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EQUIVALENCE OF TWO CRITERIA FOR
OPTIMAL CLOSED-LOOP CONTROL

INTRODUCTION

In the general case the synthesis problem, that is, the problem of the existence of
an optimal closed-loop control and of generating it, is unsolved. In the special case of
linear time-optimal processes, the synthesis problem is solved, in principle, as a conse-
quence of existence and uniqueness theorems [1]. The synthesis of time-optimal feed-
back controllers for second-order nonlinear systems having one degree of freedom is
given in Boltyanskii [2] and Lee and Markus [3].

A recent note deals with the synthesis problem for general nonlinear processes [4].
There it is shown that optimal closed-loop control can be synthesized from optimal open-
loop control provided three conditions are met. These conditions deal with the class
properties of the admissible controls and with the existence and uniqueness of optimal
control. The question of existence of an optimal closed-loop control even for a relatively
small class of nonlinear processes is a difficult part of the synthesis problem.

Optimal closed-loop control is defined by an optimality criterion involving compar-
isons of candidates for the optimum. In this report two optimality criteria are investi-
gated. In one criterion a candidate is compared with all closed-loop controls generating
a terminating trajectory from at least one initial state of the state space. In the other
criterion a candidate is compared with only those closed-loop controls generating termi-
nating trajectories from all points of the state space. By a theorem, the two optimality
criteria are shown to be equivalent for classes of admissible closed-loop controls that
satisfy any one of three conditions that are defined in the next section. It is hoped that
this equivalence may be of help in establishing existence of an optimal closed-loop control.

OPTIMAL CLOSED-LOOP CONTROL PROCESS

We consider an optimal control process whose dynamic behavior is governed by the
state equation

f(x, u) (1)

where the state x is contained in En, the control value u belongs to Em, and f is a Borel-
measurable function with domain En X Em and range in En. Note that the nth compo-
nent of the state variable is considered to be time t; that is, if x = (xl, x2 , . . x), then
2751 fromxn =t. An additional dimension can be added to the original state equations
whenever they do not have the form of Eq. (1) with x =t.

Manuscript submitted May 20, 1974.
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H.L. STALFORD AND G. LEITMANN

The state space, denoted by X, is a Borel-measurable subset of El'. The terminal set
0 is a closed set contained in the closure of X. Constraints on the control values a avail-
able to the controller are given implicitly by the set-valued function

U X -* set of compact subsets of Eln. (2)

A necessary condition for a Borel-measurable function

U X Em (3)

to be an admissible closed-loop control policy is the satisfaction of two criteria:

(i) U(x) E U(x) for all x E X

(ii) For some x0 EX -t0
function

there exists an absolutely continuous

9X0 , [tO tOI XU9

such that the equation

ox (t) 20 X+ ft f(9 4T), U&Ix(T) ) ) dr
to

is satisfied for a0l t G Ito, tx I
than t 0.

where t, is some time greater

This necessary condition on admissibility implies that the class of admissible policies
is a subclass of the class of all Borel-measurable policies. In this report we consider only
classes of admissible closed-loop control policies that satisfy any one of the following
conditions

Condition 1. If UQ and U2 are admissible dosed-loop control policies and if B is
a Borel-measurable subset of the state space X, then the function

UB X -Em

defined by

U 1 (X)

B (X) =

U 22(X)

V xOCB

(5)

V xEEX-B

is also an admissible closed-loop control policy.

2
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Condition 2. This condition is identical to Condition 1 with the exception that B is
a closed subset of X rather than a general Borel-measurable subset.

Condition 3. If U1 anrl U-2 are admissible closed-loop control nolicies and if for some
x0 C X the absolutely continuous function ox : [to, tx] e X U 0 corresponds to U1 in
Eq. (4), then the function

U3 X Em

defined by
SU, X) V x G f Ox0 t) : t G [to, tx] }1 

U0 (x) = 4 (6)

tU 2 (x) for all other xCX

is also an admissible closed-loop control policy. Note that Condition 1 implies Condition
2 and that Condition 2 implies Condition 3.

