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ELECTROACOUSTIC MODELING OF MAGNETOSTRICTIVE
SHELLS AND RINGS: PART 1, MATHEMATICAL MODELING

1. INTRODUCTION

Long-range active acoustic surveillance of the ocean for submerged hostile submarines
requires a high-power, low-frequency source of acoustic energy. An important candidate
for meeting such a requirement is the free-flooded cylindrical magnetostrictive shell of
finite axial length. To judge proposed designs of these shells for antisubmarine warfare,
designers need a reliable mathematical model. The mathematical modeling of such an
electroacoustic structure is complicated by the multimode mechanical vibration of the
elastic shell and by the difficulty of calculating the acoustic loading due to the finite
length of shell and the free-flooded condition. Since elastic, magnetic, electric, and
acoustic fields are all coupled to one another, an effort to assemble them in one com-
plete whole and to convert the resultant model into a computer program for high-speed’
analysis of proposed designs poses a difficult problem. The approach adapted here is to
solve the elastic problem by thin-shell theory, the acoustic problem by a Helmholtz
integral formulatlon and the combmed elastic-electroacoustic problem by a set of linear
1ntegral equatlons The result of this approach is to be published in three parts. The
theoretical formulation is contained in this report as Part 1.

2. OPERATOR FORM OF THE CANONICAL EQUATIONS OF COUPLED MOTION AND
OF FORCED HARMONIC DRIVE

Historically, the continuum analysis of shell structures and the electric field—velocity
field coupling of piezoactive structures have each had separate theoretical developments.
In the last decade, several articles [1-4] have treated both fields together. When they
are so coupled, theoretical analysis is complicated by the addition of coupling factors
connecting the elastic field (considered as a continuum) and the electromagnetic field.
Conventional procedures of electroacoustic analysis [5] must be modified to handle the
increased number of electrical and mechanical ports introduced by the coupling of
multicomponent vector displacements with multiloop electric circuits and multipole
acoustic radiation. To organize the complexities of these composite systems, we restate
in this section the basic canonical equations in abstract matrix-operator notation.

Canonical Equations in Matrix-operator Form
Consider an electroacoustic transducer in the form of a multiport network () elec-

trical and! )](‘ mechanical ports). The canonical matrix equations of the coupled currents
I; and lmear velocity v; fields in terms of applied voltages E; and applied stresses pj are

Manuscript submitted May 14, 1974,
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HANISH, BAIER, KING, AND ROGERS

n

E, =)'% (b){I}+Z\I"{v} i=1,..., N (2.1)
=)
Z\p {1}+2_‘z('"){u} 1,0, (2.2)

where
{ f = gymbol of operand
zgjb) = matrix of blocked (electrical) impedanice operators (J X J1)
\I’:.j, \Ifﬁ = matrix of transduction operators (i X 1)

zj(l"” = matrix of specific acoustic impedance operators () X ).

All matrix operators are assumed to contain differential and integral components. Next
assume that applied stress pj is generated by acoustic processes, so that

(g) Z z(R){u Y,  j=1,...,M (2.3)
where
g - ,0) _ (D)
p; p; p; (2.4)
and
z}iR) = matrix of radiation impedance operators () X )
p](. 0) = jocal acoustic pressure due to acoustic field sources in the absence of the
transducer
p(D ) = diffraction field due to interaction of p(o) with the transducer considered

! rigid.

Substituting p; of Eq. (2.3) into Eq. (2.2) and collecting terms in v;, we again condense
notation and write the mechanical equation of motion.

n
2 2ty = p{® - pP) - Z\Ir{z =1,..., M (2.5)

=1

Where
-~ R .
Zi = 20+ 2P, mx . (2.6)

?
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Here %J(,m ) includes internal mechanical damping operators. Solving Eq. (2.5) for v; and
Eq. (2.1) for I;, we find

m

; Z(Zij)_ll%](-o) p{”) Z { k} i=1,..., M (2.7)

=1

<
i

s E ] s e
q=1

s=1

An alternate form of the velocity equation is obtained by substituting Eq. (2.8) into Eg.
(2.7):

mom non -1 '
=30 Ha) Zy) {“’) DI quk(z;’;)) {Eq}}, s=1,..., 0
k=1 q=1

=1 j=1
(2.9)

where

monon ‘ 4 ‘
-3 Y. @™ [\y,-k(z,gy) qf;s] ,  ds=l...,M (210)

(Hs,-)'l(z,-j)_1 = velocity s due to pressure'j.

Note the following significant groupings of symbols:

_1 .
vj; (Zl(é’ )) \I’és = pressure j per current i per voltage g per velocity s (2.11)
(Hsi)'l(zij)_1 = velocity s per velocity i per pressure j (2.12)
v, (20)" = p j ' 1t 2.13
i\ Zig = pressure j per current i per voltage q. (2.13)

From Eqgs. (2.5) and (2.9), we identify the following significant quantities:

]

Zij open-circuit specific acoustic impedance (2.14)

short-circuit specific acoustic admittance. (2.15)

n A~ -
S HEY T
i=1
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HANISH, BAIER, KING, AND ROGERS

The acoustic pressure at the surface is seen by Eq. (2.3) to be
M
= _Z z](.iR){vi}, i=1,..., M. (2.16)

In the steady state, radiated power W will be determined from normal surface velocity

v; and acoustic pressure p;:

m
W = Re) §v¥p;dS; = Re Z $uZ 2, }ds; (2.17)
J ij=1

in which rms quantities are implied. The total electrical impedance when p( ) p(.D )

J
vanishes is

e) .. b
Z f]) ( ) - Z ¥ (Z1g)” \If (2.18)
lLq=1
The meaning of the significant grouping on the r.h.s. is

M
Z \I';.I(Zlq)_l‘l'qj = motional impedance
lL,g=1

1

voltage i per velocity ! per pressure g per currentj. (2.19)

To obtain a receiving response, let p(D ) and Il. vanish to give
L 5 -1 (0
v; = ) (Zy) P @ =1,.00,m. (2.20)
=1

Substituting this into Eq. (2.1) and assuming that the receiver transducer is electrically
terminated in an impedance %E.jte

T
_ t ¢ -
E, = 'Z zgq@{lfle)}, i=1,..., M (2.21)
=1
or
N -1
09 -y (zg?) E), L. 0. (2.22)
=1
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Hence, in Eq. (2.1),

n n
- b 'od . -1
e 3 ) w3 v i)

-

ip=1 jq=1
or
n oo
=215, Z z"”@‘“’) 2 \I'i}(zjqu{pf,"’}. (2.23)
=1 =1 J,q=1

When the terminal impedance is infinite, the open-circuit voltage is

Z Z,q)‘l{pff)} . (2.24

jq=1

The electrical admittance Y;; upon transmission is obtained from Egs. (2.1) (2.7) by
letting p{®) and p{”) both vanish. Thus,

oW RN
E; = 2P} + Z 2. 0. Wi(Zig) " {~ s (13}

=1 g=1 s=1
or
xn ® o .
=2 z -3 > W (Zrg) ¥ )
1 k=1 g=1
or
N
= 2L )
j
so that
M . -1
= -1 (b) ' (7 -
Y, = (L) [:zij - Z Vi (Zig) \Ifq]] ) (2.25)
q,=1 '

Equations (2.1) to (2.25) complete the statement in abstract matrix notation of the
canonical equations and electromechanical behavior of a multiported collection of electro-
acoustic transducers loaded by acoustic forces. Formulation of these matrix relations in
the case of magnetostriction transduction is briefly discussed in Appendix C.

AITITSSYIONN
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3. GENERAL FORMULATION OF THE PROBLEM OF A VIBRATING MAGNETOSTRIC-
TIVE SHELL

The formulas derived in Sec. 2 provide a basis for applications to specific shell structures
and specific piezoactivity. We now choose the geometric configuration of the shell to be
of such uniformity and regularity that its surface can be described by a smooth function
of two coordinates and its piezoactivity can be considered linear in the mechanical
strains and the applied electromagnetic fields.

Equations of Forced Harmonic Drive of Shells in Operator Form

Let the time dependence of forced drive of shells be exp(jwt). The equations of
motion in operator form can then be written '

> &iUix, @) = B(x,w), i=1,2..,0" (8.1)
J
where
i = index number of mechanical ports
£.. = dyadic elastodynamic operator which converts displacement into force per unit

area (dimensions, N/m3)

U. = shell displacement vector. In a single cylindrical shell Uj has components uy
(axial), ug (tangential), w (radial) (dimensions, m)

P. = surface force per unit area (dimensions, N/m2) in the ith mechanical port.
Operator ,Eij can be written as a sum of stiffness K;; and inertial Jii;; operators,

£. = Kij + mij (3.2)

i

where f)llij is generally defined'to cover the case of composite motion in all degrees of
freedom, including rigid body motion. Internal mechanical losses will be discussed later
in this analysis.

First assume that Eq. (3.1) can be solved by an infinite series of normal modes
Y;(q;x) of the unloaded shell:

[~}

Ufe;, %0 ©) = ) Al 0¥ (@2, %), =L, (3.3)
q=1

Since the normal modes are orthogonal with weight { over the reference area of the shell,
it iz obvious that
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PR CACREMTDRICEES Y,~(q;x1,x2)>
Algiw) = — (3.4)
Z(Yj(q;xl, x2), §(x1;xzm(q;x1,xz)>

J

in which (, ) denotes inner product integration over xi, xg, i.e., over shell area. In the
numerator of the r.h.s. of Eq. (3.4) U; is unknown. To find it we multiply (take the
inner product of) Eq. (8.1) by Y; and integrate over the area of the shell. The result is

( PR RACHERID) Y,.(q;xl,xz)> - <P,.(x1, %93 @), Yi(q;xl,xz)) . @5
J

To solve this equation we assume that component operator Xj in £;; is self-adjoint and
has the eigenvalues ~A2(g) (dimensions, sec™2); that is, we assume K;; to be such that

IR LCTENE N RN CHOCHER) SCENEN (3.6)

J
and

= = —-— 2
(L%,0, %) = (0, D K,¥,) = -, %), (3.7)
J i .

In addition, in the first approximation we éssume

mij = mEﬁijw2 (dimensions of My, N-sec2/m3) ;

that is, we neglect rotary inertia and rigid body motion and take the shell to be homo-
geneous. Using Egs. (3.6) and (8.7) in Eq. (3.5) leads to the statement that

(U, mp®Y)) - (U, {A%Y) = (P, Y)). (3.8)

Restricting attention to a thin shell, we know (Krauss [6] page 365) that the weighting
function { = mg = pb, where b = shell thickness. Thus,

(Pyxy, xy3 W), Yi(g; 2y, x2)).

(U, %53 @), Y(€521, %)) = - mglA*(q) - w?]

(3.9)

Equation (8.4) then becomes,

AITITISSYIONN



HANISH, BAIER, KING, AND ROGERS

-y (B (x1, x2; ), Yj(g; X1, %2))

Alg;w) =
() T mglA2(q) - w2IN(q)

(3.10)

where

N(g) = ) (Yi(a; %1, %3), Yj(q; %1, %2)). (3.11)
- |

To include localized forcing functions (P;), the integration required in the numerator of
Eg. (3.10) can be restricted to a particular area of the shell, say

dS = dS(Ep;s Epy) -

Define an average (forcing) force per unit area p and a forcing integral Y° for that
particular area, by the relation

RACHNENTORDD (Pj(zAl,sAz;w), Yj<q;sA1,zA2)) L (312)
J

Thus, Eq. (3.3) becomes

= F(w;EAISAz)W(q;EAI,EAZ)Yk(q;xl,xz).

U ’ ’ 5 = -
el %o lEay £, ) (; mp[AZ(@) - WPIN(2)

(8.13)

This is the k_component of displacement at x due to a forcing function at A EIN r EA, )
The symbol p can be understood to be a surface force of either nonacoustic or acoustic
origin. In the latter case, we can define an acoustic surface radiation operator § such
that

Pay(wibp »Ea,) = GlEy 2 Ep [En 2 Ep, s @NOUL(EL L E,) - (8.19)

where U, is a normal displacement. Substitution of Eq. (3.14) into Eq. (3.13) thus
provides a solution to Eq. (3.1) in the case of acoustic loading.

An alternative procedure for handling acoustic excitation is to return to Eq. (3.10)
and expand the acoustic forcing function (Pi( 4)) in the modes of the free-free shell.
This procedure is an approximation in which the normal force loading on the ends of
the shell is considered negligible compared to the loading on the sides of the shell (thus
satisfying the free-free condition). Thus

[+

PiayEa, En 3 @) = ) TGk L Ep |Ey S Ep 3 Y556y ) Al @) (3.18)

s=1
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in which A is the modal expansion constant. Equation (3.10) then takes on the following
appearance (for the acoustic case):

| - (ij(éAI, £, [En,  En @) Zl Vs £y > Ep AL @), (@5 o Ep ))
Alg; w) =

m, [A%(q) - w?1N(q)
(3.16)

(For simplicity we have taken only one direction (j) to be the important normal direction.)
This equation shows that the expansion coefficient for each ¢ mode (namely A(q; w)) is
to be determined from a knowledge of the expansion coefficients of all the (infinite
number of) s modes (namely A(s; w)). A solution of Eq. (3.16) therefore requires a
solution of a set (theoretically infinite, but practically finite) of simultaneous equations

in expansion coefficients A, because the numerator eigenfunction products are not
orthogonal.

A third procedure for including acoustic excitation is to assume that the pressure
distribution on the shell exactly matches the shell velocity distribution and to define
from both of them a set of modal radiation impedances. Since this matching can be true
only for a very limited number of geometrical configurations of the shell (at most, only
for surfaces separable in the Helmholtz operator) this method is very restricted in applica-
tion (see Appendix B for details).

We next consider the case where the vibration of the shell structure is damped
internally. To account for modal damping we allow the operator L jj to have an additive
term @U (w), and define a three symbol damping quantity R;,, (q; s; w) by the relation

Z D (@) Yj(q; %1, %2)] = J Z Z Rim (¢; 5 ) Y (s; £1,%2) . (3.17)

m=1 s=

This equation expresses the hypothesis that all the s modes Y}, (s) are coupled by R;;,
to contribute to the ¢ mode, and that in any one mode (viz., when g = s) the damping
entity R;,, couples all orthogonal displacements (i.e., couples Y7, Yy, and Y3). It is
conventional, however, to consider each mode to be damped only by a modally defined
constant 1(q) and to omit any effect of intermodal coupling due to damping. This con-
vention is formulated in the following way:

2 DY (gs %y, %] = Jnla; ) Yilg; 21, %2). (3.18)

The eigenvalues of the stiffness operator (i.e., A2) are thus converted by damping from
real numbers to complex numbers. In place of A2 we then write Alz) (damped eigenvalues),
in which

A2 = A%(g; W)[1 + Jn(g; w)] . (3.19)

9
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In the theory of the vibration of elastic structures a complex eigenvalue may be interpreted
as a complex stiffness (a complex Young’s modulus).

The elastic structures used in efficiently designed electroacoustic devices are always
selected to have small internal damping. We assume small internal damping in all sub-
sequent analysis. As a corollary to this assumption we shall consider that all mode
shapes with damping do not differ in the first approximation from mode shapes without
damping; i.e., a first-order change in the eigenvalue results in a second-order change (at
most) of the eigenfunction.

In the next section the arbitrary number of ports in canonical Eq. (2.2) and mechanical
Egs. (3.1) to (3.19) are particularized to cover the shells treated here.

4. ELASTODYNAMIC EQUATIONS OF MOTION WITH FORCED ELECTRIC DRIVE

We first apply canonical Eq. (2.2) to the case of a vibrating shell having one electrical
port and three mechanical ports. Let (1, uy, w) be the displacement vector of a thin
shell with components u;, where u,= axial, uy = tangential, and w = radial. Let T be an
elasticity differential operator defined by the elastodynamic equations of motion:

3
Zﬂijuj = pbii, + P, i=1,2,3 (4.1)

=1
where
p = mass density of the shell
b = thickness of the shell

Pi = total external force per unit area acting on shell.

