

ax2 ax2 ax2

ax1 ax2 ax3 (19.23)

ax3 ax3 ax3

axi ax2 ax3
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Now, it can be directly demonstrated that

___ =__ a __ a = - [XV, xm, f], (19.24)
axk aXa axk i

in which (k, Q, m) signifies an even permutation of (1, 2, 3), and repeated subscripts are
summed from 1 to 3. This is a formula for calculating derivatives with respect to xk in
terms of derivatives with respect to Xk. Using this definition one can find the divergence
of velocity u and the Laplacian of a field function f;

auk 1 r/a~l A/ at2 , /3 +x

au= atL S x2, x3) + Vx1, ax2 ) +xx aX3 )]
axa t ta
1 aj

j at

V~f = a af
a a~

= [X2 , X3 , (x2 , x3 , N)] + [X3, xI, (x3 , xI, f)] + [x1 , x2 , (x1 2,X2 ). (19.25)

The Lagrangian formulation of the Navier-Stokes equations (for zero vorticity), in terms
of the velocity uk, pressure p, and viscosity v,

duk _ 1 ap + VV2uk (19.26)
dt P axk

is

a2x k 1Fr (a)
a2 = - (xV, xm, p) + v {[x2, x3 , (X2, X3, a- )

[ ( axk~1 xO( axk 1

+ [x 3, x 1, (x3, x 1 at ) + [xl, x2 , (x 1, x2, at )] (19.27)

This is the general form of the Navier-Stokes equation in three dimensional Lagrangian
coordinates. As before, the equation of conservation of mass density is

PO = PW. (19.28)

Initial conditions in Lagrangian form are

V(X, to)= at t to* (19.29)

An example of the Lagrangian form of the wave equation is given in Appendix A.
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20. HYDRODYNAMIC EQUATIONS (EULERIAN COORDINATES)

The fluid state considered as a continuum is completely described by three com-
ponents of hydrodynamic velocity (vk, k = 1, 2, 3) and two thermodynamic variables
(say, pressure p and density p [5] ). The equations of hydrodynamics in Eulerian form
are therefore five in number [5d, 5e],

Dvi

Dt X i + JVkk + (Xv + 'v)vk,ki (20.1)

ap + (pv.), = 0 (20.2)

pT D= (XV + 2 )Id - 4pvIId +ph (20.3)

in which

D/Dt = a/at + vi a/axi

ir= thermodynamic pressure (N/m2)

)xv, PI = viscosity coefficients (N-s/m2 )

T = thermodynamic temperature (OK)

s= entropy (mr2 /(OK)s2 )

Id = Vk k (first invariant of dkQ) (s-1 )

Ild = 2 (ddkk U - dk~dQk) (second invariant of dkQ) (s-2)

h = heat source per unit mass (m 2 /s3 )

dkV = deformation rate tensor = 2 (Vk V + V-,k) (s)

The viscosity coefficients Xv, PI are related to the shear viscosity 77 and the dilatational
viscosity coefficient 7r' by the formulas

X = 77, 2 ?7

P1V 77; XvI + 3- PI= 71

Xv + Mv= + 77?. (20.4)
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If the heat flow is caused by conduction,

ph -(XT,k )k* (20.5)

An alternative form of the energy equation is therefore

pT Ds = akUki + (20.6)Dt ikkj +(XT~k),k
in which

X = coefficient of thermal conductivity N
(0 K)s

ik 77( Vik +Uki V 2 ik) eVek (e Ž). (20.7)

The Eulerian hydrodynamic equations are nonlinear in three aspects: (a) the particle
acceleration in Eq. (20.1) contains the term vi(alaxi)vj; (b) the product Pvi in Eq. (20.2)
may be written as po j- 1vi, which is nonlinear since j 1 is a function of vi; (c) the products
Id, IHd in the energy Eq. (20.3) are nonlinear.

The acceleration field Dvi/Dt contains rotational components. To make them visible,
one may write Eq. (20.1) in the form

P [ali + 1 (V2),i 7 eikmvme~pqVp'.1a[t~ 2 

- 7ri + (Xv + 2yv)vp pi - 77eirs(erm VQ m )Is (20.8)

in which the rotational terms are identified by the permutation symbol eiik. Equation
(20.1), as well as (20.8), describes the law of motion of a continuum. It is also convenient
to formulate the law for the flux of momentum. If the momentum flux density tensor
Hi. is defined

Hik P6 ik +PViVk 0 ik' (20.9)

the Eulerian law governing momentum flux is

apvi aHlik
atvi axlik (20.10)at axk

Similarly, the law governing the flux of entropy (i.e., D(ps)/Dt) is obtained from Eq. (20.6)
and Eq. (20.2). In integral form the result is
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D- psdV S x )2 dV+ Vik (Vik + Vki - 3 5ikVk ) dV

SN+2
+ J 3 V -3 ) (vi i) 2dV. (20.11)

The first term on the r.h.s. is the rate of increase of entropy caused by heat gained per
unit volume by thermal conduction, the second term is the rate of increase of entropy
caused by internal shear friction in which the volume under stress does not change, and
the third term is the rate of increase of entropy caused by internal viscous friction in
which the shape of the elementary volume does not change (i.e., dilatational deformation).

Other forms of inhomogeneous wave equations are found in current literature. A
prominent one is that of Lighthill, discussed in Appendix B.

The hydrodynamic equations contain terms which have different magnitudes. It is
essential in the approximations that follow to define an appropriate scale of magnitude so
that all terms of same order are included in the approximations. It is therefore very
needful to write out nondimensional forms of the basic equations. This is done in the
next section.

21. NONDIMENSIONAL FORM OF THE HYDRODYNAMIC EQUATIONS
(EULERIAN VARIABLES)

Viscous fluid flow is characterized by the following four quantities.

=7 , the kinematic viscosity (m2 Ns2 s

U the flow velocity (or speed) m/s

L, the characteristic length m

T. the characteristic time s

From these four quantities one can construct two dimensionless numbers. These are

UL
Re (P) =- , the Reynolds number

and

UTS = L the Strouhal number.

Since L and r are arbitrary, one may choose them for a convenient purpose. Gol'dberg
[14] selects L, r to be such that the dimensionless derivative of any acoustic variable has
the same order of magnitude, e.g.,*

*Asterisk means dimensionless.
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ap* ap* a2p*

at* ax* ax*2
(21.1)

The two conditions required for this to be true can be surmised from the sinusoidal case.
Let P = Pmax exp(ikx - iwt). Then, considering magnitude only, one has

ap
at = - icPmax;

ap = ikp
ax ma

(21.2)

(21.3)
L WTr'-, C-= 
c h

or

or

or
kL 1

L - X
27r

Thus both L and r are given explicit values.

To convert the hydrodynamic equations into nondimensional forms, one uses the
following normalized quantities;

density

length

time

* PP =_
Po

* xx =-;
L

i.e., V* = LV

t* =-
1T

velocity

temperature

viscosity

* V * CT) = -; C =-
U L

0

0- =-To

P*= n .
so
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The process of conversion is illustrated below. It consists in selecting each term of the
hydrodynamic equation to be made nondimensional, and proceeding as follows:

1- = (P. *)S(p 0 L); a p0L a *(p*V*)at ~ at* T2 at~p T2 at*

2. p(VwV)v _S 2

3.

a.

b.

c.

(POL) {p *(v V )v*} ; or V pvv = S2 (pOL )V*p**v

-Vp =-V [c2P + 2 (-xP X _ C) ]

Vc2p' = V*p*'c*' (\O)

( ac2) P2 V* (aC*2 ) *2 (POL)

V (t - ) V-V = (V*V* *V ) C2 (X V -X)
poL

T2

in which X* =
U

x
POC v(UT

*= X (dimensions: m2 /s)
XP cpC PwT

and C2 = L
T2

Alternatively, the term 3c can be given the nondimensional form

V*V*.V S2 poL
Re(Xv) r2

in which
ULpO

Re (Xv) = X

C
U

Re (Xp) = ULp 0
x

CP

* S2 poL V*2 *S POL
7?V~v -Re (v) r2 2T
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ULpo
Re(v) = -

17

* 17
P =

p0 oT

71 + Vdivv = (V*V *v *) Re( )3 +1)
poL

Tr2

or =sL Ž (~ -~) ~ v~ *P 0L
C2 3 77 I2

Thus the nondimensionalized form of the hydrodynamic equation of motion (in Eulerian
variables) is

p*at** atspa -at + s2p*(v*.V*v*) = S a pV)+Sv (**

=-c* 2V*p* 1 (ac*2 v*, *'2 +s2 (ec - Re v*)v
2( a S Vex) Re(Xp)/

+ s 2 (V* V*v*)
Re (v)

+ (V* V*.V*)
Re (v)

-C 2V*p* - l(ta2)V*p*I2 +S (X

VW ~V*W ii
+S -C V*.V*v* +S - + i V*V*.v*

C 2 C 2 \3 17/
(21.6)

The r.h.s. has several convenient forms which will serve later to distinguish magnitudes.

The nondimensional form of the equation of continuity reduces to

ap + SV* *P = O.
at*

(21.7)

22. NONDIMENSIONAL FORM OF THE ENERGY EQUATION
(EULERIAN COORDINATES)

Although noted earlier, it will be illuminating to derive the equations of energy
balance from a different point of view to emphasize inherent thermodynamic aspects. A
fluid moving with velocity v and having an internal energy e per unit mass has a total
energy & per unit volume, of magnitude,

39
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= p(2 v + e) N/r 2 (22.1)

The stress 11 acting on the surface of this unit volume has the form

H = [l (ri[k)

Hi, = p 6 ik + PViVk - Oik (22.2)

in which p is the pressure and aik is the viscous stress tensor. The intensity 9 of mechani-
cal energy is

17 H. v N/ms

or
Hiki V.k (22.3)

The intensity of thermal energy flux Hi is

0=X axT N/ms (22.4)

The intensity of internal energy flux 9i is

-Qi = Vi E. (22.5)

Using all contributions, we can construct the equations of energy balance;

a& =-ad (Ujs- aX (fl - VH )+ a (X a) vipF. (22.6)
at ax. ax ikik axi axi/

Here we have added a body force F per unit mass. By using known thermodynamic
relations relating pressure, entropy, and density to internal energy, and by employing
previously defined equations of balance of mass density and of momentum, one can
convert this energy balance into an equation of entropy balance. Excluding body forces,
one arrives at the alternate form of the energy equation,

PT (as + v-Vs Gik - + div (XVT). (22.7)
\at ~~axk

Beginning with the Tds relation

Tds = C dT + OKd (22.8)v K 
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where

a P/

where v2 is specific volume and noting [12, p. 149] that

KT = _ - C, (22.9)

we employ the following relation between density and specific volume

pd,. = - dp (22.10)

and reduce the Tds formula to

ds = C dT (C- -C C)dp (22.11)
dsC T~ - pT

In incremental terms T = To + T', s = so + s', and p = p0 + p'. Writing s' = ds, T' = dT,
and p' = dp, we see that the Tds equation in incremental (i.e. acoustic) form reduces to

s CUT' (Ce Cu) p (22.12)

Next we prove that

CP -CV 'a 2 , a2 -= (aP)T

OTO =paa a2 p (22.13)

First, from thermodynamic relations for ideal substances,

c- = K3 T (22.14)

Using the definition

I a)T - (22.15)
~5-p T PR-T

results in

OT 1 1 (22.16)
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Thus, the incremental entropy takes on the new form

Sn whica 2 h

in which

T = - .T '

U

*, PP =
PO

The l.h.s. of the hydrodynamic equation is next written to first order in the
entropy; that is,

(22.17)

(22.18)

incremental

l.h.s. = CpT [ ( aT* + vVT*') -

By use of the following nondimensional quantities,

rt* = t; V*U=V; V* =LV;

-+ .A1( at* + 
one can reduce the above equation to the form

l.h.s. = CPT[
Ira, I

(at*+Sv* )v*T* (ap* )v* ]
kat* a \ at P

The factor in brackets is the nondimensional form of the l.h.s. of the energy equation,
premultiplied by CvpT/ro. The first term on the r.h.s. of the energy equation can be put
in nondimensional form in the following way. First, define ak by the relation,

( av aVk 2 ave r7
aik = 77aik =77 + ax - -- 6

ki + - axe) (22.22)

Then proceed as already indicated for the l.h.s. A typical cluster of terms being made
nondimensional is shown below. (Note that the premultiplier of the l.h.s. is shifted to
the r.h.s.) The cluster is

(l lT

(CvpT n

avi avi \ CP av*UT av*ur __

axk axk C (Cv) axLr ax*L w c2 2

* *axi axi
x* x* ak ak

(22.23)
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in which

Cu

Ca = P
2 -ITOCV

T o 'T.

Now the first term
dimensional form,

on the r.h.s. when premultiplied as shown is reducible to the non-

VWo

2
av-

a 2S2 a* a*.ik ax*
k

(22.24)

To eliminate dimensions in the second term on the r.h.s. of the energy equation, one
writes

To
div [XVT] = -XV*2 T*';

T2 62
6 2kC2 = L 

7T2

(22.25)

Here X is treated as a constant (spatially). Transferring the premultiplier from the I.h.s. of
the energy equation once more, reduce the above term to the new form given by

CUpT XV*2T*f )
= a1 - C ) V*2 T*'

1 V6

in which

= PCXW. (dimensions: m2 /s)

In summary, the nondimensional form of the energy equation is given by [14]

+ Sv* .V*T*I)

=- VW aS2 a*k

I ( apt ~

a i

ax*ak

-+ Sv* *V*P*)

C+ P X2 V*2T' + lC C ~
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( T*'
a -T*

1 kat*
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23. FIRST AND SECOND ORDER APPROXIMATIONS TO THE HYDRODYNAMIC
EQUATIONS (EULERIAN VARIABLES)

It is now convenient to expand the density and velocity in a power series of Strouhal
numbers. Thus,

00

n =O

00

V T Sn 1lV*
n =1

Snp . (23.1)
00

UP* = E1
n =1

Note that the lowest order term of p is Po/Po = 1, of v* is V1, and of p is Sp,. Since
v= V1/U, both v* and Sp* are of the same order of magnitude. To judge comparable
orders of magnitude in the hydrodynamic equations, we must estimate what magnitude
order to assign to the factors

* *
S X and S Co

62 62

As before, we will always assume that X*o/6 2 is of same order as v*C/(I 2. There are
three choices:

1. X Co >> S;
6 2

2. X W-S;
6 2

*
3. X o <<S

62

Case 1. Choose

X >> S.
62

In expanded form the equations of hydrodynamics have the form

at n a 0

*at* kn

= -C* 2 V* E

n =1

00

Sp ; L sn 1 v2
n=1

S fl

+ S2V*. L
n=0

00

S fpn* L
n=1) * 
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n1
n =1

sn1 1v*)

00

Sn Pn* T SvP
9=1
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00

n =1

a
II. -

at*V= at) \ n (

(3-v 77 n vlE 'n-1v
77) n=1 

SnPn sl lv* = O.p* / I
9=1/

By assuming that

T'T* _- T
0o

- = v*,
co

we make the expansion

00

T* ' = Snf-lT*
n =1

The energy equation then has the form

Ill. a( Sn-lT* +S
n

n=1

(a
Wa*

VCo

00

n =1

00
sn Pn+ S 

n =1

a 2 (as2
00

n =1

sn-iv* n a
i(n) axi

00

n =1

00

n =1

00 Co
2 a snS* ?6 
3 ax* E S ve (n) ik 7fik axj

e n=1 17e n=1

C * 00
+ a CX CO v 2 Sn -lT .

1 C~ 62 Tnv ~n=1

sn-1V e(n) sn-lv()

(23.4)

These equations contain infinite sums. By pairing equal powers in S (say S') on the
l.h.s. and r.h.s. we can form an infinite sequence of hydrodynamic equations. Note that
the nth order equation contains only terms in Sn, labeled here "of order Sn." This is to

45

+S (x*-x) ej

+S P' XP * 2

e2L

V*V*. ( S 1v*)
n=1

(23.2)

(23.3)

Snl 1T)

E Sn P)
n =1

sn - 1v*
k (n)

00

n =0

00

T
n=1
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be distinguished from equations "to order Sn"," which contain terms in S. S2, ... up to Sn.
With this distinction in mind the hydrodynamic equations of order S are given by

av*
I. PO Ia =- C* 2 V*p 1 +Po(X* X*) Ci V*V* v*

+Po e2 [V V vl*+ (+ ( )V*V*.v*l]

II-a* +pO *V=0.
at* e

The energy equation of zero order in S is

aT~l
III. a =

at*

(23.5)

(23.6)

(23.7)CU * 2*21-
C~ 62 T 

The hydrodynamic equations of order s2 are given in I and II below.

* *
ap1v

I.
a t*

av*
+P* a2 + *V*-P VV

= - C 2V P2
1

2p *

ac* 2*v
V 1p*2 Lp*[X _ *

+ * r * .' V

6 c2 Vv 2+ +(13 +) V*V*v2]
*

ap 2 * * * *

II. + V *p v + V .PV= 0
at* 1 1 p 2

The energy relation of order S gives

III. a1 I

Cp
= U CU

T* +V .V* T)

X CV *2 T2* 

62

ap1

at*

(23.10)

V*V* .V

62

(23.8)

(23.9)

46



NRL REPORT 7772

The energy equation of order s2 gives

a 1 (ai- T3 + v V T'

v*+ V p)

VWC 2

62 a V,~ =~const

+V1 *V T2)

a*a1 (i)

*axk
+ 1 Cp _ V *22 T 

Case 2. We next choose

X Co
C 2 \O

1 )S.F2l )

The hydrodynamic equations of order S are given by

I. P* 2 LC*2V* *
I- Po at* = - c* Vpl

ap *
II. -at + v *p = 0.

Similarly, appropriate equations of order S2 are given by

a **

at* 11

av*
+ p* 2 + V* p v*v*

0at* 

= - c* 2V *p * 11 a 2 \**2
+ P*)2 ap* ) V* Pi

+(X*-62Ž2w (V*V*.v*)

+ V*s [V*.V*V +1

47
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II. 2 +V >~ + p0V* 0 v2 = 0. (23.15)

Case 3. Finally we choose

X- ( c ) <<)S.

This means that viscosity and thermal conduction effects are negligible in the first and
second approximations. The hydrodynamic equations of order S are given by

a*

I. PaO c 2 Vp (23.16)
at *

*

+ v* v* = (23.17)
at* +V~ 1 =0

Similarly, the equations of order S2 reduce to the set

I. at* P1V1+PO 0 V2 Ovil

*2 ~1 (ac*2 2\P=C*V*p -- IV*p*2 (23.18)
2 2 \a /1)

II. a2 + V* *V* + V* pv* (23.19)

24. DEFINITION OF ORDERS OF ACOUSTIC PRESSURE

The equation of state for a thermoviscous fluid in nondimensional form is given by

P* =C*2 pI* + _ (aC*2 *)2 _CS (X* - X)V v (24.1)
2\ap /P 6P2 VP

in which

PI* = /(pOL2 ; S UT = 2 .
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We expand p*', p*', v* in power series of the Mach number S as follows,

00

p = L Snp*
n =1

00

= E
n =1

00
,* nP = E

n =1
Hence, to order S2 ,

Snlp*
n 

2p *2 * 2 [*2* 1 /ac *2\ *21SP1 P2 +...=ScOp 1 +S [Co P2 +- 2P J

- Ws (XU V X)(V 1* +SV1*4) +....

Equating coefficients of equal power in S yields

order S:

order S2:

order S: * * 1

PO

P2 = C2* + - aC*2\ *2
2 0 ~2 2 '\ap /Pi

ap*a"1

at*

* *
S2: ~ ~ a 2 p1order S2 V*2 v * a t *

PO at* PO

1 a P

P at* c*2
P0

In linear approximation

IVI=Cop1
PO

49

Now

p =0C2P* - 62 (X>*-X*)V*-V*

(24.2)

(24.3)

(24.4)
Co * *

-- (x* x)v* .V2

** V* vP
V V* 1*

PO

(24.5)

21 =V
Po

(24.6)
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Setting p* = 1, we have

p* =*2P *
1 C0 P1* *2 *

P2 = C0 P2

X( 

+ e2 [X* - x*] -~t
62 C XP * at*

1 laC*2 *2 Co

2 2
*p

aP 2 +* ap - * V

at* at 

Thus, of order S, we have

* 1
PI1 =-of_ 2S

of orderSC

P*
* 2

P2 *2
C0

1

2c*20

( ap * ap*
at* at*

.Co *
6 2 v

-xp) *4 at*
*4

(ac *2 C (X-x)
C 0 6.

