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ELECTROACOUSTIC MODELING OF MAGNETOSTRICTIVE
SHELLS AND RINGS: PART 1, MATHEMATICAL MODELING

1. INTRODUCTION

Long-range active acoustic surveillance of the ocean for submerged hostile submarines
requires a high-power, low-frequency source of acoustic energy. An important candidate
for meeting such a requirement is the free-flooded cylindrical magnetostrictive shell of
finite axial length. To judge proposed designs of these shells for antisubmarine warfare,
designers need a reliable mathematical model. The mathematical modeling of such an
electroacoustic structure is complicated by the multimode mechanical vibration of the
elastic shell and by the difficulty of calculating the acoustic loading due to the finite
length of shell and the free-flooded condition. Since elastic, magnetic, electric, and
acoustic fields are all coupled to one another, an effort to assemble them in one com-
plete whole and to convert the resultant model into a computer program for high-speed
analysis of proposed designs poses a difficult problem. The approach adapted here is to
solve the elastic problem by thin-shell theory, the acoustic problem by a Helmholtz
integral formulation, and the combined elastic-electroacoustic problem by a set of linear
integral equations. The result of this approach is to be published in three parts. The
theoretical formulation is contained in this report as Part 1.

2. OPERATOR FORM OF THE CANONICAL EQUATIONS OF COUPLED MOTION AND
OF FORCED HARMONIC DRIVE

Historically, the continuum analysis of shell structures and the electric field-velocity
field coupling of piezoactive structures have each had separate theoretical developments.
In the last decade, several articles [1-4] have treated both fields together. When they
are so coupled, theoretical analysis is complicated by the addition of coupling factors
connecting the elastic field (considered as a continuum) and the electromagnetic field.
Conventional procedures of electroacoustic analysis [5] must be modified to handle the
increased number of electrical and mechanical ports introduced by the coupling of
multicomponent vector displacements with multiloop electric circuits and multipole
acoustic radiation. To organize the complexities of these composite systems, we restate
in this section the basic canonical equations in abstract matrix-operator notation.

Canonical Equations in Matrix-operator Form

Consider an electroacoustic transducer in the form of a multiport network () elec-
trical and! lmechanical ports). The canonical matrix equations of the coupled currents
Ii and linear velocity vj fields in terms of applied voltages Ei and applied stresses pj are

Manuscript submitted May 14, 1974.
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HANISH, BAIER, KING, AND ROGERS

Ei =L ) {Ij} + L '.j{.}, i=1,. . ., X (2.1)

pi j~~~~~i J

.1=1 j=1

pi E41 1~ wj{i + )i{Ui}, j=1, .. *, X1 (2.2)
where i=1 i=1

= symbol of operand

(,b) = matrix of blocked (electrical) impedance operators ( N X l)

tz'I' ji'= matrix of transduction operators (V XlX)

H (in) - matrix of specific acoustic impedance operators ()1I X A).

All matrix operators are assumed to contain differential and integral components. Next
assume that applied stress pj is generated by acoustic processes, so that

(= Pg) - E j=Hi.)1, (2.3)
i=I

where

(g) (0) (D) (2.4)

and

= matrix of radiation impedance operators (1 X ll)

0 °) = local acoustic pressure due to acoustic field sources in the absence of the
pi transducer

p(D) = diffraction field due to interaction of ( 0) with the transducer considered
pi rigid.

Substituting pj of Eq. (2.3) into Eq. (2.2) and collecting terms in vi, we again condense
notation and write the mechanical equation of motion.

E Zji{Vi} = p 0) - |(D) - E%{I.}, j=1,... * (2.5)
i~~~~~l ~~~~i=1

Where

£j_ - rim) + 2?R) ()11X )ll). (2.6)2i j1i j11

2
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Here S2jj) includes internal mechanical damping operators. Solving Eq. (2.5) for vi and
Eq. (2.1) for Ii, we find

Vi = (Zij) - j i=l, ... ) (2.7)

j=lLL k=l
21~ ~ ~ ~ ~ ~ =

=(4 b)) {1 p1,.U.,li. (2.8)P pq Y1[q 4Lrqs 8j
q=1 =

An alternate form of the velocity equation is obtained by substituting Eq. (2.8) into Eq.
(2.7):

u= 21E(HsiY 1(zij)1{ , I Ijk(PDkq)= {Eq}, sl , .. ,
i~-l j- I k=l q=(

(2.9)

where

~~1121 21 j 1 ( (b)
s - (Zij)' [4jk (q ) PcsJ , i,s1, ... ,

j=1 k=1 q=1

(Hsi) - (2i)-1 = velocity s due to pressure j.

Note the following significant groupings of symbols:

ji' (bly) fq, pressure j per current i per voltage q per velocity s

(H Sd-' (2ij)-l t velocity s per velocity i per pressurej

f (ii)) = pressure j per current i per voltage q.

From Eqs. (2.5) and (2.9), we identify the following significant quantities:

Zij = open-circuit specific acoustic impedance

E (HS 1 (Zij) = short-circuit specific acoustic admittance.
i=l

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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HANISH, BAIER, KING, AND ROGERS

The acoustic pressure at the surface is seen by Eq. (2.3) to be

p. = -z: HiR){Vi}, i=1,..., ol. (2.16)
i=1

In the steady state, radiated power W will be determined from normal surface velocity
vj and acoustic pressure pj:

211 211

W = ReE .utPjdSj = Re E u (2.17)
j ij=1

in which rms quantities are implied. The total electrical impedance when () _(D)
vanishes is ] ;

, (e)_ A,(b) E til(lq) qj*(2.18)
lq4q

The meaning of the significant grouping on the r.h.s. is

I Vil (Ziq)-1Pqj = motional impedance
1,q=1

= voltage i per velocity I per pressure q per currentj. (2.19)

To obtain a receiving response, let p5 D) and Li vanish to give

i= (0(ZjjylpO), i=1, .... i,1. (2.20)
j=1

Substituting this into Eq. (2.1) and assuming that the receiver transducer is electrically
terminated in an impedance 2 te),

E= -z t 2 (te){I(te)} i=, ... I., X (2.21)
iq q

i=1

or

I~e X (! -1q(te) = -, (qte) {Ei), q=1, . I, . (2.22)
i=1

4
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Hence, in Eq. (2.1),

.2 -1
E 'S~~/ (te)

j,p=1
{Ep} + L T''j(2jq) pq(°) I

j,q=l

Ep = 8 i.
i=1 L

\-4

+ ftZ(b) ( ~te)
j.ip I

lkgj Zjq)- {p1 (0)}

j,qq=1

When the terminal impedance is infinite, the open-circuit voltage is

(E ) = Y i(ZY' lPf (0)}
j, q1 f 

The electrical admittance Yij upon transmission is obtained from Eqs. (2.1) (2.7) by
letting p(°) and p(D) both vanish. Thus,ViI 1~ IR u i qEi = SZj LJ} + E T Y C )-{ {I}}

j=l q=l s=l

or

Ei = Y sb)
j-l

V V

-T iIk(2kq) tqj f){L}
k=1 q=1

or

N

Ei = E Lij {Ij}
j

so that

-1
M

Y.. = (L.)-I = - (b) _ "' (2q)-' 3
q,1=1

(2.25)

Equations (2.1) to (2.25) complete the statement in abstract matrix notation of the
canonical equations and electromechanical behavior of a multiported collection of electro-
acoustic transducers loaded by acoustic forces. Formulation of these matrix relations in
the case of magnetostriction transduction is briefly discussed in Appendix C.

5
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3. GENERAL FORMULATION OF THE PROBLEM OF A VIBRATING MAGNETOSTRIC-
TIVE SHELL

The formulas derived in Sec. 2 provide a basis for applications to specific shell structures
and specific piezoactivity. We now choose the geometric configuration of the shell to be
of such uniformity and regularity that its surface can be described by a smooth function
of two coordinates and its piezoactivity can be considered linear in the mechanical
strains and the applied electromagnetic fields.

Equations of Forced Harmonic Drive of Shells in Operator Form

Let the time dependence of forced drive of shells be exp(jcot). The equations of
motion in operator form can then be written

E 2ijj (x,c w) = Pi(x,co), i = 1, 2,..., 1 (3.1)
j

where

i= index number of mechanical ports

= dyadic elastodynamic operator which converts displacement into force per unit
area (dimensions, N/m3 )

U. = shell displacement vector. In a single cylindrical shell U- has components ul
i (axial), u2 (tangential), w (radial) (dimensions, m)

Pi = surface force per unit area (dimensions, N/M2 ) in the ith mechanical port.

Operator Yu can be written as a sum of stiffness Kij and inertial )Rij operators,

2 = J +I] (3.2)

where tllij is generally defined to cover the case of composite motion in all degrees of
freedom, including rigid body motion. Internal mechanical losses will be discussed later
in this analysis.

First assume that Eq. (3.1) can be solved by an infinite series of normal modes
Yi(q;x) of the unloaded shell:

00

U (X ,X2 , c) = A(q; c)Y.(q; x,X 2 ), j=1 .. I (3.3)
q=1

Since the normal modes are orthogonal with weight ¢ over the reference area of the shell,
it is obvious that

6
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A(q; w) =(3.4)

in which ( denotes inner product integration over x1 , X2, i.e., over shell area. In the
numerator of the r.h.s. of Eq. (3.4) Uj is unknown. To find it we multiply (take the
inner product of) Eq. (3.1) by Y1 and integrate over the area of the shell. The result is

L~ijJ.(X1 X2 ; W), YI.(q; x1 , x2 )) = i(P.XV~X2 ; ca), YI.(q; x 11x2 ). (3.5)

To solve this equation we assume that component operator Kjq in 2ij is self-adjoint and
has the eigenvalues -A 2 (q) (dimensions, sec-2 ); that is, we assume Kij to be such that

K.. .(q xi~ x -A2(q; w)( x) Y~.(q; x1 ,x (3.6)

and

Yiju' Y. U. K j = -(L., A 2~y.} 37

In addition, in the first approximation we assume

ij= ME6 w2i (dimensions of mE N-sec2/m 3)

that is, we neglect rotary inertia and rigid body motion and take the shell to be homo-
geneous. Using Eqs. (3.6) and (3.7) in Eq. (3.5) leads to the statement that

(UI., ME w 2 y) - (UI., ~A2 yI.) = (p~., yI.). (3.8)

Restricting attention to a thin shell, we know (Krauss [6] page 365) that the weighting
function =ME = pb, where b = shell thickness. Thus,

Y.(q; ~~(P .(x1, x2 ; W)' Y1.(q; x , x2 )) 39
(U.'(x1, x2 ; w), Y(;xl, x 2 )) = 2] 39

ME [A 2 (q) -c

Equation (3.4) then becomes,

7
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A (Pj(x1, x2 ; w), Yj(q; x1 , X2)) (3.10)

c mE[A2(q) - w02]N(q)

where

N(q) = L (Yj(q; xl, x 2 ), Yj(q; x1, x 2 )) * (3.11)

To include localized forcing functions (Pj), the integration required in the numerator of
Eq. (3.10) can be restricted to a particular area of the shell, say

dS = dS(A1, tA2 )-

Define an average (forcing) force per unit area p and a forcing integral Y° for that
particular area, by the relation

P Y°(q; wa, ;w) = L (P.(tA , ; w), Y.(q; tA' tA)) * (3.12)

Thus, Eq. (3.3) becomes

Uk(X1'X2 Itzv ,t ;W) = - E p l tA2)Yw(q; tA1't2)Yk(q; x X2)

lk( X 1 A2 o) q 1 mE[A (q) _ ]N(q)

(3.13)

This is the k component of displacement at x due to a forcing function at t ('A tA
The symbol p can be understood to be a surface force of either nonacoustic or acoustic
origin. In the latter case, we can define an acoustic surface radiation operator q such
that

P(k)(C'J t1i 2 tA q((A I IjA , ) (3.14)2 1 2lt~l t~2;C))jo~k~tl' 1 2)

where Uk is a normal displacement. Substitution of Eq. (3.14) into Eq. (3.13) thus
provides a solution to Eq. (3.1) in the case of acoustic loading.