Explicit forms of 7;; are found in Flugge [7]. Defining ks A;; to be “foundation” stiffness
and damping dyadics respectively, we write the total forcing function in the theoretical
form

3 3
P, =p, + Z Ry * injuj (4.2)

j=1 J=1
where p; is an individual external applied force per unit area (plus equivalent ‘“‘electro-
mechanical stresses’) other than foundation stiffness and damping. Note that in general
the latter forces couple all displacement components. The components of p; are written
with negative signs, in view of the definition of P;:
p; = (-p,,-P,, -P)  (dimensions, N/m?). (4.8)

Here the radial force p is positive outward (along the normal pointing away from the
center of curvature of the shell).

10
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To solve the forced-vibration problem of a thin shell we adopt cylindrical coordinates
r, 0, x and, suppressing r because the shell is thin, represent u;(6, x) by a spectral decom-
position,

u; Uln(B,x)
u, = Uy = ) U, (6,%) -, (1) = 3 U, (6,%)q, (D), (4.4)
n=1 n=
w Wn(0,x) !

where U}, is the (dimensionless) displacement vector in the nth mode of free vibration,
with natural frequency w,, determined by the eigenvalue solutions for given boundary
conditions, and g, is an amplitude of displacement. It is assumed that these modes
satisfy an orthogonality principle. By definition of free modes with no dissipation,

3

- 2 .
Zni].an = -pbw2U., i=12,3, (4.5)
1

Since it is important here to include structural damping, replace 7;; by ;T-ij, which is
defined to contain damping terms, and define a perturbed eigenvalue @, to be the
solution of the equation - ' ‘

3 3

— — . .
Z 7TikUkrz - wn<prin *+ jpb Z fDnmUim>’ i=128, (4-6)
k=1 .

m=1

in which D,,, is the structural damping dyadic and j =/~1. We assume that this damping
couples all modes, particularly in the higher orders. For the lower orders (which are of
chief interest) we assume an internal friction of Solid Type II [8] and write the damping
dyadic as an identity dyadic multiplied by a frequency dependent -damping factor n,, viz.,

-@nm = annn. (4.7)
From this we have
-2 _ 2 .
w=wl1+m),  In | <<1 (4.8)
w Rnwn
n, = — (4.9)
w K
n n

in which (for purposes of defining the damping only) the modes are considered to be
single-degree-of-freedom systems having mechanical resistance R,,, and stiffness K,,.

Substituting the proposed solution of Eq. (4.4) into Eq. (4.1) we arrive at

11
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n=1 k=1 =

o 3 3
Z{prméjn(t) + Z N U, 4,6 + [pbafuin +ZkilUlnqn(t)] } +p =0, i=1,283.
(4.10)

To isolate individual modes we must use the orthogonality conditions of the modes of
free vibration of a thin elastic shell. This is given by [6]

3
ZfUinUimdS(B,x) =5 N (4.11)
i=1
where
N = f(lUln 12 + ]Uzn 12 + IWn 12>dS(0, x). (4.12)

Thus we form a dot product of the spectral Eq. (4.10) with Ui(m) and integrate over
the area and add the three equations to obtain

oo 3 3 3
2. b {«'jma) 2 f Uim UindS + dm(t) ) )~ j Nite Ui UpndS
n=1 i=1 , k=1 i=1
3 3
+ gm(t) Z fkilUlmUindS
1=1 i=1

[\/Joa

Fam®) Y pbis2 f U,-mUmdS}
=1

I=

3
i=1 ’

It is seen that the foundation stiffness and damping couple all modes. Examination of
Eq. (4.13) shows that mode isolation is possible only if

k. =k.=k i=1,23 (4.14)

il i

Ny, =N, =\ =123 (4.15)

While such conditions are extremely restrictive, their use where justified makes Eq. (4.10)
tractable. Adopting these simplifications and applying the orthogonality principle, we
arrive at the statement that

12
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3
Y. [P0, + N (063 + R, (0 + Aq, () + pbi, (O] = 0.  (416)
i=1

Let the time dependence of the forcing functions be harmonic, viz, exp(jwt). Solve for
gn(w):

3
- Z fpiUindS
=1

qn(w) = — (dimensions, m) , (4.17)
D (w)
n
— AP Nk
D (w) = N,pb{w? - w® + jw— + — (dimensions, N/m). (4.18)
n n pb 0b

Thus the vector displacements are given by the product of known modal shapes and known
amplitudes, namely,

ul8, x, w) = ) U, (8, %), (). (4.19)
i n=1

Point and Band Influence Functions
We now specialize the forcing function in two ways: point and band. In the case of

a point forcing function we assume that the forcing function is delta-distributed in 6, x,
so that '

p; = (&, - 0)8(%, - x) (4.20)
where
fl. = (—fl, —f2, —fw) (dimensions, N). (4.21)

Thus,

3 3
-y fpl.Ul.ndS -foi U, 8(¢, - 6)5(&, - x)dS(6, %)
=1 1

U Ey) + U, (6 + £ W (£, 6).  (4.22)

The most general formula, valid for excitation in all orthogonal directions, is therefore
given by

*© 3 (7. )0 ,
uf0, x5, 8) =) ) )0, %181 £5) , i=1,23 (4.23)

n=1 j=1 D, (w)
13
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where

FU@U (5 U, (@U, (8) U, (W, (&)
Vi = | U, @U, (®)  £,U, @U, &) f,U, @W. (&) |. (4.24)

yn w

LW (@U, (5) W (@)U, (5 [, W (@W (&)
Here «, £ are surface location vectors with cdmponents a = (o1, ag); and £ = (&4, &;).

When the point forcihg function is in one direction only (when only f;, fs, or f,
are operative), the following influence functions can be obtained:

U, (a)U
e i g, («l§) = Z M (dimensions, m/N)
f n=1 D, (w)
N /4 U
-ﬁ = gz(alé) = Z ——%M (dimensions, m/N)
fq — D (w)
W, (W (£)

I
I

il‘: g,(l5) = ). (dimensions, m/N) . (4.25)

S D)

All the above equations represent point-excited influence functions. In the case of band-
excited influence functions we proceed as follows. Let p;(6, x) be a typical component
of driving pressure and define it to be a rectangular function, that is, a function that is
zero everywhere on the cylinder except across a band A, units wide in x and A, units
wide in 6. Thus

Here E(EAl, Eng, Aq, Ay) is the average forcing function (N/m2) in a band of width
Ay in x and A, in 6 centered at the surface coordinates x = 5, 0 = £p9; fi(x, 0) is the
nondimensional variation of p;(x, ) with x and 6; and Il(a - blc) is a displaced rectangle

function of unit height and base ¢ centered at a = b. For bands of width small enough
we take f(x, 0) to be constant with value of unity. Returning to Eq. (4.17), we write

3
I-= _priuinds = fplUlndS * fszZHdS +fp3wnds, (4.27)
=1

Selecting one term (say the 3rd) on the r.h.s. for explicit integration, we define an
integral mode shape Wg by integrating over a cylindrical surface of radius R:

= 7 0
fp3WndS - p3(£A1a£A2, Al’Az)Wn(EA1’£A2’ A1)A2) (4'28)

14
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where

WOk, Exn AL, A) = & F.(x, O)I(x - Ay TI(O - 14,) W (x, 0)Rd0d
néarr £agr A0 Ag) ffax M = £418,) THO ~ €4, 18,) W, (x, 0) (:29)

Defining U(l)n, Ugn in the same way, we write
I=Dp,US +Dp,Us +DW. (4.30)

The component of displacement u; due to p;, py, P3 can now be written in the form

where

) i U, 0, )U, (15 p,)

(0, x1&, ., = =
gl]( X EA]_ EAz) & Dn(w)

(4.32)

The symbol & (dimensions, m3/N) represents the displacement in the ith port due to a

unit forcing function acting in the jth port. They are therefore band-type influence
functions. They will be used later in this analysis to solve the problem of an axisymmetric,
force-driven, circular cylindrical shell. Note that in thin-shell theory the word “displacement”
unless otherwise noted, means “displacement of the reference surface of the shell.”

Electromagnetic and Acoustic Forcing Functions

We now consider the problem of forced vibration of a piezoactive shell submerged
in water when the forcing function is restricted to a sum of a piezoactive excitation
ppy and an acoustic excitation p,. Thus we write

p (4.33)

i = Piemy t Piay
The form of p; £M) May be obtained from Eq. (2.2) by notmg that forcing functions differ

from response unctlons of similar form by a change in sign. For the case of magnetostric-
tive coupling, the appropriate operators in Egs. (2.1) and (2.2) are

VLY = ¢ ¥ )ds;
2(M{} = § 2{M( )ds;.

Thus, in the steady state,

p0,x) = Z V0,0, 0,%) - joo D G0, %15, &)y (€1, E,)  (4.39)
I(N)

15
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where §;; is the acoustic Green’s function (i.e., acoustic pressure gradient per shell
reference surface velocity) for the domain and boundaries to be specified, UyN) is the
normal component of displacement of the reference surface in the Ith port.

The total (vector) displacement due to this type of forcing function may be obtained
by using Eqgs. (4.31) and (4.34) together:

u(000%0) = )0 Do 8y0p x5 1Epy 0 Eng) D (W (Brgs Enp, (B Eny)
q

! EAI’EAZ

DI RCONENIVE IS DI

R INE IV s $a1:a2
X G (a1 EnnlSars Sa)u(aqs Sa0) (4.35)

in which the subscripts J, i, r, g, s designate ports, and ug in the second term of the r.h.s.
is to be interpreted as a normal component of displacement. The summations over £,
£A9> $A1> Ao denote finite-element areal integration.

Equation (4.35) is a finite-element approximation of an integral equation in the
unknown velocities u;, u;. The principal factors in this equation are the entities g;;,
Vig> Grs- The influence coefficient g;; can be determined from a solution of the problem
of forced vibration of a shell by a point or band forcing function. The transduction Y,
is a matrix of electromechanical coefficients which convert currents pertaining to the
gth port to force per unit area at the /th port. The form of these coefficients depends
on the choice of independent variables in the canonical set and on piezoactive material
constants. The radiation Green’s function §,, is calculated from a solution of a delta-
driven Helmholtz equation in the acoustic pressure, for the domain and boundary con-
ditions chosen. If 0, x are discrete, Eq. (4.35) reduces to a set of simultaneous equations
in the unknown displacements u;(6a1, xA1)-

Determination of g;;~1t is seen from Eq. (4.32) that g;; is constructed from the
modes of free vibration of a dissipationless shell (i.e., from U;,). To find these modes
we consider the free vibration of a thin shell and choose to investigate free (time)
periodic waves of arbitrary wavelength which make up a surface vibration pattern. To
find their shape we let M be the vector displacement with components M;, where
M, =U,My =V, Mg = W, and assume that the equations of motion can be formulated
in terms of a differential elastodynamic operator £,-j. The eigenvalue problem of free
vibration is then formulated in abstract form by the following equations in a selected co-
ordinate system:

3
In the continuum domain: Z Eiij = 0, i=1,23 (4.36)
=1

16
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3 3
On the edges: B,M, AC. M., i=1,273 (4.37)
TR T
J=1 JFFl .

where B;;, C;; are differential operators and A; is an eigenvalue of X ;; ij (see Egs. (3.6) and
(4.6)). ’f‘he solution of this problem is, in general very difficult to write for arbitrary
coordinates. To reduce difficulties we select a system such that Eq. (4.36) is solvable by
the method of separation of variables. Let 0, x be such coordinates. Then, for separable
functions ©, X we write :

U V,W < ©(0)X(x)d“". | (4.38)

A shell of particular interest in this analysis is a circular cylinder of radius a and thickness
b (b << a), whose length is finite. Thus we choose ©(0) to be sin gf or cos g8, and
X(x) to be exponential, i.e.,

sin q0 ox
UVv,wn exp[—r—+jwt], r=12...,Q. (4.39)
cos q0 a

Here «, is a separation constant, and a is a reference mean radius of the cylinder. For
the most general case it is known [9] that @ = 8. Substitution of Eq. (4.38) into Eq.
(4.36) changes the differential operator Q,-j to an algebraic operator L;;. Thus the
eigenvalue problem reads

LM = 0 (4.40)
or

3

Z L(a,q, @M, =0, i

1, 2, 3; 2
1 ¢=1

’2""’w‘ (4.41)

To obtain nontrivial solutions we solve the characteristic equation

. ILij(ozr, g, w)l = 0. (4.42)
This is an eighth-order equation whose roots «, give the allowed values of the separation
constant o which satisfy the equations of motion of the shell for selected values of
frequency w and gq. The roots are expressed in terms of the original elastic moduli,

wave numbers, etc., of the shell. When these roots are found one can substitute them
sequentially in L and form a series of 3 X 3 matrixes:

ABC
Lr= DEF| , r=12...,8. (4.43)
GHI
r
For each choice of r we then find the amplitude ratios by the cofactor method:

U:.V:W « cofactors of any row of Lr . (4.44)

17
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Of the three displacements we next choose the radial displacement W to be our reference
displacement, suppress the time dependence exp (jwt), and write it as a sum of exponentials
with arbitrary amplitudes:

8 o X
W = }: W,, W, = C exp (J_ . (4.45)
r=1 a

Using the amplitude ratios determined from Eq. (4.43), we can construct U and V as
follows:

8 (u

U=y (—) W (4.46)
r=1 W r
8

V= };1' (%) W (4.47)

We now fit the proposed solutions, Eqgs. (4.45) through (4.47), to the boundary conditions.
The amplitudes C, constitute eight unknowns. For a finite cylindrical shell there are two
edges with a possible maximum of four boundary conditions per edge. Thus we can

write an 8 X 8 matrix equation in the form

[S(B, w)1 [C] =0 (4.48)
in which parameter 8 = a,!/a. To obtain nontrivial solutions we set
IS8, w)l = 0, (4.49)

which is a transcendental equation with an infinite number of roots
g = I, m=12,...,0, (4.50)

Hence for a given frequency w,, one finds a,, [,, which simultaneously satisfy Egs.
(4.49) and (4.42). The length [, of the shell is the length required for the free mode

of vibration W,, to occur at w,, [9]. Alternatively, one can fix the length I = /- and
seek a value of w,, which simultaneously satisfies Eqgs. (4.42) and (4.49). This method is
required for the purposes of this analysis and will be adopted. Thus, for an infinity of
choices w,,, m =1, 2, ..., «, we find an infinity of mode shapes W, (for fixed length
l) which can then be used to calculate Eq. (4.45), so that

8
W q) = )" w, (), q=01,..,0 (4.51)
r=1

18
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8 sin qf
W (xq) =) C™ exp <M> ( > (4.52)

=1 lf cos qf
From this reference displacement one can then construct U, V by means of Eqgs. (4.46)
and (4.47) (to within a scale factor). When the modal shapes U,,, V,,, W,, (or Uy,,,
Ugm» W, ) are determined, one can construct the influence function

from Eq. (4.32).