+ Vt . V*Pt)

We consider the thermal and viscosity effects to be negligible and write

* __ * P

Pi 2*2; P2= *2
Th0 e0

The equations of motion of order 52 are

a P*V*
at

a POVA + V*.P*v*v*
at* 

= - CV P2 - 2_ * 2 pV*p*2

The equations of continuity of order S2 are

at*+
II. 2 +~~at 1*pv + V *o2 °

50

(24.7)

(24.8)

(24.9)

(24.10)

1/ac*2)
- 2 \ap Js)

pl*2
1
*4

co

I.

(24.11)

(24.12)

(24.13)
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Taking a/at* of II and V*. of I and eliminating appropriate terms result in the formula

*2 2 V*V*(pov*V*) 1 (ac*2 1 a Pi
C20 2 ap*! e6 at'' 2

F1*2- a2 +C*2 v*2 (24.14)

Now for irrotational flow at any point in the field

V. V.(V1 V1 ) t(V.V 1)
2 + V1 . [V VV,] + V2 -2 (V -V,)

V V(V1 V1 ) = 2V (v-V)v (24.15)

(see Ref. 15, page 47). In the near field these formulas are very complicated. Selecting
only the radiation, or far field (lxi = R), for consideration, we write

a a aR 1-a \ xi pOCO
;zt _ __ - )V, = (24.16)axi aR axi Cat) lxii 1 V I 0 (

Thus, in the far field,

a2
-1 a2Pt2

-V*-V*- (Povlv*) P01V = 1. (24.17)(p~Vt~t) C c*2at*2 PIt 2 C*4P * at2

The equation of motion in nondimensional variables therefore becomes

( a2 + 1 a2Pt2 (aC* 2~ pK a2 ~V*AP*= -1 a2IG + *2 o (24.18)\ c* 2 at*2 2 c2*4p at"2 l \\aP78 2c(4

If

* _ 1 1(C" 2 ) p* 1 aPt2
q - *2*4 [1+ (a1 ) 7y I * (24.19)PO 0 co at

the above equation is reduced to

El1 2p* = * - aq* (24.20)
2 0at *

51



SAM HANISH

Upon removal of the asterisks, one finds the formula of Westervelt [16]; that is,

R2p bq. (24.21)

This is the equation of motion of second order. Here q (dimensions: s-1 = (m3 /s)/m3))
represents a simple source strength density. In the approximation shown (i.e. second
order in S, negligible viscosity, and far field) the source strength depends on the square of
the first (or linear) order acoustic pressure. Note that the contributions to nonlinearity
are two types, one due to the double divergence of p0V1vj and the other due to the non-
linear terms in the constitutive relation p = p(p). These two effects are independent of
each other. When viscosity effects are included we modify the above calculation as fol-
lows. For irrotational fluid motion the hydrodynamic equations to first order in S in
nondimensional variables have the form

*
I. PO aVPi.,* L'C L1~]v 

at* 62 [3 V1 2422

ap*

II. 1 + pO V*.V =0 (24.23)
at*

where CoV/62 >> S. Operating on I with V*- and on II with a/at*, and eliminating
terms leads to

a pi +C*2 V*2 *Pi PO [( + v') v 1 (24.24)
-at"'2 62 L\ 3

17/ J1

Consider only the radiation (or far) field; we write the gradient operator (negative to-
ward xi) as

*
xa xi 

ax* Ix" I C*at

2. P= = (24.25)

Then

*.v*2V*= - a V*2V* -1 v*2 pt
1 * 1 at*2 V(24.26)
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Hence, to first order in S, one has the following equation on converting back to dimen-
sional variables,

c2 at2 = C2 (3 ) at (24.27)
c0 at

in which, as before v = qlpo. With second order (S 2 ) terms only the dimensional form
of the equation of motion reduces to

P 2 + V-V-p VV =c 2 V2p2 - _ v )2 2
at 2 0Fv 2 2 \ap/ P+ V(VTVv ) 47Z[ + I] + (X _)(2.8

+V ~~~~~~~~~~~~~(24.28)

Here we have neglected the thermal term in the constitutive relation. We next assume
that

IV2 1 P 2

CO PO

so that for plane waves

CoP2 1 ac2 P2

V21 I 20C 2pi a C (24.29)
P0 L~o 20 \ s 0J

With this assumption the equation of motion in second order quantities reduces to

a22p2 __ 7 4 + lap2- +v 4- + j+ f [
C2 at2 2 PC(3 i7!\C~ p/~ at}

1 a P21 1 (aC22 2 4 X

pC4 at at -C - Vp IiIR \vp/JJ

1 (aC2) 1 (24.30)

s 0
CONCLUSION TO SECTION 18-24

The approximate equations derived in the previous sections by perturbation methods
provide convenient starting points in the mathematical analysis of nonlinear acoustic
processes. When the effects of viscosity, heat conduction, and relaxation on finite-
amplitude waves are to be investigated explicitly, it is desirable to have a general approach
that embodies all these factors in a single nonlinear differential equation. Such general
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equations are difficult to obtain when an arbitrary type of nonlinear acoustic wave is
under consideration. If, however, the wave is relatively weak and is unidirectional, then
one may derive a general equation. This is the Burgers' equation. A thorough explora-
tion of its properties greatly enhances the understanding of the combined effects men-
tioned above and provides a convenient mathematical model for an otherwise very com-
plex physical process. We discuss Burgers' equation in the next sequence of sections.

25. DERIVATION OF BURGERS' EQUATION

The hydrodynamic equations can be cast in a useful form by transformation of
variables [9]. One defines a parameter w (dimensions: m2/s2 ) in terms on the nonlinear
speed c, by the relation,

p(x, t) = p)exp (W(X, t) (25.1)

i.e.,

w = C2 kn P . (25.2)
Po

Using the relation between ps and p' where p5 is defined by2' 1 faC2) 'Ps PO + c0p + P12, (25.3a)
0O 2 ~a

one has

w = A ps. (25.3b)

If the new variable w is substituted in the equation of continuity,

ap + pV V + Vp V = 0,

one obtains

aw + Vw - Vpo + c2 V2% = 0. = V=V (25.4)
at

Furthermore,

dps = [co + (a;) p, dp] (25.5a)

Defining y such that

= _)_ po (25.5b)
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and noting that local wave speed c in the nonlinear medium is defined by

dp, = 2

dp
we see from Eq. (25.5a) that

c2 = Co + -(Y -1)p'.
p PO

Now to a one-term approximation,

2

't C2 AP cO 
J° P PO

Jp
PO

= 2

dp - p
PO

hence,

C 2 ~~C + -1)w. (25.5)

Here, the second term is a correction to first order in the acoustic mach number. As
noted previously, the hydrodynamic equation of motion in Eulerian variables has the
form

[- -+VvV=P~ V2V.
p [Na + (V-V )v] = - Vpt + b

Noting again that

VPS = coVp' + ) pVp' = COVP + _aC2M PI

Vp' = V(p - pO) = Vp,

so that

Vps = [c + (y - 1)w] V2 ew p 0 Vwe
0 ~~~C2

we next set

V2 P V2ip = eW/C2 V2so, p <<P.
p0

When all substitutions are made, the equation of motion reduces to

PeWeCw2 V[sc + (Vp-Vep)] = ew c2 V( - wpO +bV *Vp)

or

W=-o-VoVsb+- V-Vp.
PO
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We next consider waves in one dimension (coordinate r). Substituting the formulas
for w and c2 into the equation of continuity leads to

a2 p0 ao a2 +b a3 +[ap ( a2% af a2 b a3wp1

at2 ar arat Po atar2 [ar \ atar at ar2 PO ar3

+ + (( Y - l)w) a =2 (25.8)

Now for plane waves

2' a,
cop p0 POC ar apowt ~= - = = co -
PO PO PO ar

a ~~a

at=c ar.
Writing

a- a%~ _2~ apc a2pO-2 a arat 02c a ar2

b a3 oa NO b a3,0
Po ar3 ar Po atar 2

and neglecting terms of order 3 in Mach number, that is, neglecting

(a)2 a2<

Va/ar2 

we see that for plane waves,

2 3a _ aP + b a3 ( ap a% -, (25.
0ar

2 at2 Po atar2 ar ar 0

the transformation

y = t - - to replace r

r to replace t

leads to the formulas

a a a

ar = ~C~ay = ~C~at
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and

at = -0cV
a2p

at2
Thus,

av b a2V av

- 2c ay CoPo ay2 ay

or

av (Y+1) v a
-ar - \--2-) -2 / ay

One next selects a length L such that

C2 1 ; X = 2 VOL,
C2~~~~

[dimensions: s-1].

Multiplying through by L and writing a = r/L, u = v/v0 result in

au au-a y
aaJ a(WY)

a2 U 7rb 2 \= _o 0 (_v
8(Wy)2 (p (e' + J)XvO .

For a plane wave,

Hence

POO

au au a bo

aa - a(Cy) =(ey + 1)pO

a2 u

a(Cy)2
(25.12)

The form of this equation is the same as that derived by Burgers [17] in another context.

This form of Burgers' equation has the following features. On its l.h.s. we have a
group of symbols that can be interpreted as a statement of conservation in the amplitude
u. It contains a nonlinear term (second term). On the r.h.s. we have a group of symbols
which represent diffusion (i.e., attenuation of amplitude). The total equation states how
the amplitude of wave motion in one direction (l.h.s.) is distorted by nonlinearity and is
attenuated by diffusion (r.h.s.).

The above derivation, while complete, does not display certain features associated
with the classic concepts of Riemann invariants. Since these concepts have always served
to illuminate the physical processes of nonlinear propagation of acoustic waves, it will be
useful to present an alternative derivation of Burgers' equation in which Riemann invariants
appear.
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26. ALTERNATIVE DERIVATION OF BURGERS' EQUATION
FOR NONLINEAR ACOUSTIC WAVES

We first define a total acoustic density PA;

P [i+ 1 aC2 (26.1)

The total fluid density is p = PO + PA. Excluding the effects of relaxation and inhomo-
geneity in the medium, we have

VPA = Vp; V2PA = V 2 p.

The nondimensional form of the hydrodynamic equations that include all orders of
magnitude up to the second in the Strouhal number S are thus given by

* av* + S2 * *.V* =- *27*p* +LS 42 (x(-x 1 V*2V*) .
at' SP V V C e 2 3 7 + 6 Co

(26.2)

Here

* *
US XV -Xp Co >>»S.

C2 C2

In dimensional form this equation reduces to

act +vV = VP + Vp ( 4 X _7/C X ] V2v. (26.3)

We now restrict attention to one dimension (coordinate r). Thus,

av av + C2 p = a2 V (26.4)

at ar p ar ar 2

Similarly, the dimensional form of the equation of continuity which includes zero and
first order terms has the form

atp +V ap +p I-V =O. (26.6)
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It is now convenient to consider the fluid a perfect gas and to change variables by writing

2 2 2 /p\'Y- 1
C a a0 p-} 'Y = (26.7)

in which a is the speed of an isentropic infinitesimal sound wave at the local values of
pressure and density, and ao is this speed at the equilibrium pressure and density. In linear
infinitesimal theory a = a0, since p/po = (po + p')/po = 1 + p'/pO, and p'/p0 << 1. Now

dp 2 da (26.8)
p ey-l a

Hence, Eq. (26.4) reduces to

av av 2 aa a 2 v
a+ av + a = ar2 (26.9)

Similarly, since

da = d (p - 1)a P

we see that

aa + Va (e -1 aV 0= O (26.10)
at ar + 2 I a

The two equations (26.9) (26.10) were combined by Riemann [18] through the intro-
duction of two invariants,

it= a 1+ I v; a= -1 2 v. (26.11)

The new set of equations now becomes

a + (a + ) a$= 2 1 ar a- (26.12)
at ar 2 ' (ar2 ar2)

(a a v)_ _2

a t a 2Z Var2 ar2) 2.3

in which

a + V = 2~- (y +1) A 2 (y - 3)8 (26.14)

a-v = - (y - 3)5R + 2(Y + 1)8. (26.15)
22
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Now to a first approximation Eq. (26.12) can be solved by using

-6 a

4aO ax

This may be seen by neglecting products in v and third derivatives in R, and thus writing

as as 6 _a2

-a
at ° ar 2ar2

since

a a
at 0a0 ax.

This approximation for S provides an order of magnitude estimate in Eq. (26.14). To
justify omitting products of v, we note that

v 2SR - 2a
aY _ 1

2a
-- 2S

and

a0 a0 a 0 \'-1

2a -
aO - 1) a.

In nondimensional coordinates,

S a C saR (1\

a0 4a2 ar4 a 2 a r0 0

i.e., S /aO is of order (vC/a* )S. In contrast,

R R*S L

a0 a0 T

i.e., R/aO is of order S. In incremental terms Eq. (26.12) is written

a( _____(a + v) a(S -R 0) 1 [a2( iR _ 0 ) a2( SS 0 )1a +a - a - =- _a a26 16
aoat W °ao aoar 2 aoar2 a3r 2.
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The relative magnitudes of each term are now explicit. Since

SSo (Vo) S,

one can write to order S,

T1hor

Thus, Eq. (26.12) takes on the simplified form

aR [1 a+1 i3
at 2 2 '''2 ''O ar

1 a2 , -26
2 ar

(26.17)

One next introduces a substitution of variables by defining the excess wavelength velocity
u, where

u = a + v - aO,

and by defining a coordinate system X moving with the wave at speed ao;

X = r - a0 t.

Now we set

ut = (a + v)t - aOt

so that

X = ut; r = (a + v)t.

Hence,

a au ax at' dX = (a + v - ao)dt

a 1 a= 1 u a
ar a+v at a+v ax

Since a + v = u + ao we see that Eq. (26.12) reduces to

a.R a _ 6 r 1 a2j 1U -+ I =I
ax at 2 [(a+ V)2 at2 ]'
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The r.h.s. may have another form if we substitute

a _ a

ar t=const. ax'

2a

Thus 2

au au 6 a2uu a + - [dimensions: m/s2]. (26.19)
ax at 2 ax2

We next define If by the relation

U= (- (+1; t0f-i
Hence,

atd all 6 a2b
Atax + t 2 aX2 '(26.20)

in which: = (1/2)(-y + 1). Equations (26.19) and (26.20) are Burgers' equations for per-
fect gases. If the medium is a fluid,

y+ 1 = I+ B = 1 1 p aC2 (26.21)

2 2A 2 c2 rap/5 (2621
0

In this way a large number of fluidlike media can be analyzed for finite-amplitude effects.
Burgers' equation, however, is restricted to one-dimensional problems in which the propaga-
tion is in one direction (simple waves). The significance of the equation is this: it shows
the conflict of the convective effect, u au/aX, with the diffusive effect, (6/2)(a 2 u/aX 2 ).
It is a key equation in the theory of weak shocks.

This derivation of Burgers' equation and the one in Sect. 25 do not exhaust the
number that have been found (Appendix C). It is deemed worthwhile here to consider
one more derivation in the hope of showing the close connection between Burgers' equation
and the basic hydrodynamic equations noted earlier. This is the derivation of Kuznetsov.

27. KUZNETSOV'S EQUATION OF NONLINEAR ACOUSTICS
AND BURGERS' EQUATION

Kuznetsov [19] considers a viscous, heat-conducting fluid and seeks to derive a
single nonlinear wave equation in the scalar potential u = - V0 based on perturbation of
the basic hydrodynamic equations of motion and continuity, and retention of terms to
second order only. To assign orders of magnitude to perturbation terms he introduces
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two quantities, p and 6. The quantity p is analogous to a sonic Mach number and serves
to order the acoustic variables. Thus by assumption,

P -Po
II;

PO

P -Pgo
p-p0

PO
U A

C 0
y < 1 . (27.1)

The second quantity 6, defined by

poco
4 = 4 +37~ (27.2)

serves to order the viscosity and heat-conducting terms. In this construction, therefore,
second order terms are of magnitudes y 2 , p6, or 62. Now, if vortex terms are omitted
the equations of motion and continuity have the form.

au = P VU2 - Vp +blv 2U
a 2 2

ap + V (pu) =0O.

(27.3)

(27.4)

By omitting viscosity terms (of order pu2 ) and scattering of sound by temperature in-
homogeneities (i.e., u Vs), one can write the equation of heat influx in the form

as = X V2 IP

at P \_P/ 
(27.5)

where X is the coefficient of thermal conductivity. Note that in this approximation as/at
is of second order. Now taking the medium as a perfect gas, the constitutive relation is

p Af(p, S).

To terms of second order, this is

2 2
+ _ 1 POCo (p -PO\

2 po p0O/

2 _Po
con p

P o

C 0 poSO S - o
+ I 1+

POWCU \ _ / (27.6)

cP
I=
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Elimination of p from the hydrodynamic equations and energy equations, then differentia-
tion of the equation of motion with respect to time, together with use of the energy
equation to eliminate the entropy, and finally introduction of the scalar potential leads to
a single equation, good to second order (as defined above). This is Kuznetsov's equation,

a__ _-_2 = a3 [bV20+(V2 + aoA ]
at2 at [7Y)V Ikat

(27.7)

in which

a ~_ ' - 1 (S2/r 2);
2c 20

(m2/s) (27.8)

In Eq. (27.7) the l.h.s. is a statement of the operation of the linear D'Alembertian operator
on the potential. The r.h.s. contains second order terms in the form of "forcing functions,"
each term dependent on the first order potential. Within the limitations of this formula
Kuznetsov proceeds to derive the acoustic form of Burgers' equation. This is done as
follows.

Case I. In one dimension,

(~a ,)yI]
a2- C2 a2o

at2 0 at2
(27.9)

Here the r.h.s. has
nonlinear, i.e., the
at large distances.
the formula

all second order terms. Now one assumes that the medium is weakly
effects of the medium on the waveform are finite (or noticeable) only
Changing the scale of x such that x is always large, one defines x' by

x =- , v <1.
V 

Choosing solutions in the form of traveling waves, one also defines the retarded time,

x xe=,t- - =t- ,
i.e.,

a a a

at ar ax
a a

ax = ax, -
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Now

a% a2
o a / ao a

at2 aT2 + 'ar FaX) + aX'2

Since a20/at2 is first order and v2 c~a 2 0/ax' 2 cancels - c~a2o/ax2 , a change of scale and
a transformation of variables have left a residual second order term on the l.h.s., namely
2c a/aT (ao/ax). On the r.h.s. the first two terms are of the order of v2; hence, we take
a/at - a/ar and dxo = CodT. The third term is expanded so that

(a¢)2 =(ak)2 _+ 2c ao aL, +2c2 (aO
at~~~ ar 2c -y~Vc ax'0

By approximation,

(ao\2 2(aa\

Thus, if only second order terms are retained,

a_ b a2 _ 1 (a,\ 2 (a¢ 2

° ax C2 aT2 C2 kaT) ar)(
0 0

Operating on this equation with - a/ax, and noting that u = - aa/ax, one reduces this
last equation to

au au a2 u (27.11)

ax aT aT2

in which

a Y+1 b' = b

2c2 2c3

0 0

This is the acoustic equivalent of Burgers' equation. For one-dimensional waves in cylin-
drical and spherical coordinates, the comparable equation is

au u au a2u
+ --au - -2 (27.12)

ar nr al ar 2

in which n = 1, 1/2, for spherical and cylindrical waves, respectively [20].
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Case II. For problems in two and three dimensions it is of some interest to investigate
the propagation of nonlinear waves on the assumption that the waveform varies slowly
in the x direction, and more slowly in the y and z directions. If the wave travels n units
in the x direction, a change of scale can make this appear as vn units (v < 1), thus slow-
ing down the change in waveform. Similarly, if the wave travels q units in the y direction
and r units in the z direction, change of scale can make these appear as (iq) 1/ 2 units and
(yr)1/2 units, respectively, slowing down the change in waveform even more. Thus, one
seeks a plane-wave solution of the form

¢ (r- t X I); x'vx; y,=(Vyy) 1 2; Z' = (VZ)1/2. (27.13)

By proceeding as in Case I, one arrives at

a24 Co ,= a 1 a2 + a ab 2
aTax 2 Yz aT \aT 2 2 a'r

(x, y, z, t) =a
aT

oe-- 1 ; b'=-. (27.14)
2c2 2c3

0 0

Kuznetsov explains: When b' = 0, the resultant equation is that of Zabolotskaya and
Khokhlov [21] for a three-dimensional, quasi-planar, nonlinear wave. If b' = 0 and a = 0,
the resultant equation,

a2 - C0 2 (27.15)
a-rax 2 'Y,z

is a basic equation of diffraction theory in the diffusion approximation.