An alternative procedure for handling acoustic excitation is to return to Eq. (3.10)
and expand the acoustic forcing function (Pi(A)) in the modes of the free-free shell.
This procedure is an approximation in which the normal force loading on the ends of
the shell is considered negligible compared to the loading on the sides of the shell (thus
satisfying the free-free condition). Thus

00

(*AlItA ;c) ) 1 jW2aA, E tA , A ; A )Y.(S; tl' t,2 )A(s; cw) (3.15)212 2 It'1' 2 1O

8
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in which A is the modal expansion constant. Equation (3.10) then takes on the following
appearance (for the acoustic case):e

(- a1 A2 IA1 A2; t )) Y.(s; t1' IA2)A(s; w), Yi(q;

A(q;(D22 m [A2 (q) - w2 ]N(q)
(3.16)

(For simplicity we have taken only one direction (j) to be the important normal direction.)
This equation shows that the expansion coefficient for each q mode (namely A(q; (w)) is
to be determined from a knowledge of the expansion coefficients of all the (infinite
number of) s modes (namely A(s; w)). A solution of Eq. (3.16) therefore requires a
solution of a set (theoretically infinite, but practically finite) of simultaneous equations
in expansion coefficients A, because the numerator eigenfunction products are not
orthogonal.

A third procedure for including acoustic excitation is to assume that the pressure
distribution on the shell exactly matches the shell velocity distribution and to define
from both of them a set of modal radiation impedances. Since this matching can be true
only for a very limited number of geometrical configurations of the shell (at most, only
for surfaces separable in the Helmholtz operator) this method is very restricted in applica-
tion (see Appendix B for details).

We next consider the case where the vibration of the shell structure is damped
internally. To account for modal damping we allow the operator 2 ij to have an additive
term EDij (w), and define a three symbol damping quantity Rim (q; s; W) by the relation

3 00

E ?ij(Dw)[Yj(q; x1 ,X2)] = j E L Rim(q; s; O)Ym(s; x 1 ,x 2). (3.17)

This equation expresses the hypothesis that all the s modes Ym(s) are coupled by Rim
to contribute to the q mode, and that in any one mode (viz., when q = s) the damping
entity Rim couples all orthogonal displacements (i.e., couples Y1, Y2 , and Y3). It is
conventional, however, to consider each mode to be damped only by a modally defined
constant i7(q) and to omit any effect of intermodal coupling due to damping. This con-
vention is formulated in the following way:

E Sij 1(w)[Y1(q; Xl, X2)] = ji(q; w) Yi(q; x1, x2 ). (3.18)

The eigenvalues of the stiffness operator (i.e., A2) are thus converted by damping from
real numbers to complex numbers. In place of A2 we then write A2 (damped eigenvalues),
in which

AD = A 2 (q; w) [1 + jq(q; w)] . (3.19)

9



HANISH, BAIER, KING, AND ROGERS

In the theory of the vibration of elastic structures a complex eigenvalue may be interpreted
as a complex stiffness (a complex Young's modulus).

The elastic structures used in efficiently designed electroacoustic devices are always
selected to have small internal damping. We assume small internal damping in all sub-
sequent analysis. As a corollary to this assumption we shall consider that all mode
shapes with damping do not differ in the first approximation from mode shapes without
damping; i.e., a first-order change in the eigenvalue results in a second-order change (at
most) of the eigenfunction.

In the next section the arbitrary number of ports in canonical Eq. (2.2) and mechanical
Eqs. (3.1) to (3.19) are particularized to cover the shells treated here.

4. ELASTODYNAMIC EQUATIONS OF MOTION WITH FORCED ELECTRIC DRIVE

We first apply canonical Eq. (2.2) to the case of a vibrating shell having one electrical
port and three mechanical ports. Let (u1, u2, w) be the displacement vector of a thin
shell with components ui, where ul= axial, u2 = tangential, and w = radial. Let 7rij be an
elasticity differential operator defined by the elastodynamic equations of motion:

3

L yiu. = pb~i + P i=1, 2, 3 (4.1)
j=1

where

p = mass density of the shell

b = thickness of the shell

Pi = total external force per unit area acting on shell.

Explicit forms of 7rij are found in Flugge [7]. Defining kij, Xij to be "foundation" stiffness
and damping dyadics respectively, we write the total forcing function in the theoretical
form

3 3

P. = p. + vk ..u. + EN iu. (4.2)I I 1 J 1iJ1
j=1 1=1

where pi is an individual external applied force per unit area (plus equivalent "electro-
mechanical stresses") other than foundation stiffness and damping. Note that in general
the latter forces couple all displacement components. The components of pi are written
with negative signs, in view of the definition of Pi:

Pi = (-P 1 ' -P2' -P) (dimensions, N/m2 ). (4.3)

Here the radial force p is positive outward (along the normal pointing away from the
center of curvature of the shell).

10
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To solve the forced-vibration problem of a thin shell we adopt cylindrical coordinates
r, 0, x and, suppressing r because the shell is thin, represent uj(0, x) by a spectral decom-
position,

(U)= =Un° TTl G

nUi = U2 Yl 2(0X x) q n(t) E U In(0, x)q n (0 (4-4)

W ~ ~~ (d, X)

where Uin is the (dimensionless) displacement vector in the nth mode of free vibration,
with natural frequency con determined by the eigenvalue solutions for given boundary
conditions, and qn is an amplitude of displacement. It is assumed that these modes
satisfy an orthogonality principle. By definition of free modes with no dissipation,

3

Lr .LUJ. =-pb 2U. i = 1, 2, 3. (4.5)

j=1

Since it is important here to include structural damping, replace 7rij by 7ri1 , which is
defined to contain damping terms, and define a perturbed eigenvalue con to be the
solution of the equation

3 3

E= 2 - ntPbU + b U. i = 1,2,3 , (4.6)21 ikUkn Co n+ jPb ni Znk=1 m=l

in which 5,nm is the structural damping dyadic and I = A/ . We assume that this damping
couples all modes, particularly in the higher orders. For the lower orders (which are of
chief interest) we assume an internal friction of Solid Type II [8] and write the damping
dyadic as an identity dyadic multiplied by a frequency dependent damping factor In, viz.,

;)nm inm n7n' (4.7)

From this we have

)n = 2(1+in) I71 | << 1 (4.8)

o /Rncon\
?7 = (4.9)

in which (for purposes of defining the damping only) the modes are considered to be
single-degree-of-freedom systems having mechanical resistance Rep and stiffness Kn.

Substituting the proposed solution of Eq. (4.4) into Eq. (4.1) we arrive at

11
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00

pbU.i'4(t)
n='1

3 r3
+ X.IUkrtj(t) + npb ink U.n +Ek.U 1 } Pi = 0, i = 1, 2, 3.

k=1 1=1

(4.10)

To isolate individual modes we must use the orthogonality conditions of the modes of
free vibration of a thin elastic shell. This is given by [6]

3

Ef uv U.dS(O,x) = 6 N
In=in i 1n n

N= If(lU 1 nI| + IU2n 2 + Iw 12)ds(o X).

where

Thus we form a dot product of the spectral Eq. (4.10) with
the area and add the three equations to obtain

00

E pb 4m (t)
n =1

3 3

L JUim UindS + 4m (t) L
i=1 ~~~~k=1

Ui(m) and integrate over

i f Xik Ukm UindS

3 3

+ qm(t) L T f kilU1mUindS
1=1 i=l

3

+ qm(t)E
i=l

pb( ' As UiL UindS}

+ L fuPiuinds = 0.
i=l (4.13)

It is seen that the foundation stiffness and damping couple all modes. Examination of
Eq. (4.13) shows that mode isolation is possible only if

ki = kii k

Xik =Xi =X,

i = 1, 2, 3 (4.14)

i = 1,2,3. (4.15)

While such conditions are extremely restrictive, their use where justified makes Eq. (4.10)
tractable. Adopting these simplifications and applying the orthogonality principle, we
arrive at the statement that

12
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3

LE fpiUi~ndS + Nn [(pbcon + T,) qn(t) + Xin(t) + pq n(0 =)] 
i_~ 

(4. 16) 
Mt

Let the time dependence of the forcing functions be harmonic, viz, exp(jwt). Solve for
qn( &):

3

vT fp PdS
i=l 

qn(co) =
Dn(w)

(dimensions, mi), (4.17)

D (co) NnPb( -+ + (dimensions, N/m).

Thus the vector displacements are given by the product of known modal shapes and known
amplitudes, namely,

Co

U1 (O, x, Co) = L Uin(O' x)qn(w)-

n=1

(4.19)

Point and Band Influence Functions

We now specialize the forcing function in two ways: point and band. In the case of
a point forcing function we assume that the forcing function is delta-distributed in 0, x,
so that

Pi =1 (fl - 0)5(82 - X)

-f, , -f.,, -f...) (dimensions, N).

(4.20)

(4.21)

3 3

-E fPiutndS -_Tf
ti_ i~_ 

fi UiM5(tl - 0)5(82 - x)dS(0,x)

f 1UlnQ + f2U2 ~n(' Y + fwWn(ti t2)- (4.22)

The most general formula, valid for excitation in all orthogonal directions, is therefore
given by

CO 3

Ui(OxI1 ,1 2) = E 
n=1 j=1

i = 1,2,3 (4.23)
(,Yijn)(0I X 1 t1I t2)

Dn(w)

13

(4.18)

where

Thus,
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where

fl Uln (ae) UlnM

=fijn f1U2n (a) UnQ()
fl Wn(el)UIn M

f2 U1 n(a)U2n(M)

f2U2n (a)U2n(0)

f2 W (a) U2n(t)

fw Uln(Ua)Wn(O)
fw U2n (e)W n~ .

fw Wn (ae) W,(t)

Here a, t are surface location vectors with components a = (al, a 2); and = (Q1, t2).

When the point forcing function is in one direction only (when only fl, f2 , or fw
are operative), the following influence functions can be obtained:

co

= gl(aU1) = E
fl n=l

U = g2(aI8) = E
f2 n=I

w
w_= go(aI, ) E= 

n=l

U1 n (a)U1 n()

Dn()

U2n(a)U2n(0)

Dn(Cj))

Wn(U)Wn(O)

Dn(co)

(dimensions, m/N)

(dimensions, m/N)

(dimensions, m/N) .