5. FORCED VIBRATION OF A FREE-FLOODED MAGNETOSTRICTION RING

We consider in detail the axisymmetric case of an electrically driven free-flooded
magnetostriction ring transducer of mean radius a and (transverse) rectangular cross-
section submerged in water and radiating sound into an unbounded medium. There are
two mechanical ports (for radial and axial velocity). The axial coordinate is x, and all
axial variables are labeled subscript 1. The tangential coordinate is 6, and all tangential
variables are labeled subscript 2. The radial direction is labeled subscript 8. The ring is
wound toroidally with N turns of wire so that the current matrix has one electrical port
I, and the resultant magnetic flux matrix is given by flux ®,. Dividing the ring surface
of thickness b into J bands of equal area 2meA; on the lateral surface and K annular
bands of equal width on the top and bottom surface, deleting 8, then designating k&, ! as

running index for bands, we reduce the components of Eq. (4. 35) to the set of simultaneous

equations in velocities ul = jwuy, w = jow, as follows:
J
: =_Y (u)
i, (k) jwg, gk D4, (O, (1) + S8
1

J+K
Z Z jog (B, DS( (), R =1,2,...,K (5.1)
I

J .
(k) = - ) jwgy, (k, DYy (DI, () + ST
i

J J+K

=)D g (e DG (), k= 1,2,...,J (5.2)
1 r

where vy (r) is the normal velocity on the rih band and Sp is a structural damping, present
only in water, due to “foundation forces” (method of support, etc). It is convenient to
calculate Sp by defining a (real) damping constant R as follows:

19
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. J .
G = -3 gy 5k R{VT()
r

: J o
s = - Z jwggq(k, NRMIW(r),
r

The solution of this set of simultaneous equations yields all the surface velocities due to a
constant current drive. When the current drive I, is replaced by a voltage drive E; we write

= ple) _ )
E1 E1 1Z11’ (56.3)

in which Z(gl) is a “generator” internal impedance. Substituting this into Eq. (2.1), we
have (for J mechanical ports),

m
(b) /
E, =2z{%1 + ngwijujdsj. (5.4)
1

We then solve for I; and find

_E sﬁw’mwds + 6 ¢11u1ds
I = Z(0) 7(0) (5.5)
11 11

Thus, for constant voltage drive the unknown reference surface velocities are found by
solving the following set of simultaneous equations:

J J+K

tiy (k) + Z Z joog 4 (B, DG, Yoy (r) + SW

7 J w(r)
=2 2 2mal (Mg, 5 (k, DYg; (D5 () =5 5
il r 11

()
ook 5k, DV (D), (5)2mals) 8 (5) s (,,) leg13(k z)w31(l) (,,)

=

bM;;q

kR=1,2,...,K (5.6)
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J J+K

(k) + Z Z jeog gy, DG Moy () + W)

J J ( )
ZZ 2mal  (r)jeg g, (k, l)¢31(l)¢13(7’) O)
1l r

11
J K '
it (s) Yy (DE,
-2 2 2ma(Ag ()i g (b, gy (V3 6) s wag33(k ) 31(b) :
I s 11 1
R=1,2,...,J. (5.7)

The two sets of equations, (5.1)-(5.2) and (5.6)-(5.7), are the basic results of this
analysis, since a knowledge of the surface velocities determines all dynamic behavior of
the transducer. In the next section we specialize the parameters which enable explicit
numerical solutions to be obtained.

Formulas for the Prediction of Performance of a Free-Flooded Magnetostrictive Cylindrical
Shell

In the first approximation the electromechanical constitutive relations, referred to a
three-dimensional coordinate system x;, are given by the following linear set, which is
valid in the low-frequency range:

T, = chsy - KB,  j=1,2...,6 k=123
H=-n S +@)'B, 1=1,23 m=12...,6 (5.8)
where |
T, = mechanical stress (N/m?)
Cg = elastic strain/stress moduli at constant induction (N/m2)
hl(]:) = transposed piezomodulus relating stress to induction (N/Wb)
B, = magnetic induction (Wb/m?2)
Hl = magnetic intensity ((A)/m)
hlm = piezomodulus ((A)/m)
(uS )_1 = inverse permeability at constant strain [A/(Wb/m)].

For a toroidally wound coil,

21
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k.. uSbNx \%
Vig = Vg = (5.9)
13 81 21ra2 vol. vel.

where x is a complex eddy-current loss factor (x = Xg - Jjx;). The impedance Z(lli) has
explicit form
. 2.8
2(8) = JwN“u”xbl

v
(v = B(® + joL® <-> (5.10)

2nay A

where [ is the axial length of the shell and v is a leakage coefficient. An explicit form for
the leakage coefficient ¥ must be estimated from experiment (plus calculation, when
advantageous). With the substitutions of Egs. (5.9) and (5.10) into Egs. (5.1)-(5.2) and
(5.8)-(5.7), we complete the formulation of the acoustic-mechanical system in terms of an
admittance-type influence function. There is another type of influence function, namely
the impedance type, which plays a significant role in predicting the performance of the
transducer. To obtain a formulation in terms of impedance, we first invert the influence
matrix g;; to form the impedance matrix %§j'"), such that

(M) = (iorg )1
2" = (g™ (5.11)

Then we multiply Egs. (5.1) and (5.2) by this inverse* and sum the running integer k& over
J sidebands. Noting that

d
2 2iMa BIZ[ kR D1 = 8(g, D (5.12)
k

and restoring the forced drive pl8) of Eq. (2.8) due to incident and diffracted acoustic
waves, we see that Eq. (5.1), wflnich deals with endbands, takes the form

dJ J+K J
Zk:zg';”(q,k)al(k) + 3 8 ey + ) 2(3Na syts) = -y, @1 + ),
g=12...,K. (5.13‘)

Similarly Eq. (5.2), which deals with sidebands, takes the form

J J+K J+K
Z Zg’g)(q, kyw(k) + Z Glg, rvy(r) + Z)‘Zsl(q’ t)lll(t) = -y, (), + pgg)(q) ’
k r t A

g=12...,J. ’ (5.14)

When the drive is constant voltage the impedance formulation of Egs. (5.6) and (5.7)
becomes

B e

*The matrix g;; is invertible if and only if the number of modal functions used in obtaining 8jj is greater than or
equal to the gotal number of reference surface bands used to describe the shell.
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J+K J+K
Z z({n)(q’ k)u (k) + Z G{q, N, (r) + Zzla(q, s)w(s)
k

J ()
-2 Y @V (), 2mad (1)
r le '

' i‘l(t) (&)
- V11 @V (2me()A(6) 55 = wn(q) (b) + p¥q),
t 11

11
g=12...,K (5.15)
for sidebands, and
J J+K J+K
> 2 (g, kyi(k) + Z G(a, vy (r) + Z Z,, (g, kYi(k) (5.16)

. —_—

J , w(r)
=) Vg @V 5()2maA, (1)~
r Z11

(1) _
Zw31(q)w11(t)2wa(t)A (1 Fol w31() (b) + p¥a),

qg=12,...,J

for endbands (where we have again restored p{€)(g)). The solution of the above-developed
basic Eqgs. (5.1), (5.2), (5.6), (5.7), (5.13), (5.14), (5.15), and (5.16) enables us to write
the principal formulas needed for the prediction of the electroacoustic performance of a
free-flooded magnetostriction ring vibrator. Assuming all velocities to have been obtained,
we proceed to determine the following quantities.

Constant-Current and Constant-Voltage Specific Acoustic Impedances—Setting § = 0
and neglecting endbands, we find from Eq. (5.14) that

> 235(a, kytk) = pPEa) - Vg1, (a) (5.17)
k
where
.C. = (m)
Z33(a, k) (g, ¥)
= constant-current specific acoustic impedance. (5.18)
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Setting §= 0 in Eq. (5.16) and neglecting endbands, we find that

J : V31 (@E, (@)
2. 258 (a, kyw(k) = pE(q) - B Ol (5.19)
k 11
where
Vg (@¥7,(n)
s.C. — rO.C. 31 13
Z33 (q, k) - Z33 (qa k) - T
11
= constant-voltage specific acoustic impedance. (b.20)

Pressure Field and Source Level—Letting p(8) = 0 we solve Eqgs. (5.13) and (5.14) for
w)(k) and u{D(k), ie., for given v{)(k), and find the true surface velocities Uy by using
thickness correction factors (see Sec. 9). Then the acoustic pressure at field point x is seen
from Eq. (2.16) to be

2(J+K)

px) = ) G(x, k)0 (k) (5.21)
k

where G is the true surface radiation Green’s function (see Sec. 9). The acoustic pressure
at x due to constant voltage (pp) is similarly obtained by solving Eq. (5.6) for vg with
p(&) = 0, then applying thickness correction factors (Sec. 9) to find Oy, and finally writing

2(J+K)

P00 = > GO, ROy (k). (5.22)
k

The transmitting current response ((N/m)A’l) at a far-field point |x| = o0 is given by

2(J+K) 0 1{7
Transmitting current response = lim }x| Z G(Ix], k)I—— k) (5.23)
lxl>oo o= 1

where Oy (k) is the surface velocity of the Nth band (both radial and axial) due to unit

current excitation, and G is the actual (not reference) surface radiation Green’s function.
For voltage excitation () lf,(k)/I is replaced by Oﬁ(k)/E. We note again that true surface

velocity O N differs from reference surface velocity v,,. A discussion of this is found in

Sec. 9.

Electrical Input Impedance—From Eq. (2.18) we write the ratio of the voltage E;
due to the current I; in the form Zl(le ). Since we consider only radial (subscript 3) and
axial (subscript 1) volume velocities, we have

(©) = »(b) . . . .
Z3' =20 - nZidue - Uh 2T - VisZ3ivsy - WisZ3iva,
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Assuming that i = 1, i.e., that the only voltage is E;, we write further, for / bands,

i 2naAY, iy () i ¥, (DW()2maA(l) 5.24)

7(e) = Z(b) 4

in which &; and W are determined from Egs. (5.1) and (5.2).

Receiving Response—We return to Egs. (5.17) and (5.18) and solve for the velocity
w(P(0))(k) when the current I (q) vanishes, and when the rigid-body diffraction pressure
(p(P)) also is negligible. Then, assuming the receiver transducer is electrically terminated
in an electrical impedance Z&), we write I, = - E,/Z{) in Eq. (2.1) and solve for E, .
Thus the receiving response is given by

E ) Ly (OWD2raA() K W ()ik)2ma(k)ACk)

_}_=______; +Z

g b
p° Z(ll) + Z§1) p0 - pO

(5.25)

The open-circuit receiving response is then given by the condition Zggl)->°°.

Electrical Admittance—~When E; = E, and I; = I, then from Eq. (2.1),
2
By = 200 + ), wy{d= 6 uhas
1

where v; is the velocity at the mechanical port )ﬂj. Dividing by E; and forming the ratio
I,/E; = Y{%), we write

J , “(E ;.
Y(ﬁ) _ (11, - Z Y 13(’)w( N)2maA(l) ) i V) ilk)2ma(k)A(R) . (5.26)
zt%) E E
11 =1 1 k=1 1

Steady State Radiated Power—When the peak normal surface velocities O are de-
termined for any electrical drive into a source-free medium, we can apply Eq. (2.17) to
find the rms radiated power 0O, i.e.,

2(J+K) 2(J+K)

Re Y ) Uy(R)S(R)G(R )0y () (5.27)
k I

(ﬁ:

o m

where S(k) is the area of the kth band, G is the true surface-radiation Green’s function,
and * signifies complex conjugate.

Steady State Mechanical Power Dissipated As Internal Loss—During in-vacuo vibra-
tion at constant current the real part of the mechanical impedance is assumed to consist of
R' + R", where R' is the mechanical resistance resulting from coupling of the magnetostric-
tive field to the elastic field and R"” is a purely internal (friction-type) mechanical resistance.
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In the more general case, the mechanical resistance is a matrix R[k, ], which represents
the equivalent mechanical force (associated with internal resistance) at band k due to a
reference surface velocity at band /. When the normal (peak) reference surface velocities
Uzsrl ) are found (with § = 0), the steady state mechanical power {p dissipated as internal
loss by the formula

o
=

0yl = -;-Re vy ()R (R, Dop' (). (5.28)
1

&

In the particular case where R[%, I] is a diagonal matrix with only one component which
is the same for all velocity distributions, we have

J+K 9
Re ) loy'I R, R' =R +R" (5.29)
k=1

o |-

0y =

At constant voltage drive under analogous conditions, in terms of impedance @ (see Sec. 6),

J+K
0y = EReZ v ER)RE (R, DuyE (1) (5.30)
. k1
1 J+K 2
0 = - Re D y®I"RE, RE = R" + Re Q. (5.31)

l

6. MODAL MASS AND COUPLING

When the vibratory motion of the shell is analyzed into a superposition of an infinity
of modes, the electroacoustic performance may be said to mirror loosely these modes by
showing an infiniie sequence of peaks and valleys of response to transient and steady
state drivers. It is convenient to consider each mode as a single-degree-of-freedom system
of special type, possessing a modal mass, modal resonant frequency, modal stiffness, modal
resistance, and a modal coefficient of electromechanical coupling. It is also useful to
isolate a single selected peak and its associated valleys from the total electroacoustic
response, and to find for it an effective mass, effective stiffness, etc., which take into
account contributions of an infinity of modes at a specified frequency. Both of these
approaches are analyzed in this section.

Modal Mass (First Formulation)
The concept of modal mass can be defined in several ways. Different choices,

used consistently, yield the same final results. However, the analytic formulation of
modal resistance (modal mechanical @) places restrictions on the possible definitions of
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modal mass. When the concept of mechanical @ is explicitly used in the analysis the

modal mass must be a real positive number. We consider now a first formulation of
modal mass.

The generalized coordinate g,(w) (Eq. (4.17)) has the form

_ -fp-Uds
q,(w) = —————— (6.1)
prnF(co)
where
F(w) = &% - w? + loss terms. (6.2)

For a description of the loss terms see Secs. 7 and 8.

Now we write the normalization N, in terms of three entities Ay,, Ay, Ag,, as
follows:

- 2 2 2
N, = (A2 + A2 + A} )2mal (6.3)

where

1
A? = f U‘f ds
n 27al n

]

1
A2 f U2 ds
2n opg J 2

1
Ag f w2ds .
n omal n

]

In general there is an Aizn which has the largest magnitude. For ease in writing assume

this to be Ag n: Then

By simple manipulations we obtain

(w) = = (6.5)

27

N A\ (4, 2 '
ool 1+ (22) 4 (2 |2mal (6.4)
A3n A3n A3n '
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2 2
M |1+ <A1"> +<A2"> 6.6
n s ( * )
A3n A3n

pb2mal = static mass of shell. (6.7)

where

<
i

with

M

s

The quantity M,, is the nth modal mass (i.e., generalized mass) normalized to the mode
shape of maximum amplitude. The nth modal stiffness is given by

' A \2 A \2
K =M |1+(—2) +[—2 (6.8)
n n s ’
. A, A
n 3n

where Q% is the in-vacuo resonant-frequency at the nth mode.

Form of D, in the Constant-Voltage Case

We begin with the constant-current case (Eq. (4.18)) and write 1—)n, including coupled
core loss (R'), such that

— jwR" jwR'
D =Nopblw? - w? + not n (6.9)
n n n M M
n n
where
2 2 2 2 Kn
wp = QAL - kxg ), Q= " (6.10)
n
K k2x
R, = _"nn7h (6.11)
w
X, = Xg_ = X - (6.12)

Here £2,, is the in-vacuo nth modal velocity resonance of the elastic system, independent
of electromechanical coupling, x,, is the modal hysteresis and eddy-current factor and
K,, M, are the nth modal stiffness and mass, respectively. It is noted again that R, is
the mechanical loss resistance associated with the magnetic properties of the core, while
R, is the mechanical loss resistance associated with internal friction. Regrouping terms,
we cast D, into the form

D = N pb— |2
M

+jwM_+ R'+ R ). (6.13)
" jw jw "

n

. 2
je <K i Knkann

The terms in parentheses are mechanical impedances (dimensions, N-sec/m).
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In the constant-voltage case we are required to add a mechanical impedance of the
form {5, chap. 4],

!

_ (2mal)? (6.14)

¢ + 7))
where Z! is the leakage impedance. We assume that for all modes
—Uu K k2x K
(27m1)2<_ﬂ-> TRy _-k2x1 =0. (6.15)
yAS n jw w

Since this means that the frequency of velocity resonance rises due to cancellations in Eq.
6.13 of terms in k2, we can, for the constant-voltage case, eliminate all k2 from D, and
retain an added residual mechamcal impedance

17! . _
a, = ——ﬂ———l—(27ml)2 ) (6.16)
zZ8z¢ + 7Y

Using the significant grouping

qQ, _|W¥'zhemn)? ;4 (6.17)
QM ze(ze + z1) QnMn>
we may formulate the losses in terms of a measurable Qf as follows:
R Q@ 1 Im (@)
iy B = (R + Re @ ) + j——2
QM QM QMM " " QM
n n n n n n n n
1 Im ((“Zn) ,
=t o . (6.18)
Qn nMn
Thus, writing ﬁn to be the effective Bn for the constant-voltage case we have
~ jwlK , / A 9
D =N, pb-—— £+ jwM, + R' + -————'——1—(27ral) (6.19)
n jw Z5z° + 7))
L n '
or '
- Im (@ ) Q
D =N pb|Q% - w? - w—2" + jo2 (6.20)
n n n E
Mn Qn

Thus, in the constant-voltage case we shall use this form D, to calculate the generahzed
coordinate q,(w) in Eq. (6.5).
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Consistent theoretical formulas for QI and QE are found from the previously given
definition of D In terms of the aux111ary quantities 21, 2£ they are,

2fw) = WM (6.21)
. K, kX, (@)
R, (wp) + —“—w"—

P(w) = Sn , (6.22)

Rj(wn) + Re Gy(w)

QL = L(wy), QF = ¥ @, (6.23)

Here R, (w,) means resistance calculated at w,,.