We return now to Kuznetsov's development to make additional comments. Kuznet-
sov's equation, (27.7), is closely allied to several other prominent formulations. We note
here in particular an alternate form of Eq. (25.9), which by simple manipulation reduces
to

a2u 1 a2u + b a3 u a2 Waf_\21=0 (27.16)

ar 2 c2 at2 p0C2 atar2 \2 / Xaxt LI(xCoaxiJ

in which we have assumed that

C aU = a< (27.17)
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Now, to a first approximation, we relate the particle displacement t to q by using

_al U _ ax

co ax co ax
(27.18)

(see Eq. (19.3), with p/po = 1 - a~/ax = 1 + p'/pO = 1 + u/co). Thus Eq. (27.16) reduces
to

a2 u 1 a2 u

ar 2 C2 at2

b a3 u {y + I a2 [/an 2

pOC2 atar2 \ / axat [\axIJ

The nonlinear term now appears as a forcing function (r.h.s. term) and the viscosity term
appears as a damping term. We compare this equation with Eq. (27.9) of Kuznetsov and
note that they are equivalent to within the limits of the linear substitutions made. Note
also that in Eq. (27.19) the velocity u can be written as a sum of harmonic components,

00

U = E Un.

n

Burgers' equation, as derived in several ways above, does not accommodate several
other aspects of wave motion. Two of the most important of these are medium relaxa-
tion and spherical spreading. We note in the next section an attempt to modify Burgers'
equation so as to incorporate these features.

28. EQUATIONS OF MARSH ET AL EXTENDING BURGERS' EQUATION

By measuring rise time of pulses from explosive sources in seawater, Marsh, et al.
[8] found nonacoustic behavior of the medium far beyond distances where linear theory
should prevail. This experimental result is attributed by them to finite-amplitude effects.
To account analytically for these experiments they have constructed an equation which
specifically accommodates spherical spreading, dissipation, and finite amplitude. It is

(q a+ (aT aya
y ay

a aTI

- +y _ a2 y + r __

41poco ar 2 4S18poco ar 2

in which

q = heat source, or radiation coefficient

r = local time = t - r/c 0, r = radial distance

r = up/pO

a = scaled range = 2 por
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23 = (1 + B/2A)/2poc 3; B and A are defined from

P -Po (p _p-o 2
p -Po A - ___

p0 2 \ P0 /

cp /cV

A= (271 + 71') lp 0c2

Equation (28.1) is a Burgers' type of equation. A plane-wave formulation which in-
corporates this type of dissipation has also been constructed by Blackstock [22]. Other
forms, such as those of Polyakova, et al [6] have appeared in the literature. These im-
provements over the simple Burgers' equation derived above may form the basis for new
developments. It is clear, however, that every increase in complexity of the basic Burgers'
equation increases the difficulty of obtaining solutions. We turn next to classic solutions
of the (relatively) simple form of Burgers' equation (say Eq. (26.20)). Their extraordinarily
complex form should convince the reader that nonlinear differential equations governing
realistic processes in nonlinear media come close to being intractable.

29. SOLUTION OF BURGERS' EQUATION

We begin with Burgers equation, (26.20), and rewrite it in the form

V av + av r a2 v (29.1)
ay au ay2

According to Hopf [23] and Cole [24], the following procedure is useful in obtain-
ing a particular solution of this form of Burgers' equation. Let there be a function 0(y, a)
such that

_o ao _v
2 iaV =x t o"t

8 = _V; al= v2 J a; yX-cot; a = t. (29.2)
ay -u F ay ~ - 0

Then, by Eqs. (29.1) and (29.2),

__ -! {' + 1 2 (29.3)
aa 2 (ay) a ay2

Now, substitute 0 = 2/1 log 4 in the above equations, with
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2 1 a4
F 4 aa

a4, 2 1 a;

ay r 4ay

a20 2 _

ay2 - r4,

a2 4

ay2
_ 1 (a)

02Dy (29.4)

After reduction, we see that by this choice of new variables, Burgers' equation (29.1), is
reduced to a classical diffusion-type equation; i.e.,

ad = 1 a2m

-a r ay2

in which

x(-~2 JVdY)

4 = 4,(y, a),

V=- 2 1 a4
r 4 ay

Laplace solved the diffusion equation by assuming that at a = 0 there is a distribution of
sources T(Y, O)dY, and that each source contributes to the field 4(y, a) an amount
proportional to

1 r _ y)2]
'I'(Y, 0)d Y exp I 

47rci 4ci* FI- L IF J

(29.7)

Now, at a fixed point in space (at y) and a fixed retarded time (a), all contributions of
initial sources are added to give a particular solution,

4(y, a) = 1 {f (Y, 0) exp (Y )2] dY

v ~r (II r 

(29.8)

The range of integration that covers all possible distributions can be reduced in special
cases. Furthermore, since V = f(4) (as noted above),
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f00 () ja) exp [ A V(Y, O)dY - 2] dY
V(y, a) = , (29.9)

exp V(Y, O)dY 2 dY

where 6 = 2/F. We rewrite this integral in the following convenient form,

u (X, t) = [ Y( , Y.O exp[ F (X, Y. t) j d y/f exp(, dy) (29-10)

The following procedure for solution has been devised by Whitham [25]. This integral
has a pronounced peak at Ym = Ymax, which makes F greatest, and is relatively negligible
elsewhere. For small 6 (i.e., for weak diffusity),

u(Xit) = f(x, Ymt)
at F = Fmax = F(X, Ym, t)

x - (29.11)
t

Now

F(X, Y, t u(Y, O)dY - 2t (29.12)

and

/aF\ x- y
y=Y = 0 = U (Ym, 0) t Y (29.13)

Thus for any given position X, and time t, there is a unique value of waveform velocity.
In the region of the shock, however, there are many pairs of positions (Y 1 , Y2) where F
is maximum, since the mathematical development is multivalued in the shock region.
Thus, for each pair,

X = u(Y1, 0)t + Y

and

X = u(Y2 , 0)t + Y2

give two distinct locations in the shock wave where

Fmax(X, Y1, t) = Fmax(x, Y2, t)- (29.14)

This equation provides a relation between Y1 and Y2. Using the definition of F, we de-
duce that
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Y2 Y1 - Y
j u(Y, 0)dY = 2 2 [u(Y1, 0) - U(Y2 , 0)] * (29.15)

Geometrically, the formula states that the area under the curve u(Y, 0) between Y1 and
Y2 is equal to the area under the chord joining Y1 and Y2. This can be true only if lobes
above this chord are equal to lobes below. Thus, the pair of points Y1, Y2 is located by
drawing a straight line across the curve u(Y, 0) vs Y such that equal-area lobes (above and
below) are cut off by the chord between Y1 and Y2. If such a chord is found, then Y1, Y2
constitute a pair of points which (a) fall on the curve u (X, 0) vs X for the condition 6 - 0
and which (b) are nonphysical (i.e., represent state of shock). The slope of this chord is

u(Y 1 , 0) - u (Y2 , 0) _ 1 (29.16)
Y1 - Y2 t

Thus to find u(Y, t) in the vicinity of shocks one must proceed as follows. On the curve
u(Y, 0) vs Y one must search for chords which have negative slope and which cut off
equal-lobe areas (as described above). The first of such negative-slope chords is evidently
at the first point of inflection of u(Y, 0). Corresponding to it, the time t (equal to the
reciprocal of the slope) is the time of onset of the shock wave. The intersection of the
chord (extended if needed) with the X axis gives the point in (relative or moving origin)
space where the shock forms. As time increases chords with more negative slope develop,
with corresponding diminished magnitude of slope. Each pair of end points of these
chords gives a double value to the field and therefore constitutes a shock wave front oc-
curring at a later time, given by the value of its reciprocal slope. At successive times,
pairs of points on the initial curve u(Y, 0) near an inflection point reach the shock point,
enter into it, and vanish. Shock velocity for each pair is given by 1/2 [u(Y 1, 0) + u (Y2 , 0)].
If the initial curve u(Y, 0) has several negative inflection points, several shocks propagating
at differing speeds are formed. Faster shocks overtake slower shocks, coalescing with them
so that eventually, if sufficient energy was originally in u(Y, 0), only one shock remains.

The above sequence of events is illustrated by the (Whitham) graph, Fig. 29.1, of
relative time t/to vs relative space X. Here to is taken as the time corresponding to an
arbitrarily selected equal-lobe chord, say, an early one.

At time t/to = 0, we locate 11 points on the curve u(Y, 0) in space X (relative or
moving origin). Points 4 and 8 are points of negative inflection. As time increases, point'
1 shifts its relative position in u(Y, t) along the line 1 - J, moving ahead. The slope of
this line is i/u(1, 0). Point 11 shifts its relative position back in u(Y, t) along line 11 - J.
At some specific time, both 1 and 11 coincide at J, which is therefore one point on a
shock wave. Two shock waves are initially formed (4-G-I and 8-H-I), which coalesce at a
particular t/to and form the single shock I -J. Point I differs from other points on shock
waves in that it is a point of confluence of three initial points (2, 6 and 10). Any initial
point A moving AB, which is parallel to IJ, is never absorbed into a shock.

The graphical manipulation of the plot of the wave train at t = 0 to find its subse-
quent time history has been exploited by several authors [26], particularly in applications
to gravity waves on the surface of fluids. It constitutes one species of solution of Burgers'
equation. Intensive efforts have been applied [27] to find and improve new deductions
from the basic solutions proposed by Hopf and Cole. In the next section we review the most
significant of such efforts.
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Fig. 29.1a-Formation of shock waves
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Fig. 29.lb-Whitham's graphical technique for finding conditions of shock formation
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30. FURTHER DEVELOPMENTS IN THE SOLUTION OF BURGERS' EQUATION
AND COMPARISON WITH EQUATIONS OF FAY, FUBINI, BLACKSTOCK, ETC.

We consider again the solution of Burgers' equation advanced by Hopf and Cole.
Referring to Eq. (29.1), or (26.20), we see that it is a solution to an initial value problem,
that is, the waveform is specified at a = 0 (i.e., t = 0) at any location Y, and the problem
is to find the waveform at a subsequent time and place. In many cases of interest the
initial value problem must be replaced by a boundary value problem. To transform the
equations from initial value to boundary value form we begin with Eq. (26.19) and change
the time scale by introducing a time delay t' such that the time required for a wave to
travel to position Z at speed co is delayed by t' sec, viz,

z- = t - t.
CO (30.1)

With this change in time scale,

a a
ax coat'

a a
a = Co -aat az

at t = const.

at t' = const.

Hence, in Eq. (26.19) we see that

uau + au 8 a2 u
coat, CoZ= 2 c2at'2

c0 a

3 au au 6 a2 u
c z- CU t, 2 at'2 [dimensions: m3/s4] (30.3)

in which

u = u(Z, t').

Now one defines new variables Z (seconds) and 5f (meters) such that

a _ a
az coazs

a a
at= CO a0

[dimensions: m/s2]

To reduce this still more one uses the method of Hopf and defines a potential such that
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au au 6 a2 u
a's _ au i 2 2-
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0 = 6 log i
[dimensions of 4: m2 /s]

[dimensions of 4: none]

6 a 2 /

2 aj2

and so Eq. (30.4) reduces to

[dimensions: 1/s2]

[dimensions: 1/m]

[dimensions: s2 /m]

and

O = O (Zt').

Since

ao I a 6 a
u Co at' - co at' log i,

then

4/(t') = exp 0 fl u~iI).
(30.7)

Equation (30.6) is a diffusion-type equation; it has a known solution, viz,

(Z, t (t) = re
Ov(, t') = 4- Z ~ 4/(o, r) exp [- >~~' dT, [of: s2/m] (30.8)
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ao U2

aZ 2

Thus,

+ 6au
2 af 

ao = 1

ja,~ 2
/ I2
(aT)

or

ao a2v,a_ a 

ap a2 p

az-aat'2 '

where

(30.5)

6
32 c0

(30.6)

log 4 = CO

and

t'
J~ u(T)dT
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in which 4o(o, r) is the distribution of ; on the boundary Z = 0 at time r. When r = t',
there is the condition that

4/(t') = exp 0
ti d

fo u(p)dy 

in which u(g) has been taken such that

u(A) = O. g < 0

or

4(t') = 1, A < O.

(30.9)

(30.10)

An important case is that in which the boundary undergoes sinusoidal motion. Let the
boundary velocity be given by a step-function sinusoid,

u0 (t) = uo sin w(t)H(t) .

4/(t') = exp o C A (1 - os St)]--16 (1-oo

(30.11)

(30.12)

Similarly, when t' > 0,

X(Z, t') = , f00 exp [-X2 - ju cos co (t' - X F4aZ)] dX,
t

t' > 0 (30.13)

X = (t' - r)/V4& ; g = Couo/6 w [nondimensional]. (30.14)

Both of these components of the response represent transients. There is, in addition, a
steady state response to the input waveform u(t). It is

0/s s(Zt') = - -e f exp [-X2 - Acos co (t' - X V )]dX

S. (Zet') = e fp exp (_t2 - M cos O)dt,

O(, Z,t')= = (t'+4),

(30.15)

(30.16)

t = -X.
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Following Blackstock [27], one writes

00

e-I1cosO = T En(-1)nI (p) Cos nO

n=O

eo = 1, en = 2, for n 0.

Since the range of t is -oo to +oo and cos 0 is an even function in the variable (, we write

4/55 (Z, t') = $ f e e 2 - (-1)nIn(p) cos nwt' cos nw d8. (30.17)

To obtain an alternate form, it is convenient to set

epS = s m = +/

and write

e f 00 r -xpcosmcoe-P (s+ )1
4.(Z, t ) = > '0 [ (-s2e 2P) e me ds (30.18)

or

4/,s(Z t') = e, f exp (-s2e 2 p) T en(-1)nIn(P) coS [nmwel

Using Gradshteyn and Ryzhik [28, p. 480], the integration is directly performed. The
result is

00

4/5 5s (Z, t') = E e(-)nnl -n2co2aZ cos nwt' (30.19)

n=O

This agrees with Blackstock [27] if we note that

oaW2 (this report) =_ a (Blackstock).

When 4S s (Z, t') is determined by use of these formulas, the acoustic velocity is obtain-
able by
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u = kc - = k,6 c=t'. (30.20)

Since 4/ is an infinite series, this formula predicts a very inconvenient division of one in-
finite series by a second infinite series. To avoid this difficulty, Blackstock [27] proposes
a direct Fourier sine series for V;

kit V = ua~y, V- U
k,5 uO ay o0

(30.21)
00

V(Zt') = B sin ny.
n=1

The result is an infinite set of linear simultaneous equations,

00 00

E eq(_1)qIq (p)e &CaZ cosqy Bn sin ny
q=O n=1

- k,5 E er(-1)rI (y)e-r 2 w2azrsin ry . (30.22)

r=1

The objective here is to solve for B1 , B2 , etc., for each choice of 6 (and Ai). This may be
done by a high-speed computer that matches left- and right-hand sides at each value of
sin qy, q = 1, 2, 3, .... The relative magnitudes of Bn show the development of harmonics
due to nonlinearity. Writing the normal small-signal attenuation as exp(-cx 2 Z), Black-
stock forms the ratio

R = B1 /exp(-aco 2 Z). (30.23)

At the origin (Z = 0) the value of this ratio is B1 (the fundamental). As Z increases the
fundamental decreases due to nonlinearity. At the same time the wave amplitude de-
creases because of normal thermoviscous attenuation. A plot of -20 loglo R vs Z with
6 as a parameter can be interpreted as an extra loss (in decibels) due to nonlinearity
above the normal loss due to thermoviscous attenuation. To illuminate the conflicting
effects of distance Z and attenuation oaco2, it is convenient [21] to define the following
quantities

E = !3Skc [dimensions: nF1 ]

kc= C- = characteristic wave number
co

a = EZ;

F = E [dimensions: m-1 /m-1 = none]. (30.24)
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ackz= ra

From Sect. 17 it is known that the shock formation distance L is given by

L=c 2 I1L Uo k(y + 1) -Skc

Thus the distance Z for shock formation is given by

a = 1, or Z = 1 = 1
E a ,Sk s

By substituting previously defined values for awc 2 and E, it is seen that

F

3!3Skc 2c 0

or

r _ fPmax
2 bco

in which

b = 4 - + D+ X (- -
Acorin toi~ Gol'de [14]p t c

According to Gol'dberg [14] the condition for shock formation is

Thus,

f3 Pmax> 1
bc -

f =1 + Po ac= C 0Fo ) 

Hence the range (F/2) > 1 defines the condition for shock formation. Note that Black-
stock [27] states the condition as r > 1. However, this condition does not agree with
Gol'dberg [14]. The discrepancy arises from Blackstock's definition of 6, which is 1/2 of
that defined in this article. Thus when Blackstock writes

r = !COUO = °PCOVO = 2 Pmax (30.31)
6co b = 2 bco

2 c

and

0 = 1 + B
2A
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(30.26)

(30.27)

(30.28)

(30.29)

(30.30)

[ -"I ( 54- + -�' -) + -X (-Clv- - -C1 -)] Co 2
P P
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(see Eqs. 3n-91 and 3n-60b of Ref. 27), his condition F = 1 is half the condition given by
Gol'dberg.

A plot of -20 log R vs Z (or a) for choices of a (or r) shows each curve tending to
an asymptotic value in which the extra attenuation becomes independent of Mach number
(i.e., signal amplitude). This occurs when aco2Z >> 1 (or a/r >> 1). For this range, 4
can be approximated by

4t I(~o - 2 I1jeW 2 aZ cos y (30.32)

and

2kc6 Io () e-J2Z sin Y X k

When the amplitude uo becomes large (i.e., when p is large)

lo 1 1 - ep/ 1 _2r

and

V -2 e-- W2aZ sin y (30.33)

R e-20 lo1gloy)= 20 logl0 - 20 10.

Thus in the region (a/r) >> 1 (as Blackstock [27] has noted), if one doubles uo, one
also doubles the extra loss due to nonlinearity. Hence for (a/F) >> 1, high-intensity
sound "saturates" the medium and no additional increase in source amplitude uo will in-
crease the signal at field points far from the source. Asymptotically, one can write for
ju large,

u - 2kce-ao 2Z sin y, (30.34)

in which once again it is seen that u is independent of uo (i.e., the medium saturates).
The statement "A large" is here given the meaning

,A= k2ac2) is large.

To include nonlinearity of the medium in this definition, Blackstock defines a particle
velocity

u = 3U, ' = 1 + B/2A.

Uo = OU 0

With this definition, "ju large" means
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2kS (= 2) is large.

Numerically we choose

F > 50 (i.e., kcS > 25) (30.35)

as a good dividing line between "large" and "not large" [27]. For fixed n and ji large,
I,(Ij) may be developed in an asymptotic series

e___ 4n2 - 12 + (42 - 12)(4n2 - 32)
Inp W -Gi2- _/l 1! 8,u 2!(8p) 2 (30.36)

[see Ref. 29, page 377].