All the above equations represent point-excited influence functions. In the case of band-
excited influence functions we proceed as follows. Let pj(O, x) be a typical component
of driving pressure and define it to be a rectangular function, that is, a function that is
zero everywhere on the cylinder except across a band Al units wide in x and A2 units
wide in 0. Thus

Pi(X,0) = P l' A2'A1' A2)f1(0,x)H(x - QAl 1a)IT(° 0 tA 1A2 ). (4.26)

Here piQAl, tA2 1 , A 2 ) is the average forcing function (N/m 2) in a band of width
A1 in x and A2 in 0 centered at the surface coordinates x = tA1' = tA2; fi(x, 0) is the
nondimensional variation of pi(x, 0) with x and 0; and H(a - blc) is a displaced rectangle
function of unit height and base c centered at a = b. For bands of width small enough
we take f(x, 0) to be constant with value of unity. Returning to Eq. (4.17), we write

3

I = X fPi UindS =

i~_ 

fP + p ndS + 2 U2 dS +f P3 wndS.

Selecting one term (say the 3rd) on the r.h.s. for explicit integration, we define an
integral mode shape WO by integrating over a cylindrical surface of radius R:

J P3 WndS = P3(tAl' l' AdWn(tAl' t42' Al' 2)

14

(4.24)

(4.27)

(4.28)

(4.25)
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where

Wn(t1 ' ta2 A, 2 ) = f f,(x, 0)fI(x - ta1 IAI)311(0 - kA2 IA2)3 Wn(X 0)RdOdx.
21 113 ~~~~~~~~~~~~~~~(4.29)

Defining U0 , U? in the same way, we write

1 in + P22n p+ .W (4.30)

The component of displacement ui due to P1, P2, P3 can now be written in the form

UP(0,X) = g(,xI + gi2(0'X A2)

X P2(tl'k,(2) + gi3 (O°X1 ,dAd2)p 3(t/61, 2) (4.31)
where

l a Uin(0, X)U0n(t4, 1tA2)
9 ~ ~ ~ =2 n .. (4.32)

The symbol gij (dimensions, m3 /N) represents the displacement in the ith port due to a
unit forcing function acting in the jth port. They are therefore band-type influence
functions. They will be used later in this analysis to solve the problem of an axisymmetric,
force-driven, circular cylindrical shell. Note that in thin-shell theory the word "displacement"
unless otherwise noted, means "displacement of the reference surface of the shell."

Electromagnetic and Acoustic Forcing Functions

We now consider the problem of forced vibration of a piezoactive shell submerged
in water when the forcing function is restricted to a sum of a piezoactive excitation
PEM and an acoustic excitation PA. Thus we write

Pi Pi(EM) + Pi(A) (4.33)

The form of Pi(EM) may be obtained from Eq. (2.2) by noting that forcing functions differ
from response functions of similar form by a change in sign. For the case of magnetostric-
tive coupling, the appropriate operators in Eqs. (2.1) and (2.2) are

Vj>{ }= I 'y..( )dS.

i- j} = ii( )

Z;m){} = Z) ( )dS.

Thus, in the steady state,

3

p(O, x) = -2 4 ik(' x)Ik(O, x) W2 j il(° x t1, 1 2 )uI(N)(t1, 2 (4.34)
k=1 I(N)

15
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where oil is the acoustic Green's function (i.e., acoustic pressure gradient per shell
reference surface velocity) for the domain and boundaries to be specified, ul(N) is the
normal component of displacement of the reference surface in the Ith port.

The total (vector) displacement due to this type of forcing function may be obtained
by using Eqs. (4.31) and (4.34) together:

Ui(0PA' XA) = gil(22A1 XA ltA, tA2l 21 1(i )Iq(tA1l tA2)
1 tA1'tA2 q

r tA1't^2 sSa ,A1A2

X rstl't2lt 't2s(A' 2)(4.35)
in which the subscripts 1, i, r, q, s designate ports, and uS in the second term of the r.h.s.
is to be interpreted as a normal component of displacement. The summations over tA,
tA2, tA1 tA2 denote finite-element areal integration.

Equation (4.35) is a finite-element approximation of an integral equation in the
unknown velocities ui, us. The principal factors in this equation are the entities gil,
iPlq, P rs, The influence coefficient gil can be determined from a solution of the problem
of forced vibration of a shell by a point or band forcing function. The transduction tlq
is a matrix of electromechanical coefficients which convert currents pertaining to the
qth port to force per unit area at the Ith port. The form of these coefficients depends
on the choice of independent variables in the canonical set and on piezoactive material
constants. The radiation Green's function qrs is calculated from a solution of a delta-
driven Helmholtz equation in the acoustic pressure, for the domain and boundary con-
ditions chosen. If 0, x are discrete, Eq. (4.35) reduces to a set of simultaneous equations
in the unknown displacements ui(OA, xl'.

Determination of gil-It is seen from Eq. (4.32) that gil is constructed from the
modes of free vibration of a dissipationless shell (i.e., from Uin). To find these modes
we consider the free vibration of a thin shell and choose to investigate free (time)
periodic waves of arbitrary wavelength which make up a surface vibration pattern. To
find their shape we let M be the vector displacement with components Mi, where
MI = U, M2 = V, M3 = W, and assume that the equations of motion can be formulated
in terms of a differential elastodynamic operator S2i. The eigenvalue problem of free
vibration is then formulated in abstract form by the following equations in a selected co-
ordinate system:

3

In the continuum domain: % P..M. = 0, i = 1, 2, 3 (4.36)
j=l

16
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3 3

On the edges: E B.M. = A.C.M., i = 1, 2, 3 (4.37)
T EJ I Ui J

j=1 j__1

where B., Cij are differential operators and Ai is an eigenvalue of Kij (see Eqs. (3.6) and
(4.6)). The solution of this problem is, in general, very difficult to write for arbitrary
coordinates. To reduce difficulties we select a system such that Eq. (4.36) is solvable by
the method of separation of variables. Let 0, x be such coordinates. Then, for separable
functions E), X we write

U, V, W O 6(O)X(x)eiWt. (4.38)

A shell of particular interest in this analysis is a circular cylinder of radius a and thickness
b (b << a), whose length is finite. Thus we choose E(0) to be sin qO or cos qO, and
X(x) to be exponential, i.e.,

fsinqO [a x 1
U VI W ll fexp 1, 2, ,Q. (4.39)

cos qOJ a

Here ar is a separation constant, and a is a reference mean radius of the cylinder. For
the most general case it is known [9] that Q = 8. Substitution of Eq. (4.38) into Eq.
(4.36) changes the differential operator 2ij to an algebraic operator Lij. Thus the
eigenvalue problem reads

LM = 0 (4.40)

or

3

L L.(a, q, w)M. = 0, i = 1, 2, 3;,
j= 1, 2, ... (4.41)

To obtain nontrivial solutions we solve the characteristic equation

IL .(arq,w)l = 0. (4.42)

This is an eighth-order equation whose roots ar give the allowed values of the separation
constant ax which satisfy the equations of motion of the shell for selected values of
frequency w and q. The roots are expressed in terms of the original elastic moduli,
wave numbers, etc., of the shell. When these roots are found one can substitute them
sequentially in L and form a series of 3 X 3 matrixes:

A B C
Lr = DEF , r = 1, 2,. .. , 8. (4.43)

LGHIr

For each choice of r we then find the amplitude ratios by the cofactor method:

U: V: W - cofactors of any row of L . (4.44)

17
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Of the three displacements we next choose the radial displacement W to be our reference
displacement, suppress the time dependence exp (jwt), and write it as a sum of exponentials
with arbitrary amplitudes:

8

W = Wr, W, = C, (4.45)

Using the amplitude ratios determined from Eq. (4.43), we can construct U and V as
follows:

U=L (U)W (4.46)
r=1 Wr

= ( W) r (4.47)
r=

We now fit the proposed solutions, Eqs. (4.45) through (4.47), to the boundary conditions.
The amplitudes Cr constitute eight unknowns. For a finite cylindrical shell there are two
edges with a possible maximum of four boundary conditions per edge. Thus we can
write an 8 X 8 matrix equation in the form

[S(f3, A)] [C] = 0 (4.48)

in which parameter( = anrl/a. To obtain nontrivial solutions we set

IS(Q, A) I = 0, (4.49)

which is a transcendental equation with an infinite number of roots

alI
gm rm m = 1, 2, ... , oo. (4.50)

a

Hence for a given frequency wm one finds air, im which simultaneously satisfy Eqs.
(4.49) and (4.42). The length Im of the shell is the length required for the free mode
of vibration Wm to occur at wm [9]. Alternatively, one can fix the length I = If and
seek a value of cim which simultaneously satisfies Eqs. (4.42) and (4.49). This method is
required for the purposes of this analysis and will be adopted. Thus, for an infinity of
choices wm, m = 1, 2, . .. , -, we find an infinity of mode shapes Wm (for fixed length
If) which can then be used to calculate Eq. (4.45), so that

8

W(x, q) = 1 Wr (x, q), q = 0, 1,...,oo (4.51)
r=1

18
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W xq)=8 x\M /9m~sin qO
WM(X, q = Cr )exp ( InI ) (4.52)

r-l rIf / \cos qO

From this reference displacement one can then construct U, V by means of Eqs. (4.46)
and (4.47) (to within a scale factor). When the modal shapes Um, Vm, Wm (or Ulm,
U2m, Wm) are determined, one can construct the influence function

gil(o, X 1t,Al, tAO)

from Eq. (4.32).