There are two optlons for calculating the effective @, at constant current and constant
voltage, QI and Qn (a) Ql is found from experlment and Ql is then determmed by theory.
Then all Qn, Qn are determined from Q1 and Ql by assumptlon (b) Q is determined by
expenment for each mode, and Qn is then found from Qn by theory. Note that in deter-
mining Ql, we first assume the ring mass to be M; and the ring stiffness to be K; as
determined from the Butterworth and Smith model [10] (i.e., from static values). Actually
the modal M1 may differ from the static mass if there is a variation of radial displacement
with axial distance. This difference is first assumed to be negligible. If it is not negligible,
an iteration scheme may be used in which the variation of radial displacement with axial
distance determined by assuming M, to be the static mass is itself used to determine M;.
This is the first iteration. It results in a new distribution of radial displacement and a
new M;. Upon further iterations, successive radial displacement curves are assumed to
stabilize. When stability is achieved a final M, is calculated.

Alternatively, if we begin with an expenmenta] determlnatlon of QE the above
procedures can be applied again by interchanging Qn by Q wherever they appear.

The definition of modal mass is intimately associated with the scale that can be given
to the (dimensionless) mode shapes when calculating displacements. For example, if
pr Mq is defined to be the modal mass, and if radial mode shape is selected to serve
as reference shape, then the scale of W is \/T where

M
=W, W)= 1

J .
a T 4 Uu.,U V.,V
pb[“(q . Y, q)J
W, W) (W, W)
The M, is a selected real positive number. Using this scale we change the dimensionless
quantities U, V,, and W, into quantities with dimensions of reciprocal length by writing
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v Vv W
q q q

\/7:1 v Jq v Jq
When scaled in this way these quantities have absolute values and can be used in the
analysis freely as such. However, as noted, such scaling is one of several possible choices.

Modal Mass (Second Formulation)

We consider the average radial velocity due to unit radial and end applied pressurés.
The average radial velocity is then given by

1 1
5 - fwn(x)dx f Wn(x)zmzdxf n [ f W (x)dx f 47"'Un(r)dr}

av N
= = jw Z

P onit -1 2 s, . B IWR
n= PON (w - W + jowo— + (6.24)

M M

n n

where
N, = ¢ (U2 +w2)ds (6.25)
1n n

and resistances R'’, R’ are implicit functions of frequency. We now define a modal mass
in the following way (second formulation):

§ @+ whas

2
2—;'—“—‘UW,,(x)dx} + 47 %fUn(r)rdran(x)dx

(6.26)

M, = M;

and
M, = 27mlpsb = total static mass of shell. (6.27)

Since the factor in braces is dimensionless we can interpret U,,, W as (a) having no
dimension, in accord with this entire analysis, or (b) having the dimension of displacement,
which may be convenient in applications. The above definition of modal mass may be
justified by noting that M, w corresponds to a mechanical impedance due to integration
over area. It is also to be noted that when [ W,(x)dx vanishes, the modal mass in the
nth mode is infinite, i.e., motion in the nth mode is not possible. When many modes
participate in the total dipslacement, the concept of modal mass is not directly applicable.
We can, however, define a complex dynamic quantity Z,,, which is a specific acoustic
impedance evaluated at each frequency where the total displacement becomes a maximum.
Considering only radial motion we take the radial velocity due to both radial and axial
surface pressures to be

w(x) = gg5Pg + &5,P - (6.28)
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By definition of g;; the radial displacement at constant voltage due to unit axial and
radial pressures is

2L W @ [Watky) + 200,)

w(x) = Py (6.29)
3u t:L; Df(w)

The ratio of average surface pressure (=pg ;) to average surface velocity (= wav) is defined
as the effective complex modal impedance Z,, at the complex frequency [&'2]1/2 i.e.

R

zZ ="—-I yE
" “2nal "
M
mf = s (6.30)
=
[£2] 4
" qZ=1 Nqg[£2]4
M, = 2malpb (6.81)
§ = W (x)2madx W (x)2madx + 4n| U (r)rdr (6.32)
g 2mal q q q
. Rn + X
[Q], = Q2 - w? + jwﬁ———@—"—)— (6.33)
Mq
V., ¥ Z}(2mal)?
@, = 32113 (6.34)
" 7°(z° + 7 '
y < My (6.35)
q gq )

2

The symbol )T(E suggest the possibility of ‘““complex mass.” The concepts embodied in
Z, and f)ﬂn have theoretical implications. These, however, are not explored further in this
analys1s except to note that when single modes only are considered the symbol 3]1 reduces

to the modal mass previously defined in Eq. (6.26), i.e.,

2nalp BN
M = —_— (6.36)
g n
We return now to the concept of modal mass formluated in Eq. (6.35). This definition
of modal mass will aid in defining a complex multimode coupling factor. Note that, for a
single-degree-of-freedom system consisting of a radially vibrating ring, the effective
Young’s modulus is
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(6.37)

where Uj is negligible and N1/§; = 1. We define a complex dynamic coupling factor as

AITITSSYTIIND

2 .S
haght
2 _ Nag
k, = Y,;" ) (6.38)
where the dynamic complex equivalent Young’s modulus in the nth mode is
* a 2
Y, = (27rlb) M, Q. (6.39)

Modal Coupling, Modal Mass (Third Formulation)

In the linear approximation, the two constitutive relations for magnetostrictive sys-
tems at very low frequency can be solved for mechanical stress to yield the known formula

6
> CB-k2)s; - hPHuS (6.40)

j=1

6 6 3
- B\ 1t
B2 =)0 0 2 (CB) highguS, (6.41)
i J a .

where T; is the stress 6-vector, Cg is the stress-strain modulus at constant induction,-S; is
the strain 6-vector, h;, is the piezoactive modulus, H, is the magnetic intensity 3-vector,
and uS is the permeability at constant strain (clamped permeability). The coupling factor
k2 is properly the material coefficient of electromechanical coupling defined for the lowest
mode in the frequency range where elastic stiffness dominates the response of the con-
tinuum to applied forces. When the frequency of forced drive is increased, the concept of
the electromechanical coupling factor must be enlarged to include strain deformation,
which is expressible as a superposition of modes of shell vibration. Two such modal cou-
pling factors of extended sense can be constructed, one based on strains accompanying
modes in predominantly radial motion and one for predominantly axial motion. It is im-
portant to note that coupled radial and axial motion are understood to belong to shell
vibrations in elastically coupled modes. From the canonical set (Egs. (2.1) and (2.2)) it

is seen that the total voltage Eq corresponding to the total current I3 and radial velocity
w(x) is given by

Il

T;

Ey = LZb +f¢/'131,b(x)ds +fw11i¢(x)ds, (6.42)

where Zb = Z¢ + Z! and y;; is the transduction coefficient (dimensions of volts per vol-
ume velocity). In terms of the displacement influence functions g33 and g13 and an
equivalent (electromechanical/mechanical) driving pressure ¥, the radial and axial displace-
ments in coupled motion are

33



HANISH, BAIER, KING, AND ROGERS

w(w,x) = Pga

u(w,x) = Pg5. (6.43)
For a constant current drive,
P = -¥g 4 (6.44)
o Wy (X)W (Ep)
g33(%, Ep, w) = EAESS A (6.45)
* Zl D} (w0)
S Up(x)W,(6p)
g13(x, Ep, w) = = (6.46)
e Zl D(w)
where
wo = ] W, (x) 2madx . (6.47)

Here W, (x) is dimensionless, Wy, (£ ) has the dimensions of m2, and Df,(w) the dimen-
sions of N/m, so that g33 is interpreted as displacement per unit pressure. For conven-
ience we introduce a complex number 7y to account for leakage and define it by the
relation

ze  jwN2uSbiy
b -~ - = 2
Z Y Sray (6.48)

(see Eq. (5.10), which is repeated here for convenience). The symbol x represents the
complex eddy-current and hysteresis factor, and the other symbols are defined in the
glossary. Inserting Eqgs. (6.43) and (6.48) into Eq. (6.42) and factoring out I; Zb, we re-
duce Eq. (6.42) to the form

E; = Ilzb[ Zoj (CEFF) ] (6.49)

where

[f W, (x)27radx] W (Ep)
Di(w)

(CzleF)i = é (—%3 i1’31)1'03

[f W, (r) 2mrdr Wo(E A)]

+ _1,; ("1"13 ‘1’31)1'09

Dy(w)
N [ AGE N N
+ 2y g )iw - (6.50)
zb (~¥iavar)s Dl(w) Continued
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1 - [f Untrs x = 112)2mrdr] Wi ()
+ = [ =Yi{V¥aq)jw . (6.50)
Zb ( i1 31) Dr{(w)

The factor D,Il(w) will be discussed below.

Equation (6.50) is considered to be an effective squared coefficient of electrome-
chanical coupling in the nth mode. The form shown can be reduced as follows. The
second term and third term on the r.h.s. both vanish since the velocities in question lie
in the surface, and thus do not constitute volume velocity as required by the canonical
Eq. (2.1). Thus, Eq. (6.50) is reducible to two terms. Its numerical value depends on
the values to be assigned to the transduction coefficients. From the geometrical config-
uration of the toroidal winding it is known [10] that

hoouSbN ‘
Vg = %ﬁ (dimensions, (V-sec/m3) or (N/m2A)). (6.51)
a
We can assume that application of positive I; causes the ring-shell (say) to expand in the
radial direction. Actual numerical calculation shows that the shell contracts in the axial
direction. We can conjecture, then, that

(¥11)(¥13) > 0. (6.52)

Equation (6.52) states that the product of the voltage per unit volume velocity induced in
the coil due to constriction in the axial direction and the voltage per unit volume velocity
induced by expansion in the tangential direction is positive. However, the mechanical
transduction factor ¥3; (the equivalent pressure on the radial reference surface due to a
positive current I;) must be opposite in sign to 3013,' due to the antisymmetrical nature of
piezomagnetic coupling. Hence we write

Ys1 = —¥13. (6.53)
Inserting Egs. (6.51) and (6.52) into Eq. (6.50) yields the formula
1]

2 b Wn (Ea) y
(CEIJFF)n = h5akx (2m31)7 DI(:) -[an(x)21radx_ + 2(‘1/—:) j Un(r;x=l/2)21rrdr].

(6.54)
We designate this as the modal coefficient of electromechanical coupling. It contains a
factor

Dj(w) = psbNy[w], (6.55)

where pg is the static density, b the shell thickness, and Ny, the mode shape normaliza-
tion. To sufficient approximation,

N, = f (U,? + W,%)znadx (dimensions, m2). (6.56)
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The symbol [w],, (dimensions, sec™2) requires special discussion. To define it we first re-
turn to Eqgs. (6.25) and (6.26) and assemble the following quantity:

pgsbN,,(2mal)?
[/ Wa(x)2madx + 2 [ Uy(r; x = 1/2) 2ardr] Wo(§4)

n

M, = §,Mg (6.57)

2mal § (U2 + W2)dS

S0 = T W) Zrads + 2 ] Up (s 2 = 12y 2 W) (6.58)

M, = 2malpgh. (6.59)

We designate M,, as the modal mass (kilograms), while Mg is the static mass. The modal
density is

P, = My/2walb . (6.60)

Returning to Eq. (6.55), we now write [w], explicitly in terms of modal frequency wy:

. t n
2o, JOBR AR

[w], = w, - M, (6.61)

in which R’ (as noted earlier, in Eq. (6.9), etc.) is a mechanical resistance (Newton-
seconds per meter) directly due to electromechanical coupling, R is a mechanical resist-
ance independent of such coupling (internal function, etc.), and w, is the nth-order modal
(resonant) frequency experimentally obtained by driving the ring shell through a range of
many frequencies with a constant amplitude of current. These loss resistances can be
assumed to be independent of mode number and frequency. Inclusion of such depend-
ence can be made without changing the form of Eq. (6.61).

There is another modal frequency £2,, which occurs at a forced drive of constant
voltage. As explained in Eq. (6.33), it appears in the form (repeated here for convenience)
of

. RII +
2], = Q2 - w2 +L‘*lM_@_) (6.62)
n
Vay Vi aZl(2mal)2
g - a2 @mal)” . ensions, N-sec/m). (6.63)
ze(z! + z¢)

From classical theory the relation between 4 and wj is established by the coefficient of
electromechanical coupling #2. We now broaden the concept involved in this relation and
define a complex coefficient of electromechanical couping Kﬁ such that

[w], = [mn(l— K%xv) (6.64)
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where
K2 =22 6.65
"= (6.65)
Y, = pnaz[ﬂ]n. (6.66)

Substitution of appropriate parts of Egs. (6.55) through (6.60) into Eq. (6.50) leads to
two forms for the effective modal coupling:

2 8
2 hoouTXY
I 22
C P 6.67
( EFF),, 2o, 101, (6.67)
and

' 2 K2xy

1
(CEFF)n =— . " (6.68)

1 - KnX’)’

The definition of (CéFF)n contained in these formulas shows that it is a complex
number and a function of frequency. If for any mode the drive frequency w is chosen
such that w << wy(or §2,) and if losses (both electrical and mechanical) are neglected,
then Eq. (6.68) reduces to

2
kyy
(kgpp)y = —"—5— (6.69)
1- Ry
h2 #S
K2 = —222—2 (6.70)
Pna”S2y

Thus Eq. (6.70), by construction, is the modal analog of the conventional low-frequency
coefficient of electromechanical coupling.

The coupling coefficients defined in Egs. (6.69) and (6.70) depend on the modal
number n only through the modal density and the modal frequency. Since on physical
grounds the infinite sum called for by Eq. (6.49) must converge, ultimately (CF{v FF), must
vanish as n increases. Furthermore, since the real part of the ratio E1 /[; inEq. (6.49) can
never be negative, it is required that

RY[1 + Re {C}] - jX® Im {C} > 0 (6.71)

where
zZb = Rb + jxb (6.72)
€ = Re{C} + jIm{C} (6.73)
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Z.:: (CEFF)

These requirements are automatically satisfied in any real embodiment of the transducer
of this article under stable operating conditions.

7. HYSTERESIS AND EDDY-CURRENT LOSSES

A magnetostrictive ring excited by a toroidal coil constitutes a magnetic circuit with-
out gap whose operation characteristics can be described using a flux ¢ vs magnetomotive
force § diagram (alternatively on the B-H plane). An applied direct current bias Fqc
fixes the dc flux ®q4. at the quiescent operating point of the ring, | An alternating signal
Fac e ot may then be applied to the circuit so that the total flux at any moment is ®4,
+ &, exp (jwt). Considering only ac quantities, we write the dependence of flux upon
drive in the form

- 2250, 5,

d d d
q)&(lc) = (I)( )<?rfic)’ 35dc) ’

in which the superscripts i, d represent increasing and decreasing parts, respectively, of
the ®,.-vs-F, diagram. This description means that an applied alternating magnetomo-
tive force induces an ac flux which has one of two values for any ¥,., one appearing
when F,. lies on an increasing part of a cycle and the other when the same F,. lies on a
decreasing part of a cycle. The area enclosed by the loop on the ® — § plot represents
the work done by ;. in driving the flux ®,, around the magnetic circuit. The applied
%ac also does work against the elastic impedance of the ring due to magnetostriction.

