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EQUIVALENCE OF TWO CRITERIA FOR
OPTIMAL CLOSED-LOOP CONTROL

INTRODUCTION

In the general case the synthesis problem, that is, the problem of the existence of
an optimal closed-loop control and of generating it, is unsolved. In the special case of
linear time-optimal processes, the synthesis problem is solved, in principle, as a conse-
qguence of existence and uniqueness theorems [1]. The synthesis of time-optimal feed-
back controllers for second-order nonlinear systems having one degree of freedom is
given in Boltyanskii [2] and Lee and Markus [3].

A recent note deals with the synthesis problem for general nonlinear processes [4].
There it is shown that optimal closed-loop control can be synthesized from optimal open-
loop control provided three conditions are met, These conditions deal with the class
properties of the admissible controls and with the existence and uniqueness of optimal
control, The question of existence of an optimal closed-loop control even for a relatively
small class of nonlinear processes is a difficult part of the synthesis problem,

Optimal closed-loop control is defined by an optimality criterion involving compar-
isons of candidates for the optimum. In this report two optimality criteria are investi-
gated. In one criterion a candidate is compared with all closed-loop controls generating
a terminating trajectory from at least one initial state of the state space., In the other
criterion a candidate is compared with only those closed-loop controls generating termi-
nating trajectories from all points of the state space. By a theorem, the two optimality
criteria are shown to be equivalent for classes of admissible closed-loop controls that
satisfy any one of three conditions that are defined in the next section. It is hoped that
this equivalence may be of help in establishing existence of an optimal closed-loop control.

OPTIMAL CLOSED-LOOP CONTROL PROCESS

We consider an optimal control process whose dynamic behavior is governed by the
state equation

& = flx, u) (1)

where the state x is contained in E”, the control value u belongs to E™, and f is a Borel-
measurable function with domain E” X E™ and range in E*. Note that the nth compo-
nent of the state variable is considered to be time ¢; that is, if x = (*1, X9, ... x,), then
%, =1 from x, =t. An additional dimension can be added to the original state equations
whenever they do not have the form of Eq. (1) with x,, = ¢,
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H.L. STALFORD AND G. LEITMANN

The state gpace, denoted by X, is a Borel-measurable subset of E®. The terminal set
8 is a closed set confained in the closure of X. Constrainis on the control values u avail-
able io the controller are given implicitly by the set-valued function
17 : X — set of compact subsets of B, {2)
A necessary condition for a Borel-measurable function
U:X > Em 3)
to be an admissible closed-Joop control policy is the satisfaction of two criteria:

iy UxyeUx) forall x€X

(ii} Forsome x53€X-0, there exists an absolutely continuous
funciion

Px, Itg, txgl - XuUg
such that the equation

i
Gu () = % + ft s (7). Uloy (7)) dr )
G

is satisfied for all £ € {{, txol where £, ~ is some time greater
than tg.

This necessary condifion on admissibility implies that the class of admissible policies
is a subclass of the class of all Borel-measurable policies, In this report we consider only
classes of admissible closed-loop conirol policies that satisiy any one of the following
conditions

Condition 1. If Uy and Uy are admissible closed-loop control policies and if B is
a Boregl-measurable subset of the state space X, then the function

Ug : X - Em
defined by
Ui{x) ¥Yx<B
Ug(x) = (5)
Us{x) ¥Yx&€X-8B

is also an admissible closed-loop control policy.
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Condition 2. This condition is identical to Condition 1 with the exception that B is
a closed subset of X rather than a general Borel-measurable subset.

Condition 3. If U and U, are admissible closed-loop c ro! policies and if for some
xq€ X the absolutely contmuous function c,bxo t[tg, B 1 B corresponds to U; in
Eq. (4), then the function

U3 : X_>Em

defined by
le(x) VxS {o, (1) : €[ty 1y 1}

Uslx) = (6)

LUz(x) for all other xCX

is also an admissible closed-loop control policy. Note that Condition 1 implies Condition
2 and that Condition 2 implies Condition 3.