5. FORCED VIBRATION OF A FREE-FLOODED MAGNETOSTRICTION RING

We consider in detail the axisymmetric case of an electrically driven free-flooded
magnetostriction ring transducer of mean radius a and (transverse) rectangular cross-
section submerged in water and radiating sound into an unbounded medium. There are
two mechanical ports (for radial and axial velocity). The axial coordinate is x, and all
axial variables are labeled subscript 1. The tangential coordinate is 0, and all tangential
variables are labeled subscript 2. The radial direction is labeled subscript 3. The ring is
wound toroidally with N turns of wire so that the current matrix has one electrical port
I, and the resultant magnetic flux matrix is given by flux 4'2 Dividing the ring surface
of thickness b into J bands of equal area 2iraAl on the lateral surface and K annular
bands of equal width on the top and bottom surface, deleting 0, then designating k, 1 as
running index for bands, we reduce the components of Eq. (4.35) to the set of simultaneous
equations in velocities al = jcul, w = jaw, as follows:

J

Ilk) = -Ejwg 1 3(k, l) " 31 (1)11 (1) + SD

J J+K

- 2121 jwgl3 (k, 1)q(l, r)vN(r), k = 1, 2, ... ,K (5.1)
I. r

J
ib (k) = yjwg 33 (k, 31(1)I1(l) + Sw)

J J+K

-22 jcog3 3(k, 1); (1, r)vN(r), k = 1,2,... ,J (5.2)Ir
where VN(r) is the normal velocity on the rich band and SD is a structural damping, present
only in water, due to "foundation forces" (method of support, etc). It is convenient to
calculate SD by defining a (real) damping constant R, as follows:

19
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J
S(Ua) = cEjig,, (k, r)Rs ) U(r)

r

J
SDW)= jcig3 3 (k, r)R(W )W(r).

r

The solution of this set of simultaneous equations yields all the surface velocities due to a
constant current drive. When the current drive Il is replaced by a voltage drive E1 we write

El E(9 - I ZllgZ (5.3)1 1 11'I

in which 7(g) is a "generator" internal impedance. Substituting this into Eq. (2.1), we
-11

have (for X mechanical ports),

El = z(b)I 1 + L.d. (5.4)
j=5

We then solve for I, and find

I El 3 rW'dS + Of cll I dS
= _ S-J 3L(S!b i1)ud (5.5)

11 ~~~~11

Thus, for constant voltage drive the unknown reference surface velocities are found by
solving the following set of simultaneous equations:

J J+K
u 1 (k) + jwgl 3(k, I)P(1, r)vN(r) + Sg')

I r

-21 2iTaAl(r)jWgl3(k, 1) 31 (1) /3(r) (b)
I r 1 1

JK u1k(s) s)2ras'A(k
-21 jcogl3(k, 1 3 1(1' s2asA3(s) Z(b) 2 jcogl 3(k, ")'31(1)Z(b)

I p 11 11

k = 1, 2,. .. , K (5.6)

20
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J J+K .)
Ek) +E211 jg 33(k, 1)q(1, r)vN(r) + S(w)

_-E 27raAl(r)iCjg33 (k, 1) ; 31 (1) ;i3 (r) g-) 
I r r

- 2ira(S)A3(S)jcg33(k, 1)31(1) I(s) Z(b) = ~Eicog 33(k,1) 31bj 

k = 1, 2, .. ,J. (5.7)

The two sets of equations, (5.1)-(5.2) and (5.6)-(5.7), are the basic results of this
analysis, since a knowledge of the surface velocities determines all dynamic behavior of
the transducer. In the next section we specialize the parameters which enable explicit
numerical solutions to be obtained.

Formulas for the Prediction of Performance of a Free-Flooded Magnetostrictive Cylindrical
Shell

In the first approximation the electromechanical constitutive relations, referred to a
three-dimensional coordinate system xi, are given by the following linear set, which is
valid in the low-frequency range:

T. = CBS. - hMt)B, j = 1, 2,. .. , 6; k = 1, 2, 3

HI = - hlnSm + (,ps )lBp, I = 1, 2, 3; m = 1, 2,..., 6 (5.8)

where

T. = mechanical stress (N/m2)

CB. = elastic strain/stress moduli at constant induction (N/m2)

h(t) = transposed piezomodulus relating stress to induction (N/Wb)
ik

Bk = magnetic induction (Wb/m2)

HI = magnetic intensity ((A)/m)

hIM = piezomodulus ((A)/m)

(ps)-1 = inverse permeability at constant strain [A/(Wb/m)].

For a toroidally wound coil,

21
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h A2 p bNX ( (59

0'13 = ~'31 2ia 2 5vol. vel.

where X is a complex eddy-current loss factor (X = XR - jXj). The impedance z(b) has
explicit form

Z~)=jcN 2p SXb1 (bVz(b) = _ = Fell j&11L (A) (5.10)
11 ~27ra'y =-11

where 1 is the axial length of the shell and y is a leakage coefficient. An explicit form for
the leakage coefficient y must be estimated from experiment (plus calculation, when
advantageous). With the substitutions of Eqs. (5.9) and (5.10) into Eqs. (5.1)-(5.2) and
(5.6)-(5.7), we complete the formulation of the acoustic-mechanical system in terms of an
admittance-type influence function. There is another type of influence function, namely
the impedance type, which plays a significant role in predicting the performance of the
transducer. To obtain a formulation in terms of impedance, we first invert the influence
matrix gii to form the impedance matrix ;(m), such that

~(in) =-(j~g) 1. (5.11)

Then we multiply Eqs. (5.1) and (5.2) by this inverse* and sum the running integer k over
J sidebands. Noting that

J
21 Zn)(q, k)[Z(in)(k, 1))1' = 6(q, 1) (5.12)

k

and restoring the forced drive p(g) of Eq. (2.3) due to incident and diffracted acoustic
waves, we see that Eq. (5.1), which deals with endbands, takes the form

J J+K J
21 (m)(q, k)ut1 (k) + 2 @(q, r)vN(r) + 1 (1)(q, s)zi(s) = - (q)I1 + g(q)

k r s

q 1,2,.. .,K. (5.13)

Similarly Eq. (5.2), which deals with sidebands, takes the form

J J+K J+K

2 Z()(q, k)dw(k) + 21 §(q, r)vN(r) + L;Z3 1 (q, t)ut(t) - 31(q)I1 p+(g)
k r

q = 1,2,... ,J. (5.14)

When the drive is constant voltage the impedance formulation of Eqs. (5.6) and (5.7)
becomes

*The matrix g-- is invertible if and only if the number of modal functions used in obtaining gij is greater than or
equal to the Votal number of reference surface bands used to describe the shell.
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J+K J+K J

21 s( Z )(q, k)u ) + 21 (q, r)vN(r) + LZ1 3 (q, ) ( )
k r S

-2 0 11(q) 1 3(r) Z(b) 2araa (r)
r 1 1

K m
_ 11(q)¢/ 1(t)27ra(
t 711-1

q = 1, 2,...,K

for sidebands, and

J
21 S4m)(q, k)vi(k)

k

J+K J+K

+ 21 q(q, r)vN(r) + 2 Z3 1(q, k)u (k)
r k

-2 4i31(q) W 3 (r)27raA1 (r) Z(b)
r 11

K 

-21 3(q)Vl(t)27ra( t)AP) z(b)
t 11

+ p(9)(q)
E

¢3(q) z-b)
11

q = 1,2,...,J

for endbands (where we have again restored p(g)(q)). The solution of the above-developed
basic Eqs. (5.1), (5.2), (5.6), (5.7), (5.13), (5.14), (5.15), and (5.16) enables us to write
the principal formulas needed for the prediction of the electroacoustic performance of a
free-flooded magnetostriction ring vibrator. Assuming all velocities to have been obtained,
we proceed to determine the following quantities.

Constant-Current and Constant-Voltage Specific Acoustic Impedances-Setting q = 0
and neglecting endbands, we find from Eq. (5.14) that

J
Z Zo(q, k)w(k) = p(g)(q) - iI,(q)

k

ZO-."(q, k) = Z(fn)(q, k)

= constant-current specific acoustic impedance.

(5.17)

(5.18)

23

4.1

_r.

G.

+ P(9)(q)
E1

- 11(q) Z(b)
11

(5.15)

(5.16) I

where
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Setting = 0 in Eq. (5.16) and neglecting endbands, we find that

,3 ,wk= p _ '31 (q)El(q) (5.19)21 Z -(q, k) w (k) p (g) (q) Zb

k 11

where

Zs-c (q, k) = Z0- (qj k) - '31 (q)i/i13 (r)

11

= constant-voltage specific acoustic impedance. (5.20)

Pressure Field and Source Level-Letting p(g) = 0 we solve Eqs. (5.13) and (5.14) for
w(')(k) and U'(l(k), i.e., for given v5.J)(k), and find the true surface velocities ON by using
thickness correction factors (see Sec. 9). Then the acoustic pressure at field point x is seen
from Eq. (2.16) to be

2(J+K)

pI(X) = 2 G(x, k)U9 (k) (5.21)
k

where G is the true surface radiation Green's function (see Sec. 9). The acoustic pressure
at x due to constant voltage (PE) is similarly obtained by solving Eq. (5.6) for vE with
p(g) = 0, then applying thickness correction factors (Sec. 9) to find ON, and finally writing

2(J+K)

PE(x) = 21 G(x, k)OE (k). (5.22)
k

The transmitting current response ((N/m)A 1l) at a far-field point lxi -° is given by

2(J+K) I
Transmitting current response = lim jxj 21 G(Ixi, k) I-N (k) (5.23)

IxI1-° k1 1

where ?DN(k) is the surface velocity of the Nth band (both radial and axial) due to unit
current excitation, and G is the actual (not reference) surface radiation Green's function.
For voltage excitation ON(k)/I is replaced by (N(k)/E. We note again that true surface
velocity CN differs from reference surface velocity VN. A discussion of this is found in
Sec. 9.

Electrical Input Impedance-From Eq. (2.18) we write the ratio of the voltage Ei
due to the current I, in the form Z(e). Since we consider only radial (subscript 3) andii
axial (subscript 1) volume velocities, we have

- 11 _ OilkZ1 3'1& i'1211 333 31 i3Z 31 /'
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Assuming that i = 1, i.e., that the only voltage is E1 , we write further, for I bands,

K 2iraA (1)g' (1)lm 2
Z(e) = Z(b) + 111

11 11 -i
I ()

+ 21Ol3(I)W(1)27raA(1)

I I, (1)

:;z

cz

(5.24) 
rr

in which u1 and W are determined from Eqs. (5.1) and (5.2).

Receiving Response-We return to Eqs. (5.17) and (5.18) and solve for the velocity
w,(P(O))(k) when the current I1(q) vanishes, and when the rigid-body diffraction pressure
(p(D)) also is negligible. Then assuming the receiver transducer is electrically terminated
in an electrical impedance Z(j, we write I = - El/Z(9) in Eq. (2.1) and solve for E1 .
Thus the receiving response is given by

1E= Z(g) I 13 l)W(1)27raA(1)
P0 Zl() + Z(b) Ll P0

11 II LI

K L ll(k)a(k)2ira(k)A(k)

k P
(5.25)

The open-circuit receiving response is then given by the condition Z(g)-o.
11

Electrical Admittance-When E1 = El and Ii = I,, then from Eq. (2.1),

2

El = Z(b)I + - *lj'{V.},
j=l

where u; is the velocity at the mechanical port pll. Dividing by E1 and forming the ratio
I, E, = y(e), we write11

K 0'1 1l(k)2ira(k)A(k)]

k=1 E1 j

1J 0,'()()()XaNIy e ) = _ 1 L)~()()i~A1

11 _ 1=1 1

(5.26)

Steady State Radiated Power-When the peak normal surface velocities O.7N are de-
termined for any electrical drive into a source-free medium, we can apply Eq. (2.17) to
find the rms radiated power ib, i.e.,

(5.27)

where S(k) is the area of the kth band, G is the true surface-radiation Green's function,
and * signifies complex conjugate.

Steady State Mechanical Power Dissipated As Internal Loss-During in-vacuo vibra-
tion at constant current the real part of the mechanical impedance is assumed to consist of
R + R", Where R' is the mechanical resistance resulting from coupling of the magnetostric-
tive field to the elastic field and R" is a purely internal (friction-type) mechanical resistance.