The conventional model for the minor or dynamic hysteresis loop is a narrow el-
lipse drawn on a B-H plane and centered at the operating point of the major (or static)
hysteresis loop. The large axis of this ellipse has a slope u;u (= incremental permea-
bility) which because of the narrowness of the ellipse can represent the value of the
incremental permeability during the entire cycle of applied magnetomotive force. The
value of y; is customarily given as a real number. However, since energy is consumed
over a cycle of hysteresis, it is required to make u; complex. Thus, one writes

AB s
ﬂoAH = I-‘;X, X = Xpe m . (7'1)

The negative sign indicates that AB lags ugAH by the hysteresis angle . The core im-
pedance of a magnetostrictive ring may thus be written (in the pure hysteretic version of
the Butterworth and Smith model [10]) as

cE oL emin _ M2leSibl.
Zc - .c - ]che P Lc - 27ra (7.2)
(651 = |uiltoXp. (7.3)
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The real part of Z, contributes an electrical resistance, which accounts for cyclical loss.
When the frequency of operation is high enough, the core loss increases due to eddy
currents. Considering eddy currents alone, we again write

E _ . - N2|pS|bl
Ze = " jwLce ,g, Le =—3m (7.4)
S| = [pilrgXe - (7.5)
Combining both hysteretic and eddy-current losses in one formula, we have
. -j ' N2|pS|bl
Zc = ]che ](n+§), Lc = '——2—7“1— (76)
S| = IleoXo  »  Xo = XnXe- (7.7)

The numerical evaluation of the eddy-current angle is based on dimensional analysis. One
first defines a critical frequency for elimination of thickness ¢, below which the above-
noted simplified representation of the eddy-current loss is valid. This f, is determined by
[11,12]

2p
f, = -——i—z (7.8)
;| ot

where
p, = resistivity (dimensions, £2m)
t = lamination thickness (dimensions, m).

For frequencies f < f, the loss factor x due to eddy currents is conventionally given by
the formula,

tanh V%c
jf
fe

X:

At low frequency the angle ¢ of x is

(7.9)
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The angle associated with hysteresis appears to be not directly predictable by formulas
based on material parameters. However, by measurement one can find the angle n = fuS
at very iow frequency, i.e., at a frequency for which the eddy currents are negligible.
This estimate of 7 is often used in practice.

The transduction force factor Z,,, (i.e., the ratio E/v) is known from the Butter-
worth and Smith model to be

hgg 1SHIN
Zem =———g— (7.10)
Introducing hysteresis and eddy-current angles, we write
hog | 1l bIN _;
Zom = 200 “;’Xex” e I8 (1.11)
Since the motional impedance Zpjot in vacuo is
Z2
ZMot = —%n— ,  Zm = mechanical impedance (7.12)
m
it is seen that at mechanical resonance (at Z,, = real number) the phasor
122, _,;
= Zem! -2jB -
(Mothes = oz € 0 0» B =1+ (7.13)
hg (ko) (XeXp) b212N2
L ? = 200 Lik0) (XeXs, : (7.14)

a2
Thus, (ZMot)r., Mmakes an angle of —28 with the horizontal on a motional impedance
diagram,
Geometrical Aspects of the Motional Circle

The motional impedance Zyjo (= ng/Zm), when plotted on a Ryot Vs XMot plot,
has geometrical properties strongly determined by the function 1/Z,, (i.e., by an inver-
sion). The properties of inversions are as follows. If z = x + iy, w = u + iv, then the

transformation w = 1/z carries circles into circles (considering a line as the limiting case
of a circle). Thus if we are given the equation of a circle (or line)

a(x2 +y2) + bx + cy +d =0, (7.15)

the transformation w = 1/z performed on this equation leads to the transformed circle
(or line)

du2+v2) + bu —cv +a = 0. (7.16)
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In particular the line x = C; transforms into the circle

u? + v2 — % =0, (7.17)

which is tangent to the v axis at the origin. Now, near mechanical resonance the mechan-
ical impedance Z,, is given by

Zym ~ T+ jom +7Io% =t * JEm . (7.18)

On a ry, vs x,; plot, it is seen that Z,, is the straight line r,;, = const. (say r,;, = C1 where
C; is the resistance at zero reactance). Assuming Z,,, is real and changes little for all
frequencies in the vicinity of resonance, it is seen in the first approximation that the line
r;,m = Cp transforms into a motional circle tangent to the line Ryjo1 = 0 with diameter

IZ?2 n|/C1 and center IZZmI {2C1. The circle passes through the origin Xyot = 0 = RMot.
When ng is complex, with angle — 28 (f =1 + {), the transformed line is a circle with
center at

|Zem|?

Rymot = 20, cos 208 (7.19)
2
z
XMot = — ';é’;' sin 28 (7.20)
and diameter

|Zem!?

1ZMotly,, = é’l" : (7.21)

This diameter terminates at the point Xpot = 0 = RpMot-

Eddy-Current and Hysteresis Plots

A sheet height [ and thickness x, where —a < x < +a, magnetized perpendicular to
the section 2al with magnetic flux density B(x), satisfies a boundary value B(e) accord-
ing to the formula [12]

B(x) = B(a) 2 (Wh/m?2) (7.22)
_ L im@pew
m=t——/—— (m™) (7.23)

where

u;(a) = permeability (dimensionless) at the surface at very low frequency (i.e., at
zero eddy-current)
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Mo = 47X 10-7 (Wb/m-A)
w = radian frequency (sec™1)
o = resistivity (V-m/A).

The mean value of B over the thickness is found by integration to be

Brean = Bla) 20010 (7.24)

In terms of a mean magnetization Myean and mean magnetic intensity, we can also define
Bpean = MoHmean *+ Mmean - (7.25)

Writing the magnetization at the surface as

M) = u(a)poH(a) (7.26)
and dividing by H(a), we have
Bmean _ Hmean Mmean
H@) - " "Ha@ ' Ha) (7.27)

Since for a ferromagnetic substance

Hpean Muean '
) 7.28
0 “H@) < TH(@) (7.28)
one has approximately
. tanh
Mmean = Bmean = Bla) =52 (7.29)
tanh
= (@) o H(a) 2202
or
Mmean _ tanh ma
Ha) K@k — g - (7.30)

One next defines the mean permeability for ferromagnetic materials (1) by noting that

Mumean = HioH(a), - (7.31)
so that

tanh ma

i ui@)x = lua)xle P, (7.32)

Now since i, p;(a) are complex numbers,
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B =/[u=[u@) + [x (7.33)

= hysteresis angle + eddy-current angle.

It is convenient to plot |x| vs ma by selecting as parameter u;(a) = |y;(a)le 7" = M;(a)
(cos n — j sin n) for the particular material (a procedure equivalent to choosing the per-
meability for the condition of zero eddy current as a real number together with a choice
of hysteresis angle ). In this calculation the angle § is omitted. Thus, we plot

Il = tanh ma

ma | vs ma, (7.34)

and note that 0 < |x| < 1 (which means that the average permeability is less than or
equal to the surface permeability). When the eddy-current angle ¢ (/x) is taken into
account, we plot § vs ma, where (as before) 8 = n + {. The joint plot of |x| and § vs. ma
is called a Fukushima plot.

Fukushima plots may be used to obtain p;(w). At mechanical resonance (w = wg)
we measure the total angle $. By successive trials using the Fukushima plot we obtain
Mp(wgR) and /x(wpr). The values of u, and x at any other frequency are then obtained
by formulas noted above.

8. LEAKAGE FLUX

The introduction of leakage flux into the magnetic circuit of the toroidally wound
magnetostrictive core requires careful handling. In this section the problem is reviewed
and given a formulation useful for numerical calculation.

When the leakage flux ®! is not negligible relative to the flux due to the magneto-
motive force, the total impedance of the windings and the core is given by

2zb = R! + jwL! + jw(Lq1 - jLg) = Z! + Z°¢ (8.1)

where wLy is the core loss resistance due to eddy currents and hysteresis, R! is the coil
resistance, and L! is the leakage inductance. Thus,

zb = RY + jxb, RY = Rl + wLy; Xb = w(lq+Lh. (8.2)

The electric equation which includes leakage impedance and eddy-current plus hysteresis
losses is

jwX g MSbIN?

1= 27a 1

wx (MSbIN?
+ D ——————
2ma

+f Y13ib(x)dS + f Y11 U(x)ds

+Z'1 . (8.3)
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Here,

BS = pio (8.4)

where
u; = incremental permeability.
The leakage impedance can be calculated from the formula

2

. N
zZl = Rl + J‘-‘)% 10 (Acoil — Acore) - (8.5)

From the above formulas it is seen that
E = voltage drop due to leakage
+ voltage induced by magnetization of the core
or
E = IZ! + jwN®, _ (8.6)
where the core flux @, is defined by

_ jwuSbINZy

]Q)N‘I)é R v I +§ d/i3l})ds +§ lllilitlds. (8.7)

Otherwise expressed, the magnetomotive force in the magnetic core circuit is

oma _ $VigwdS + §yy udS
jwuSbINY jwuSbINY

NI = (jwN®,) (8.8)

Let ®; be the magnetic flux leakage. The magnetomotive force which supports this leak-
age is

NI = jwN®;. (8.9)

The total magnetomotive force required to generate flux <I>é in the presence of motion w,
u and flux leakage ®; is the sum of Eqgs. (8.8) and (8.9).

9. ACOUSTIC LOADING

The acoustic loading of the free-flooded ring-shell presents the following problem.
Ring-shells can be described as having either one surface (reference surface) or two sur-
faces (inner and outer). According to thin-shell theory the calculation of elastic defor-
mation is best done on the reference surface, the shell thickness being integrated out.
Acoustic radiation theory, however, requires the two-surface description since acoustic
pressures depend on true normal surface velocities. In the analysis presented above,
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acoustic loading is. accounted for by the factor G (m, n), which was defined as the pres-
sure on reference surface band m due to the normal velocity of reference surface band n.
To make the elastic and acoustic fields compatible we define four surface-radiation Green’s
functions, G(my, na), G(my, ng), G(mp, ng), G(mp, ng), related to but not identical
with §, in which A, B refer respectively to the inner and outer surfaces of the ring-shell.
Thus G (mp, na), for example, signifies the pressure on the exterior surface band m due
to the velocity on the interior surface band n. We also define two thickness correction
factors f(A) and f(B), which convert the magnitudes of inner and outer surface velocities
respectively to reference surface velocities, and attach to each factor one of four sign
symbols a, 8, v, 6. These symbols, though differently defined, are either + or —, depend-
ing on certain sign conventions associated with force and velocity.

Using these newly defined quantities, we expand the reference surface radiation
Green’s function § into a sum of four, inner and outer shell, surface radiation Green’s
functions G as follows:

G (m,n) = G(ma,na)f(A)a + G(ma,ng)f(B)B + G(mp,na)f(A)y
+G(mp, ng)f(B)S . 9.1)

In this constriction the reference band m, which is a single surface, is replaced by two
surfaces mya, mp, representing the inner and outer surface on a thickness b of the shell.
This replacement, necessary as it is for the acoustic loading to be calculated, must be cor-
rected for by the correction factor f(A4), or f(B), as already noted, since all elastic calcu-
lations are made with regard to the reference surface only. Further examination of Eq.
(9.1) shows that it is the algebraic sum of all pressure loads identified with reference
band m due to all velocities identified with reference band n. The functions G (m4, na),
etc., are complex numerics obtained by a special computer program (SHIP [13]) whose
derivation and significance are discussed in this section (page 48).

Calculation of Thickness Correction Factors

As noted, the solution of the acoustic-radiation problem requires a three-dimensional
dynamic elasticity analysis. Since such analyses are either intractable or exceptionally
tedious, we have used an approximate analysis, judged here to be of sufficient validity for
our work. To this end we apply to the dynamic motion of the finite-length shallow mag-
netostrictive ring-shell with moderately thick walls, the theory of the axially symmetric
extensional vibrations of a free circular disk worked out by Gustafsson and Kane [14].
In these authors’ theory a thick disk of axial height 2h, inner radius ¢*, and outer radius
b*, is assumed to have displacements of the form

ur = gr(r,t)
ug = 0
VA
uz = 7{ qz(r, t)’ (9'2)

in which the radial g, and axial g, are to be determined by the use of two potentials ¢1, ¢2:
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(282, = 0 (2 +o3)o = 0

01 092
ar = 3 + o 5 9= 0161 + 0292 . (9.3)

where 81, 89, 01, 09 are frequency-dependent parameters (see Appendix A page ). The
complementary solutions of the differential equations are known to be of the form

A1do(817r) + B1Yp(811)

I

$1

I

$2 = AgJdp(d2r) + BaYo(d2r), (9.4)
in which Jy, Yo are Bessel functions of the first and second kind, and Ay, Ao, By, By are
to be determined from the boundary conditions. Choosing the particular case of traction-
free vibrations and substituting these expressions for ¢1, ¢o into the boundary conditions
(i.e., zero normal stress and zero sheer at each edge) leads to a matrix in the four quanti-
ties Ay /Bg, Ao/Bg, B1/Bg, By in terms of the unknown By (see Ref. 14 for details). To
fix Bg, we assume that the radial displacement g, has a prescribed value at the particular
radius (r = a) corresponding to the mean radius of a ring-shell viewed as an elastically thin
shell. Thus ¢, ¢o are determined and with them gq,, q, and, finally, u,, u,. The thick-
ness correction factors f(A), f(B) are then

Qr(a, t) Qr(a, t)
flA) = —5—; fB) =——F—" 9.5
2@, ) ar(0™, 1) 9:5)
A similar set of end correction factors can also be defined:
q,(a, t) q,(a,t)
A) = —~4— ; B) = —&%———. .6
fena(A) 4, @ 1) fend (B) 4G50 (9.6)

The signs to be associated with these factors are discussed in the following section.

Sign Conventions

The application of Eq. (9.1) requires a determination of the sign symbols ¢, 8, v, 6.
Each of these symbols is a ratio of the sign attributed to the force on band m and that
of the velocity on band n. The pair of numbers m, n are as found in the symbol G(m, n).
These are the conventions for determining force and velocity signs:

1. A normal surface velocity pointing into the ring material is negative. Thus, a
normal surface velocity pointing into the medium is positive.

2. A force per unit area on the inner surface is negative if the ring expands under
the force and positive if it contracts. A force per unit area on the outer surface is posi-
tive if the ring expands and negative if it contracts.

To illustrate the application of these conventions, consider the following example. Let
there be a reference surface having three bands a, b, ¢ and one endband d (Fig. 1a). The
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actual surfaces are labeled 1 through 8, as shown in Fig. 1b. We first calculate G(c, a).
From Eq. (9.1), this is written '

Gle,a) = G3, 1)f()a + G(3,8)f(8) + G(6,1)f(1)y + G(6,8)f(8)5. (9.7)

top top
,—-d— reference surface 349
| c | 3 { 6
| 4 shell surface
Ib 2l | |7
| ' i
i 11 inside | outside
| |
i ] | 1 ' 8
Ll L

e 10 9
bottom bottom

(a) , (b)

Fig. 1—Subdivision of a cylindrical shell into three sidebands
and two endbands: (a) Reference surface cross section and
(b) Actual shell surface cross section

To determine ¢, 3, 7y, 6 we assume that the ring is expanding both radially and axially.
This choice is arbitrary. Then the inside surface velocity is minus, the outside surface
velocity is plus, and the end velocities are both plus. The inside (medium-induced) force
is minus, the outside force is plus, and the end forces are both plus. Thus, for example,

force sign on band 3
~ velocity sign on band 1

—=+. (9.8)
Similarly,

force sign on band 3

b= velocity sign on band 8 + (9.9)

y = - (9.10)
5= + (9.11)

When we require G (c, d), then, following the above rules, we find
B(c,d) = ~G(3, 4)f(4) — G(3,5)f(5) + G(6,4)f(4) + G(6,5)f(5). (9.12)

The above sign conventions have been found to agree with signs esfablished by more
complex displacement-force considerations.

When the shell thickness is not vanishingly thin, an area correction must be added to
each term in Eq. (9.1). Let
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S(A) = shell area of inner surface
S(B) = shell area of outer surface

S(R) = shell area of reference surface.
Then the addition of area correction factors modifies Eq. (9.1) to read
G(m,n) = G(my, na)f(A)S(A)/S(R)]
+G(ma, np) f(B)[S(A)/S(R)]1B
+G(mp, na)f(A)IS(B)/S(R))y

+G(mp, ng) f(B)[S(B)/S(R)]5 . (9.13)

Calculation of Acoustic Loading From Known Surface Velocities

The acoustic loading on the vibrating shell is determined in this report by use of the
surface Helmholtz integral formulation, a description of which follows. Let time be given
by the real part of exp (jwt). The complex amplitude of acoustic pressure in a fluid of
density pr at a frequency w is then given by p = jwpy®, where @ is the acoustic velocity
potential. The acoustic particle velocity v = —V®, so that one can write Vp = —jwpyrv. At
the surface of the ring where the displacement is u, the component of this equation in
the direction of the normal n is

op . .
<E> ) = —jwpp(jwu-n) = w2ppu-n = w2psu. (9.14)
suriace .