When In(p) can be replaced by ej/v¶7A/ (the 1st term approximation), then, for
aco2Z >> 1,

ell00
< + 2 2(-l)n e-n2n=Z cos ncotJ . (30.37)

As noted by Cole [24], this infinite series closely resembles a very similar series a 4 (u, q)
(theta functions) which appear in the theory of elliptic functions. From Morse and Fesh-
bach (Ref. 30, page 431),

00

t44(u, q) = 1 + 2 T (-1)nqn 2 cos 2nu
n=1

and

64 (U + 7, q) = 6 4 (U, q).

Hence for ji large in the first term approximation of IW(Y) one has

V(, 0 z - -ac Z (30.38)

A second approximation for In(A) which includes 4n2 /8p is

In (A) el -n2 /2pThu e

Thus
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(Z, t') a a4 [-2 e(aw2Z+1/(30.39)

Hence,

V = uo1 ac, _ = ! aU (log1 0 /).

From the Handbook of Mathematical Functions [29], page 577, one may obtain the
logarithmic derivative of the theta function. The result is

V = c s nt1 i (30.40)

U =1 sinh I[ (Co2Z + -P)]

This result was first derived by Fay [31].

By including terms up to ju2 Blackstock has obtained still more improved solutions
(see Ref. 27).

Fay's solution has been numerically calculated and compared with the solution noted
above beginning with Eq. 30.22. The result is

00

V = E B, sin ncot', (30.41)
n=1

which was obtained by solving a truncated "infinite series" of simultaneous equations
(harmonic series solution). For a > 3.3 Fay's value of B1 is accurate to 1% or better. Near
the source (i.e., when a = EZ < 1) all approximate solutions fail even when A is large. Thus
an analysis is needed in the range a - 0.

When p -* 0,

-v V av 
a(kSZ) - v a(cot,) - 0. (30.42)

Let

D = cot' + kcSZsin F; (30.43)

then V = sin cJ is a solution of the above equation for [t 0. Now following Blackstock,
let there be two new independent variables,

(* = kCSZ
(30.44)

cot' = (l - a* sin (D .

Thus,

81



SAM HANISH

av _av aa* av asb
a(kcSz) aa* a(kSZ) am a(kcSz)

av+ av sin(4
aa* asF (1 - a* costs)

av _ av 1
a(cot') - a 1 - a* cos ('D

Writing Burger's equation in the form

av V av 1 a2 v
akSZ act' 2p a(ct') 2

shows that in terms of the new variables this equation reduces to

/ av
(1-a*cos(4) av - av- (V-sin - acosa( (30.45)

for small values of a* (i.e., near the source) Blackstock proposes a solution of this equa-
tion in the form

V = V(°) + V(/) + V(2) (30.46)
21i (2 M)

2

Now when y is very large, the zero order solution is clearly V(°) = sin (F as before. In
the first order solution one retains terms containing p-1 and omits terms in V(°), U-2 ,
etc. It is directly proven by substitution that

v0l) -a sin (F (30.
(1 - cos 4) 2

is a first order solution.

Since the wave is periodic in time the solution V can be expanded in a harmonic
series in cot'. Since V is an odd function,

V = VO + 00) = E B, sin nct', (30.48)

n=t

in which wt' =_ 4 - a* sin 4). The coefficients B, are given by
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2ir

B,= f V sin nct'd(cot')

2ir

= f V sin n((D - a* sin (') (d( - a* cos 4( d()). (30.49)
0

By use of the theory of Bessel functions the integral can be explicitly carried out
[27, 32], with the result that

E = {n 2 Jn(na) - E br[Jn-r(na) + Jn+r(na)] sin n(cot')
n=1 r

br = r(l - a) 1 12 a -r[1 - (1- a2)1/2 r (30.50)

Here a is "small" and ji is "large." Selecting the fundamental B1 from this series and
forming the ratio R = Bj/exp(-_oe 2Z), one can plot the extra loss above thermoviscous
dissipation (as before) vs distance with p > 25 as a parameter [27]. Conclusions drawn
from these plots are similar to those quoted earlier (viz, saturation effects., etc.). The
series obtained by including only the first term in the braces is called the Fubini series
[33]. It will be discussed below.

Fay's solution, already noted, is also a Fourier expansion. By additional manipula-
tion (i.e., expanding sinh nf-l in an infinite series and summing the resultant double
series term by term), it is possible [27] to write Fay's solution in the form

F 0 (_1 )k sinhI ([hi t)]1

V = 1 + 3SkcZ 7r - ct' + 2 ih A ] (30.51)

where

A = 2 -(oj2Z + -)-

In the region 1 < a < 3.5 there is a transition between the Fubini solution and the
asymptotic Fay solution. Blackstock proposes the following formulation to cover this
range. In the integral

Bn= f V sin n(cot')d(cot'), (30.52)

one selects the range 0 < y < ir which, because of symmetry, is adequate. The basic
solution (F = sin 1l(u/uo) is used, and again one sets cot' = 4F - a sin (F. Integration by
parts leads to
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Bn = {sin (F cos nyl + cos ny cos 4( d(F).

Interest is focused on the first term. At y = ir, (F = iX, so that the upper limit vanishes.
At y = 0, 'D = 0 when 0 < a < 1. But for a > 1 'D = (Fmin = ()b where b means "just
behind the shock wave." Thus the lower limit is sin (b (=Vb = ub/uO). Here, for "large
a," Vb = 7r/(1 + a), and for a < 1, Vb = 0. The second term provides B, for the Fubini
solution if a < 1, and a small correction for a > 1. Thus, in the region 1 < a < 3.5,

= 2 [Vb + n2a Jn(na)j sin n(ct') a > 1. (30.53)
n=

But I n- 1 sin nct' is a sawtooth wave. (The theory associated with the sawtooth wave
in lossless media is called weak shock theory.) Therefore Eq. (30.53) is a sum of the
modified Fay (or sawtooth) solution and the Fubini extended beyond a = 1. A finite-
amplitude wave originally sinusoidal develops harmonics in accordance with this formula.
If y is very large the above formula becomes

1 + [7r - cot' + 7r tanh (hi) - 7r tanh (2 r- Y)]

1+ [-ct' + i ( tanh cot t 2ir

1 +2 - tah ct (27

1 + SZkc [Tt + 2r r tanh (2\ ] cot' 2-7r. (30.54)

All of the above formulas that give the particle velocity V = V(cot', Z) have specific
regions of validity. These will be discussed in the next section.

31. SUMMARY OF FORMULAS FOR PARTICLE VELOCITY IN NONLINEAR
ACOUSTICS

The initiation of the propagation of finite-amplitude waves is treated as a boundary
value problem in which the motion of a piston is given by

u(O, t) = (uo sin cot)H(t). (31.1)

Considering only the steady state, we summarize formulas derived in the literature which
give the value of u(Z, t), where Z is contained in a, t in ct', etc. (see Sect. 30).

The Fubini Solution [33]

u(a, ct') = uo E 2 Jn(na) sin n(cot'). (31.2)
n=1
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This solution is valid in lossless fluids near the piston source in the shock-free region
(i.e., a < 1).

The Fay Solution [31]

u(a, cot') = u sn (cot) (31.3)

n=1 sinh [n(2 . )]

This solution is valid in a viscous fluid in a region where shock waves have been al-
ready formed. When yu - on, the fluid becomes lossless, and Fay's solution becomes

00

u(a, Cot') = UQ 2 sin n(wt). (31.4)
i-. n (1 + a) snnct)
n=1

This represents a sawtooth wave. It is generally taken that Fay's solutions are valid when
a > 3.5 (approximately).

The Blackstock Transition Solution [27]

00

U = UQ E Bn sin n(cit')
n=1

Bn = - Vb + cos n(4( - a sin (F)db . (31.5)
in

This solution is valid in the case of lossless fluid over the range 0 6 a < - for an initially
sinusoidal wave (i.e., an infinite wave train). When the fluid is lossy there is a maximum
distance at which the sawtooth solution is valid. According to Blackstock [27] and
Gol'dberg [14], this maximum distance is given by comparing the diminution of the
fundamental B1 due to finite amplitude with the loss from attenuation in small-signal
wave theory. When these two losses are made equal, the resultant distance Zmax is given
by

1 + Zmaxj 3Skc = Sk = (31.6)
azco2

or, Zmax - 1/aoJ2 is the maximum distance at which the sawtooth solution is valid.

Comment: The many formulas described above require considerable knowledge and
experience in their use. Occasionally, simpler formulas which conveniently display some
special aspect of the nonlinear process are in great demand. We therefore review in the
following sections a group of formulas that may be derived from a very simple physical
basis and an equally simple kinematic construction. These are the formulas based on the
method of Riemann, Earnshaw [34], and later followers.
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Since they are closely allied to the concepts of geometric acoustics and the method
of characteristics in the theory of partial differential equations, we consider these subjects
first in the next sections.

32. NONLINEAR PROPAGATION ILLUSTRATED BY CHARACTERISTICS

Nonlinear propagation of waves received its earliest (and classic) treatment by the
method of characteristics, i.e., geometrical acoustics [35]. Although this method is ap-
plicable to all types of fluid flow, it is illuminating to consider one-dimensional fluid mo-
tion in a pipe fitted with two pistons, one at x = 0 and the other at x = A. Let the tube
walls and piston constitute a cavity extending, say, indefinitely to the right. At arbitrary
time t = 0, the pistons are made to undergo an acceleration. In Fig. 32.1 we show three
types of piston motion on an xt plot. In Fig. 32.1a the piston at x = - is quiescent while
the piston at x = 0 accelerates in the negative x direction; in Fig. 32.1b the same piston ac-
celerates in the positive direction; and in Fig. 32.1c both pistons accelerate in opposite
directions with identical motion. Cases a and b define simple waves, while case c defines
a compound wave. If the disturbances in the fluid caused by piston motion are modest
they are propagated at a certain speed, dx/dt = 1/dt/dx. In the general case this speed
varies with position in the tube. Let c be the speed of sound relative to the fluid and
let v be the velocity imparted to the fluid by the piston. First consider waves propagated
to the right and plot points of equal total velocity (c ± v). In the case of simple waves,
points of equal velocity fall on straight lines (Fig. 32.2a). In Fig. 32.2a the piston accel-
erates toward the left while the disturbance moves toward the right. The velocity relative
to a fixed coordinate system is therefore less than the velocity relative to the fluid. All
equal-velocity lines therefore diverge. In Fig. 32.2b the piston accelerates toward the
right in the direction of the disturbance so that the velocity relative to the fixed coordi-
nate systems is greater than the velocity relative to the fluid. The lines of equal velocity
converge and form an envelope. On the envelope the wave velocity is multivalued and
thus not physical. This envelope defines the onset of shock waves. Thus a compression
wave, case b, must always form a shock wave if it propagates indefinitely in the tube. In
contrast a rarefaction wave, case a, forms shock waves only when the curvature of the xt
plot reverses sign.

t t t

0 ' 0 x 0 W

(a) (b) (c)

Fig. 32.1-Three types of piston motion on xt plot
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0

dxC

t

(a) (b)

Fig. 32.2-Characteristics of plane propagating waves

The lines of equal velocity on the xt plane constitute the characteristics of the flow.
For a stationary observer compression waves propagating toward the right are described
by a family of characteristics whose differential equation is

(dt)o = v + C. (32.1)

Similarly rarifaction waves traveling toward the left form a second family of characteristics
whose differential equation is (dx/dt)o = v - c. If the observer moves with the wave he ob-
serves a third family of characteristics, namely, (dx/dt)o = v.

When compound waves are present (Fig. 32.1c), the disturbance propagates simulta-
neously to the right and left as viewed by a stationary observer, and in the direction v,
as viewed by an observer moving with the fluid. For such arbitrary motion it is desirable
to separate mathematically the components of flow into parts each of which propagates
along one characteristic alone. To illustrate such a separation of parts it is simplest to
use the conservation equations for isentropic one-dimensional gas flow. After combina-
tion shows components v, p unseparated. Now by choosing two new functions

av + 1 a p + ta + 1 ap\ (_+C) = 0
at PC at +ax PC ax) (

the plus (minus) sign designating positive (negative) direction of propagation. This equa-
tion shows all components unseparated. Now by choosing two new functions

f dp X f dp (32.3)J PC f PC
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and substituting them into this equation, one derives the separated forms

[at (V )ax] I [at ( )ax I3.4

This shows that fR is constant along the characteristic v + c = const. and S is constant
along (v - c) = const. The now separated components fR and S are the Riemann invari-
ants of the flow. Similarly the component of flow along the characteristic v = const. is a
solution of the adiabatic equation

(Tat + V aX) s = 0, s = entropy. (32.5)

The concept of characteristic curves illustrated above has wide significance in the
theory of partial differential equations. Since the conservation laws of nonlinear acous-
tics form a system of partial differential equations, it is important to have methods of
solution. The theory of characteristics provides one method. We discuss this theory
briefly in the next section.

33. METHOD OF CHARACTERISTICS

We consider the conservation laws of continuity and momentum and write the two
unknown variables (say density and velocity) as ul, u2 . Then, in general, these laws
read [36],

aul aul au2 au2all a + bl, at + a12 - +b2 = R1 (33.1)
ax_ at axat

aul aul au2 au2
a2 l ax + b2l at + a2 2 ax + b22 at = R2 (33.2)

This system is quasi-linear, i.e., it is linear in the first derivatives of ul, u2 but may be
nonlinear in the coefficients aij, bij. We now search for new coordinates (a, f) such that
in Eq. (33.1) Ul, u2 are functions of a only, and in Eq. (33.2), Ul, u2 are functions of 3
only. The partial differential equations in x, t then become ordinary differential equa-
tions in a, 3. This search for a, P is equivalent to finding particular curves in the xt plane
along which the differentiation is "interior," i.e., along a line for a problem in two vari-
ables, a plane in three variables, etc. To find these curves in the case of two variables
one multiplies Eq. (33.1) by an undetermined factor a, and Eq. (33.2) by another factor
a 2 . Then the equations are added. In the resultant single equation, one next groups the
factors in the form

au1 au1 au2 au2A a + B au' + C a + D at = alRl + a2R2. (33.3)
ax at ax at

If aul /ax, au 1/at are components of the vector differentiation, and A, B are the compo-
nents of a vector direction, then the first two terms in Eq. (33.3) constitute a directional
derivative of ul.
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u 1-au 1 au1du, = a dx + -t dt,ax at

then A: B = dx: dt. Similarly,

C _ dx
D dt

We therefore have two expressions for dx/dt. In order for all directional derivatives to be
"interior," i.e., along a line, we require dx/dt (=7) to be the same for each. Thus, we
require r such that A, B, C, D satisfy the set

A - Br = 0
(33.4)

C - Dr = 0

or

(all - rb1 j)a, + (a2l - rb 2l)a 2 = 0
(33.5)

(a12 - rbl2)al + (a22 - rb2 2)a2 = 0.

For nontrivial a1, a2 , the determinant of Eq. (33.5) must vanish. This occurs for
two distinct values of r for each point x, t; i.e.,

-b + b2-4ac
rl = 2a

-b - vb2 -4aC
r2 = -b - a2a (33.6)

b2 - 4ac > 0,

in which

a = bjjb 22 - bl 2b21

b = a 2 jb 12 + b21a12 - bjja 2 2 - b2 2 all

c = alla 22 - al2a2l.

The curves r1 (x, t), r2 (x, t) constitute two curves C1, C2 in the xt plane. With suc-
cessive values of r one can form the ratios (a 2/a1)1 using rl, and (a2/a 1)2 using r2. Sub-
stituting (a 2/aj) 1 into Eq. (33.5), then (a 2 /a1 )2 results in two equations of the form

dul du2E da + F du = GR1 + HR2

(33.7)
dul + K du2 = LR1 + MR2,
dod do3
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with the definitions

d 1 / a a\I
du + (r2 ax at)

(33.8)
d _ 1 a a

do - 2f a2 a t) 

Here, da is an increment along the curve C1 , and the differentiation d/da is the direc-
tional derivative. Similarly, do is an increment along C2, and d/d: is the corresponding
directional derivative. The forms of E, F, G, H. J, K, L, M can be found in Ref. 36.
Thus, two curves C1 :dx/dt = r1 ; C2 :dx/dt = r2, along which the differentiation is "inte-
rior," have been found. These curves in the xt plane are the characteristic curves of the
system. They possess the special property that differentiation of the dependent variables
u1 , u2 along their arcs is ordinary, thus permitting solution by quadrature. Because of
this property the characteristic curves are lines along which the higher partial derivatives
of ul, u2 are indeterminate, given the boundary condition that ul, u2 (and/or their first
derivatives) are specified on them. Thus boundary value problems in which the boundary
conditions coincide with characteristic curves of the parent partial differential system are
indeterminate, i.e., the higher order partials cannot be determined uniquely from the data.
Such indeterminacy also has a physical meaning for the case when the system describes
wave motion. The observer, who ordinarily can observe the physical process of wave mo-
tion from a fixed coordinate system, must (under the condition that the boundary condi-
tions coincide with a characteristic) ride with the wave, i.e., he can observe only events
that occur relative to his (convected) location in the wave.

Characteristic curves possess a third property whose formulation shows immediate
connection to the two others noted above. This is the property that jump discontinuities
in the first and higher order derivatives shown in Eq. (33.1) exist only across characteris-
tic curves. In mathematical terms, if x = x(X), t = t (X) defines a characteristic curve C in
the xt plane, then the condition on u1 , u2 that their, say, first derivatives undergo a jump
(symbol [ ]) across C is

[du,] =al] dx + L ai] dt 0

(33.9)

ra2Id i~ = dt 0.
[dU21 = ax] dX +[E at I dX

Here it is assumed that (a) U1 , u2 are continuous; (b) all differentiation along C is con-
tinuous; and (c) all differentiation elsewhere is discontinuous. From these assumptions,
one can modify Eq. (33.1) to read

[au 1+ [auz [au2 l [au2 l
all lau + bIl ax l + a1 2 ax + b12 -at21 = 0 (33.10)

1 xIIatJ I ax at Continued
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a2l axUll + b2l au + a22 ax + b22 at]= 0. (33-10)Lax JatLax] (33.10

The four equations given in Eqs. (33.9) and (33.10) form a system whose solution is iden-
tical with Eq. (33.6) and subsequently Eq. (33.7). Thus discontinuities in first order de-
rivatives of u1 , U2 occur only across characteristic curves. Similarly, it may be shown
that discontinuities in second order derivatives occur only across characteristic curves [36].
Hence waves containing jumps (in first or second order derivatives) propagate along char-
acteristic curves in space-time.

When the assumption is made that ul, U2 themselves undergo a jump across a line C
then it is shown in Ref. 3.6, that line C is a characteristic curve along which the jump
wave propagates (in space-time) if the parent system of partial differential equations is
linear. If the parent system is nonlinear, then jump waves in U1 , U2 do not propagate
along characteristic curves. Furthermore, in the linear system the propagation velocity of
the discontinuity is r = dx/dt, as found above. In nonlinear systems the propagation ve-
locity U of discontinuities does not define a characteristic curve in the xt plane.

34. WEAK SOLUTIONS

The hydrodynamic equations of fluid motion can be written as a set of conservation
laws [37] of general form

ap + aQ + R = 0; P, Q,R = (P,Q,R)(x,t,u). (34.1)
at ax

Let there be a smooth test function w which is finite inside a region (3 of the xt plane
and which vanishes on the surface of and outside this region. Multiplying (Eq. 34.1) by
w, and integrating over U leads to

fJ^(w at + w a + wR) dxdt = 0 (34.2)ffU)a +W Wax /

or

JJf (at + 'at ) dxdt - Jf(P aw + Q aw- RW) dxdt =0. (34.3)

Since w vanishes on the surface of V, and since V is finite, then (by Gauss's theorem) the
first term in Eq. (34.3) vanishes. Thus, Eq. (34.2) implies that

I8(P aw + Q aw - R dxdt = 0. (34.4)ffrPat ax W

If Eq. (34.4) holds for any solution u of Eq. (34.1) then u is designated to be a 'weak
solution.' Now let u be discontinuous across a curve C in the xt plane, and delimit a
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finite region ?J containing a section of C, such that C divides (D into two parts. By apply-
ing Eq. (34.2) in turn to each part and using Eq. (34.4) we see that the jump condition
across C is

fw { [PIdx - [Q]dt} = 0 (34.5)

(see Ref. 37). Thus the jump conditions are given by

[P] U = [Q] (34.6)

where

U = velocity of propagation of the jump

P = P(x, t, U(x, t)

Q = Q(x, t, u(x, t)).