Suppose a class of admissible closed-loop control policies has been selected satisfying
Condition 1, 2, or 3. Denote this class by A. Such a class is said to satisfy a closure
property because it contains all controls of the type described by Eqs. (5) and/or (6).

A solution of Eq. (1); i.e., one satisfying Eq. (4), for some admissible closed-loop
control policy and given initial condition x0 is called a trajectory. A trajectory Oxq
: [to, t J -e En is said to be admissible iff it lies entirely in the state space X for
all times t contained in [to, t, ]. An admissible trajectory is called terminating iff
X

0
O(txo) belongs to 0. If Oxk is terminating, then the time txo is denoted by tf and is

called the terminating time.

Let x0 be contained in X. Let T(x 0) denote the set of all policies UCA having at
least one terminating admissible trajectory emanating from x0 . For UC T(xo) let
T(xo, U) denote the set of all terminating admissible trajectories emanating from x0 and
corresponding to U.

Let T(X) denote the set of all policies U GA having for each x EX at least one
terminating admissible trajectory emanating from x. Of course, T(X) is a subset of T(xo)
for all x0 EX. The assumption is made that T(X) is not empty.

The state is to be transferred from some x0 GX to the terminal set 0. The perform-
ance index

Of

J(x0 , U, OX.) = jtit fo(xo (r), U(xo (r) ))dr (7)

is to be minimized where UC T(xo), Ox. ET(xo, U), and t is the terminating time of
0x . Here, the function f0 is a real-valued, bounded, Boref-measurable function with
do~main En X Em.
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H.L. STALFORD AND G. LEITMANN

Consider the following two definitions of optimality.

Optmality L An admissible closed-loop control policy U* C T(X) is optimal iff for
all xo EX, for all UC T(xo ), and for all Cxo G T(xo, U) the inequality

Jxq, Ut* t0) •< Ax 0, U, 4xO) vkt C T(xo, U*) (8)

is met.

Optimality I. A policy U*CT(X) is optimal ff for all UC (X) the inequality

J(xO, U*, C0} < Jx 0, U, 4yx0)

VxO eX, V Ox G T(xo0 , U), VO 0 C T(x, U*) (9)

ig m et.

The main difference between these two types of optimality is that the optimality
of Type I compares U* with a larger set of policies than that of Type II: In Type 1, U*
is compared with all U C T(x0) for all x0 C X; and in Type 1H, U* is compared only with
UE T(X). Thus, with respect to the state space X, Type II is a comparison made globally
between candidates for optimality and admissible policies, whereas Type I is a pointwise
comparison.

EQUIVALENCE OF THE TWO OPTIMALITY CRITERIA

In defining optimal closed-loop control it suffices to compare the optimal policy
(candidate) with only those policies having a terminating admissible trajectory from all
states, provided any one of Conditions 1, 2, or 3 is satisfied. We state this as a theorem.

Theorem. A closed-loop control policy UP contained in T(X) is optimal of Type II
if and only if it is optimal of Type I

Proof. For the "if" part of the theorem consider a policy U* C T(X) that is optimal
of Type I. Because U* satisfies inequality (8) for all xO G X, for all U E T1x 0), and for
all x E T(x, U), and because

1(X) = n T (x° ),

it follows that inequality (9) is met for all U C T(X). Consequently, U* is optimal of
Type II.

4
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Now, for the "only if" part, suppose u C T(X) is optimal of Type II. Further
suppose that U* is not optimal of Type I. This implies that there exist xo CE X, U C T(xo),
and C T(xo, U) such that

J(xo0 U*", O0) > J(x 0, U, OxO) (10)

for some P*o C T(xo, U*).

Let C = {IoP(t): tCG [to, tf] }. Define the function U3 X - Em by

rU(x) VxC

U3 (x) = (11

U*(x) VxCX-C.

Because Condition 1, 2, or 3 must hold, it follows that Condition 3 holds. Thus, U3 is
an admissible closed-loop control policy.