To find the acoustic pressure loading p(x) at frequency w on any point x of the surface
S (x), we use the Helmholtz integral equation:

a
21p(x) = § pxo) 2 G (o @S(0) + jeopy § 2 G (xixo)dS(x0). (9.15)

S

In an unbounded medium,

exp (—jk|x — xpl)
Ix = Xl

Gw(xIxg) = (9.16)

The complexity of Eq. (9.15) is so great that one usually resorts to numerical means to
accomplish the required integration. Thus we divide the surface of the ring-shell into M
subsegments by transversely segmenting the axial length and radially segmenting the ends
(Fig. 2). We label the bands as shown, with the requirement that the number of bands on
the inner and outer surfaces be equal and of the same width and that the number of
bands on each end also be equal and of the same width. The Helmholtz integral is then
written as
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;6 7
% H 3-7 :
/ I 2 / [0
/ | '] / 11
l 22] / 12
' | 21 ] / 13
/ I 20 /,.14
/ ] 19 15
/l 181716
oxis of shell
Fig. 2—Numbering of the bands on a cylindrical shell for eight sidebands
and three top (and bottom) endbands
0 5 | e 7RB(s1,8)) 4s
p(si) = fp(sf) anj | Rsi,s5) (&)
' o T ER (s1,5)) .
+]wpff v(sy) —m;)— das(sj), i=1,2,...,M. (9.17)

Since the problem is axisymmetric, the pressure and the normal velocity must be inde-
pendent of azimuth angle. To facilitate numerical work we choose the subsegments so
small as to make p(s;) and v(s;) substantially constant in the integral over the sth band,
we rewrite the above equations in the following way:

M M
psp) = ). PP = ) v()Qu, 1=1,2..,M (9.18)

i=1 i=1

where
1 (0 eRRGLS)
P,l = §7—T -37; ——R(Si, sj) dS(S,) (9.19)
jwpffe_ij(shsj)

Qi1 = o R(s;, S]) dS(s;). (9.20)

In operator notation, the set of equations may be written as

M M
D BipGs) = ) QuvGs), 1=1,2..,M (9.21)
i=1 i=1

where
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0
PY) = 5; - By (9.22)

Since this is a square matrix of simultaneous algebraic equations the solution is found by
direct inversion:

S

plst) = ) Glsi, si)v(si) - (9.23)

i=1

Thus, for every known surface velocity at point s; one can calculate a surface pressure at
point s;. The calculation of the matrix of coefficients P;; and Q;; is accomplished by the
high-speed algorithm (SHIP), which overcomes tedious numerical difficulties involved by

directly evaluating Eqgs. (9.18), (9.19), and (9.20). The free-space Green’s function is ex-
panded in cylindrical coordinates, so that

R

_1 * Im (l, 1)dm (Iro) [2_ o\1/2, _ .
__2_; €m cos(mO)J[ ERPTTE lexp |(12 - k2)V/2)z zoﬂ dl. (9.24)

In this form the spatial parts of the integrations\in' Egs. (9.19) and (9.20) can be done
analytically, leaving each matrix element as an infinite integral over a single variable I.
These integrals are evaluated by numerical integration up to a value of ! which is suffi-
ciently large to enable the Bessel functions to be replaced by their asymptotic forms.
Once this point has been reached in all cases the remainder of the integration can be
evaluated analytically. An effort is made to avoid duplicating calculations (e.g., matrix
elements which are known by symmetry to be equal are evaluated only once; all Bessel
functions used in the program are calculated once and stored in an array; trigonometric
functions, where possible, are evaluated by recursion, etc.).

Characteristic frequencies (frequencies for which the matrix Pg is ill conditioned) are
usually not an important consideration in problems concerning rings. The lowest charac-
teristic wave number is always greater than w/b, so that there can be no characteristic
wave numbers unless the ring is more than 1/2 wavelength thick. In practice, rings are
almost never driven at such a high frequency.

CONCLUSION TO PART 1

In this report the modal analysis of elastic continuum has been joined to the analy-
sis of multilooped electric circuits and multipole acoustic radiation. Since the acoustic
reaction of the medium depends on normal surface velocities, the equations of motion
have been formulated as integral equations in the unknown velocities (including non-
normal components). Piezoactivity has been accounted for by electromechanical trans-
duction factors and coupling coefficients. The important concepts of modal mass and
modal coupling have been defined and discussed. Although the composite theoretical
structure of all fields is complete, its limitations must be borne in mind. They are as
follows: (a) The elastic, electromagnetic, and acoustic fields are treated as linear, small-
amplitude fields (i.e., high power effects are not considered). (b) Whereas the acoustic
loading may be high, the internal dissipation losses due to friction, hysteresis eddy
currents, ete., are considered modest. (c) The magnetostrictive shell is elastically considered
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to be monolayer rather than multilayer, meaning that the scroll nature of a true ring-shell
transducer is not considered when the equations of motion are written, although the
scroll nature is considered when hysteresis and eddy currents are analyzed. (d) Thin-shell
theory is used throughout, except in the problem of acoustic radiation which is advan-
tageously treated by using a finite thickness of shell. Plausible thickness correction factors
have been deduced to satisfy the radiation requirement.
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Appendix A
CONSTANT VOLTAGE AND CONSTANT CURRENT DRIVE

If for a given frequency we elect to calculate electrical impedance Zg, then we use

the £ — p canonical set. In matrix form this set is

[l m
=), Zili+ ), f ViVpdSe, i=1,2 .7 (A1)
j=1 k=1
N M
Py = Z Varlr + Z f Zésvsdss, qg=12 ..M. (A2)
r=1 s=1
The electrical impedance then becomes
M
Zg' = Zzpj + Z<§ ‘p;kvkdsk>lj—l, ij=12..MN. (A3)
k=1

Setting the external mechanical pressure p, = 0 reduces the mechanical equation to

i T
Zf Z}v,dS, = 3 g, @ =120 (A4)
s r

This is an integral equation of the first kind in the unknown velocities vg. Here Zés is the
electrically coupled acoustic impedance matrix of the elastic body with dimensions of
mechanical stress per volume velocity.

If we elect at the same frequency to calculate electrical admittance YE;,, then we use
the I — p canonical set by solving Eq. (Al) for IJ and substituting in Eq. (KZ). The elec-
trical admittance then has the form

| NS
- () - 2 X ()

By construction Yﬁf. is the inverse of Z 5, provided E and I satisfy the canonical set.
Setting p, = 0 again, we arrive at the mechanical equation

1
($ VivpdSp)E; . or = 1,2, . (AB)

8

. _ n :
% J{ vs[Zqu - wqr(Zg)lwi;] ds; = -y > \pqr(zﬁ’i)—lEi_ (A8)
1 s=1 i=1

r=1

1

o n

1 r=
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This again is an integral equation of the first type in the unknown velocities v;.- The
acoustic impedance

n N -1
E I b
qu = qu _Z Z wqr(zri) w{s (AT)
i=1 r=1

is no longer the electrically coupled impedance as in the case of the E — p system, but is
increased due to cancellation of the negative stiffness effect. It is (to close approxi-
mation) the purely elastic impedance of the electromechanical converter and as such is
regarded as known. Thus Z ! s can be calculated from Eq. (A7). The velocities calculated
by use of Eq. (A4) are identical with the velocities calculated by Eq. (A6).

If the frequency of forced drive is changed we can (a) maintain |I| constant or
(b) maintain |E| constant. Equations (A4) and (A6) report the same velocities when
either (a) or (b) is adopted. However, if [I| is maintained constant as w is changed, the
velocities reported by Eq. (A6) are at different voltages. Similarly, if |E| is maintained
constant the velocities reported by Eq. (A4) are at different currents.
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Appendix B
RADIATION MODAL IMPEDANCES

In Eq. (3.1) the forcing function P; is deemed to have an acoustic component (i.e., a
component dependent upon normal velocity). To illustrate, we take the case of cylindrical
shells and consider the normal radial velocity. Let @ij(w)ajg be the acoustic operator
having only a normal (33) component. Then the inner product of the acoustic reaction
with a normal mode has the form

( Z @563 {Uil, Yi)- (B1)
7

The acoustic operator @ has an adjoint @ such that
(@33{Us}, Y3) = (U, @33Y3). (B2)

Now in the case where normal modes can be described as spherical, spheroidal, or circular
cylindrical harmonics, we may define the following adjoint operation in terms of modal
resistances R{q) and modal reactances M(q), so that

A*(w)[Yi(g; %1, %2)] = [WR(g; w) — w2M(q; w)] Ya(q;%1,%2). (B3)
Thus,
(@33 {Us(x1, x2)}, Yi(q; x1, *2))
= (JwR(g; w) ~ w2M(q; w)]Us(x1, x2), Y3(q;x1,%2)). (B4)

The amplitude factor for the acoustic reaction therefore involves only the inner product
of the normal components (3-direction) of displacement. We compare this with the
amplitude factor for the general forcing function (Eq. (3.10)) and note that the latter
involves the inner product of all components of displacement with the modal functions.
To group both acoustic and nonacoustic amplitude factors together one defines a shape
factor S(q) such that

Ui(x1, x2), Yi(g;%1,
s, x2), Ya(as z1, x0)) = L EEk D051 20) (B5)

where
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(U1(x1, x2), Y1(q; %1, x2))
(Us(x1, x2), Y3(q;%1, x2)) ’

S(q) =1 +

(Ua(x1, x2), Yo(q;x1,x2)) .
(Us(xq,x2), Ys(q;x1,x2))

(B6)

Since Uj(x1, x2) is expandable in orthogonal modes Y;(q;x1, x2), S(g) can be further re-
duced to the form

(Y1(g; %1, x2), Y1(q;x1,%2))
(Y3(q; %1, x2), Y3(q; %1, x2))

S(g) =1+

(Ya(q;%1,x2), Ya(q;x1,x2)) _
(Y3(q;%1, x2), Y3(q;%1, x2))

(BT)

When the shell vibration has other normal velocity components (e.g., in the axial direction
at each edge) we may construct similar shape factors. However, in all cases treated here
the axial component of acoustic radiation is neglected. We now return to Eq. (3.1) and
group all terms in the steady state in a power series of w. Thus,

wz{(Ui(xl:xz), mgYi(q;x1, x2)) + (Ui(x1, x2), Yi(q;%1,x2)) X

u R
|52 + mpw)]} - seo (1,20, V@i, 220 EoREC

~(U;(x1, x2), Yi(q; %1, x2))Kr(@) — A2(q)(Uj(x1, x2), mgYi(q; x1, x2)) =
(@i(x1, x2), Yi(q;x1, x2)). (B9)

The quantity @; represents all terms of P; excluding foundation and acoustic response.
Here we have added a foundation forcing operator F(w) which provides an amplitude
factor of the form ’

(F(w) {Ui(x1, x2)}, Yi(q; %1, %2)) =
(Kr(q) + jwRr(q) — w2Mp(q))(Ui(x1, x2), Yi(q; %1, %2)), (B10)

that is, the foundation supplies stiffness Ky, resistance Ry, and mass My, which, though
shown here as lumped quantities, may be functions of coordinates.

Solving Eq. (B9), we obtain

—(Qi(x1, x2), Yi(q;x1,x2))
mgD(w)

(Ui(x1, x2)s Yi(g;%1,%2)) = (B11)
where
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D(q; w) = A%(q) - w? [1 L, Ma) M[(Q)]

mgS(q) mg

iy [R(q) . Rf(q)] LK@

mgS(q)  ME mg (B12)

Using Eq. (B10) in Eq. (3.4) and considering that the othorgonality weighting function ¢
is the constant mg = pb for a thin shell, we write the thin-shell expansion constants as

—(Z Qi(xl,x2;w),Yi(Q;x1,x2)>
Alg; ) = : : (B13)

mgD(q; w) )" (Yj(g; 21, %2), ¥j(g; %1, %2))
J

In general there is a largest (Y;, Y;) (call it (Y3, Y3)) in the sum Z (Y}, Y;). Dividing by
this (Y}, Y;) we rewrite A as

~(Y3, Y31 ) (@, ¥)S
t

A(q,r; w) = Mg(q)D(q; w)

(B14)

where § = reference area of thin shell. The symbol Mg(q, r) designates the modal mass
in the ¢ mode and is defined as

Mg(q) = mgdS(q) (B15)
where |

mgS = static mass of unloaded shell. (B16)

Substituting Eq. (B14) into Eq. (3.4) we find the steady state displacement in a forced
harmonic drive of a thin shell to be

. . -1
(x1,%9; W) = _Z {(Yg(q,xl, x9), Ys3(q;x1,%x9)) S

- Mg(q; w)D(q; w)

X [Z (Qe(x1, %23 ), Yt(q;xl,xz))] Y,-(q;xl,xzo} (BL7)
t
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=123
q=1,2" »
t=1,2 38

We note in Eq. (B17) that the amplitude of motion in any mode (i.e., in any Y;) is inde-
pendent of coordinates x1, x2, but does depend on the modal numbers g and on the
frequency w. This amplitude is maximized when D(g; w) is minimized, i.e., at the fre-
quencies of amplitude resonance (w(q)),

ID,(w(q))] = minimum . * (B18)
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Appendix C

MATHEMATICAL MODEL OF A FREE-FLOODED
MAGNETOSTRICTIVE RING TRANSDUCER

The analysis carried out in the main body of this report deals primarily with the
vibration of an elastic continuum describable by mode superposition. This extensive de-
velopment in modes is superfluous when the shell axial length is much less than a wave-
length of the lowest mode of free axial vibration. We present here a formulation of the
mathematical model of a free-flooded magnetostrictive shell of such short axial length
that a steady state solution by Fourier methods is directly available. We restrict the
analysis to axisymmetric motion. While portions of this appendix are a restatement of
classical theory, other parts contain new information. The chief objective in presenting
this theory in one complete form is to provide a reservoir of defined parameters, concepts,
circuits, etc., from which needed parameters appearing in the main body of this report can
be drawn or to which they can be compared.

THEORY OF THE MAGNETOSTRICTIVE RING SOURCE: SPECIFIC EQUATIONS
Mechanical Shell Equations

We consider a thin shell of revolution (Fig. C1) with an axisymmetric reference sur-
face, whose points may be described by the meridian coordinate s, the circumferential
coordinate angle 6, the normal coordinate ¢, and the angle ¢ which the normal makes with
the ““axis of revolution.” Since ¢ and s are not independent, we shall refer to either, as
convenient. According to thin-shell theory, for shell thickness b and shell radius of curva-
ture R, we shall assume b2/R2 << 1. Then the displacement of any point on the refer-
ence surface will be given by

U@, {,t) = ugty + wte + {Bpty,

where ug, w are displacements in the coordinate directions ¢ and { respectively, and B
is the rotation of the reference normal in the plane containing the shell axis (Fig. C2).
When the shell is deformed, we assume infinitesimal strain theory to hold and, indicating
differentiation by a comma, we write the strains in the form

o. starting edge
b. tinal edge
c. reference surface

Fig. C1—Coordinates for a rotationally symmetric thin shell
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Where
€ = ups + W/Ry;
€9 = Ugp cot /Ry ¥w/R9
ko = By
kg = Bg cot /Ry
Y08 = w,g - “o/By + gy,
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where Ry, Rg are the principal radii of curvature of the reference surface and r is the
distance of the reference surface from the axis. From geometrical considerations, it is
seen that r = Rg sin ¢, and ds = Rgd¢. The stresses accompanying these strains are de-
fined by Fig. C3. By use of the stresses Ty, Tg, Ty; we define the stress resultants Ny,
Q¢, My, Ng, Mg in the usual way,*

Ny » Ty

-
13

Fig. C3—Bending moment and shear stresses of a
typical element on the reference surface

The equations of motion are standard,*

rQ¢
(rNg¢),s — Np cos¢ + Ry + D¢

r(biug e + baBe )

Ny Np
(rQp) s — 7 (T%; + -ITB-> + rp§

rblw,tt

(rMg),s — Mg cosp — rQp + rmy = r(bgug st + bz )

*H. Kraus, Thin Elastic Shells, 2nd ed., Wiley & Sons, New York, 1973,
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where
$2 ¢ ¢ )
b; =f1 p(l + Ep)(l + ng) ti-Dgg, i=1,2
p = vector mechanical surface load = pgty + p¢te
m = vector surface couple = mgptg
p = shell density.