As noted earlier, U is the slope of a characteristic in the xt plane only if the parent sys-
tem is linear.

35. METHOD OF CHARACTERISTICS FOR THE CASE OF THREE DIMENSIONS

We consider a system of three partial differential equations of first order in three
variables. A convenient example of such a system is the propagation of circular cylindri-
cal waves which, though governed by a linear wave equation of second order can be con-
verted by introduction of new variables to a set of three partial differential equations of
first order. To apply the method of characteristics [36] we multiply each member of
the set respectively by a,, a2, a3 and add them together to form a single equation. By
regrouping terms, we can show this single equation to be the sum of three directional
derivatives of the new variables in directions of certain space vectors Al, A2, A3 having
a1 , a2 or a3 as scale factors (lengths). The method of characteristics sets the require-
ment that the three directions of differentiation be in a common plane, specified by its
normal X. This means that conditions are sought under which all differentiation in a
space of three variables is "interior," i.e., restricted to two dimensions. Mathematically,
the requirement is

Al (ai) X = 0; A 2 (ai) * X = 0; A 3 (ai) X = 0 (35.1)

where

X = Xlal + X2 e2 + X3 e3 -

Eq. (35.1) is a set of three homogeneous equations which has a nontrivial solution only
when the corresponding determinantal equation (in Xi) vanishes. The components so
found constitute a one-parameter family of planes (characteristic planes) passing through
a specific point in the 3-space of the three variables of the parent system. The envelope
of all these planes is a double (i.e., itself and its mirror image) cone (characteristic cone).
Every generator of this double cone is a characteristic direction along which differentiation
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of the dependent variable is "interior," that is, in terms of two independent variables
(differentiation in a plane) instead of three. When the Xi are found, one can form with
them the ratios a3 /al, a 2 /a1 which are then inserted in the single (linear sum) equation
described above to yield a compatibility equation, i.e., an equation which restricts solu-
tion of the original dependent variable to characteristic planes. Compatibility equations
can be converted to finite-difference equations by available techniques. The latter are
directly solvable by the use of numerical methods.

The characteristic cone (or envelope of characteristic planes) has the following sig-
nificance in numerical work associated with, say, the propagation of circularly symmetric
cylindrical waves. Let the velocity potential be a convenient field quantity. The single
linear wave equation can then be replaced by three partial differential equations in the
two partials of the velocity potential with respect to space and the one partial with re-
spect to time. By application of the method of characteristics a compatibility equation
is readily derived (i.e., the one-parameter family of planes defined by the unit vector X
is obtained). On the line of intersection of the characteristic planes and the cone (i.e.,
on the "bicharacteristic" of the cone) the unit vector is a normal vector. Two other
vectors, if in the direction of the bicharacteristic and y in the direction tangent to the
base of the cone, are easily established as an orthogonal trio of working variables. The
compatibility equation, by derivation restricted to the characteristic cone, is reformulated
in terms of this trio. The numerical problem then reduces to this: to find the three
partials of the field at the apex of the cone knowing their respective values at the base.
Since the height of the apex above the base is made to represent time, the numerical
problem is restated to be: find the partials of the field at time to = At when the partials
are known at time t = 0, (alternatively at time to - At). To do this requires auxiliary
equations (generally continuity equations for the partials) to supplement the compatibility
equation. The solution (when found) gives one point in space-time of the parent system.
Repeated solutions give all mesh points in a space-time region as a function of data at the
boundary of the region. Thus, by numerical calculation, the original partial differential
equation (in this case, of the hyperbolic type) is solved point by point at the apices of
characteristic cones whose axes represent time and whose base represents space. This
procedure (method of characteristics) has been applied to dynamic problems of continua
[36] (solids, fluids, etc.) of both linear and nonlinear type and represents a very tractable
approach to what in many cases is an exceptionally difficult analytic task. However,
since the procedure is numerical, each solution represents only one choice of a set of
parameters of the field. The effect of a change in parameters, so readily visible in an
analytic approach, must here be obtained only step by step by repeated numerical solu-
tion of the entire field.

As noted earlier, in the case of simple waves, the lines of characteristics are straight
lines on an xt plot. In Fig. (32.1) characteristic lines are seen issuing from the xt plot
of piston motion, each portion of which (motion) represents a disturbance. Thus at
x = -xl, say, the disturbance occurs at time t = t, and travels along its characteristic
(in space-time) to reach x = x2 at time t2 , etc. The wave in space actually travels from
point to point of the projection of the points t = const. on the space plane. If the piston
motion undergoes a discontinuity of velocity, or derivative of velocity, the jump of this
discontinuity occurs across a characteristic (by construction). In the case of a two-dimen-
sional wave the space-time characteristic is a surface (in, say, xyt space). The projection
of the lines t = const. onto the space plane constitutes a family of lines in the parameter
t. These lines represent successive wave fronts propagating normal to themselves with the
local speed of sound. The wave fronts in space are also called characteristics.
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The concept of boundaries in motion generating simple waves was one of the earliest
in the history of nonlinear propagation to be given analytic treatment. We now take up
this (historically based) treatment to illustrate the very satisfactory solutions achieved by
Earnshaw, Riemann, and later followers to idealized fluids in one-dimensional, unidirec-
tional motion.

36. ANALYSIS OF LOSSLESS SIMPLE WAVES BY WEAK SHOCK THEORY

We begin with Eq. (30.3) and write it in the form

C3 aV COV aV_ 6 a 2 V (36.1)

0az - at'~~- 2 at'2 (61

For the lossless case, 6 =_ 0. Let u be a Riemann invariant. Then V= Ou, and the above
equation reduces to

2au au _; ' )+ 1 BCO _aZ - fU - = 0; = 2 2A (36.2)0 az at' 2 =1+

If the boundary condition is

u(O, t)[zo = g(t)
(36.3)

g(t) =0 t < O,

then the solution of the boundary value problem, obtained by neglecting the finite dis-
placement of the boundary, is [18, 22, 34]

u(Zt) = g(0), (36.4)

in which the new time variable 4 is discussed below. This solution is valid for low Mach
numbers (say, <0.1) and for all points not in the immediate vicinity of the moving bound-
ary. From it we see that if the (moving) boundary condition is a known function of time
g(t) the solution at any field point (Z > 0) is g(o). For this to be true it is required that
4 have the special functional dependence given by

Co [+Co g( (36.5)

in which j is the parameter of nonlinearity. (Note that when f 0, O = t' = t - Z/co,
i.e., 0 is the retarded time.) For Og/co << 1 (namely, the product of the nonlinearity
parameter and the acoustic Mach number is small),

t'= -g g(f) ig (36.6)
co
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Let t be the instant of shock formation as measured by the arrival of the initial zero
crossing at the distance Z of shock formation, and let v be the speed of shock-wave prop-
agation. Then the time of arrivals at point Z beyond Z is given by

z- Z ~1
t=) + f (X dX, X = distance. (36.7)

z

To first order,

V = co + 2(U + Ub) (36.8)

where ua, ub are the particle velocities just ahead (a) and just behind (b) the shock. Thus,

t t + f dX(36.9)
Z Co [1 +-2 (Ua + Ub)]

or

dt' fi a i Ub
dz 2 (Ua + Ub).co

Eliminating 4 between

fPZg(0)u= g(o); t'=4- 2
co

yields the general formula

= g-(u) - (36.10)2
co

Let tS(Z) be the time of arrival of the shock at Z. Then just ahead of the shock,

t= g- 1(U.) - 2 ' (36.11)
co

and just behind the shock,

= 12(ub) - 2 * (36.12)
co

Equations (36.9), (36.11) and (36.12) can be solved simultaneously to find ua, Ub, and
to. When these are known one can use
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¢ = tI + 2 g(0)
co

(36.13)

to find 4, and hence to find u = g(O). The pressure p is given by

P = PO ± POCOU. (36.15)

In this weak shock theory the shock discontinuity is a mathematical line. This line
is assumed present at all distances. At great distances, however, it is known that dissipa-
tion washes out the sharp discontinuities. Hence, weak shock theory does not apply at
great distances. A theory of shock propagation in the presence of dissipation based on
Burgers' equation allows for a shock formation which is not limited to short distances.

Weak shock theory can be used to predict the shape and amplitude of discontinuous
waves as a function of time and distance. An important application is the N-wave whose
functional form is given by

u(0,t)= =

=-0

-To < t < To

(36.16)
t > IToI.

Accordingly,

u (Z t) = g(0)

in which 0 is given by

co [1

or

4(Z, t) = 1 + bZ'

Thus,

U(Zt) = T0 (1 + bZ)' -T < t' < T.

Note that whereas u(0, t) is defined in the range -To, + To, u(Z, t) is defined in the
range -T, +T. It is therefore required to find a relation between T and To. This is done
by applying Eq. (36.9) to the head shock in which

96

g(0) = -Uok(Z, t)
(36.17)

4 = t -
z (36.18)

+ co g(d)]

b = -u 2co TO
(36.19)
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dt_ i f
dZ - -2 Ub (36.21)
dZ 2 2 U

co
C0 T

2a [To (1+ bZ)] at ts = T

It is seen that by integration,

-t' = T = C(1 + bZ)l 12 . (36.22)

When Z = 0, the shock begins at time ts = -To. Thus C = To, and the desired relation
between T, To becomes

s= T = To(1 + bZ)11 2 .

The N-wave is therefore predicted to spread out along the Z-axis with distance. The wave
amplitude at time t. = -To(l + bZ)1/2 is

Uo
Ub

(1 + V)1/2

When bZ >> 1, Ub Z-1/2.

A second application is a sawtooth wave. At the jump discontinuity the negative
wave amplitude equals the positive wave amplitude in magnitude and is opposite in sign.
Hence

= Co -2(U + U0 ) = co (36.23)

which means that all shock waves travel at sonic speed. Applying weak shock theory
again, one has

U (0, t) =O u(1 - Y--); g (4) = UO0 (i 1

( ZU0o c (36.24)
To co To 2o

+ bZ
4 TO b floTo 1 + ' 2

( ') °1c+T 0

U (Z' t') = 12
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Since

dt'
-d = °0, t, = const. = 0 (say),

one finds

=1 Z s) U0 (36.25)
u(Z, t) =1 + bZ

Now

bZ= oT0 = i XTo = i; k=-

Thus,

U (Z. t') = 7riT . (36.26)

From this the decay of the sawtooth wave is seen to be much more rapid than that of
the N-wave.

The propagation of the isolated sine-wave cycle may also be treated by weak shock
theory. The results agree with the more accurate theory that stems from the use of
Burgers' equation.

37. DISTANCE TO FORMATION OF A SHOCK

Let c be the speed of sound in a fluid and T the instantaneous temperature. Then
[13]

Co CC 0 \f, c \'I Th 0 = AT x6 T

5c 1 6T- _ ___ \/f _o CoOO371
2 2J T = 2TX 2T (37.1)

Thus we take the total velocity at any instant to be

C = co + (37.2)
2~ T0

For small-amplitude plane waves the particle velocity u can be written

U 0 y= p (73
co To(-Y- 1)' =C * (37.3)

Since CT = C + U.
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CT = co + 2 U = co + 2

Now for a time increment 5t,

ubt = tMu

6x, = 5X + (eY + 1)6ut
6x'=6x+ ~2

where

5X' = CT 6 t,

5x = cobt.

A state of shock is reached at time ts when 6x' = 0; i.e.,

tS = (e +5)6U

2

-2
(ey + 1) du

d t=o

(37.6)

The distance Ls that the wave travels from to = 0 to t = tS is cotS. For a plane harmonic
wave, u = uo exp(ikx - icot), and

IduI = kuo .
Idx~h t = k (37.7)

We assume initially that this is the largest negative gradient in the wave. Then,

LS= cot 2co 2-y Po 2pc2

(e + 1)kuo (y + 1)k PO ( y+1)kpo (37.8)

in which Po is the static pressure (= pc2/py), po is the sound pressure (= pcuo), and infini-
tesimal theory is used. Note that for gases y = Cp/C,, and that the local speed of sound
is

co + Pu (37.9)

where

For fluids,

'y + 1
2

fi =1 i+ B 

(37.10)

(37.11)

Hence for nondispersive fluids the distance to shock formation in a plane wave is
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2

LS= 1 (37.12)
(1+ COUO

( 2A) °

38. LIMITATIONS OF WEAK SHOCK THEORY

In mathematical terms a shock wave is a discontinuous function of coordinates. A
theory of shock waves must define the discontinuity and, in particular, its thickness.
Weak shock theory does not address itself to this problem. Also, in physical terms a dis-
continuity in a wave is a reflector of waves. The theory of simple (i.e., undirectional)
nonlinear waves does not account for the reflection (therefore backward travel) of indi-
vidual wavelets in a nonlinear wave train. Thus weak shock theory is valid only for waves
of modest amplitude at "short" distances.

CONCLUSION OF REVIEW OF BASIC EQUATIONS AND SOLUTIONS

The many forms of the basic equations currently in use that were discussed in the
above sections underscore the very serious difficulty in formulating physical processes in
terms of nonlinear partial differential equations which turn out to be nearly intractable
when analytic methods of solution are tried. Many of the formulas derived are very
special solutions. None of them is general enough to include all relevant features of the
physical process they are intended to describe. This state of knowledge of nonlinear
processes touches upon every degree of satisfaction, from the very satisfying results in
the case of simple waves to the completely unsatisfactory results in the case of three-
dimensional wave trains (regular and statistical) in nonhomogeneous media. The limited
capability of purely analytic methods has lead to new approaches in graphical and nu-
merical procedures and in their combination with analytical methods. Just as in the
theory of nonlinear ordinary differential equations which has used graphical methods
over the course of a century, and thereby achieved very useful new results, the theory of
nonlinear partial differential equations in the last decade has entered a new stage by com-
bining analytical, graphical, and numerical techniques in a new effort to overcome the
very considerable problems presented by apparently simple-looking basic equations. We
present in the following sections a new approach by Prof. G. B. Whitham, designed to
overcome past difficulties in the nonlinear mechanics of continua. Its key feature is use
of an averaging process to convert a nonlinear partial differential equation into a set of
nonlinear ordinary differential equations, which in turn opens all solution techniques
based on graphical and numerical procedures.

39. WHITHAM'S TECHNIQUE

Whitham, in a series of articles [11, 38], has developed a technique for handling non-
linear wave trains of very general description. Following the Krylov-Bogoliubov averaging
procedure for solving ordinary differential equations found in vibration theory, Whitham
applies averaging to the partial differential equations of propagation of waves in fluid con-
tinua. This application enables him to solve otherwise difficult nonlinear partial differen-
tial equations in an advantageous manner. While Whitham's principal examples are in
gravity waves, his method itself is general enough to be of great potential use in nonlinear
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acoustics. We present in the following sections a partial account of his procedures, em-
phasizing the aspects of (a) uniform wave trains of large amplitude and the associated
dispersion of phase velocities among the component wavelets, (b) conservation equations,
(c) characteristic (group) velocities for nonlinear wave trains, and (d) shock wave theory.

Since an elucidation of Whitham's theory is quite involved, it will be convenient first
to consider a brief critique of the method by Lighthill, then to summarize the essential
features of the theory, and finally to present some detail on applications.

40. LIGHTHILL'S CRITIQUE OF WHITHAM'S THEORY

Lighthill [11] has summarized Whitham's theory as follows: If the parameters that
characterize a wave train vary gradually on a scale of wavelengths, then locally the wave-
lets of the train must closely approximate to plane periodic waves (i.e., their determina-
tion should involve the solution only of ordinary differential equations). In particular
when the waves are nonlinear, exhibiting gradual variation over a scale of wavelengths,
plane periodic solutions still exist, although nonsinusoidal in form. However a basic dif-
ficulty arises in applications (both linear and nonlinear), namely, solutions that are one-
valued in certain regions of space-time become many-valued in others.

To explore Whitham's theory Lighthill takes the example of gravity waves over deep
water. Since the height of the wave above mean is a Lagrangian variable, one can formu-
late the Lagrangian energy function £. The independent variables are taken as c and k
(frequency and wave number). According to the method of plane periodic waves, co and
k are related to a phase function 0(x, t), viz,

O(x,t) = kx - ct; w = ao- k = ao. (40.1)

Using simple (Hamilton) variational principle and Euler's solutions, one quickly obtains
the statement that 6 ff £(co, k)dtdx = 0 which is solved by the Euler equations.

a / ax a axc

at ax) - k (40.2)

This is a nonlinear equation in 0. By introduction of new variables c, t, x defined by

t =- aco x = -k; k(k, c) = kx - St - O(x, t), (40.3)

one can linearize the Euler equation so that it reads

£cicokk - 2 1rckkk + £kkkOc = 0. (40.4)

The characteristic condition which makes this equation hyperbolic (i.e., which describes
wave trains) is [37]

£wcodc 2 + 2Xwkdcodk + £kkdk2 = 0. (40.5)
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If the relation between co and k is c = f(k), then the above equation is hyperbolic if [11]

[c - f(h)]f"(h) > 0. (40.6)

To apply Whitham's theory we consider Eq. (40.1) and visualize a wave train modulated
in (a) frequency or (b) amplitude. On the basic assumption that the modulation is slow
the solution in plane periodic waves begins with a statement that

-ao
Case 1: - M- = c + frequency modulation

(40.7)

Case 2: ao = k + wave number modulation.
ax

To illustrate (and check) Whitham's theory Lighthill chooses case 2 and applies it to
gravity waves in which the modulation is introduced at the gravity wave maker (i.e., at
the origin of coordinates). Thus the phase function O(x, t) has the boundary conditions

ao0 = -Coot, -a- = ko + e eiat, x = 0. (40.8)

Thus a case is chosen in which the frequency is fixed at coo for all t, but the amplitude
(i.e., wave number) is modulated. Solution of Eq. (40.4), subject to Eq. (40.8), gives

0 = -coot + kox + e ei (t o) sinh (40

in which

co= -- , = effective group velocity (40.10)
wko I

fi = aff~touJkk - £tk2) 112 /4k 0 = rate of (40.11)
exponential increase of modulation,

and subscript zero in wcjow, etc., means "value of £wco, etc., at x = O." Here, f is real.
If imaginary, : means "the splitting of group velocity," so that the modulation would
proceed at two speeds, viz,

al co a ow; a Co a+ 1w1. (40.12)

For the case of gravity waves, explicit values of £ are available, namely,

£ = (lp) I [(Z _1)2 _ (z _1)3- (z - 1)4] (N- m/m2) (40.13)
Fk2) 8
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where

H = depth of wave from peak to trough

X = wavelength.

Upon calculating co, f from Eq. (40.13) it is found that they vary strongly with powers of
boundary phase velocity, i.e., with powers of coo/k0 at x = 0 (or alternatively, they vary
with ratio H/X). A plot of co/(o/ko) and f/(a/27rco) vs H/X (or co2/ko2g) shows that f is
zero at H/X = 0 and H/X > 0.108, and peaks in between (i.e., amplitude modulation is
vigorous in this region). Thus between these limits f is real, so that there is one propagation
speed a/co. For H/X > 0.108, f is imaginary and the curve co/(coo/ko) splits into two branches
cl/(coo/ko), C2/(coo/ko). Amplitude modulation no longer occurs. A comparison of these re-
sults using Whitham theory with a more accurate analysis of Benjamin and Feir [11] who do
not assume the modulation to be slow, shows that Whitham's theory is inaccurate at low
values of H/I but is reasonably good at high values.