25

=21 2(J+K) 2(J+K)

2 = -Re (9(k)S(k)G(k, '1 l
k I

411 f} = f 0!.( )dS
li 1i
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In the more general case, the mechanical resistance is a matrix R[k, 1], which represents
the equivalent mechanical force (associated with internal resistance) at band k due to a
reference surface velocity at band l. When the normal (peak) reference surface velocities
vNM are found (with @-0), the steady state mechanical power ?D dissipated as internal
loss by the formula

1 J+K
D= - Re 2 UN (k)R'(k, l)vN (I). (5.28)

k,l

In the particular case where R [k, l] is a diagonal matrix with only one component which
is the same for all velocity distributions, we have

J+K 2

lbD= -Re 2 IUN { RI, RI = R' + R" (5.29)
k=1

At constant voltage drive under analogous conditions, in terms of impedance d (see Sec. 6),

J+K
-= Re T ukE(k)RE(k, I)VNE (1) (5.30)D 2 

k, I

I J+K 2
-E= Re E I I RE, RE R" + Re (5.31)D 2eINI ,

6. MODAL MASS AND COUPLING

When the vibratory motion of the shell is analyzed into a superposition of an infinity
of modes, the electroacoustic performance may be said to mirror loosely these modes by
showing an infinite sequence of peaks and valleys of response to transient and steady
state drivers. It is convenient to consider each mode as a single-degree-of-freedom system
of special type, possessing a modal mass, modal resonant frequency, modal stiffness, modal
resistance, and a modal coefficient of electromechanical coupling. It is also useful to
isolate a single selected peak and its associated valleys from the total electroacoustic
response, and to find for it an effective mass, effective stiffness, etc., which take into
account contributions of an infinity of modes at a specified frequency. Both of these
approaches are analyzed in this section.

Modal Mass (First Formulation)

The concept of modal mass can be defined in several ways. Different choices,
used consistently, yield the same final results. However, the analytic formulation of
modal resistance (modal mechanical Q) places restrictions on the possible definitions of
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modal mass. When the concept of mechanical Q is explicitly used in the analysis the
modal mass must be a real positive number. We consider now a first formulation of
modal mass.

The generalized coordinate qn(w) (Eq. (4.17)) has the form

- f p U dS
q(n ) = (6.1)

pbNnF(co)

where

-- -2 2
F(w) = w n - co + loss terms. (6.2)

For a description of the loss terms see Secs. 7 and 8.

Now we write the normalization Nn in terms of three entities Ain, A2n' A3n, as
follows:

N = (A 2 + A 2 + A2 )27ral (6.3)
n in 2n 3

where

A2n =27r1 f U2ndS

A 2 1 in2

in 27ral f 

In general there is an A? which has the largest magnitude. For ease in writing assume
this to be A2ns Then

= [1 (n)+ (3) ]2 ral. (6.4)

By simple manipulations we obtain

=nGJ() fn 3) (6.5)
MnF(wj)
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where

M = M + (A) 2 + (2An) l
A 3n/

Ms = pb27ral = static mass of shell. (6.7)

The quantity Mn is the nth modal mass (i.e., generalized mass) normalized to the mode
shape of maximum amplitude. The nth modal stiffness is given by

K = 22M
n n s L (Al,) 2

LAUn

(AS 2]2n I
\A 3 /

where Qn2 is the in-vacuo resonant-frequency at the nth mode.
n

Form of Dn in the Constant-Voltage Case

We begin with the constant-current case (Eq. (4.18)) and write Dn, including coupled
core loss (R'), such that

D = N pbl 2w c - 2 + 
n n n M

n

+ / (6.9)

where

co = -22(l - k )
n n nXRn ) (6.10)Q2 = Kn

n M
n

K k 2X
Rn' = I~n

co

Xn XRn In

(6.11)

(6.12)

Here Qln is the in-vacuo nth modal velocity resonance of the elastic system, independent
of electromechanical coupling, Xn is the modal hysteresis and eddy-current factor and
Kn, Mn are the nth modal stiffness and mass, respectively. It is noted again that Rn is
the mechanical loss resistance associated with the magnetic properties of the core, while
R" is themechanical loss resistance associated with internal friction. Regrouping terms,
we cast Dn into the form

_ ~~jC K
Dn = Nnpb- nn~~ nj

2 nnKnXRn W

jLL n
+ R" + R'nn (6.13)

The terms in parentheses are mechanical impedances (dimensions, N-sec/m).
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In the constant-voltage case we are required to add a mechanical impedance of the
form [5, chap. 4],

L
(Zc + Z1) (27al)

n

(6.1,

C=

C-
r-
:3..

C.011

�r

1) rr'
t=

where Z1 is the leakage impedance. We assume that for all modes

Kn 2
+ -knx=0 .

nIIn
(6.15)

Since this means that the frequency of velocity resonance rises due to cancellations in Eq.
6.13 of terms in k 2, we can, for the constant-voltage case, eliminate all k2 from Dn and
retain an added residual mechanical impedance

(in
2 Mn n

(6.16)

(6.17)
= F4/'Z1) (21raj)2 ____

L ZC(ZC + ZI) n VinMn)

we may formulate the losses in terms of a measurable QE as follows:

R"t
n

n Mn n

+ an
2 Mn n

1 Im(a.)
= -(R" + Re ) + ij

a M n n 2 M
n n n n

1 Im (an)-E- + i
Q QMn

(6.18)

Thus, writing Dn to be the effective Dn for the constant-voltage case we have

1w FK

n n Ljw

Dn = Nnpb[

or

+ jwM + R', + ( -'Z ) (27ral)2)]
n n \ZC (ZC + ZIl) 

-2 -W + Icm0a
n M~~ + n M~~~~ n~

Thus, in the constant-voltage case we shall use this form Dn to calculate the generalized
coordinate qn(co) in Eq. (6.5).
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(6.19)

(6.20)

K k 2
(2ira 1)2-W n n XRn
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Consistent theoretical formulas for QW and QEn are found from the previously given
definition of Dn. In terms of the auxiliary quantities 9-1 S they are,

9n(2) = wnMn Xn (6.21)

Rn(W) Knk+ X(o )

(w~~ = &nMn (.2
n Rn(Wn) + Re Cn(w) (6.22)

Qn - n(Wn) X Qn - n POn (6.23)

Here R'(wn) means resistance calculated at Wn.

There are two options for calculating the effective Qn at constant current and constant
voltage, Qn and QE: (a) Q1 is found from experiment, and Q1 is then determined by theory.
Then all Qn, QE are determined from Ql and Q1 by assumption; (b) Qn is determined by
experiment for each mode, and QE is then found from Q1 by theory. Note that in deter-
mining QE, we first assume the ring mass to be Ml and the ring stiffness to be K1 as
determined from the Butterworth and Smith model [10] (i.e., from static values). Actually
the modal Ml may differ from the static mass if there is a variation of radial displacement
with axial distance. This difference is first assumed to be negligible. If it is not negligible,
an iteration scheme may be used in which the variation of radial displacement with axial
distance determined by assuming Ml to be the static mass is itself used to determine M1.
This is the first iteration. It results in a new distribution of radial displacement and a
new Ml. Upon further iterations, successive radial displacement curves are assumed to
stabilize. When stability is achieved a final Ml is calculated.

Alternatively, if we begin with an experimental determination of QE the above
procedures can be applied again by interchanging Qn by Qn wherever they appear.

The definition of modal mass is intimately associated with the scale that can be given
to the (dimensionless) mode shapes when calculating displacements. For example, if
pbNq = Mq is defined to be the modal mass, and if radial mode shape is selected to serve
as reference shape, then the scale of Wq is v, where

M
J = (W ,W ) = q

q q q L (UqUq) (VqVq)]

L (Wq,'Wq) (WqW q)2

The Mq is a selected real positive number. Using this scale we change the dimensionless
quantities Uq, Vq, and Wq into quantities with dimensions of reciprocal length by writing
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U V W
q q q
-, -, 

When scaled in this way these quantities have absolute values and can be used in the
analysis freely as such. However, as noted, such scaling is one of several possible choices.

Modal Mass (Second Formulation)

We consider the average radial velocity due to unit radial and end applied pressures.
The average radial velocity is then given by

C -JW (x)dx fW(x)27radx +- [fW(x)dxf 4irrU (r)dr]
av ja0

P. (2 jcoRunit n_1 PbNn _ C2 + M + n ) (6.24)

where

Nn = f (Uj2n + Wn,)dS (6.25)

and resistances R", R' are implicit functions of frequency. We now define a modal mass
in the following way (second formulation):

Mn = MS.~~~[fn(X~dX IUn W)S(6.26)

2ia [Wn(x) dx + 47r 1 fUn(r)rdr fWn(x)dxf

and

M= 27ralpsb = total static mass of shell. (6.27)

Since the factor in braces is dimensionless we can interpret Uin9 Wn as (a) having no
dimension, in accord with this entire analysis, or (b) having the dimension of displacement,
which may be convenient in applications. The above definition of modal mass may be
justified by noting that Mn c corresponds to a mechanical impedance due to integration
over area. It is also to be noted that when f Wn(x)dx vanishes, the modal mass in the
nth mode is infinite, i.e., motion in the nth mode is not possible. When many modes
participate in the total dipslacement, the concept of modal mass is not directly applicable.
We can, however, define a complex dynamic quantity Zn, which is a specific acoustic
impedance evaluated at each frequency where the total displacement becomes a maximum.
Considering only radial motion we take the radial velocity due to both radial and axial
surface pressures to be

w(X) = g3 3p3 + g3 1p1 * (6.28)
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By definition of gil the radial displacement at constant voltage due to unit axial and
radial pressures is

Co Wq( Wl(oaa) + 2U0Qa)
W(X) = Nunit 2 D) (w) . (6.29)

q=1 Dq W

The ratio of average surface pressure (= Punit) to average surface velocity (=wav) is defined
as the effective complex modal impedance Zn at the complex frequency [ffl 1 /2, i.e.

Z )RA] lE
n -27ral n

n 00 (6.30)

[1n E21 [q
q=1 Nq[SE2Iq

M = 27ralpb (6.31)

t7= 7 J Wq(x)27radx {JWq(x) 2 7radx + 47r f Uq((r)rdrj (6.32)

[Qj &22 _ 2 + jw (R" + An) (6.33)
Iq q M

q

31 13 Zt(27ral)2

n = 3zC1(z + z t) (6.34)

M = s qM (6.35)
q

The symbol )11E suggest the possibility of "complex mass." The concepts embodied in
Zn and )n1 have theoretical implications. These, however, are not explored further in this
analysis except to note that when single modes only are considered the symbol )NE reduces
to the modal mass previously defined in Eq. (6.26), i.e.,

2iralp bN
Mn = s n (6.36)

n

We return now to the concept of modal mass formluated in Eq. (6.35). This definition
of modal mass will aid in defining a complex multimode coupling factor. Note that, for a
single-degree-of-freedom system consisting of a radially vibrating ring, the effective
Young's modulus is
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Y = M1 2 a (6.37)
(2irlb)

where U1 is negligible and N1 / 1 1. We define a complex dynamic coupling factor as

k2 2* (6.38)
kn n

where the dynamic complex equivalent Young's modulus in the nth mode is

Yl ( a ) Mn Q22 (6.39)

Modal Coupling, Modal Mass (Third Formulation)

In the linear approximation, the two constitutive relations for magnetostrictive sys-
tems at very low frequency can be solved for mechanical stress to yield the known formula