The types of deformation described by these equations is shown in Fig. C4.

ing edge and final edge, the boundary conditions to be prescribed are
either w or Qg
either ug or Ny

either By or My. b

a. undeformed
b. deformed

Fig. C4—Displacements described by standard equations

MAGNETIC FIELD EQUATIONS

At each point in the interior of the shell we require that

vV-B=20

VXH = 0.
On the surface of the shell

B:-tt =0,

viz, B must be in the plane defined by tg and tg; and

t¢XH = R = vector surface current density.

At the start-

Thus, from V X H = 0, the differential equations governing the components of H in

the tg, tg, t¢ directions are
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0 SN 0 g - R 2 S \g 0. 2 S\ g -
5?<1+R6)H9—0, 5 B R¢a§(1+R¢>H¢—O, a¢r(1+R9>Hg~0.

If there are N windings carrying current IeI®t over the shell surface, then*

Thus, if one sets

NIejwt
g_ H
27r <1 + Ry

it will be seen that magnetic field equations and surface conditions are satisfied.

Hy =

ELECTROMECHANICAL CONSTITUTIVE RELATIONS

In the first approximation the electromechanical constitutive relations, when referred
to a three-dimensional coordinate system x;, are given by the linear set of equations

T,-=c§(s,-—ajse)—h§k3k , i=1,2..,6; k=1,223
HQ=—th(Sm—amS®)+'ySBQ, =123 m=12..6

where «; is the coefficient of thermal expansion and © the temperature increment. Since
there are only three component stresses T, Ty, Tp¢ and one component of magnetic inten-
sity Hg, we write the explicit forms of the above set in the following way:

Ty = ChySy + ChoSy - {cg¢a¢ + Chpap + C¢§a§}® ~ h40By

Ty ng,sq, + ngSg —{C9¢a¢ + Cpgog + C¢§a§}® - hé@Bg

Te = Tpr = ChrotSer = CosSe

Il

Hy = ~hoo(Sp - a°®) - hag (Sp - a;’®) + 5By .

*See ref, [2].
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Applying basic definitions and integrating across the thickness, we arrive at the following
formulas for the stress resultants and stress couples:

B B B B
Ny = Cyiey + Cigeg + dyjky + digkg — Npg — Bo

&
¥

B B
= C31€6p + C33€9 — Nug ~ Bg

B
Nge = Qp = Co67p¢

B B b B
My = di1€y + digeg + kiikg *+ kiskg — My — By
B B B B
Mg = d3i€4 + d3geg + kgikg + k3zkg — Mpg — Bs
Ho = —hgy1€p — hggeg — farky — fazkg — Hpp + Be

where the subscripts 1, 2, 8 correspond to coordinates ¢, §, 0, respectively, and

e 1
_ (B P _ E _ i
Qanp - [CB s o a, P14 Q-1+
\F11 §2
(Ci3, C31 1 1
1d13,d31 =f(C'ge,Cg¢) ¢ pdf
k13, k31 §2
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P
o = [ Coves G &

B, , 1 Bﬁ ; 1
=.fh¢9B9P ds; = JﬁeeBeQ dg’s
B, ¢ Bg $

Hy <1 + E%)df

(Note: Ty = Tog = Tep; Ts = Tyz = Typp; Tg = T1g = Tpg). We shall define Ny, Ny,
Myp,g, My, in the following section.

B = fvSBeQdf; Ko =£

CONSTITUTIVE EQUATIONS OF THE MAGNETOSTRICTIVE RING

We now apply the above general equations to the specific case of a right circular
cylinder of short axial length (a ring) made of magnetostrictive metal. It will be assumed
that the material is transversely isotropic in its elastic properties and is wound toroidally
with electric current-carrying wire. The elastic constants, therefore, take on the forms

B B . B _ B
C?l E¢B; C?B = EGB, 013 = Ee V0¢9 031 = E¢ V¢9

B B
Ei = Y5 (A-vmy),

where YiB = Young’s modulus in the i direction,

B B
Cee = 2(0'1131 - C13) = Gi3.
Most magnetostrictive materials exhibit no isotropy in the modulus . However, various
authorities* assume hg¢ =-1/2 hgg. The basic constitutive relations in stress resultant

form now reduce to the set

Ny = Ky1€9 + Kygeg + Dyjky + Dygkg — Ny — By

&
1

= Kg31€p + K3zeg + D3z1ky + Dggkg — Nyg — Bg

QO
=
I

= Lee7ot
My = Dyy€ep + Dygeg + Eq1kg + Ey3kg — Myy — By
Mg = Dg3i€p + Dggeg + Egjky + Eggkg — Myg — Bj

Hop = —hgiep — hazeq — farkg — Fagkg ~ Hypg — Be.

*Y., Masiyama, “On the Magnetostriction of Iron-Nickel Alloys,” The Science Reports of the Tohoku Impe-
rial University, First Series 20, 574-593 (1931).
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Assuming that {/R; is small compared to unity, we write the definitions

Ky = ngdg; Kqg = fE3V9¢d§‘

Dy = ngt)B?df; Dy3 = fEGVqufdé'

Ky = fE¢BV¢gd§; K35 = ngBdg; D3y = fE¢BV¢9§d§
Dgj = ngdef; Ey = fE¢B§2d§; Eqg =fE9ve¢§2d§

Lgg = fG13d§; Eg = fE¢BV¢B§2d§§ Eg3 =fE0§2d§

Nth¢ ' 1
{ } [ (E¢at¢+V¢eEeate){ }@d@
Mg §
Ning ) 1
{ }=f (Eoos + V6¢E¢at¢){ }Gdf
§

Mg

B, . 1 Bﬁ 1
{ } =J hs5Bg ds; { } = h33Be{ } ds.
By ¢ Bg §)

The algebraic signs to be associated with the stress resultants and couples are chosen
for convenience (Fig. C5). On the stress plane s = const., and the stress resultant Ny is
positive (i.e., tensile) if its vector representation points in the direction of ¢, (as shown).
The stress Ny is positive if it turns as a right-hand screw in the direction of ¢,. The terms
D11k¢, D13kg, D31kg, Dggkg are positive in the directions shown in Fig. C6. The flux-
density vector Bg is positive if it points in the direction of positive Ng. The shear-stress
vector Qg is positive if it is directed along the outward normal to the reference surface.

DYNAMIC EQUATION OF MOTION OF MAGNETOSTRICTIVE RING

For a right circular cylinder the radii of curvature reduce to Ry > c©cand Rg = a =
radius of cylinder. We restrict our attention here to radial motions only, and in the first
approximation assume (a) the transverse shear Qg is negligible; (b) stresses due to rotary
motion (i.e., D31kg, D33kg) are negligible; and (c) the low-frequency linear piezomagnetic
constitutive equations are valid.
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s +
— *&N¢+

Ng,

—_—_—

starting ~ e
edge Ty 7 R

stress plane

Fig. C5—Convention of positive resultant stresses
and angles used in this report

0y K¢+

Fig. C6—Convention of positive directions for
D31Ky,,D33Kg, and D11Ky ,D13Kp

Noting that ¢ = 90° and {/R¢ is negligible, we write

Ny =J (EgB d§><%> - J (Eo%e, + V@¢E¢Bat¢) edt - f hooBg d¢ .

We next assume that all parameters are independent of thickness b of the shell. Thus,

Yg© bw (YgBOltg + VY¢BOlt¢) b0
T (1-v2)a (1-2)

N - héng b.
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To find By in terms of Xy we turn to the formula for Hg and write
Ho = —h3iep — hzzep + Be,

neglecting the thermal effect Hyg. Since Be = 'ySB@ b,
w
By = hggu® (7) + uHy, €5 =0
where us = incremental permeability at the induction By (polarizing induction). Thus,

T (1-v2)a (1-v2)

Yngw (YgBatg + VY¢BOlt¢ be s
Ny - - (h

2
99) uSo 2~ hpobuSHy.

Now

2
2 B SV 81— 2
wlige) WWrpP1-v2)  YoTbw o5 (h"e) Wy
aYsB (1 - v2) (1-v2)a Yy®

[ c

where k. is the coefficient of electromechanical coupling. Also we desire to consider cer-
tain transduction losses due to eddy currents and hysteresis which can be accounted for
by replacing 45 by the product uSx, where x = x exp [—j(n + 6)]. The stress resultant
now appears in the form

(Y()B(th + VY¢BO(t¢> b®

=52 - hggb/.lng.

B

Yy bw

w2 ey -
6= 1-2)a e X

Substituting this into the equation of radial motion, we obtain

2
ablaw+YB bw

(YgBate + VY¢Bat¢)b®
3¢2 0 T2

1 - 2

(1 - kczx) = ap¢ +

+hggbuSHpx.

The dimensions of this equation are Newton’s per meter (force per unit axial length). The
Lh.s. of this equation can be interpreted as the inertial and stiffness reaction forces of the
shell per unit axial length corresponding to the applied forces (pressure, thermal, and mag-
netostrictive) on the r.h.s.” Since there is a purely mechanical loss due to internal friction
accompanying shell motion, we shall add to the Lh.s. a resistance force proportional to
reference surface velocity, writing it in the form R, 0w/0t, where the resistance constant
ﬁmhas the dimensions N-sec/m2. In addition we shall consider the external pressure p

to consist of a normally applied (tensile) force ¥ per unit area and an acoustic load p;.

In symbols

b = F - pr.
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Substituting the explicit form for Hy found earlier, we now write the equation of motion
as follows:

92w ow
B B
Yy o, +vYy 0000
B _bw .. 2 _ (“’ 6 "V t¢) ¢ NIx
¥ (1-v2)a (1 Fe X) *apy = aF + 1 - v2 * hoobk” oy

We next assume that the acoustic load can be written in terms of a resistance component
rg,(w), an inertial component my,(w) and a stiffness component kz,(w), such that

: ow ow :
b =71], 'a'—t +mL _a_t_+kawdt

N-sec N-sec2

. . . . . . N
<d1men51ons ofrp, s dimensions of my , 3 dimensional of &, w3 )

Treating the applied quantities (¥, ©, I) as sinusoidal (e'j @1ty and writing

. . . N-sec
X =Xg ~ iXy» Rm =aR,, (dlmensmns of R, , 3 ),

The equation of motion, in terms of velocity v = jww, results in

YoPor 2x,
jw(b, + +|R, + + —C 2
[] (by +my) < m 'L 1 - 12)a2e

B

ko, Yp2b(1 - k2xp) - (Yg ap + vY¢Bat¢) 2c)

-~ v =
jw 1-v2)a2jw (1-v2)a

, oo bHSNIX
2ma2

All terms in this equation can be interpreted as mechanical pressure (or stress) with di-
mensions N/m2. Multiplying through by the reference area of the shell (27al, I = axial
length of shell) we can write

_ —hgguSxbINI

B 2
Yy blk S 2my K
F — +|:jw(pV+ML) + <R'n’1 + Ry + —Q—~°———I>— j =L

1-v2)aw w

B

 YyPbion (1 -k 2x R) (Y()Batg +vY, at¢)b127r®

—J v -
(1-v2)aw (1-v2)

where
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F = mechanical force = ¥ (2nal)
= density of shell
V = volume of shell
My = myp(2mal), K; = k;(2mal)
R, = R,,(2mal)

RL =Ty (27ral)

For purposes of convenience in later discussions, we rewrite the equation for F in the form

F = _ZemI + va
or
_F + ZepI
v = Z. R
where
Zem = hgouSxbiNja; Z, = (Rj, + Rl +Rp) + j(Xi + X' +X})
with

R',;l = mechanical loss coefficient which is independent of mechanical coupling
and acoustic load

R = YgPblk22mx;/(1 - v2)(aw)
R; = real part of acoustic load
X, = YePoi2nxpk /(1 - v2)(aw)

X! = wpV - YpPbign/ - v2)(aw)

&
It

imaginary part of acoustic load = wMj, .
We also adopt the following notation for later use:
2,0 = Rip + Ry 41Xy +Xp)

Re{z,°}= Ry = R!

1
m +Rm

Re {Z,,} = R4 + RL = Rpyy(TOT).
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ELECTRICAL IMPEDANCE OF THE MAGNETOSTRICTIVE RING

It has been noted above that the magnetic flux density Bg, under the simplifying
assumptions of thin-shell theory and negligible thermal effects, has the form

N
By = hgguS (z) X + uSxHy.

The sinusoidal magnetic flux ® threading the cross-sectional area bl may therefore be ex-
pressed in terms of velocity and current as

hgguSx bl NIuSx bl
T TaGw) 2ma

The applied (external) voltage E is therefore given by

E

jwN®
or

N21uSxbl . hgguSx bIN .

E 2na a

1l

Jw
Due to flux leakage, there is an additional purely electrical voltage drop in the exciting
circuit which we assume to be proportional to current. Inserting this additional drop in
the above formula (which does not contain it) and using appropriate definitions, we may
write

E = (Z'+Z6)] + Zopv

where
zZb = Z! + Z¢ = total blocked electrical impedance
Z! = electrical impedance due to flux leakage = R; + jwL;
Z¢ = jwN2uSxbl/(2ma) = R, + jwL,
R. = wN2uSy;bl/(2na)
L. = N2uSxpbl/(2ma)
R; = resistance of wiring
L; = inductance due to flux leakage.

Substituting for velocity by using the formulas developed in the previous section, we ob-
tain the following set of canonical equations:
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z2 z
1 c em em
Zem F
U—-<'—Zm>1 +<7n—1 .

We wish to obtain the electrical driving-point impedance, defined by the relation

&
{

2
E Z :
Zee = <7> =27l + z° + <—Zem> = R, + jX,p
F=0 m

-1
VA
Zh vz | )
Zem

In view of the definitions provided above, we can write this explicitly in the form

Z2 -1 Z2 1 Z2 1 Z2 1
_ em em em em
Zee = 2; + Z, + (jcopV) + (j__wML> + <—R;1’1> + <——RL>

-1 ~1Y1?
2 2 .
+ Zem + . ZomJw —
(1 - v2)aw (1-2)a

where
Zom = [P0 ODN2(e” - X - i2xmns) fa?.

The term in braces is in the form of the reciprocal of six reciprocal quantities. It
can therefore be interpreted as the impedance of six elements connected in parallel. Fig-
ure C7 is an equivalent circuit that describes the electrical driving-point impedance. In
the figure,

Rl = Rleakage

L = Lleakage

2
o
!

= wN2uSx;bl/2ma

~
o
It

N2uSx g bl/2ma
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E
1 cT[ €[ Rs® R,$ RsT Lj 1 "
Fig. C7—Equivalent circuit of a magnetostrictive ring transducer vibrating as a
single-degree-of-freedom system

Cy = pVIZZ,
Cy = MyiZ3,
Ry = Zo. Ry,
Ry = Zh, /Ry
_ 2 B 2 9
Ry = 22,/ [¥Pblk 22mx, /(1 - v2)aw)
Ly = 22, (1-v2)a/ [YPoi2n(1 - k2xz)].