From the nature of Lighthill's example it is evident that Whitham's theory is very in-
volved. More elucidation will be provided by later examples. However, it will serve a useful
purpose first to summarize Whitham's technique in the form of a list of what is to be solved
and how solutions are formed:

1. A wave train which is frequency or amplitude modulated is to be analyzed.

2. The appropriate field equations are nonlinear partial differential equations.

3. The modulation over distances of several wavelengths is slow.

4. A solution is posed in the form of plane periodic waves (nonsinusoidal) by first
integrating all variations of field with distance, the integration domain being a few wave-
lengths. This integration leads to a set of ordinary differential equations with amplitude
and frequency as variables, whose solution in plane periodic waves is then performed by
standard methods.

5. Dispersion formulas (i.e., c = f(k)) are directly obtainable if there is (a) a
Langrangian variable available so that (b) a Lagrangian energy density can be formulated,
which can (c) be applied in a variational principle to find the corresponding Euler for-
mulas (conservation laws), for which (d) one can assume plane periodic waves, subject to
boundary conditions, resulting in (e) dispersion formulas.

6. Whitham's theory provides approximate solutions in cases where the modulation
is not slow.

The above summary, while not complete, will serve as an introduction to the com-
plexities of Whitham's theory. Before we enter on specific applications, it will be useful
to state some analytical tools for handling wave crests, since these figure prominently in
theoretical solutions based on plane periodic waves.
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41. WAVE CRESTS

A small-amplitude wave train f(x, t) finite in x and t can be described as F(k, c) by
Fourier transformation [39]. At fixed t the train is composed of a range of wave numbers
Ak, and at fixed x it is correspondingly composed of a range of frequencies Ac. For a
homogeneous and conservative medium, periodicity in space (describable by k) is related
to periodicity in time (namely c), by a constant phase velocity c; that is,

co = Iklc; ikl = (k +ky +k) (41.1)

A more general type of medium consists of individual patches Ax in each of which k is
constant in direction and magnitude but differs from patch to patch. Then, k = k (Ax,
At) and co = co(Ax, At). The most general medium is a continuum of k = k(x, t) and
c = co (x, t). Now at fixed time we consider a mixed description,

co = W(k, x). (41.2)

This is the dispersion relation, namely, the variation of periodicity in time as a function
of wave number and spatial location. The group velocity vector c(k, x) is given by

c= Oa ?+ a I + awk (41.3)
ak, Y k

This gives the change in time periodicity due to a change in spatial periodicity at fixed x.
Now at any point in a regular wave train (i.e., one in which adjoining wave numbers dif-
fer little from each other, thus excluding jumps and discontinuities), the wave crest is
conserved, by which is meant that a time change of the spatial periodicity is related to a
spatial change in time periodicity by the equation

bk + Vco = °-
at

Since

-W= ax + ak ax)

we see that

Vco = VW + (c*V)k.

The conservation of wave crests thus requires that

at + (c * V)k = -VW. (41.4)
at

This equation states that k at point x in a medium moving with the group velocity c of
the wave train is changing in time in the manner described by this formula. Each con-
stituent wave travels in a curved path. If the medium is homogeneous (i.e., if VW = 0),
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then c = W(k), c = c(k), and each constituent wave travels in a straight line. Lines of
propagation for several k's are (in general) not parallel.

The kinematics of wave crests, described in the preceding paragraphs, forms a basic
element in Whitham's procedure for solving nonlinear wave problems. This will follow.

42. WHITHAM'S EXPOSITION OF HIS METHOD WITH EXAMPLES

Whitham [40] develops a general theory for studying changes in a propagating wave
train governed by nonlinear partial differential equations. His method is best introduced
by an example. Let there be a partial differential equation of the type

Ott - OXX + V'(O) = 0 (42.1)

in which V'(0)(= aV/ao) is a nonlinear term. In the physical embodiment of this equa-
tion there is always a characteristic length (say, X0) and time (say, rO). These have been
eliminated in Eq. (42.1) by changing x to x/Xo, t to t/ro. We first try solutions in the
form of uniform wave trains; i.e., we assume the dependent variables are functions of
X = x - Ut, where U is the velocity of translation of phase. Thus the elementary steady
profile is obtained by taking 4 = (D(X). Then Eq. (42.1) becomes

(U2 - 1) F, + V'(bF) = 0. (42.2)

This can be integrated to yield

1 (U 2 - 1)(F) + V(+F) = A, (42.3)

in which A is a constant of integration. Now if K = (U2 - 1)-1 and a = 2A, then

(F = a COS KX

is a solution of Eq. (42.3) in the linear case V(bF) = (F2/2. The frequency c = UK =
K2 + 1. In the nonlinear case one can solve Eq. 42.3 for X, i.e.,

X = (U2 -1) d() (42.4)2 J A~-V~((f

One can say that in the nonlinear case,

4/ = (F(X; U, A)
(42.5)

(K = F(F; U, Ai);

that is, 0 is a function of X, and implicitly (through X) is a function of U and Ai, where
Ai are constants of integration. Now U(x, t) and Ai(x, t) are assumed to be slowly vary-
ing functions of space and time. A significant change (in space) of both occurs in no
shorter distance than, say, L, which compares with a wavelength Xo of a periodic solution
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according to the formula, L >> X0. This means that many oscillations of the wave train
occur in the distance L. This assumption leads to the key approach of Whitham, namely
to average the wave train quantities over several oscillations in a space of distance t in
order to obtain differential equations for the variation of amplitude, frequency, etc. (i.e.,
of U, Ai) over the much longer distance L. One chooses t such that

L >> >> Xo. (42.6)

Hence to (space) average any function F(x, t) one writes

F(x, t) = ft J F(x', t)dx' (42.7)

and chooses t according to Eq. (42.6). If this integration includes a number of oscilla-
tions, then we can say that U, Ai in the solutions V are constant over t, and so we can
average over X by integration, leaving U, Ai constant. Thus the procedure of averaging
yields a differential equation in U, Ai by eliminating short-range variations over X. For
example, let us assume that 5P(x, t) is some function of (F, where (F satisfies V. Then the
average

x+t
P(U, Ai) = f ? [(D (X; U, Ai)] dX (42.8)

yields a function of U, Ai as required, provided Eq. (42.6) is satisfied. Averages can be
made over (F, as well as over X. For example, one can average in Eq. (42.5) by writing

W(U, Ai) = (Dxd(F

= fIF((; U, Ai d( . (42.9)

This average is very important in Whitham's method.

Having averaged functions of 0 over X (or (F), one can proceed to the next step in
Whitham's approach, which is to insert the averaged quantities into the generic equations
of conservation. Let P and Q be two functions of 4 and its derivatives. Then the con-
servation equations can be written in two ways,

-P +--Q = 0 (42.10)
at ax

and

P(UAi) + Q(UAi) = 0. (42.11)
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Equation (42.10) is exact since nothing is said of U, Ai. Equation (42.11) is approximate
since U, Ai are held constant over the range of integration. The functions P, Q which are
found in the conservation equations may be difficult to deduce in general. A good attack
is to use the invariance properties of the Lagrangian density with respect to translations
of x and t. Since U, Ai constitute i + 1 unknowns, the number of conservation equations
must equal the number of variables U, Ai in the wave train solutions of Eq. (42.5). If
this requirement is satisfied, the resultant set of equations in U, Ai can then be solved to
obtain amplitude, frequency, etc., variations in the wave train as it moves through space.

As a typical example we consider Eq. (42.1) again. Here the number of variable U,
Ai is 2. Thus, there are two conservation equations. They are

at (I 4/2 + - 4/2 + V(O)) + I (_OtoX) = 0 (42.12)

and

/ ~~~2
at (-Otox) + a 2 + 2 V(M ))= 0, (42.13)

To calculate mean values (as called for by the method) Whitham uses the auxiliary func-
tion W, where

W = (U 2 -1) f xdX

= v {2(U2 - 1)} f VA - V(D)2 d( . (42.14)

As a good short-range distance over which averaging is to occur, he chooses the wave-
length X, defined by

X = A dX = 2 (U2 1)l[ d(+ (42.15)

a W
aA

Since dX = d(/(x, the average over X of any quantity ? (0) is

1 T{(DlFd(D 
ST{(F}dX= K i X K (42.16)

Thus
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1 2 1 2 K U 2
1W

2 4 t 2 4x=2 U2
-1

V(/) = A - 2 W

=Ku

tx U2 - 1W. (42.17)

As a result of averaging, Whitham shows that the conservation Eqs. (42.12), (42.13) re-
duce to the set

D WA - WA ax = 0

(42.18)

Dt WU - WA aA = 0,

where

D a a
Dt at ax

Defining G(A) as

G (A) - f -/{fA - V~(l)} dilD (42.19)

and using it in Eq. (42.18), Whitham shows that the characteristic form of the hyperbolic
set (Eq. (42.18)) is

dUGi
U2 -+ dA = 0 (42.20)

on the characteristic curves C+,

Cx + (42.21)
dt U+C~dj U ± --/GG"/G'(421

(It is to be noted again that all variables in these equations are nondimensional.) Equa-
tions (42.21) are the characteristic velocities of the system. They are the nonlinear gen-
eralization of the group velocities which appear in linear theory. In nonlinear theory the
characteristic velocities of Eq. (42.18) are not equal. A physical consequence is this. Let
there be a wave train that is initially uniform outside some finite region. At the bound-
aries of the region, we have A = AO, UO. After it propagates into the region and interac-
tion among its components occur, the wave train will separate into two simple (i.e., uni-
directional) waves traveling at different speeds. One simple wave travels on the C+
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characteristic of Eq. (42.21). The relation between U and A on the curve C+ is given by
the Riemann invariant (from Eq. (92.20)),

dU2 G -1 dA = 0. (42.22)

The other simple wave travels on curve C-, and U and A are related on it by an equation
like Eq. (42.22) but with opposite sign.

Whitham's procedures also include a treatment of shock waves. Using standard theory
one begins by noting that for each conservation equation of the form

af ag

at ax

there is a corresponding shock condition

[g] = V[f] (42.23)

in which [f], [g] are discontinuities, and V is the velocity of the shock. A physical sys-
tem in n unknowns has at least (n + 1) conservation equations. However, since only n
shock conditions must be selected, the correct choice is the unique one which corresponds
to the real physical situation. These rules are applied by Whitham to Eqs. (42.12) and
(42.13), and he then arrives at the jump equations,

[KU(UWU +AWA - W) - UA] = V[K(UWU +AWA - W) - W]

[KUWU - Al = V[KWU]

[h U] =A V [k ] . (42 .24 )

An important conclusion is this. The frequencies of wave components of the wave train
always increase as the waves cross the shock. This frequency jump is irreversible, even
though the original equations for 4 are conservative and reversible. Thus Whitham proves
theoretically that discontinuities (analogous to shock waves) can occur in reversible sys-
tems which have no dissipation. In such jump-type situations frequency increase across
the wave is analogous to entropy increase across shock waves where dissipation is present.

The example of nonlinear gravity waves treated above by Whitham's theory raises
new problems in interpretation of results. An additional example, this time the Korteweg-
deVries equation, will serve to elucidate the method even further.

43. APPLICATION OF WHITHAM'S APPROACH TO THE KORTEWEG-deVRIES
EQUATION FOR WATER WAVES

In a layer of water, at undisturbed depth ho, let there be generated a train of water
waves of typical amplitude a and displacement q1 about ho. Then, for relatively long
waves Korteweg and deVries [41] derived the equation
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77t + gh0 21 ()I 7x+ I 0\7gXh6 ho 2 = 0. (43.1)

If X is a typical wavelength, then it is assumed in this derivation that

a, (ho 2
-ho (WX/

are comparable small quantities. By adjustment of constants Eq. (43.1) is transformed to

17t + 6 177X + ?7xxx = 0. (43.2)

A solution in the form of a uniform wave train is obtained by setting 17
X = x - Ut. Then

= 7 X and

1. 17XXX = U17x - 61717x

2. 7XX = B + U1 - 3, 2 (43.3)

3. 1 27 2 = -A + B-q + 2 un 2 - q 3

Here, 2 and 3 have been obtained by successive integration and A, B are integration con-
stants. Since there are three parameters (U, A, B), three conservation equations are
needed. To obtain these one returns to Eq. (43.2) and manipulates them to find

at ax
i = 1, 2, 3, (43.4)

in which

P1 = 17

172

2

p _ 3 - 1 2

Q, = 3n2 + nXX

Q2 = 2,q3 + -1 21x

Q3 = 9 7- 4 + 3172 7Xx + 2 712X + 777t-

As before, Whitham intorduces the auxiliary functions

1. W(U, A, B) = - f {xdq

and

2 aw= 1K

(43.5)
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Using Eq. (43.5) Whitham averages Eq. (43.3) over distance X and writes the resultant set
of averaged conservation equations in the form

a- a
at Ft + ax Zt =0

P1 = KWB Q1 =K UWB - B

P2 = KWU

(43.6)

Q2 = K UWu - A

P3 = K(AWA + BWB + UWU - W) Q3 = KU(AWA+ BWB + UW - W) - B2 AU.

To find the characteristic velocities one redefines the auxiliary function W in terms of the
zeros a, A, y, 6 of 173 - 1/2 U17 - B-7 + A = 0. After considerable manipulation Whitham
derives the following formulas for the three characteristic velocities;

4aK
U -

K - E
U - 4a(1 - s2 )K

E - (1 - s2)K
p4a( -s 2 )K
P2 E (43.7)

in which

a = ae f l; s2 = '-0 U = 2(a +fl + y)

K(S2 ); E(S2 )

are complete elliptic integrals of the first and second kind. The wave number is

1 al/2
K = - =-

aw 2eK-
aA

(43.8)

It is directly provable that s is a function of a/K2 . Thus the characteristic velocities have
the form

(43.9)U + f (a)

The noteworthy feature here is that the characteristic (phase) velocities are functions of
amplitude a and wave number k. The comparable linear case is obtainable by dropping
71 71x and integrating to find

1 7 xx - UN7 = B.

Setting B = 0 and 17 = exp (i 2 7r K X) leads to the characteristic equation

U + K2 = 0.

111



SAM HANISH

Setting U = co/2iK, one obtains the group velocities (two of them, both equal),

do = _ 3(27TK)2 (43.10)

dK

In the limit a/K2 -+ 0, Eq. (43.7) agrees with Eq. (43.10). When the dispersion formulas
are set up, Whitham proceeds with a discussion of shock waves which is obtainable from
the formulas for the conservation equations. For a discussion of Whitham's theory of
shock waves see Sec. 29 of this report.

The theory of Whitham presented above has been further refined by him and by
several others. These refinements bear directly on the problem of finding appropriate
methods of solving nonlinear partial differential wave equations. We therefore continue
our presentation of Whitham's methods in the following section on the use of the varia-
tional method. As noted earlier, the variational method is directly applicable if a Lagran-
gian energy density for the field can be found, i.e., if a Lagrangian variable is available.
This availability is assumed in the next section.

44. WHITHAM'S USE OF THE VARIATIONAL METHOD

The Hamilton variational principle using the Lagrangian S as applied to a dynamic
mechanical system is

6jJ J?, dxdt = 0. (44.1)

To find wave train solutions Whitham [38, 39] introduces a wave-crest phase function,

0 = k x - cot k =V0; co at (44.2)

in which co expresses the periodicity of the sought-for wave train, and k expresses the
corresponding wave number of the train. The general solution of the wave train is a
function ¢(x, t), and it is assumed that there is a function ,B (pseudo wave number) and
a function y (pseudofrequency) such that

¢(x, t) = 4F(0) + f*x - yt. (44.3)

The two pseudofunctions are related to a "potential" 4 by relations

atV 9; -Yt = Y . (44.4)

If the Lagrangian £ varies slowly with 0 over a wavelength (i.e., over a unit change of
phase, 0 < 0 < 1), one can replace it with a phase-averaged form 5f, where

1 0 _
fo = dO; 2 = 2 (ci, k, a 1 ~,b) . (44.5)
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Here Sf is constructed to depend not only on c, k, y, f but also on the amplitude a of
the wave train, and the pseudoamplitude b. The physical significance of pseudoquantities
is to be sought in the possibility that when 40) -0 there will still be a solution 4.
From the assumed parameter dependence of B one can derive the following continuity
equations.

Equation of Energy

a ( a"a aIa a-\
at acWa_ x cok y = 0 (44.6)a t (@aco+z ad S )axi (\aki afli )

Equations of Momentum

atacj + 0axi kj k +fliafi56ii) 0, j 1, 2, 3 (44.7)Ca ( aia +pay) axi (kaki Papi ~i 

Euler Equation for Pseudoquantities

aaf + aa a = 0 (44.8)
a t a-y axi afli

Conservation Laws for Wave Crests

at + Vc = 0, curlk = 0

(44.9)

a:i
at +VY = 0, curl y = 0

Since the study of all possibilities is tedious, it will be convenient to set pseudoquantities
to zero (i.e., y = f = b = 0). Then, taking a/ac of the energy equation and a/aki of the
momentum equations and using k. = V i0, o = -0 t, one can combine all equations and
arrive at the reduced wave-train equations

Sum on

PUCS( Ott - 2Slk o 0txi + 2 kikj0xixj ° i,j = 1, 2, 3. (44.10)

This is an equation of second degree in the phase function 0 with nonlinear coefficients.
It now remains to find appropriate forms for Id. A direct approach is to assume the
case that amplitudes are small but finite. The g can be expanded in powers of a2 begin-
ning with a4 since the Lagrangian here is averaged over a complete cycle of phase and
hence disappears in the linear (i.e., a2 ) approximation. Thus,

S (o, k, a) = a4 1 (w, k) + a6 22 (co, k) + .... (44.11)

Now, for the phase function chosen (i.e., 0), there is a dispersion equation between co
and k. In nonlinear waves c = co(k, a), i.e., the dispersion relation is a function of
amplitude. For small but finite amplitude one can expand co in a power series in a2,
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c = f(k) + a2 c 1 (k) + a4 o2 (k) + .... (44.12)

This is an even function of a since odd terms are equivalent to sign changes in phase and
it is decided to avoid phase change in this approximation. Now the deviation r from
linear frequency (i.e., from c) is given by

r = c - f(k) - a2cW1 (k) - .... (44.13)

Solving for a2 (and noting that to this a2 approximation, co = f (k) ) one can write

a2 -T
co 1 (k)

[dimensions: c 1 = m2 s

f = s1]

Thus, the averaged F is

- = 2 - 2
co1 (k) co(k)

or

where

(44.15)

(44.16)
- g( k) 2 + h(k)r3

2! 3!

g(k) (3 2(k); h(k) = -3! c22.
3l(k) 

(44.17)

Since 2 is a function of r and k, it will be efficient to change variables x, t into variables
k, r. This is done by a Legendre transformation from 0 to 4, where

= k -x -cot -0; x=
ak 

t = a4/
aco

(44.18)

The differential equation in 4 is

UCOCO Okk - 2 2Scok Okw + 2kk 4Oc = 0.- (44.19)

From the equation for r it is seen that because of the change of variables the following
replacements are needed

a -+ aI
aw a

ak ak aa 
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The differential equation in r: k thus becomes

2TT Okk - 22Tk Okr + 2kk 77TT - f"(k) (A 7 / TT + TT OT) ° 0. (44.21)

Using the power series expansion of 2 (k, r) to order r3 in the above equation one
arrives at the perturbation approximation

(g +2h) (4kk - f"4T) - 2g'rook - f 'gT74 = °

g= dg f'" (k) d2 f (44.22)
A A~~~~~2

To order r2, this equation can be recast into the form

2g'
Okk g Ir Tk -f "(TOTT + r) = . (44.23)

If the waveform changes little in a few wavelengths, then g' r/g is negligibly small, and
the differential equation for 4 reduces to

Okk - f"(T40TT + OT) = 0 (44.24)

The curves of characteristics (i.e., the curves dr/dk) of Eq. (44.23) and Eq. (44.34) are,
respectively,

dk gr - v g,2 +rf"(k)

d + (44.25)Ui = + Ff"(k) .

If one chooses a new variable,

r = 2 f"(k)' [dimensions: r:m-1] (44.26)

then the wave equations reduces to

Okk - Orr O 74/r = 0 , (44.27)

in which terms proportional to r are neglected. Since

x = ak -i a [4 dimensionless] (44.28)

it is seen that
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2f'
x = Ohk rf"o

(44.29)
2t = -mr4 Or.