6

= 21 Ci(-k2)S - hq)HqgS (6.40)
j=l

6 6 3212121(Cl)1-A hq , (6.41)k2 = E E E~ (C) lhiqhqjilt(641
q

where Ti is the stress 6-vector, C1P is the stress-strain modulus at constant induction, Sj is
the strain 6-vector, hiq is the piezoactive modulus, Hq is the magnetic intensity 3-vector,
and ps is the permeability at constant strain (clamped permeability). The coupling factor
k2 is properly the material coefficient of electromechanical coupling defined for the lowest
mode in the frequency range where elastic stiffness dominates the response of the con-
tinuum to applied forces. When the frequency of forced drive is increased, the concept of
the electromechanical coupling factor must be enlarged to include strain deformation,
which is expressible as a superposition of modes of shell vibration. Two such modal cou-
pling factors of extended sense can be constructed, one based on strains accompanying
modes in predominantly radial motion and one for predominantly axial motion. It is im-
portant to note that coupled radial and axial motion are understood to belong to shell
vibrations in elastically coupled modes. From the canonical set (Eqs. (2.1) and (2.2)) it
is seen that the total voltage E1 corresponding to the total current II and radial velocity
zb(x) is given by

= I1Zb +Jf 013d(x)dS +f44izl(x)dS, (6.42)

where Zb = Zc + Z1, and At; is the transduction coefficient (dimensions of volts per vol-
ume velocity). In terms of the displacement influence functions g3 3 and g1 3 and an
equivalent (electromechanical/mechanical) driving pressure i', the radial and axial displace-
ments in coupled motion are
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W(w, X) = yg 3S

U(Cw, X) = Tg 13 . (6.43)

For a constant current drive,

(6.44)

g3 3(X, tA, w) =

g1 3 (X, tA, W) =

L0 Wn (X Wno Q A)

n=l Dn(W)

°° Un n(ow QA)

n-l DnI( 

Wno = Wn (X) 27radX . (6.47)

Here Wn(x) is dimensionless, Wn(0A) has the dimensions of m2 , and D, (w) the dimen-
sions of N/m, so that g33 is interpreted as displacement per unit pressure. For conven-
ience we introduce a complex number y to account for leakage and define it by the
relation

Z b =_ZCc jWN 2pSblX
-y 27ra#y

(6.48)

(see Eq. (5.10), which is repeated here for convenience). The symbol X represents the
complex eddy-current and hysteresis factor, and the other symbols are defined in the
glossary. Inserting Eqs. (6.43) and (6.48) into Eq. (6.42) and factoring out IlZb, we re-
duce Eq. (6.42) to the form

El = IZb [1 + E EFF ] (6.49)

(CEIF), =zb ( ~13031)j(

( 

+ 

[f Wn(x)27radx] WnjQ)

D.' (Co)

[f Wn(r)27rrdr Wn(QA |

Dn' (X

[f Un(x)27rTadx] Wn'QA)

I Dn(W)
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[f Un((r; x = 1/2)2irrdr] Wn(o ) + jb ( t 1 i J31)iw .(6.50)
Dn~

The factor Dn(c) will be discussed below. c

Equation (6.50) is considered to be an effective squared coefficient of electrome-
chanical coupling in the nth mode. The form shown can be reduced as follows. The
second term and third term on the r.h.s. both vanish since the velocities in question lie
in the surface, and thus do not constitute volume velocity as required by the canonical
Eq. (2.1). Thus, Eq. (6.50) is reducible to two terms. Its numerical value depends on
the values to be assigned to the transduction coefficients. From the geometrical config-
uration of the toroidal winding it is known [10] that

13 = h22 pabNx (dimensions, (V-sec/m3 ) or (N/M2 A)). (6.51)

We can assume that application of positive Il causes the ring-shell (say) to expand in the
radial direction. Actual numerical calculation shows that the shell contracts in the axial
direction. We can conjecture, then, that

(440)(013) > 0. (6.52)

Equation (6.52) states that the product of the voltage per unit volume velocity induced in
the coil due to constriction in the axial direction and the voltage per unit volume velocity
induced by expansion in the tangential direction is positive. However, the mechanical
transduction factor 431 (the equivalent pressure on the radial reference surface due to a
positive current I,) must be opposite in sign to o13, due to the antisymmetrical nature of
piezomagnetic coupling. Hence we write

031 = -013- (6.53)

Inserting Eqs. (6.51) and (6.52) into Eq. (6.50) yields the formula

(CiFF)n x(2 r31)' D=(w) [y(x)2iradx + 2(+i) Un(r;x=1/2)2irrdj

(6.54)'
We designate this as the modal coefficient of electromechanical coupling. It contains a
factor

Dn(w) = PsbNn[w]n (6.55)

where ps is the static density, b the shell thickness, and Nn the mode shape normaliza-
tion. To sufficient approximation,

Nn = f (n2 + Wn))27radx (dimensions, i 2 ). (6.56)
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The symbol [win (dimensions, sec 2 ) requires special discussion. To define it we first re-
turn to Eqs. (6.25) and (6.26) and assemble the following quantity:

Mn - [f Wn~x)27rad + Ps bNn (27ral)
f W,(x) 27radx + 2 f Un(r; x = 1/2) 27rrdr] WnQ( A)

Mn = tnMS (6.57)

2iral f (U2 + W,2) dS

nfl= [f Wn(x) 27radx + 2 f Un (r; x = 1/2) 2irrdr] Wn°NAi) (6.58)

Ms = 27ralpsb. (6.59)

We designate Mn as the modal mass (kilograms), while Ms is the static mass. The modal
density is

pn = Mn/2fralb. (6.60)

Returning to Eq. (6.55), we now write [win explicitly in terms of modal frequency wn:

[wIn = 2 - 2 + jw( MR) (6.61)

in which R' (as noted earlier, in Eq. (6.9), etc.) is a mechanical resistance (Newton-
seconds per meter) directly due to electromechanical coupling, R" is a mechanical resist-
ance independent of such coupling (internal function, etc.), and wn is the nth-order modal
(resonant) frequency experimentally obtained by driving the ring shell through a range of
many frequencies with a constant amplitude of current. These loss resistances can be
assumed to be independent of mode number and frequency. Inclusion of such depend-
ence can be made without changing the form of Eq. (6.61).

There is another modal frequency 92n, which occurs at a forced drive of constant
voltage. As explained in Eq. (6.33), it appears in the form (repeated here for convenience.)
of

[]n = 22 w2 + jwo(R" + A) (6.62)

12

(I 4,314013Zl(27ral) (dimensions, N-sec/in). (6.63)
ZC(Z1 + ZC)

From classical theory the relation between E21 and wil is established by the coefficient of
electromechanical coupling k2. We now broaden the concept involved in this relation and
define a complex coefficient of electromechanical couping K2 such that

[win = [K]n('KnX') (6.64)
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where

Kn =h 2 5 (6.65)
Yn-

Yn = Pna 2 [2In. (6.66)

Substitution of appropriate parts of Eqs. (6.55) through (6.60) into Eq. (6.50) leads to
two forms for the effective modal coupling:

h 2 1S~l

kCi a, pn228 wn (6.67)

and

(CEFF 1 - KxY (6.68)

The definition of (CEFF)n contained in these formulas shows that it is a complex
number and a function of frequency. If for any mode the drive frequency w is chosen
such that w << wn(or 92n) and if losses (both electrical and mechanical) are neglected,
then Eq. (6.68) reduces to

27
(kEFF) 2 = 2n (6.69)

1 - k2y

h2 S

kn 22 , (6.70)
Pna n

Thus Eq. (6.70), by construction, is the modal analog of the conventional low-frequency
coefficient of electromechanical coupling.

The coupling coefficients defined in Eqs. (6.69) and (6.70) depend on the modal
number n only through the modal density and the modal frequency. Since on physical
grounds the infinite sum called for by Eq. (6.49) must converge, ultimately (CIFF)n must
vanish as n increases. Furthermore, since the real part of the ratio E1 /II in Eq. (6.49) can
never be negative, it is required that

Rb[I + Re {C}] - jXb Im {e} > 0 (6.71)

where

Zb = Rb + jXb (6.72)

C = Re {C} + j Im {C} (6.73)
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CS = E (CEFF) .
n=1

These requirements are automatically satisfied in any real embodiment of the transducer
of this article under stable operating conditions.

7. HYSTERESIS AND EDDY-CURRENT LOSSES

A magnetostrictive ring excited by a toroidal coil constitutes a magnetic circuit with-
out gap whose operation characteristics can be described using a flux t) vs magnetomotive
force Y diagram (alternatively on the B-H plane). An applied direct current bias Ydc
fixes the dc flux 4dc at the quiescent operating point of the ring. \ An alternating signal
Sac e i t may then be applied to the circuit so that the total flux at any moment is 4'dc
+ '1 aC exp (jw1t). Considering only ac quantities, we write the dependence of flux upon
drive in the form

(j(i) = m(i) yi) )
=ac ac 'a~ , dc)

4)(d) = ~(d) (aJdc)ac ae (ya(cP Yd d)

in which the superscripts i, d represent increasing and decreasing parts, respectively, of
the (,ac-vsJfac diagram. This description means that an applied alternating magnetomo-
tive force induces an ac flux which has one of two values for any Sac, one appearing
when 5 ac lies on an increasing part of a cycle and the other when the same Sac lies on a
decreasing part of a cycle. The area enclosed by the loop on the 4D - 5f plot represents
the work done by 5ac in driving the flux 1'ac around the magnetic circuit. The applied
Sac also does work against the elastic impedance of the ring due to magnetostriction.

The conventional model for the minor or dynamic hysteresis loop is a narrow el-
lipse drawn on a B-H plane and centered at the operating point of the major (or static)
hysteresis loop. The large axis of this ellipse has a slope pipuo (= incremental permea-
bility) which because of the narrowness of the ellipse can represent the value of the
incremental permeability during the entire cycle of applied magnetomotive force. The
value of pi is customarily given as a real number. However, since energy is consumed
over a cycle of hysteresis, it is required to make pi complex. Thus, one writes

1A = AiX, X = Xhe T7. (7.1)
p0 AH

The negative sign indicates that AB lags poAH by the hysteresis angle 'q. The core im-
pedance of a magnetostrictive ring may thus be written (in the pure hysteretic version of
the Butterworth and Smith model [101) as

Ze = E = joLce~i7, L, = N2 J1SIbl (7.2)
IC 1 = l2*ra

1 pj= I1'i1AoXh. (7.3)
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The real part of Zc contributes an electrical resistance, which accounts for cyclical loss.
When the frequency of operation is high enough, the core loss increases due to eddy
currents. Considering eddy currents alone, we again write

E j j,zC = I= jcaLcel,
Ic

N 2 IySlb1
L = 2ra (7.4)

(7.5)

Combining both hysteretic and eddy-current losses in one formula, we have

) L = N21ASlbI
C 21ra

XO = XhXe-

(7.6)

(7.7)

The numerical evaluation of the eddy-current angle is based on dimensional analysis. One
first defines a critical frequency for elimination of thickness t, below which the above-
noted simplified representation of the eddy-current loss is valid. This f. is determined by
[11, 12]

2Pe

lrypi I 8 ot2
(7.8)

where

Pe = resistivity (dimensions, E2m)

t = lamination thickness (dimensions, m).