It will be noted that ng is a complex number, so that the parameters of the equivalent
circuit are themselves complex numbers,

ELECTROACOUSTIC EFFICIENCY

If vexp(jwt) is the radial velocity of the reference surface and R the effective
radiation resistance of the medium, then the radiated acoustic power is Rlelz. Similarly,
if the driving-point current is Iexp(jwt) and the real part of the driving-point electrical
impedance is Re{Z,,}= R,,, then the dissipated power seen from the electrical termi-
nals is |I|12R,,. Thus the electroacoustic efficiency 7 is the ratio (Rz /Ree)lv/I12. Now
when F = 0 the ratio (v/I) = Zem/Zy. Thus, the efficiency is

n= 2L Zem|”
Ree |z,

where
|Zem|2 = h(%e(ﬂs)2(XR2 "")(]2)1)212N2/a2

2 2
T . YoPbik 22mx; + oy sy YgPbiom (1 - k 2xp)
m m T BT T 00 YL 1 - »2)acw
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2 821212772
1 hpo (L°)"b=1°N ,
Ree = Ry + R, + <[ a (XRz_XI2) R;n +Rp,

|Zm |2

YiPblk 22my
+ —_—_—

PUIN] o b o] [ 40

YoPbign (1 - kfo)]
1 -v2)aw

COMBINED ELASTIC-MAGNETOSTRICTION-ACOUSTIC FIELDS

The equations of motion of forced vibration of a magnetostrictive ring in a liquid
medium, in which the magnetostriction effect is mathematically accounted for by analog,
to the thermal effect, may be written as follows in operator notation:

where M;, ¥; are differential (or integral) operators; ugp, w are displacements; and p, H, 0
are forcing parameters (pressure, magnetic intensity, and heat). The particular solutions

of this equation (in the steady state) are directly obtainable by symbolic inversion of the
operator:

{vg, v} = jM; F P (p} + joM; FH) (my + joM; 5 () ()

where vy = jwug, and vy, = jww. We now define the products jwM,-— lq on the r.h.s. as
influence coefficients, i.e., as resultant surface velocities per unit external pressure, mag-
netic intensity, and heat. For convenience we adopt the following symbols:

jwM; 1?5”) = p)VJ(lw ) = radial surface velocity of the jth band due to a unit applied
external pressure on the /th band at zero applied magnetic
intensity and heat.

I

radial surface velocity of the jth band due to a unit applied
magnetic intensity on the I/th band at zero applied external
pressure and heat.

It

jwM; 1?(9) = (@)V]('lw ) radial surface velocity of the jth band due to a unit applied
thermal excitation on the Ith band at zero pressure and

magnetic intensity.
When axial displacement u rather than radial displacement w is to be calculated, we replace
the superscripts w by u. The three influence coefficients noted above are assumed to be de-
terminable by calculation using the shell theory outlined above. With these coefficients on
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hand we may formulate the problem of finding (say) all radial surface velocities wj,

i=1,2 ..., M, through solving the set of linear simultaneous equations,
M M () M ()
w — >
Z Z (p)le Qh-wi + Z (H)V]l Hl = wj', J = 1, 2, seey M.
1=1 i=1 =1

We note in particular that w; is a function of radius r, so that the thickness effect is not
negligible in these equations.

EVALUATION OF PARAMETERS OF MATERIAL AND PERFORMANCE

When the external applied mechanical force F' vanishes, it is seen from the first ca-
nonical set that the driving-point electrical impedance Z,, is given by

2
Z,, = Z! + Zc + (Zem zm).
We write (as before) the eddy-current factor as a complex number,

, -j 1 [XI
X = Xg —Ix = Ixle i, g = tan 1(;&;), X2 = xz% + x>

The transduction force factor Z,;, is thus also written as

hgguSbIN|x|e ™I

Z
em a

Similarly, the core impedance may be represented by

Z. = Re + jwLe = |Z,]e’®

where

R

wN2uSxbl/2ma

L, = N2uSxpbl/2ma

tan @, = wL./R, = Xp/X;-
Since tan § = cot ®,, (8 + P.;) = 7/2. Hence,

o hBgS)2b212N2|x|2e 2%
em = az

— 2 ( Jj2®
= —IZemle [4 .

Now
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A A
Mot ~— 7 - Tz = Rpmot + JXMot.
m m

We consider first that § = 0 and ImeI = const. = A. Then

Zor = (Bp +iXp) " = Ryl Vpul? = X} |¥pl? = ¥,

where
, R
R, = A
X
Xp = —

We then define an angle 6 by the relation

Ry |Ypl® Ry

cos b = = .
|YmI lZMot'
Thus,
1 1 Buot
Y, | = = cos0 = —- .
! = 71 R Zaod
This is seen to be
2 2 1
Ryor + Xpor = R Ryot
m
or
A z 1 A2
- 2 2 = .
(RMot 2Rm> * Xiort = 1 R 2

This is a circle with center at Ryt = lZZml/ 2R, ; Xp0¢ = 0 and radius of 1Z2,I/2R,,. We
consider next that 8 is finite. Then the circle is rotated clockwise by angle 23. The new
coordinates Ryy,;, Xprop, are related to the old by the formula

Ryor = Rior cos 28 + Xy, sin 28
Xytor = —Rior sin 2B + Xy, cos 2.

Thus, the rotated circle has the mathematical form
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A2
4R,?

2 2
A A .
(Rl'\lot ~ 3R, 2B> + (Xl’tlot - 3R, S0 2[3) =
The center of this circle is at
A A .
Rytor = 3R, ©°° 285  Xuyor = 3R, o0 28.
When Ry, = 0, the circle intercepts the ordinate at two points:

Xitor = —5%; [sin |26] * (1 - cos? I26I)1/2] :

The tip of the diameter of the rotated circle, originating at the origin, has the coordinates
Ritor = Ruot cos |12f]
at XM ot T 0.
Xpor = ~Ryor sin 26]

Now the Im {Z,,}= wM* - §*/w where M*, S* are the general expressions for mass and
stiffness of the ring. If we set w = wp + Aw = wg(1 + Aw/wg), where wg is the reso-
nant frequency as defined above, we see that for Awlw << 1,

A
Im {Zy} ~ (wg + Aw)M* - S*( - a%—) /wR.

Since wg? = S*/M*, we reduce the above to Im {Z,} ~ 2AwM *  Hence,

2(w - wRr)M*
= - A << 1.
tan ¢, Re (2, W/WR 1
Now let w" = wgp + Aw", w' = wg - Aw', then
TSNS U AN W
w w Ry, Aw _ Aw
WPR WR
2 B _A_Q—), Aw”
_ 1 wr " Wk
WR Aw" AW Aw'AW’
1+52 - - 3
wr WR WE

If
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Aw' Aw'
OR << 1, “OR << 1,
then
1
=t —1; = 52—
w w R
Now
B 2
Yy blk 21X
= " + + _—C___ =
Re {Z,} = R, Ryp, 1= 7Daw
where
Go _ YgiblkZ2mx;
g (1-22)a

D =R, +Rp.

m

From the previous derivations it was seen that

2(w — wp)M*

tan @ = __(__5;)_,
Go
D__é

At the quadrantal frequencies wg, wg, by definition,

G -2(wg — wR)M*
p- G2 (w2 — wg)

wog ~ (tan ) =r/s

G -2(w3 — wp)M*
p- B2 _ (w3 — WR)

w3g ~ (tan B)p__py
By adding these two equations, we obtain

C2(1 , 1
w3 w2

Assuming that

- - 2
(IJ31 + O)21 N T

we get

G
Re {Zp} = D - —2= = (w3 — wa)M*.

WRE

The mechanical quality factor is then defined by

17

) = 2(ws3 - wa)M*.
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WR

W = Ty

With these factors it is now possible to evaluate important performance parameters of the
ring.

EVALUATION OF hgg

We first note that from the above development we have two formulas for Re {Z,,},

viz,
|Zom!? .
Re {Z,,} = D, ) Re {Zp;} = (w3 — wa)M™.
m
Hence
1Zem| = /(w3 — wo)M*Dy,
and

a\/(w3 ~ w3)M*Dpy
pSbIN|x|

1]

hge

Thus, to find the magnetostriction constant h we must measure the quadrantal frequencies
w3, We, the effective mass M*, the diameter of the motional impedance circle D,,, and
the absolute value of the eddy current “shielding” |x|. The factor uS is the reversible petr-
meability at zero frequency, which can be calculated from the core inductance and the
constants of the coil winding. The factors a, b, I are the mean radius of the ring, its
thickness, and its axial length, respectively.

EVALUATION OF VELOCITY, DISPLACEMENT, AND LOSSES

At resonance, defined by wg = (S*/M*)1/2, the mechanical impedance in the pres-
ence of an acoustic load is Ry + Rr. The corresponding electrical impedance is Zezm/
(Rqg + R1). From the canonical set (in the mobility analogy) the velocity is given by

_ Zem F
v = Zm I+772-

Note that v is the “velocity of the ring” in a one-dimensional description. If we set F = 0
and consider the condition of mechanical resonance, we see that

| Zem|

w-on = Ra+RD) 1

[v]

Similarly, the displacement amplitude |x| in the presence of acoustic load is
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vl

x| = WR

The internal mechanical power loss at mechanical resonance due to motion in the pres-
ence of an acoustic load is given by

|Zem‘

(Rag +RL)

(Mech. Power Loss) = Rglvgmd? = 5 Ballmd®.

W=WR

In the presence of radiation the ratio of mechanical to macro-eddy-current loss, repre-
sented by R, is

mechanical loss _ Zem|*Ra _ ZZ RL \ Rd\ 1)
macro-eddy-current loss ~ (4 R.\2R, " R;, + Rg \Ry + Rg/\R Rc
= D.E,

where Dy, D, are diameters of the loaded and unloaded circles, respectively. The internal
mechanical loss resistance R depends on micro-eddy-currents, magnetic hysteres1s ther-
moelastic effects, and mternal friction. It can be estimated by subtracting (Yg hik 227()( 1/
(1 - v2)aw from Re {Z,, 0y,

ELECTROSTRICTIVE TRANSDUCTION
When the transduction principle is electrostrictive rather than magnetostrictive, the
preceding analysis is directly applicable with a change of parameters. We first select a set

of constitutive equations of the piezoelectric type, adapted to the low-frequency linear
behavior of an electrostrictive ceramic:

T

c¢Ps - mD

&

—hS + BSD
in which all parameters are matrixes with the following meanings:

= stress
= electrostriction constant (subscript £ means transposed matrix)

strain

dielectric displacement

I

T
h
S
D
& = voltage gradient

BS = inverse permittivity.
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Note that the units of h are volts per meter or Newton’s per Coulomb. We consider two
cases, depending on the axis of polarization.

1. Polarized across the radial thickness or 3-direction; i.e., the ceramic cylinder is.
electroded on the inside and outside radius

2. Polarized in the tangential or 1-direction; i.e., the ceramic cylinder is constructed
of (“barrel”) staves electroded on the certical faces which abut each other.

A third case, in which the electrostrictive ring shell is polarized in the axial or 2-direction,
i.e., the cylinder is electroded on the ends, is not considered here,

Case 1. Radial Polarization

The appropriate constitutive relations when the polarization is across the thickness of
the cylinder (in the 3-direction) are

T, = C0,S; - h31D3
&g = —h31S;+ B33D3.

Since these are low-frequency equations in which the only mechanical impedance is the
stiffness of the shell, we consider the dynamic vibration of the transducer over a frequency
range of its first radial mode. The analysis is then one-dimensional in the radial displace-
ment £ driven by the radial force F,. In linear terms,

F, = F,80 = T,bls0

where F, = tangential force, b = radial thickness, ! = axial length of the ring, and 66 = the
incremental tangential angle. The dynamic equation is then

0% 86)bl = 80
=5 (paB0)bl = ~Tybl

or
92t
a — = -T
P4 a2 1
where @ = mean radius of the shell and p = density of shell. Substituting for T; from the
constitutive relations reduces this to T,
.3_2_5’: + ﬁ - h D
Pe S a  Ms1ls-

In terms of radial velocity v, = £/jw, this is

80



NRL REPORT 7767

Chv _ Bl
Jwa Jw2mal

Jwpav +

in which we have set the electric current
I = (jwDg3)(2mal).

Multiplying through by 2mib leads to the relation

, chonb)  [hyb
JwpV + ———Jv =1\ = I,
jwa jwa

or
Znpv = YI
hgb
v = jwa
Keq

Zym = j(A)Meq +-j? + R,

M, = oV
2nlbC)
Ky =—5—
V = 2malb.

Here we have included an internal resistance R,, in the definition of mechanical impedance
Zm. When there is an acoustic load F;, = —vZ}, the total mechanical impedance is written
as Zy;, where

ZMU = Ebl.

The electrical impedance is now determined from the second constitutive relation in terms
of the applied voltage E5 = b&j:

£
~hgyb = + B33bDg

Eg a

or

~hgibv  B5gbI

Eg jwa jw2mal

It is thus seen that the transduction coefficient Te"m' (or T,,,), as defined by the canonical
equations :
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E = ZbI + Temv

F = Tyl + Zyv,

is given by
_ Thab
em jwa ’
and the blocked electrical impedance is
B33b
Zy, =- .
jw2mal
Since
v = YIlZy,
we see that
—-yy
Eg = Z,I +< Zut I,

so that the total electrical impedance Z,, is
~yy
Z e = Zb + ( ZM .
Here we define the motional electrical impedance Zys,; by

A

Zpmot = Zu

or
h3, b2
w2a2(zy +2L)

Zyot =

Case 2. Tangential Polarization

We select the constitutive relations

S = sET + d;&
and

D =dT + €T§,

where d = electrostriction constant (subscript ¢t means transposed matrix). For tangential
polarization in a cylindrical ring having N “barrel” staves these relations reduce to
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E
S3 = s33T3 + dg3bg

il

T
Dy = dg3Ty + €3363.

Replacing T} of Case 1. by T3, we see that the dynamic equation is given by

02¢ T
Q@ — = —
YT 3
) 92¢ Sz dg3 g
a—0 = —— - ——
2 E 3
ot 533  $33
or
0 02§ £ ~d33 &
2 E E 3-
ot as33 $33
In steady state
-d
pajwv + vE = 33 E;.
jwaszgg  (E (2&)
33 N

Multiplying the dynamic equation through by 2#lb, we obtain

v :—-z—- E3’ = —E——
m §330
Let
. 27wlb
2 = (PV)jw + 12—
jw0833
or
Keq
Zm = JwMeg * 5= + Bm
where
Mey = pV
2wilb
Keq ==z
0833
R,, = internal resistance.
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When there is an acoustic load F; = —vZ;, we replace 2, by Z); where

ZM=Zm +ZL.

Thus, for a water load,

_9F3

v = Zny
The stress T3 in water is therefore
S d
T, = —3 _ 4338 &,
E E
§33 833
_ ¢E, _ d33EgN

Zypi ws§3a s§3 27a
Substituting this formula for T3 into the canonical equation for D3, and noting that

I3

D3 = 55BN’

we reduce the equation for the electrical admittance to the form

L _ ¢ +M(1_kz\
Ey  Zy 2ma 83f
E2
k3y = it
E T
§33€33
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a(k)

D, (w)
E

G

g

GLOSSARY

mean radius of reference surface (m)

radius of cylinder at kth band (m)

magnetic induction (Wbh/m2)

shell thickness (m)

stress-strain modulus at constant induction (N/m?2)
generalized stiffness (N/m)

voltage (V)

true surface radiation Green’s function (N-sec/m3)
reference surface radiation Green’s function (N-sec/m3)
influence coefficient (m3/N-sec)

magnetic intensity (A/m)

transposed piezomodulus (N/Wb or A/m)

current (A)

low-frequency coefficient of electromechanical coupling
shell axial length (m)

modal mass (N-secZ/m)

static mass (N-sec2/m)

number of turns of wire

mode shape normalization factor (dimensionless)
equivalent driving pressure (N/m2)

acoustic pressure (N/m2)

average pressure (N/m2)
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mechanical resistance (N-sec/m)

surface area (m2)

strain 6-vector (dimensionless)

stress 6-vector (N/m?2)

veiocity in axjal direction (m/sec)

normal component of velocity (m/sec)
modal radial displacement (dimensionless)

surface integral of W, (m2)

velocity in radial direction (m/sec)

modal Young’s modulus at constant magnetic induction (N/m2)

total blocked electrical impedance (V/A)

electrical core impedance (V/A)

electrical leakage flux impedance (V/A)

mechanical influence function under open-circuit conditions (N-sec/m®)

specific acoustic impedance (N-sec/m3)

= negative stiffness specific acoustic impedance (N-sec/m3)

complex number accounting for leakage (dimensionless); sign symbol
finite increment of coordinate (m)

permeability at constant strain (Wb/A-m or H/m)
Poisson’s ratio

modal density (N-sec2/m%)

static density (N-secZ/m%)

magnetic flux vector (Wb)

eddy current and hysteresis factor (dimensionless)
transduction coefficient (N/A-m2)

transduction coefficient (V-sec/m3)

angular frequency (1/sec)

volt

Neumann factor (eg = 1;¢,, = 2, m # 0)
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