It is clear from Eq. (11) that U3 C T(xo). We claim that U3 also belongs to T(X).
To see this, suppose U3 is not contained in T(X). Then there is some x CX for which
U3 does not provide a corresponding terminating admissible trajectory emanating from
x. This cannot happen for x = xo because U e T(xo) and U3(x) = U(x) for all x C C.
So, suppose x # x0.

Because U* C T(X), it follows that U"' has a terminating admissible trajectory, say
Cx* ( T(x, U*), emanating from x. Suppose that x* is defined on the time interval

ft. tP 1 where t corresponds to the state x. Let tn be the smallest time contained in
[t, tfJ such that p*(t0) C C. If no such time t0 exists, then O* belongs to T(x, U3 )
because U3 (x) = U*(x) for all x C X - C. The nonexistence of t, contradicts the sup-
position that U3 does not provide a terminating admissible trajectory emanating from x.
Hence, t, must exist; we let x* = 44(t 0 ).

Now, let tb be the time such that Oxo(tb) = Z. Note that tb = t0 because the nth
component of Z is time. Define the absolutely continuous function Ox by

rO* (r) forall t • r < t.

OX (T) = (12)

IOxO(T) for all t0 < r < tf .

Observe that Ox belongs to T(x, U3 ) because Ox is a terminating admissible trajectory,
it corresponds to U3, and it satisfies Eq. (4). This is again a contradiction to the sup-
position that U3 does not provide a terminating admissible trajectory emanating from x.
This implies that U3 belongs to T(X).
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Note that

J(xo, Us,. @O) = J(X0, U,4'x0 ) (13)

because L7 (x) = U(x) for all x E C.

Finally, because U3 belongs to 1(X), it follows from inequalities (9) and (10) together
with Eq. (13) that U* is not optimal of Type 11 as asserted. This contradiction implies
that U* is indeed optimal of Type IL

REMARKS

Remark 1. Condition (i) following Eq. (3) is a statement of the effect that admis-
sible closed-loop control policies satisfy the control constraints of the process. Condition
(ii) deals with the existence of a solution of the state equation for some initial state. Thus,
policies are not considered admissible unless they satisfy control constraints and produce
at least one solution. Requiring condition (i) to be necessary for admissibility agrees with
the usual definitions of admissible controls; e.g., Pontryagin et al. t1I and Leitmann I51.
In the theory of ordinary differential equations there is no existence theorem that applies
to the entire family of optimal control processes considered earlier. Thus, it was necessary
to focus our attention on those control policies admitting solutions.

Remark 2. A closed-loop control policy is assumed to exist such that all initial states
of the state space are transferable to the terminal set; i.e., the set of policies T(X) is
nonempty.

Remark 3. The optimalities of Types I and II imply that for a fixed initial state, all
terminating admissible trajectories of an optimal control policy yield equal values of the
performance index. This follows from inequalities (8) and (9) by inserting the optimal
policy on both sides of the inequality sign. It is possible to redefine optimality for the
case in which such trajectories are not required to render equal costs. This can be ac-
complished by considering optimal pairs (U*, )*) where 4$ is a set of such trajectories,
the set containing one and only one member for each initial state. That is, for each
xo E X, cF* contains one and only one member of T(x 0 , U*). In general, in more formal
terms, for each U C T1(X), we define

1T() ={4 for each x GCX, 4) contains one and only one member of T(x 0 , U)).

This results in the following definitions.

Otpmality 1. An admissible closed-loop control policy pair (U*, 4)*) with U*l E T(X)
and 4 CE T(U*) is optimal iff for all xO C X, for all U E T(xo), and for all , EC Txo, U),
the inequality

J(XO, U*,O;*0 ) < J(XO. U, 9x,) (14)

is met,

6



NRL REPORT 7769

Optimality II. A policy pair (U*, 4*) with U* C T(X) and 4,* C T(U*) is optimal
iff for all U E T(X), the inequality

.Tirn [l* h 0\ < .7(rv FT A_ I

VxO X, -I CT(U), 0xo E (15)

is met.

The trajectory 0* in inequalities (14) and (15) is the unique member of 4)* that corre-
sponds to the initial state x0 . The trajectory 4xo in inequality (15) is the unique member
of (' associated with x0 .
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