For frequencies f < fc the loss factor X due to eddy currents is conventionally given by
the formula,

(tanh f)

At low frequency the angle T of X is

r= tanit)_ 17 f(7
=tan-gIiTf 315(f') Al(7. .9)

1 2 (f ,, 62
1 5 Vfl) 2835
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The angle associated with hysteresis appears to be not directly predictable by formulas
based on material parameters. However, by measurement one can find the angle r7 = hts
at very low frequency, i.e., at a frequency for which the eddy currents are negligible.
This estimate of 7 is often used in practice.

The transduction force factor Zem (i.e., the ratio E/v) is known from the Butter-
worth and Smith model to be

Zem = h00 abiN (7.10)

Introducing hysteresis and eddy-current angles, we write

hoo I AilIIIOXeXh bLAT
Zem = a e-i(17+). (7.11)

Since the motional impedance ZMOt in vacuo is

2
Zem

ZMot = Z X Zm = mechanical impedance (7.12)

it is seen that at mechanical resonance (at Zm = real number) the phasor

(ZMot)Res = Re Zm e 2 i, i3 = 71+ (7.13)

l~m2 -h~o (gipO)2(XeXh)2b2l2N2 (.4
a

Thus, (ZMOt)Res makes an angle of -2p with the horizontal on a motional impedance
diagram.

Geometrical Aspects of the Motional Circle

The motional impedance ZMot (= ZmZmn), when plotted on a RMot vs XMot plot,
has geometrical properties strongly determined by the function lI/Zm (i.e., by an inver-
sion). The properties of inversions are as follows. If z = x + iy, w = u + iv, then the
transformation w = 1/z carries circles into circles (considering a line as the limiting case
of a circle). Thus if we are given the equation of a circle (or line)

a(x 2 +y 2 ) + bx + cy + d = 0, (7.15)

the transformation w = 1/z performed on this equation leads to the transformed circle
(or line)

d(u2 + v2) + bu - cv + a = 0. (7.16)
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In particular the line x = C1 transforms into the circle

u2 + v2 - U = 0, (7.17) 

which is tangent to the v axis at the origin. Now, near mechanical resonance the mechan- z
ical impedance Zm is given by

Zm - rm + jwm + J = rm + jXm (7.18)

On a rm vs Xm plot, it is seen that Zm is the straight line rm = const. (say rm = C1 where
C1 is the resistance at zero reactance). Assuming Zem is real and changes little for all
frequencies in the vicinity of resonance, it is seen in the first approximation that the line
rm = C1 transforms into a motional circle tangent to the line RMot = 0 with diameter
lZ2m i/C1 and center lZ2m 1/2CI. The circle passes through the origin XMOt = 0 = RMot.
When Z2m is complex, with angle - 2j3 (3 =7 + t), the transformed line is a circle with
center at

RMOt - 2C 1 cos 23 (7.19)

Z 12

XMot = - 2C1 sin 23 (7.20)

and diameter

IZemI2

IZMotI - . 12 (7.21)

This diameter terminates at the point XMot = 0 = RMot.

Eddy-Current and Hysteresis Plots

A sheet height I and thickness x, where -a < x < +a, magnetized perpendicular to
the section 2al with magnetic flux density B(x), satisfies a boundary value B(a) accord-
ing to the formula [12]

B(x) = B(a) cosh mx (Wb/m 2 ) (7.22)
cosh ma

m = + iji (a) ow (m-1) (7.23)

where

,ui (a) = permeability (dimensionless) at the surface at very low frequency (i.e., at
zero eddy-current)
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O = 4irX 10-7 (Wb/m-A)

w = radian frequency (sec- 1 )

a = resistivity (V-m/A).

The mean value of B over the thickness is found by integration to be

Bme. = B(a) tanh ma (7.24)

In terms of a mean magnetization Mmean and mean magnetic intensity, we can also define

Bmean = MAoHmean + Mmean (7.25)

Writing the magnetization at the surface as

M(a) = pAj(a)jAOH(a) (7.26)

and dividing by H(a), we have

Bmean Hmean Mmean
H(a) 'o H(a) H(a) (7.27)

Since for a ferromagnetic substance

Hmean Mmean
A /0 <<Ha) (7.28)

H~a) H(a)

one has approximately

Mmean = Bmean = B(a) tanh ma (7.29)ma

tanh ma
= Ai(a)AoH(a) ma

or
Mmean = pi(a)pO tanh ma (7.30)

H(a) ma

One next defines the mean permeability for ferromagnetic materials (pi) by noting that

Mmean = AAOH(a), (7.31)

so that

-- tanh ma -f
A = ~ma 1i(a)X = Ilpi(a)Xje j. (7.32)

Now since Ai, Ai (a) are complex numbers,
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Zu = = '/Mi(a) + Zx (7.33)

= hysteresis angle + eddy-current angle.

It is convenient to plot lXi vs ma by selecting as parameter pi(a) = ipi(a)le il = pi(a)
(cos r7 - j sin tq) for the particular material (a procedure equivalent to choosing the per-
meability for the condition of zero eddy current as a real number together with a choice
of hysteresis angle ii). In this calculation the angle / is omitted. Thus, we plot

Ixi | ma vs ma, (7.34)

and note that 0 < lXi < 1 (which means that the average permeability is less than or
equal to the surface permeability). When the eddy-current angle (LX) is taken into
account, we plot / vs ma, where (as before) / =7 + t. The joint plot of lXJ and / vs. ma
is called a Fukushima plot.

Fukushima plots may be used to obtain gh(w). At mechanical resonance (w = wR)
we measure the total angle /3. By successive trials using the Fukushima plot we obtain
Ihh(wR) and /X(wR). The values of Ph and X at any other frequency are then obtained
by formulas noted above.

8. LEAKAGE FLUX

The introduction of leakage flux into the magnetic circuit of the toroidally wound
magnetostrictive core requires careful handling. In this section the problem is reviewed
and given a formulation useful for numerical calculation.

When the leakage flux 4V is not negligible relative to the flux due to the magneto-
motive force, the total impedance of the windings and the core is given by

Zb = RB + jcoL' + jco(Ll -iL2 ) = Z1 + ZC (8.1)

where wL2 is the core loss resistance due to eddy currents and hysteresis, RI is the coil
resistance, and LI is the leakage inductance. Thus,

Zb = Rb + jXb; Rb = R1 + wL 2 ; Xb = w(L 1 +L1 ). (8.2)

The electric equation which includes leakage impedance and eddy-current plus hysteresis
losses is

El =- iwXR USb iN2

27ra

+ IP3ib(x)dS + f illk(x)dS
+Z111 . (8.3)
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Here,

AS = /11O (8.4)

where

/11 = incremental permeability.

The leakage impedance can be calculated from the formula

Zl = RI + ic N2 AO (Acoil-Acore). (8.5)

From the above formulas it is seen that

E = voltage drop due to leakage

+ voltage induced by magnetization of the core

or

E = IZI + jwN4), (8.6)

where the core flux bcV is defined by

jwNot jwASblN2X I +f P3jdS + WldS (8.7)
2ira f P3 d P1~S

Otherwise expressed, the magnetomotive force in the magnetic core circuit is

N= wN1 2ira 3_zbdS + f #'P CdSNI = (jcjN4)) -~ (8.8)
jwASblPVx jwp0SbNX

Let 4)1 be the magnetic flux leakage. The magnetomotive force which supports this leak-
age is

NI = jWN'I1. (8.9)

The total magnetomotive force required to generate flux 4)' in the presence of motion d,
u and flux leakage I1 is the sum of Eqs. (8.8) and (8.9).

9. ACOUSTIC LOADING

The acoustic loading of the free-flooded ring-shell presents the following problem.
Ring-shells can be described as having either one surface (reference surface) or two sur-
faces (inner and outer). According to thin-shell theory the calculation of elastic defor-
mation is best done on the reference surface, the shell thickness being integrated out.
Acoustic radiation theory, however, requires the two-surface description since acoustic
pressures depend on true normal surface velocities. In the analysis presented above,
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acoustic loading is. accounted for by the factor q (m, n), which was defined as the pres-
sure on reference surface band m due to the normal velocity of reference surface band n.
To make the elastic and acoustic fields compatible we define four surface-radiation Green's
functions, G(mA, nA), G(MA, nB), G(mB, nA) G(MB, nB), related to but not identical
with A, in which A, B refer respectively to the inner and outer surfaces of the ring-shell.
Thus G (MB, nA), for example, signifies the pressure on the exterior surface band m due
to the velocity on the interior surface band n. We also define two thickness correction
factors f(A) and f(B), which convert the magnitudes of inner and outer surface velocities
respectively to reference surface velocities, and attach to each factor one of four sign
symbols oa, /3, y, 6. These symbols, though differently defined, are either + or -, depend-
ing on certain sign conventions associated with force and velocity.

Using these newly defined quantities, we expand the reference surface radiation
Green's function P into a sum of four, inner and outer shell, surface radiation Green's
functions G as follows:

(m, n) = G(mA, nA)f(A)cx + G(mA, n)f(B)/A + G(mB, nA)f(A)y

+G (mB, nB) f(B) 6 (9.1)

In this constriction the reference band m, which is a single surface, is replaced by two
surfaces mA, mB, representing the inner and outer surface on a thickness b of the shell.
This replacement, necessary as it is for the acoustic loading to be calculated, must be cor-
rected for by the correction factor f(A), or f(B), as already noted, since all elastic calcu-
lations are made with regard to the reference surface only. Further examination of Eq.
(9.1) shows that it is the algebraic sum of all pressure loads identified with reference
band m due to all velocities identified with reference band n. The functions G (mA, nA)
etc., are complex numerics obtained by a special computer program (SHIP [13]) whose
derivation and significance are discussed in this section (page 48).

Calculation of Thickness Correction Factors

As noted, the solution of the acoustic-radiation problem requires a three-dimensional
dynamic elasticity analysis. Since such analyses are either intractable or exceptionally
tedious, we have used an approximate analysis, judged here to be of sufficient validity for
our work. To this end we apply to the dynamic motion of the finite-length shallow mag-
netostrictive ring-shell with moderately thick walls, the theory of the axially symmetric
extensional vibrations of a free circular disk worked out by Gustafsson and Kane [14].
In these authors' theory a thick disk of axial height 2h, inner radius a*, and outer radius
bV, is assumed to have displacements of the form

Ur = qr(r, t)

Uo = 0

UZ = - q,(r, t), (9.2)

in which the radial q, and axial qz are to be determined by the use of two potentials 01, 02:

45



HANISH, BAIER, KING, AND ROGERS

(V2 +21)¢ = 0; (V2 +62)02 = 0

qr = ar + ;:2 qZ = a101 + 0202 (9.3)

where 61, 62, 01, a2 are frequency-dependent parameters (see Appendix A page ). The
complementary solutions of the differential equations are known to be of the form

01 = A1Jo(Slr) + BlYo(51r)

02 = A2Jo(6 2 r) + B2 Yo(6 2 r), (9.4)

in which Jo, Yo are Bessel functions of the first and second kind, and A 1 , A2, B1 , B2 are
to be determined from the boundary conditions. Choosing the particular case of traction-
free vibrations and substituting these expressions for 01, 02 into the boundary conditions
(i.e., zero normal stress and zero sheer at each edge) leads to a matrix in the four quanti-
ties Al/B 2 , A2 /B2 , Bl/B 2 , B2 in terms of the unknown B2 (see Ref. 14 for details). To
fix B2, we assume that the radial displacement q, has a prescribed value at the particular
radius (r = a) corresponding to the mean radius of a ring-shell viewed as an elastically thin
shell. Thus 01, 02 are determined and with them q,, q, and, finally, Ur, u,. The thick-
ness correction factors f(A), f(B) are then

f (A) = q ( ) (B) = (b ) (9.5)

A similar set of end correction factors can also be defined:

fend(A) = q, (a, t) fend(B) = q (a, t) (9.6)

The signs to be associated with these factors are discussed in the following section.