Equation (44.27) is an axisymmetric form of the wave equation. Equations (44.29) in
combination yield the trajectory on the x, t (or c, k) plane of a constituent wave as a
function of (c, k). The slope dx/dt gives the velocity of each constituent wave at the
spatial point x and at time t.

A typical use of Whitham's approach is contained in the following example Schmid
[39]. We consider the axisymmetric case and assume a source of waves at x = x0 whose
amplitudes vary in the same way as the variable r,

rat; r < r2 [dimensions
r = aut; a 62 o:m_1 s-1 (44.30)

a a r:m-1

At xo there is a wave train at constant frequency whose constituent waves initially have
uniform wave lengths (i.e., linear relations hold). It is proposed to study dispersion among
the wavelengths in the region x > xO due to amplitude variation in time. At x = x0 , with
a reference wave number ko, and reference velocity uO, the boundary conditions are

k =ko

4/ =0O

Ok= - ° r = -uOt, tl < t 6 t2 . (44.31)

The axisymmetric potential solution 4 (k, r) to Eq. (44.24) with these boundary condi-
tions and the transformations

a 2 a

ar rf"(k) ar
(44.32)

a a r f"'(k) a
ak ak 2 f"(k) ar

is

4(k, r) - -( 2r + 2(k - ko)2 arcsin °
4a -L r

+3(k - k) r2 k(_ ko)2] (44.33)
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Since ko is so defined that

too = f(ko)

UO = f'(ko) (44.34)

= -f"(ko),

one can use the Eqs. (44.29) to find x and t for each choice of k and r, i.e.,

t - ay (arcsinr°) + k2 0 r2 - (k-k0o)

(44.35)

X = uot - ° (r2 - (k - ko)2)31

By plotting x vs t a velocity field is constructed for each choice of r, i.e., of amplitude
(noting that k is a function of r). The curves dx/dt for specific r constitute the charac-
teristics (and characteristic velocities) of the system along which waves of wavenumber
k propagate. Since the wave train is bounded in time, the characteristics are confined to
a bounded region in the x - t plane. In the above case the boundaries are straight lines
which intersect the ordinate x0 = 0 at two points and which intersect each other at

2

x7 = -_ (44.36)
mx 2 aup

All characteristics run together at xmax, thus making xmax a distance at which possible
phase jumps (or shock discontinuities) occur.

Whitham's method of analyzing nonlinear waves is a "geometric optical" construc-
tion of solutions of hydrodynamic equations using a Lagrangian. It deals with the dis-
persion relations among the constituent wave numbers of a temporally finite wave train.
It distinguishes between frequency dispersion and amplitude dispersion, emphasizing that
the latter is a different mechanism of wave-front distortion that is peculiar to nonlinear
waves. The solution technique is by perturbation using numerical and graphical construc-
tion.

45. ADIABATIC INVARIANT FOR WAVE PROPAGATION
IN A MOVING MEDIUM

In Whitham's theory the variational equation (in the linear case) appears in the form

atw - a 0k .- (45.1)at ax
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Since the group velocity Cg = - dc/dk (the minus sign enters for plane waves traveling
to the right),

ski Cgi 2c' (45.2)

so that

asCW + V (CgitG) o. (45.3)

Now the energy density of a wave whose Lagrangian density is S is

E as - (45.4)

or

ac X = "adiabatic invariant,"

since 0 for nondissipative systems. Thus, the conservation law for energy is

at (X + V (Cg,) O0. (45.5)

When the propagation medium is in motion with velocity U which changes slowly over a
wavelength, then the frequency c of the wave train is

co = 2 + U * k (45.6)

in which n is the frequency relative to the medium. For relatively small-amplitude waves
under slow change of wave number, the conservation law for energy is given by

a ( +V v {V (U + Cg)} 0 (45.7)

(Garrett [11]). In the theory of acoustics of a nonhomogeneous medium, Blokhintsev
[42] found the energy equation to be

+ V 1E (U + Cg)l = 0. (45.8)

The total energy E' is found to be

E'= E C (45.9)

However, the law of conservation of wave crests is
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at + {(U+ C) * V}@ = 0.
at I Ig 

(45.10)

Thus Eq. (45.8) is seen to hold for sound waves.

46. CONSERVATION LAWS AND PERTURBATION EXPANSIONS

We consider a system of n conservation laws [43] in the n variables and assume the
system can be put in the form

m

B ut + C(u) * U. = E (U, X, t).

r=l
(46.1)

Here, B, C are (in general) N x N matrixes, D is a vector-valued matrix, and AK (K = 1, 2 ...
m) are small parameters. To illustrate, we take the system u(ul, U 2 );

(ul)t - a(UA2) = YlUlxx

(U2)t - (U )x = 0. (46.2)

Expanded, this reads

au, + 0
at

at

aU2 - 0 *au

at ax

aa aU2

au2 ax
(46.3)

+au 2 au _ - . au2
at ax ax

a0(o0 (46.4)1D= (

0 /
If all small parameters are negligible we assume the solution of (46.2) is Uc, We next let
system (46.1) be perturbed and seek solutions in the form of a perturbation series in
smallness parameter e, viz,

(46.5)
U = UC + e { uo + CU, + E2mU2 + + U2 + 92U3 + *-- + Am Um+l

+ yU2 Um+2 + A2Um+3 + *--}-

Substituting (46.5) into C(u) leads to a definition of co, C1 , etc.
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C(u) = Cc + EC,(uO, UC) +
(46.7)

Cc = Cc(uc )

Now let X represent speed of an elementary progressive wave, u rU(X), X x - Xt,
so that

au auat = - X aX(46.8
at ax~

Then the matrix Cc satisfies an eigenvalue equation,

(- XB + Cc ) - rUx = 0. (46.9)

The eigenvalues Xi satisfy the characteristic equation

1- XB+Cc I = 0, X = XI ... XN. (46.10)

The matrix B can be combined with Cc to define a new operator Co, such that

Co - r = Xi rl, (46.11)

in which r is a "right eigenvector." The operator JDK is assumed to have the property
that

JK(Uc +Eux, t) = EOK(Uc, Uo, x, t) + .... (46.12)

By substitution of Eqs. (46.5) (46.6) (46.7) and (46.12) into Eq. (46.1) and equating
terms of equal powers e, one can obtain an infinite set of equations in which solutions
un act as forcing functions to obtain solutions u,+1 .

As noted in Appendix D these equations are not valid unless the time t << fi where
p = max{el,' ... m }. To avoid secular terms, we once again allow To to be "fast time,"
T, to be slow time corresponding to c, T2 slow time corresponding to I'1, etc. The time
derivative is then interpreted to be

at = a e a + a (46.13)aro0 , = aT1 ~ / K.

Transforming to coordinates X = x - )Xt, we see that equations in u1 and uv=l, K = 1,
2 ..., take on the form

aul au, auO auO
a + (co- XI) -= -C, ax a--- (46.14)

auKs' + (C0o I) a- = - KK(Uc, Uo, X t) ° (46.15)
ar0 ax a-+
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To avoid secularity we premultiply Eqs. (46.14) (46.15) by the left eigenvector Q corre-
sponding to the eigenvalue X; that is,

Q * (cO - XI) = 0

and set the r.h.s. respectively to zero;

* au0 + R aU2
ax a-l = 0 (46.16)

(46.17)
a TK + 1

The solution of these equations sets a requirement on UO which avoids secularity in u1,
on u1 which avoids secularity in U2, etc.

Two examples will illustrate the procedures. In gas dynamics the
can be written so that,

0

CO = 1

0

1 0\ 1

0 1 ), C, = U - 2

0 01 O

conservation laws

1 0

1 a-1

0 1/

X1 = 1, X2 = -1, X3 = 0

r = right eigenvectors: ( ) ( (O)

2 = left eigenvectors: (1, 10), (1, -1, 0), (-1, 0, 1)

0

Di =f 0

\-P

4

Thus,

Q * D1 = (4

0 0

+2 0 uxx

0 '

+Ux- 1 x
Pr )

Q - r = 2

Q - C1 - r = ('y+1)U
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Substituting Eq. (46.19) into (46.16) and (46.17) leads to

au 1ar = - QY ( + 1) UUX

au = 1(4 +V+,y-1 UXX_

ar2 2 3 P-,+V r) Ux

(46.20)

(46.21)

Now, from Eq. (46.13)

au au au au
at aro a81 + aT2

To reconstitute the basic equation of motion we set au/aro = 0,
(46.21), arrive at Burgers' equation,

____ 1(4 2)2( i___)Ut + /11~~~~~~~~P

and using Eqs. (46.20)

uyyx (46.22)

in which p, = R 1-

The second example applies to shallow-water waves, in which

10 1\ U2 Ul 
CO = ( ; C (U) =

1 0 0 U2

1\
D1 (u) = 3 (1 xxx)

U2 xxt /

Xi = 1 'X2 = -1

X 1) r= ( 1)ri =( ) r=

Rl = (1,1) k2 = (1,-1)

Applying Eq. (46.13) as before and reconstituting the basic equation leads to the
Kortewig-deVries equation,

Ut + 3 E UUx + Al UXXX = 0. (46.24)
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47. PROPAGATION OF FINITE-AMPLITUDE WAVES IN TUBES

The mathematical description of the propagation of finite-amplitude waves in tubes
exhibiting wall loss is very complicated. A tractable model, based on the work of Coppens
[44] and earlier investigators [45] is constructable as follows. Let the tube effective
radius R, cross-sectional area A, and length L contain a liquid medium in which a finite-
amplitude wave u(x, t), generated by a proving piston, is propagating. Assume first that
the boundary-layer thickness is much smaller than the tube radius, and that the sonic
particle velocity is uniform over the mainstream (cross-sectional area minus the boundary
layers). The problem is to calculate the viscous force in the boundary layer and find an
appropriate way to insert this force in the Navier-Stokes equation. Coppens solves this
problem by (a) calculating the wall forces by standard procedures, (b) distributing
these wall forces over the entire cross section of the tube to act as body forces. This
method results in accounting for wall dissipation by means of a compound absorption
coefficient a1 and phase speed C(a1), both functions of frequency. If the tube is closed
by a rigid wall, the absorption is modified to read a' = a, (1 + R/3L). To obtain a tract-
able model one assumes that (a) the wall losses are dominant and (b) Equation (27.19)
is valid with b 0. This implies that the absorption coefficient is much smaller than the
wave number of the fundamental, and that the acoustic Mach number is small. The Mach
number is defined either by M = u0 /co or by M = pl/pOc , where uo is the peak ampli-
tude of piston velocity and Pi is the peak acoustic pressure of the fundamental. With
these assumptions, Coppens, as noted above, constructs a distributed body force per unit
viscosity, Dnun, where

D 6 ( 1 ~a a2 1 a2 )(71Dn co:/2a a2 - -1I2 _~X2 ) (47.1)
61 a/2t ax2n

in which 6 (the nondimensional dissipation factor) is given by

-1 2aK = 2( )1 [1 1/2 ]' (47.2)

where Pr = Prandtl number, v = kinematic viscosoty, k, = wave number (of fundamental).
The first term on the r.h.s. of Eqs. (47.1) gives the wall loss (in units of m- 2 ) per unit of
particle velocity. The second term describes the dispersion of the phase speed for each
harmonic in terms of the harmonic number n. Inserting Eq. (47.1) into Eq. (27.19)
yields the formulation,

O(a2U 1 an DU) - +1 a 2 2

2 ~~~~ .~~(47.3)Va2 CW 02C at2 + Dn~n 2 atax (x)](73

To solve this equation Coppens recommends the following procedure. Noting that, to a
linear plane-wave approximation,
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a 2
_ 1 a2 1 [1 a2 t 1 a21

ax 2 = ax2 C2L C2 at 2 2at 2 J

coat ax (47.4)

ax Co

one arrives at

a2t ~11 a a u

aX2 2 0~ at T X) Co

2 at a-)( ) (47.5)

substituting Eqs. (47.4) and (47.5) into Eq. (47.3), and then assuming a traveling-wave
solution of the formi,

u(x, t) = E U,(x) sin [nco (t -CO) ]On + (47.6)
n=1 L \]0

Coppens arrives at a coupled set of first order differential equations in the sine and cosine
terms for each harmonic component. These solutions are amenable to analysis on a digi-
tal computer. Similarly, to obtian standing wave solutions, one can assume a Fourier
series solution of the form

p2x, t o - Rn cos [n7T (1 - Lx)] sin (ncot + On . (47.7)

The resultant solution is also found to be amenable to numerical analysis using a high-
speed computer.

In all cases computed by him Coppens found that computer results compare favor-
ably with the results achieved by other approaches. However, the limitations of his
theory are again to be emphasized:

1. The loss associated with the boundary-layer absorption varies with harmonic
number n as n0/2 , while the bulk absorption loss in the fluid varies as n2 . Hence when
n is high enough, the bulk losses predominate, contrary to the initial assumption that
wall losses predominate.

2. The boundary layer loss as written is valid only when the wavelength is much
larger than the layer thickness. Above a certain frequency this requirement fails, and
the formula for this loss is no longer valid.
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3. The harmonic content of the wave field excites neighboring tube modes. These
"cross modes" are not accounted for in the theory. Hence the calculated solution may
not be tenable at frequencies corresponding to cross (or tube) modes.

Experiments on piston-generated standing waves in closed tubes shows that at high
amplitudes and at frequencies near and at tube resonance the waveform exhibits cusps.
A detailed study of these is found in Ref. 45.

48. RESONANT INTERACTIONS, THEORY OF PHILLIPS

The theory of nonlinear waves in resonant cavities [46] can serve as an introduction
to the theory of resonant interactions. When a cavity is force driven at a frequency of a
natural mode it exhibits cumulative standing-wave fields. The forcing frequency may
itself be the result of the nonlinear interaction of two nonresonant drive frequencies in
a nonlinear medium. Progressive wave fields, under special (nonlinear) conditions, exhibit
similar resonant interactions. A brief discussion of the latter resonant interactions is pre-
sented here.

We consider first a linear operator 2 and a field p(x, t) (capillary, surface wave,
elastic stress in beams, plasma waves, etc.) The homogeneous equation

2 {p}= 0 (48.1)

is assumed to allow solutions in the form of progressive waves,

p = a exp [i(k - x - cot)]. (48.2)

When Eq. (48.2) is substituted in Eq. (48.1) a dispersion formula co = (A(K) is obtained.
Under special conditions the curve co(K) VS K exhibits a character which permits resonant
interactions. When this occurs the operator £ is (here) called special. We now consider
a second (possibly nonlinear) operator )1, and a small parameter e such that (48.1) is
replaced by

S {p} = e )I{p}. (48.3)

Here e is important if the amplitude of p is large and is negligible for waves of infinites-
imal amplitude. Eq. (48.3) may be interpreted as an equation of forced motion with the
r.h.s. acting as a forcing term. If X {p} has a simple sinusoidal time dependence (= exp
ift) and £ is special then a solution of (48.3) for selected f will exhibit resonance, that
is, a buildup of p with time. Now in lieu of Eq. (48.2) we choose solutions p which are
sums of simple wave trains, viz,

p = , aiexp iXi; Xi = ki * x - cit, ai = ai(et). (48.4)

In addition, the operator )q is assumed to posess quadratic nonlinearity. When (48.4) is
substituted in (48.3) and 2 is special there will be generated on the r.h.s. many sum and
difference phases, labeled X, due to the nonlinearity of )T. The amplitude of p remains
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small due to e except at a particular pair Xm which satisfies the condition

co1 co2 ±... Cm = 0
X1 + X2 + ... + X= = { Kn(48.5)

KI K2 -+ =. Kn 

In this case, the term exp (iXl) on the l.h.s. matches the term with exp [i(X2 + ... + XA
on the r.h.s. Then X1 is in "resonance" with X2 + ... + X,; that is, the spatial and tempo-
ral variations of these phase function are the same. Using Eq. (48.5) one may construct a
set of equations in amplitudes a,, a2, ... a,, with interaction coefficients C1, C2, ... Cn,
initially unknown, but obtainable in several ways, particularly by use of Whitham's aver-
aging technique (see Sec. 42 and Ref. 47. The solutions of the resonant interaction
problem (namely finding c1, C2, ... cn, etc), thus obtained allow the following directions:

1. At least one coefficient (say c1) is negative. This means that if energy density
in component 1 increases at some instant, the combined energy density of all remaining
components must decrease.

2. The wave amplitudes are generally periodic, with period c- 1 times the period of
the characteristic wave associated with it.

3. Growth of one component by transfer of energy from a second component can
proceed until the latter is exhausted. However, if interaction continues (in time), the
process is reversed and the exhausted component begins to build up again until initial
conditions between components are again reached.

4. If a stable wave train Xq is exposed to new waves Xr such that Eq. (48.5) holds,
a small perturbation of the wave train removes stability and resonant interactions begin.

5. When the wave shape of a pure sinusoid is distorted by any mechanism the nth
harmonic developed corresponds to a free wave mode traveling at the same speed as the
primary but at n times the primary wave number. Resonant interaction between primary
and its harmonics can then occur.

These deductions and many others form an introduction to the rapidly growing field
of resonant interactions in connection with nonlinear waves. A convenient summary is
provided by Ref. 46. Important concepts are discussed in Ref. 48.

CONCLUSIONS ON WHITHAM'S THEORY

Whitham's theory of nonlinear dispersive waves provides fully nonlinear solutions to
a wave field described by nonlinear partial differential equations. They are a class of
solutions based on the concept of wave trains in which the modulation of amplitude and
frequency is slow on the scale of wavelengths. Assuming plane periodic waves in which
frequency and wave number are related through a phase function, Whitham inserts the
phase function into an expression for the Lagrangian density and then averages this den-
sity over some judiciously chosen spatial distance (or phase interval). By use of a varia-
tional principle a set of Euler (conservation) equations is obtained involving these averaged
Lagrangians. Among them is an explicit form of dispersion relation. These conservation
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equations show how the first derivatives of the Lagrangian energy density with respect to
frequency and wave number (called adiabatic invariants) change as the energy is transferred
slowly to different parts of the wave. The conservation equations, and in particular, the
dispersion relation, form a set of differential equations in which wave number and ampli-
tude are coupled. For certain values of field parameters the equations are hyperbolic. For
other values the equations are elliptic. In the hyperbolic case the two characteristic veloc-
ities, which are identical in linear theory, split into two separate velocities in nonlinear
theory. In the elliptic case the characteristic velocity is complex, and the modulations
grow exponentially, i.e., the wave train is unstable. Again, in the hyperbolic case certain
solutions eventually become multivalued. These may, in certain application, be the phys-
ically required solution (namely the "shock" solution). Near the shock the assumption
of slow modulation breaks down. However, weak solutions can be formed by matching
parameters across discontinuities using the conservation equations. Alternatively multi-
valued solutions may simply represent two wave trains passing through each other. In
the nonlinear case, complex interaction between these two trains will occur.

The application of Whitham's theory to nonlinear acoustics remains yet to be done.
Nonlinear partial differential equations appear in these acoustic problems, and slow mod-
ulation does represent important physical situations. The chief difficulty will be to find
the Lagrangian density, the adiabatic invariants associated with the density, and the eluci-
dation of the shock wave condition.

CONCLUSION OF PART 1

For realistic continua the basic equations of hydrodynamics and the constitutive
relations are nonlinear, dissipative, dispersive, and relaxing. Thus dynamic problems in
four variables (three space and one time) or less, both for steady state and for transients,
are mathematically described by nonlinear partial differential equaitons of first and higher
orders. The solutions of these equations in the general case are unknown. Analysts of
acoustics problems usually begin with approximate equations to describe particular cases.
Approximate equations can be obtained by perturbation theory in which orders of magni-
tude of successive terms are determined by the acoustic Mach number or Strouhal number.
Solutions of certain (simple) types of approximate equations lead to Westervelt's equation.
Different approximation are found in the acoustic equivalent of Burgers' equation and the
Korteweg-deVries equation. Solutions of Burgers' equation lead to much ramification
into equations of nonlinear harmonic buildup, attenuation with distance, shock wave
theory, etc. Comparison of these equations with the classic equations of Fay, Fubini,
Riemann, Earnshaw, etc. have been made. A complete study of the effects of varying
parameters in these equations, of numerical consequences, of applications, etc. has been
deferred to Part II of this review.