Suppose a class of admissible closed-loop control policies has been selected satisfying
Condition 1, 2, or 3. Denote this class by A. Such a class is said to satisfy a closure
property because it contains all controls of the type described by Eqs. (§) and/or (6).

A solution of Eq. (1); i.e., one satisfying Eq. (4), for some admissible closed-loop
control policy and given initial condition x is called a frajectory. A trajectory ¢,
: [£g, & X ] = EP is said to be admissible iff it lies entirely in the state space X for
all times ¢ contained in ftg, ¢ xo ]. An admissible trajectory is called terminating iff
Pxg(txy ) belongs to 6. If ¢, 1s terminafing, then the time t is denoted by ¢, and is
called the terminating time.

Let xy be contained in X. Let T(xg)} denote the set of all policies UE A having at
least one terminating admissible trajectory emanating from xg. For UET(x) let
T(xg, U) denote the set of all terminating admissible trajectories emanating from x; and
corresponding to U,

Let T(X) denote the set of all policies /S A having for each x €X at least one
terminating admissible trajectory emanating from x. Of course, T(X) is a subset of T(xg)
for all xyg €X. The assumption is made that T(X) is not empty.

The state is to be transferred from some xy€X to the terminal set ¢. The perform-
ance index

ty
Hxor U, by) = | folte, (1, Vb (1)) ) o (M)
[4]

is to be minimized where UE T(x,), ¢, E€T(xq, U), and ¢, is the terminating time of
¢x Here, the function f; is a real-valued, bounded, Borel-measurable function with
dotain E® X Em,
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Consider the following two definitions of optimality.

Optimality I. An admissible closed-loop control policy U* € T(X) is optimal iff for
all xg €X, for all UE€T(xgp), and for all ¢, € T{xp, U) the inequality

Hxg, U¥, 8, < Jixg, U, ¢x,) VX, € Tixo, U™) (8)
is met,
Optimality I, A policy U* €T(X) is optimal if for all UE€T(X) the inequality
dlxg, U™, 3,) < Jxg, U, &y,)
Vg €X,  Ya, €T(xq, U), ¥, € Tlxp, U¥) 9)

is met,
The main difference between these two types of oplimalily is that the optimality

of Type I compares /¥ with a larger set of policies than that of Type II: In Type I, U*

is compared with all U € T{xp) for all x5 € X; and in Type I, U* is compared only with

U € T(X). Thus, with respeci to the state space X, Type II is a comparison made globally

between candidates for optimality and admissible policies, whereas Type [ is a pointwise

comparison.

EQUIVALENCE OF THE TWO OPTIMALITY CRITERIA
In defining opiimal closed-loop control it suffices to compare the optimal policy
{candidate} with only those policies having a terminating admigsible trajectory from ail

states, provided any one of Conditions 1, 2, or 3 is satisfied. We state this as a theorem.

Theorem. A closed-loop control policy U* contained in T(X) is optimal of Type {I
if and only if it is optimal of Type L

Proof. For the “if” part of the theorem consider a policy U™ € T(X) that is optimal

of Type 1. Because U™ satisfies inequality {8) for ail xg € X, for all U< T(xy), and for
all rﬁxg € T{xg, U}, and because

T(X) = QX Tiag),

it follows that inequality {9) is met for all U € T(X). Consequently, U™ is optimal of
Type Il
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Now, for the “only if” part, suppose U* € ’"(A ) is optimal of Type II. Further
suppose that U* is not optimal of Type I. This implies that there exist xg € X, U € T(xyp),

and ¢y, € T{xqg, U) such that
Jlxo, U%, ¢35 ) > J(&o, U, dx,) (10)
for some qbfo € T(xg, U*).
Let C = {¢x,(t) : t € [t0, tf]}. Define the function Us : X - E™M by
U{x) VxeCl
Us(x) = (11)
U¥x) vx€EX-C

Because Condition 1, 2, or 8 must hold, it follows that Condition 3 holds. Thus, Us is
an admissible closed-loop control policy.

It is clear from Eq. (11) that Uy € T(xy). We claim that Us also belongs to T(X).
To see this, suppose Uy is not contained in T(X). Then there is some x €X for which
Uy does not provide a corresponding terminating admissible trajectory emanating from
x. This cannot happen for x = x5 because U € T(xp) and Ug(x) = U(x) for all x € C.
So, suppose x ¥ xy.