The very serious difficulty of finding solutions to nonlinear partial differential
equations with (possible) nonlinear boundary conditions has been discussed from the
point of view of two approaches, namely, by the method of characteristics and by the
method of Whitham. Each of these is very involved in both derivation and analytic and
numerical manipulation, and is limited by special assumptions. Whitham's method, how-
ever, leads to a procedure for handling dispersion in nonlinear wave trains. The method
of characteristics lends itself to numerical calculation of space-time field in dynamic
problems.
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It is concluded here that the study of nonlinear acoustics is currently in an unsatis-
factory state in regard to the following items: (a) In contrast to the situation in linear
acoustics, a general nonlinear wave equation is not available in tractable form. Several
approximate equations do exist. They form the corpus of "ready-to-use solutions" but
are very restrictive from birth. There is, consequently, a need for further research in the
derivation of more general equations to describe realistic acoustic situations including such
processes as reflection, diffraction, duct propagation, etc. This is particularly true for
nonlinear waves in two or three dimensions. (b) The methods of solving nonlinear partial
differential equations are few and extremely complex. Further development of such
methods is a vital need if the mathematical modeling of nonlinear acoustic process is to
prosper. (c) Some realistic continua, viz, the ocean, are media which are inhomogeneous,
layered, have rough boundaries, exhibit statistical fluctuations, and contain pockets of
noise. If we add to these the property of nonlinearity under intense (or high-amplitude)
acoustic signaling it is clear that the challenge of formulating a realistic nonlinear model
of the acoustics of such media, and in particular the ocean, remains to be met.
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Appendix A

EULERIAN AND LAGRANGIAN DESCRIPTION OF PLANE WAVE MOTION

The local equation of continuity is customarily written in spatial form in two equivalent
ways, viz, *

ap
at + (Pvk),k 0 p = p(X, t); v = v(x, t) (Al)

P0 p Pi, i = Jacobian. (A2)

In the case of plane wave motion the spatial x and material X coordinates are related by
the equation

x(X, t) = X + t(X, t).

From this, we derive

pO = P [1 + t (X, t)] (A3)ax

(see Sect. 19), and

DP + Dau + DP U = ° (A4)

at ax ax

(see Sect. 20). Thus Eq. (A3) is a statement of the local conservation of mass in
Lagrangian coordinates, while Eq. (A4) is the analogous statement in Eulerian coordinates.

The principle of balance of local momenta in spatial form is written as

tk, k - pa = 0 (i.e., tQk,9 - Pak = 0). (A5)

In a lossless, fluid medium for one-dimensional propagation,

atQX - ap (A6)

axQ ax

where p is the acoustic pressure. The fluid acceleration in spatial form is given by

avk
ak = avk + U V'

k at + vklv2

*A. C. Eringen, Nonlinear Theory of Continuous Media, Wiley, New York, 1967.
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for which, in one dimension,

au au
a = -t + a u (A7)

at ax

Hence, the momentum equation is given by

au au 1 ap-+ -u + --= 0. '(A8)
at ax p ax

In material form the equation of motion has the form*,

TK K - p0 a = 0 (or TKLK - POaL 0), (A9)

in which for a lossless medium in one dimension,

aTKX ap p = p(X, t (AlO)
axK ax

au(x, t) a2 (
aL = at at2 (X, t) (All)

Thus, Eq. (A9) becomes

a24 + 1 ap(x t) =0. (A12)
at 2 Po ax

The above equations can be put in a more symmetric form. Following the methods of
Blackstockt and Landau and Lifshitzl, one defines a speed X such that

dX dp c2 dp (A13)

c p dp

or

dX = -p -, p = P(P) (A14)

or

X fP cdp

Po

*A. C. Eringen, Nonlinear Theory of Continuous Media, McGraw-Hill, New York, 1967, p. 109.
tD. T. Blackstock, "Nonlinear Acoustics (Theoretical)," American Institute of Physics Handbook, 3d ed.,

D.E. Gray, editor, McGraw-Hill, New York, 1972, pp. 3-128-3-205.
tL. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London; Addison-Wesley, Reading,
Mass., 1959.
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Using.these definitions one may write the basic equations in the forms

r ax+ U ax + cau = 0 (Al6a)
at ax ax

Eulerian form S

Iau + U Pa + c = 0 (Al6b)
at aa ax

-a + i- au- 0 (Al 7a)
at Po ax

Lagrangian form 5

Ia + c ax = 0 (Al7b)
at Po ax
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Appendix B

INHOMOGENEOUS WAVE EQUATION (LIGHTHILL'S EQUATION)

The theory of the generation of aerodynamic sound* is based on an inhomogeneous
wave equation with nonlinear terms. It will be useful to note this equation here. Let
p(xk, t) be mass density, vi(xk, t) be local velocity, and ¢ (dimensions: s-1) be the local
rate of production of a field source. The conservation equations for mass density and
momentum are then written as

ap +a (pvi) P~ (Bl)

at+ axi

apti +' ax1 (PLiLj +pij) Ph + Ptvi, (B2)

in which pij is the internal stress tensor (containing thermoviscous terms) defined on a
unit element of the continuum and fi is an external force per unit mass. By elimination
of pvi between Eqs. (Bi) and (B2) and rearrangement of terms one arrives at the exact
formula

a2 p _1 a2p 1aap a Pi+ ~

ax C2 at2 C2 at aXi (pf+pv)

+ a2x1 (Pviv1 +Pij - c2Paij9}. (B3)

Since the r.h.s. contains true sources (i.e., p, pfi, pvij) and fictitious sources (pvivj +Pij -
C2paij), it may be saidt that Eq. (A3) describes a fictitious material of uniform sound
speed c in which all mass density relations are considered as due to equivalent acoustic
waves. Practical use of Eq. (A3) requires detailed knowledge of these sources. Equation
(A3) has been used by several authors as a starting point in the analysis of nonlinear
acoustic phenomenal.

*M. J. Lighthill, Proc. Roy. Soc. A211, 564 (1952).
tp, E. Doak, "Multipole Analysis of Acoustic Radiation," paper K56, Fifth Congress on International
Acoustics, Liege, Belgium, Sept. 7-14, 1965.

tSee, for example, P. J. Westervelt, J. Acoust. Soc. Amer. 35, 535-537 (1963).
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HEURISTIC DERIVATIONS OF BURGERS' EQUATION AND ITS ALLIES

The linear wave equation for a lossless fluid can be written in the form

(cat - ax) (cat + 0O a = 0 (Cl)

where u = velocity potential, pressure, particle velocity, etc. Thus, for a simple wave with
infinitesimal amplitude traveling in one direction, one may choose either factor on the
l.h.s. (say, the second) and write a progressive wave equation in the form

au au
-a + CO a- = 0 (C2)

in which co is the local velocity of sound. This is a type of conservation equation (see
Sects. 40-44 on Whitham's methods). Now let the wave have finite amplitude. Then one
can surmise that the speed of the wave depends on amplitude (i.e., in lieu of co we should
have co + Ou). Equation (C2) is therefore modified to read

au + (co+ :U) au = O. (C3)
at X (Poisson's eq.)

in which a is a constant of nonlinearity, where

3 +2 for gases
2

(C4)

=1 + B for fluids.
2A

Here y = Cp/C, and B, A are constants in the pressure-density relation, i.e., p = po +
A [(p - po)/po] + (B/2) [(p - po)IpoI 2 + .... Finite-amplitude effects are not fully under-
stood unless viscous attenuation is considered. Viscosity effects (in gases) were introduced
(Stokes) by writing Eq. (Cl) as

utt - C2uXX = 2uxxt (C5)

The factor 6 is defined as

A 4 v= B
6- vO. ~~ ~ (0 =-+- + (for gases)2' P= 3PP
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6 = 1 V [ _ + _ _;XK Cp
P CP

(for liquids)

where v = kinematic viscosity, p = coefficient of shear viscosity, PB = coefficient of bulk
viscosity and Pr = Prandtl number (V/K). Since an operator solution of (Cl) implies that

a aat -Coa (C6)

V can be integrated (with respect to time) to yield an equation of the form*

ut + coux = 8UXX (C7)

Now if finite amplitude is again considered, then the appropriate equation is

ut + (co + 9u)ux = UXX (C8)

By introducing the coordinate transformation

x = x - cot

t = t,

we reduce Eq. (C8) to

ut + ouux' = 
6Ux'x'. (C9)

This is a form of Burgers' equation. By use of (C6) in (C8), one obtains (approximately)
a second form of Burgers' equation,

ut + coux - uut = 2 utt (CIO)
co

Under the transformation

x = x

t= t c x (C11)

Eq. (ClO) becomes

ax 2 C~'= 3 Uts
0O 0O

(C12)

Other forms of this equation are discussed by Blackstock.

*D. T. Blackstock, Nonlinear Acoustics, T. G. Muir, editor, Proceedings of conference held at Applied Physics
Laboratory, University of Texas, Austin, Texas, Nov. 10-11, 1969, pp. 3-23.
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The above heuristic derivations of Burgers' equation and its several allies must be
more rigorously derived in order to show the intimate connections between the forms
and the basic hydrodynamic equations. This was done in Sects. 25-28.
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Appendix D

EXTENDING THE RANGE OF VALIDITY OF PERTURBATION EQUATIONS
BY INTRODUCING TWO TIME SCALES

We consider a single one-dimensional conservation law for the field u in the form

ut + L{u} = eM{u}, u = u(x, t), (D1)

in which L is a linear operator and M a second operator, possibly nonlinear. If iu is the
spatial Fourier transform of u, the operation L{iu} is defined as ico(k)iu. The symbol e is
a small parameter. For reasons explained later, the time t is considered a variable pos-
sessing two scales, a fast scale To, and a slow scale T*. Thus the field variable u is written
more precisely as U, where

u(x, t; e) = U(x, To, T; e). (D2)

The time derivative is understood to be

ar = aa + e (D3)

To solve Eq. (D1) we take the Fourier transform U of U in spatial coordinates using the
transform pair kx. Then it is assumed that U can be expanded in a power series in e,

c0

U(To, T; k; e) = enUn(To, T; k) . (D4)
n=O

(Note that the operation MUo is taken to be im(k)Uo, where m(k) is a function resulting
from the operation M, analogous to the function c(k) resulting from the operation L.)
Substituting Eq. (D4) into the transform of Eq. (D1) and equating equal powers of e
leads to the first two equations of the perturbation series,

U0 + ic(k)Uo = 0 (D5)

and

U17T + ico(k)Ul = im(k)Uo - UOT- (D6)

For the initial condition QUo(0; k) = f(k) the solution of Eq. (D5) is

*S. Leibovich and A. R. Seebass, Ch. IV of Nonlinear Waves, S. Leibovich and A. R. Seebass, editors,
Cornell University Press, Ithaca, N.Y., 1974.
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Uo = f(k)Ao(T; k)e i(k)To (D7)

Here AO is an amplitude function explicitly dependent on slow time with the restriction
Ao(0; k) = 1. Substituting Eq. (D7) into the r.h.s. of (D6) leads to a forcing function

f(k)e-ic(k)t [im(k)AO(T;k) - a-] (D8)

Now if

AO = b(k)eiTm(k), b(k) = 1, (D9)

then (D8) will vanish. The form of the solution of Eq. (D6) is then identical to Eq. (D7).
The first two terms of Eq. (D4) then read,

U = f(k) exp {-i[Toco(k) - Tm(k)} + eAl(T;k)eCiToc(k). (D10)

If, on the other hand, slow-time variables are all negligible, then AO(T; k) is unity for all
r, and the substitution of (D7) into (D6) leads to the equation

U1T0 + ic(k)Ul = if(k)m(k)ei(k)TO (Dll)

the solution of which is

U1 = if(h)m(k)m oeio(k)TO (D12)

The first two terms of Eq. (D4) are then given by

U(To;k;e) = f(k)e iWo(k)TO[l + ierTom(k) + .. ] (D13)

From this equation it is seen that the series (D4) is invalid when ETo is of the order of
unity, i.e., for time of the order 0(e61). Comparing (D12) with (D10) shows that the
introduction of slow time in addition to fast time has made the amplitude of the first
two terms of expansion (D4) independent of time (i.e., removed secularity), and has
made the entire expansion (D4) valid to time 0(cl).
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PARKER'S ASYMPTOTIC METHODS IN NONLINEAR ACOUSTICS

Parker* has derived a set of equations by extension of Whitham's method. His proce-
dure is as follows. If u = u(s, x, t), p = p (s, x, t), p = p(p) are fluid velocity, density and
pressure respectively, and s = s (x, t) = const. defines the phase front of the propagating
wavelets, then for the selected form

s(x,t) = k x - 2t, as = ki, at (El)

it is seen that the equations of continuity and momentum of a viscous fluid are given by

(2- k- u) as - phi ai = -1{aP + p aui + ui ap} (E2a)

as as~ (au a(E ab)

-hip'(p) ap + p(2 - k * u) aui = -P aui + u aui (E2b)

-Pa(P) + akj as (Kj au')+ 3 kj a (ki au')
axi " ~asV as/ 3 as-~- as)

+ negligible order terms} . (E3)

Since the operation a2/atax, must be independent of the order of taking the t or xi de-
rivative, a set of compatibility conditions are imposed by Eq. (El), namely,

a a asas ( la +a asas
Yai asaxi)atat as axia axi

aki aL as aki aki as
__ __ -+- (E4)

axj as axi axi as ax1

If the r.h.s. of both equations of (E2) are neglected (i.e., viscous damping and signal
modulation are neglected), then the solutions which satisfy Eq. (E2) are

*D. F. Parker, Proc. 1973 Symposium, Copenhagen; Ed. L. Bjorno, IPC Science and Technology Press Ltd.
Surrey, England.

140



NRL REPORT 7772

(2- k- u) = kc(p)

aui ap
a = nic(p) p

I- as as-

k = Ikl,c 2 (p) = ap

ki = kni

Eq. (E5) defines the speed of propagation at a fixed space-time point in the wavefront
and Eq. (E6) shows how ui and p are related at this point.

It is next assumed that the fluid is subject to an acoustic perturbation such that for
a small quantity 6 one has

P = P o (X t) + 65 (s, x, t)

U = U(x, t) + 6ia(s, x, t) (E7a)

k- = k-1(x, t)[l + k(s, x, t)] (E7b)

in which p, a, K are acoustic perturbation to the equilibrium
agation constant. The nonlinearily induced sound speed is

density, velocity and prop-

c(p) = co(x, t) + a(s, x, t) , co = c(po). (E7c)

To first order in 6, it is known that

u = /(s, x, t)
= n Msp(Xt n = unit normal vector. (E8)

Substitution of the acoustic approximations given above into Eqs. (E2a) and (E2b) leads
to left hand sides which are of order 6 k. Multiplying Eq. (A5.2a) by c and Eq. (E2b) by
ni, then adding, causes all terms in a/as on the r.h.s. to vanish. The result is a "transport
equation,"

2 at + (Ui + coni) ax

+ icn 1) ax, Pox

]+ Po [a (co)
I o Lat Po/

+ fi5CO ani + aUi
-a5i au

+ni (2 aco + nj aui

Combination of Eqs. (E4) imply that
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(E5)

(E6)

= 4 Y' I (k 0 )+ 0(5,,1k). (E9)
3 Po as as
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aki aki
a + (Uj +con) n = -k( aac

aUj)+ n* ai- (ElO)

The last two transport equations define rays which are determined by the ratios

dx:dki:dt = U + cOn: - k[Vco + n - (Vu)] :1 (Ell)

Using this last equation it is seen that Eqs. (E9) and (ElO) reduce to

2 Dpi + A kpo D / Co )
Dt I--0 Dt kp 0 ) + V * (U + con) I = a a/( + o(b, pk)

(E1 2)

Dk =k6[o + c'(Po)] a + 0(6)

where

Dt - at f (Uj + con1) aa,Dt at bx~~~~~~~j'

Thus, an acoustic signal, propagating through an inhomogeneous fluid having velocity
U(x, t), density po(x, t) and sound speed co(x, t) is found by solving Eq. (Ell) for rays,
and then proceeding to solve Eqs. (E13) and (E14) interatively for p^ and k.

Let c1 be the variable velocity along a ray, and I be the propagation distance along
the ray, then dl = c1dt. Now assume that

Dp5 a/5D- at
Dt at (E14)

i.e., assume that the time variation of p due to the convection of the gradient of p is
negligible compared to the time variation of p5 in situ. Then Eqs. (E12) and (E13) take
on the form

al o- + =
al Uf-1

2/3 a /
pOCh as \
pk

afi

as )
(El 5a)

ak=-p 1 [1
al po(kH)-i I

E kpo D / Co \
co Dt \kpo)

C1 = IU + conl.

+ POc'(po) a/
Co J as

+ V- (U +con)
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(E13)

] 2c, .

(El5b)

(El 5c)

(El5d)
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There are three characteristic lengths:

(1) a-1 describes the length scale of unhomogeneity, convection and spreading

(2) - describes the length scale of viscous damping

(3) (k6)-l describes the length scale of amplitude dispersion.

Discussion: If kH is significantly smaller than a or pk 2 /poco then nonlinearity of
the medium is unimportant in the propagation process. If kh is much larger than
ph2/p0c0 then viscous attenuation is negligible, and if k6 is also much larger than a
then the propagation reduces to that of a simple wave. If a signal is damped only by
viscosity (i.e., if ax vanishes) then

a/5 2/3 a / aE16
al p0 cla (E16)

phk

Now the amplitude dispersion relation Eq. (E15b) can be used as a compatibility condi-
tion for a function 0(l, s). Noting that

a2
_ a20

alas asal

One can deduce that

a~~3 _ _ Po 0C'P) ]0 0 51 ) (E17a)
al = -O 1 co ] ^lS) (1a

a: (l+k^) lb
as k ~~~~~~~~~~(E17b)as k

Defining a new function w(l, 3) such that

w(l, /) = - 5- [1 + P0c(Co)] (1, S) (E18)

it is directly seen that (E16) reduces to a form of Burgers' equation.

aw ~aw aw2P
Wa= v V= 23pc2 (E19)

a a
k as

Here, / is a distance normal to the wavefront.
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An important new feature of Parker's method is -the development of the theory of
nonlinear wave propagation by means of acoustic rays (geometrical acoustic analogy).
The theory is thus asymptotic with respect to wavelength. Nonlinearity appears as a
modulation of a simple wave, i.e., of a wave whose field parameters (pressure, particle
velocity, density, etc.) are functions of a single phase variable s.
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Appendix F

GENERAL NONLINEAR ACOUSTIC EQUATION
WITH IMPROVED RELAXATION TERM

When the medium in the state of acoustic excitation undergoes relaxation an approx-
imate equation of state may be written in the form

p =(X, t) =cp' +1 (aP) p12 + mc2 f -i'e T dt' - X (BA - C ) div v (Fl)

in which T is the characteristic relaxation time, m = c 2 - c2/c2, and all other symbols
have been defined in the text. The propagation of a sound beam of limited cross-sectional
dimension is then derived from the complete system of hydrodynamical equations in the
cylindrical coordinate x = x(r(y, z), x) where x is the direction of propagation. Its form
is,

a2 ~~~T(T-)a ap, P,ap_ b a2 p' ma A ap'e - 7d-
at ax at 2c0p 0 ar2 2co aT _ aT' 

(F2)

co (a2p' + 1ap'\
2 \ar2 r ar

in which T = t - x/co, = ( + 1)/2, b = + 4/3 n + X((l/cv) - (l/cp)). Equation (F2)
includes effects of dissipation, relaxation, dispersion and diffraction. However all these
processes, together with nonlinearity, are considered weak relative to the acoustic amplitude
of the basic propagating wave. For additional details see Rudenko et al. Sov. Phys. -
Acoust. 20 (3), 271-275 (1974).
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