Because U* € T(X), it follows that U™* has a termmatmg admissible trajectory, say
cpx S T(x U™), emanating from x. Suppose that qu is defined on the time interval
[t, tp 1 where t corresponds to the state x. Let {; be the smallest time contained in
it tf] such that ¢;‘(t ) €C. If no such time f,exists, then q’)x belongs to T(x, Ug)
because Us(x) = U*(x) for all x € X - C. The nonexistence of {, contradicts the sup-
position that U3 does not provide a terminating admissible trajectory emanating from x.
Hence, t, must exist; we let X = ¢ (t,).

Now, let tb be the time such that ¢, (f5) = X¥. Note that ¢, = f; because the nth
component of ¥ is time. Define the absolutely continuous function ¢, by

(oX(r) forallt < 7 < t,
x(r) = (12)
bxo(r) forallt, <7 < tf.
Observe that ¢, belongs to T{x, U3) because ¢, is a terminating admissible trajectory,
it corresponds to Us, and it satisfies Eq. (4). This is again a contradiction to the sup-

position that Uz does not provide a terminating admissible trajectory emanating from x.
This implies that U3 belongs to T(X).
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Note that

J{xQ! U3§ éx{;} = J(SCO, U) ¢x9) {13}
becauge Ug{x) = Uix)forallx€C,

Finally, because Uy belongs to T{X}, it follows from inequalities (9) and (10) together
with Eq. {13} that U * is not optimal of Type II as asserted. This contradiction implies
that U™ is indeed optimal of Type L

REMARKS

Remark 1. Condition (i) following Eq. (3) is a statement of the effect that admis-
sible closed-loop control policies satisfy the control constraints of the process. Condition
(i1} deals with the existence of a solution of the state equation for some initial state. Thus,
policies are not considered admissible unless they satisfy control constrainis and produce
at least one solution. Requiring condition (i) to be necessary for admissibility agrees with
the usual definitions of admissible conirols; e.g., Pontryagin et al. [1} and Leitmann [5{.
In the theory of ordinary differential equations there is no existence theorem that applies
1o the entire family of optimal control processes considered earlier. Thus, it was necessary
to focus our atfention on those control policies admitting solutions.

Remark 2, A closed-loop control policy is assumed to exist such that all initial states
of the state space are transferable to the terminal set; i.e., the set of policies T{X} is
nonempty.

Remark 3. The optimalities of Types I and II imply that for a fixed initial state, all
terminating admissible trajectories of an optimal confrol policy yield equal values of the
performance index. This follows from inequalities {8} and {9) by inserting the optimal
policy on both sides of the inequality sign. It iz possible to redefine optimality for the
case in which such trajectories are noi required fo render equal cosis. This can be ac-
complished by considering optimal pairs (U¥, @) where ®* is a set of such irajectories,
the set containing one and only one member for each inifial state. That is, for each
xg € X, * contains one and only one member of T{xy, U*). In general, in more formal
terms, for each I € T(X), we define

T(U) = {® : for each x5 €X, P contains one and only one member of T(xg, N}
This results in the following deflinitions.

Oftimaiiiy I'. An admissibleclosedloop control policy pair (U*, $%) with U*€T(X)

and ™ € T(U™) is optimal iff for all x5 € X, for all I € T{xy), and for all dxg € T{xq, U),
ihe inequality
Hxo, U 0%,) < J(xo, U, ¢x,) {14)
is met,
3]
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Optimality II'. A policy pair (U*, ®¥*) with U*ET(X) and ®* € T(U*) is optimal
iff for all U &€ T(X), the inequality

Joxo. U* o® Y < Jlxn, U o )
ASad Vi ? ‘I’xO} AN LR Y 1 5
YxgEX, VOET(U), ¢x,EP (15)

is met.

The trajectory ¢, in inequalities (14) and (15) is the unique member of &* that corre-
sponds to the initial state xg. The trajectory ¢4, in inequality (15) is the unique member
of & associated with xg.
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