Sign Conventions

The application of Eq. (9.1) requires a determination of the sign symbols U, ,B, 'y, &.
Each of these symbols is a ratio of the sign attributed to the force on band m and that
of the velocity on band n. The pair of numbers m, n are as found in the symbol G(m, n).
These are the conventions for determining force and velocity signs:

1. A normal surface velocity pointing into the ring material is negative. Thus, a
normal surface velocity pointing into the medium is positive.

2. A force per unit area on the inner surface is negative if the ring expands under
the force and positive if it contracts. A force per unit area on the outer surface is posi-
tive if the ring expands and negative if it contracts.

To illustrate the application of these conventions, consider the following example. Let
there be a reference surface having three bands a, b, c and one endband d (Fig. la). The
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actual surfaces are labeled 1 through 8, as shown in Fig. lb. We first calculate q (c, a).
From Eq. (9.1), this is written

q(c, a) = G(3, 1)f(1) a + G(3, 8)f(8)/3 + G(6, l)f(1)'y + G(6, 8)f(8)6. (9.'

p

H~1 reference surface

3

L I shell surface

2

I

10 9
bottom

(b)

Fig. 1-Subdivision of a cylindrical shell into three sidebands
and two endbands: (a) Reference surface cross section and
(b) Actual shell surface cross section

To determine a, /, 'y, 8 we assume that the ring is expanding both radially and axially.
This choice is arbitrary. Then the inside surface velocity is minus, the outside surface
velocity is plus, and the end velocities are both plus. The inside (medium-induced) force
is minus, the outside force is plus, and the end forces are both plus. Thus, for example,

force sign on band 3 - -

velocity sign on band 1

force sign on band 3
velocity sign on band 8 = -

(9.8)

(9.9)

(9.10)

6 = +, (9.11)

When we require q (c, d), then, following the above rules, we find

q (c, d) = -G(3, 4) f(4) - G(3, 5) f(5) + G(6, 4) f(4) + G(6, 5) f(5). (9.12)

The above sign conventions have been found to agree with signs established by more
complex displacement-force considerations.

When the shell thickness is not vanishingly thin, an area correction must be added to
each term in Eq. (9.1). Let
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S(A) = shell area of inner surface

S(B) = shell area of outer surface

S(R) = shell area of reference surface.

Then the addition of area correction factors modifies Eq. (9.1) to read

,q (m, n) = G(MA, nA )f(A)[S(A)/S(R)]a a

+G(MA, nB)f(B)[S(A)/S(R)]/

+G(MB, nA )f (A) [S(B)1S(R)]7y

+G(mB, nB) f (B) [S(B)/S(R)] 8. (9.13)

Calculation of Acoustic Loading From Known Surface Velocities

The acoustic loading on the vibrating shell is determined in this report by use of the
surface Helmholtz integral formulation, a description of which follows. Let time be given
by the real part of exp (jcot). The complex amplitude of acoustic pressure in a fluid of
density pf at a frequency w is then given by p = jwpf ), where 4) is the acoustic velocity
potential. The acoustic particle velocity v = -V'>, so that one can write Vp = -jwpf V. At
the surface of the ring where the displacement is u, the component of this equation in
the direction of the normal n is

(Xa e = -jwpf(jwu' n) = w2pf U- n = Cj2 pfV. (9.14)

To find the acoustic pressure loading p(x) at frequency w on any point x of the surface
S(x), we use the Helmholtz integral equation:

27rp(x) = f p(xo) aa Gw(xlxol)dS(xo) + jwPff aP(nX0) Gw(xixo)dS(xo). (9.15)
S

In an unbounded medium,

GG,,(xfx0 ) = exp (-jklx - xol) (9.16)Gw~~xlxo) lx - xoi(916

The complexity of Eq. (9.15) is so great that one usually resorts to numerical means to
accomplish the required integration. Thus we divide the surface of the ring-shell into M
subsegments by transversely segmenting the axial length and radially segmenting the ends
(Fig. 2). We label the bands as shown, with the requirement that the number of bands on
the inner and outer surfaces be equal and of the same width and that the number of
bands on each end also be equal and of the same width. The Helmholtz integral is then
written as
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5,6 ,7

18 117 16

axis of shell

Fig. 2-Numbering of the bands on a cylindrical shell for eight sidebands
and three top (and bottom) endbands

a [e- jR(s, s;)1
2irp(si) = fp(s 1) anj~ R (si, Sj) JdS(sj)

r(,) e~-jkR(s sj)
+jwpf v(sj) R(Si, sj) dS(sj),

Since the problem is axisymmetric, the pressure and the normal velocity must be inde-
pendent of azimuth angle. To facilitate numerical work we choose the subsegments so
small as to make p(si) and v(sj) substantially constant in the integral over the sth band,
we rewrite the above equations in the following way:

M

= 21 V(Si)Qi1
i=1

I = 1, 2, ... ,M (9.18)

e jkR(s 1,sj)
R (Si, s;) ds(si) (9.19)

(9.20)
jwPf r e-jkR(SiSj)
27r J R(s-, sj)

In operator notation, the set of equations may be written as

M

21P 0i(si)
Pz1

M

= 2 Qiiv(si),
i=1

1 = 1, 2, ... , M (9.21)

where
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(9.17)

M

pAsd - T (i)i
i=1

where

i = 1,, 2, ... ,M.

pil = Y17r f _�ni
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P(I) = 5li - Pli. (9.22)

Since this is a square matrix of simultaneous algebraic equations the solution is found by
direct inversion:

M

p(SO) = 2 G(s1,s i )v(si)* (9.23)
i=1

Thus, for every known surface velocity at point si one can calculate a surface pressure at
point si. The calculation of the matrix of coefficients Pi, and Qil is accomplished by the
high-speed algorithm (SHIP), which overcomes tedious numerical difficulties involved by
directly evaluating Eqs. (9.18), (9.19), and (9.20). The free-space Green's function is ex-
panded in cylindrical coordinates, so that

eR= em cos (mO) m2 1m/2 ilexp L12 -k2)12,ZZo dl. (9.24)

In this form the spatial parts of the integrations in Eqs. (9.19) and (9.20) can be done
analytically, leaving each matrix element as an infinite integral over a single variable 1.
These integrals are evaluated by numerical integration up to a value of I which is suffi-
ciently large to enable the Bessel functions to be replaced by their asymptotic forms.
Once this point has been reached in all cases the remainder of the integration can be
evaluated analytically. An effort is made to avoid duplicating calculations (e.g., matrix
elements which are known by symmetry to be equal are evaluated only once; all Bessel
functions used in the program are calculated once and stored in an array; trigonometric
functions, where possible, are evaluated by recursion, etc.).

0
Characteristic frequencies (frequencies for which the matrix P1i is ill conditioned) are

usually not an important consideration in problems concerning rings. The lowest charac-
teristic wave number is always greater than ir/b, so that there can be no characteristic
wave numbers unless the ring is more than 1/2 wavelength thick. In practice, rings are
almost never driven at such a high frequency.

CONCLUSION TO PART 1

In this report the modal analysis of elastic continuum has been joined to the analy-
sis of multilooped electric circuits and multipole acoustic radiation. Since the acoustic
reaction of the medium depends on normal surface velocities, the equations of motion
have been formulated as integral equations in the unknown velocities (including non-
normal components). Piezoactivity has been accounted for by electromechanical trans-
duction factors and coupling coefficients. The important concepts of modal mass and
modal coupling have been defined and discussed. Although the composite theoretical
structure of all fields is complete, its limitations must be borne in mind. They are as
follows: (a) The elastic, electromagnetic, and acoustic fields are treated as linear, small-
amplitude fields (i.e.; high power effects are not considered). (b) Whereas the acoustic
loading may be high, the internal dissipation losses due to friction, hysteresis eddy
currents, etc., are considered modest. (c) The magnetostrictive shell is elastically considered
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to be monolayer rather than multilayer, meaning that the scroll nature of a true ring-shell >
transducer is not considered when the equations of motion are written, although the
scroll nature is considered when hysteresis and eddy currents are analyzed. (d) Thin-shell t
theory is used throughout,. except in the problem of acoustic radiation which is advan-
tageously treated by using a finite thickness of shell. Plausible thickness correction factors
have been deduced to satisfy the radiation requirement.
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Appendix A

CONSTANT VOLTAGE AND CONSTANT CURRENT DRIVE

If for a given frequency we elect to calculate electrical impedance Z'j, then we use
the E - p canonical set. In matrix form this set is

Ei = ELZ ij+2Ef ikvkdSk, i 1, 2, (A)
j=1 k=1

Pq 21 EPqrIr + E21,f ZqsvsdS 8 , q = 1, 2,..J.. (A2)
r=1 S=l

The electrical impedance then becomes

Zij = z + E d(S ik~kd~k)Ij , is j 1, 2 ....... . ... X ' .... (A3)Vii E ... J zkk khij

Setting the external mechanical pressure pq 0 0 reduces the mechanical equation to

hl 

Lf ZvdSS = -EqrIr, q = 1, 2,X, (A4)
s F

This is an integral equation of the first kind in the unknown velocities vs. Here Z1 is the
electrically coupled acoustic impedance matrix of the elastic body with dimensions of
mechanical stress per volume velocity.

If we elect at the same frequency to calculate electrical admittance YE, then we use
the I - p canonical set by solving Eq. (Al) for Ij and substituting in Eq. (A2). The elec-
trical admittance then has the form

* ~~~1 , -1
YEr = qr - 1 21 (Zq) (f l4PhvkdSk)Er'1 q, r = 1, 2, ... 11. (A5)

E k

By construction YEr is the inverse of Z E, provided E and I satisfy the canonical set.
Setting pq = 0 again, we arrive at the mechanical equation

_ _E 21?VS [Zqs - riqr(Zi' /]ds = 21 2 ri E (A6)
___r1 ~l i= r=
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This again is an integral equation of the first type in the unknown velocities v,. The
acoustic impedance

qs q4s -22 ig
Z41s = q E EVq,(r)Q' (A7)

is no longer the electrically coupled impedance as in the case of the E - p system, but is
increased due to cancellation of the negative stiffness effect. It is (to close approxi-
mation) the purely elastic impedance of the electromechanical converter and as such is
regarded as known. Thus Z I can be calculated from Eq. (A7). The velocities calculatedqs
by use of Eq. (A4) are identical with the velocities calculated by Eq. (A6).

If the frequency of forced drive is changed we can (a) maintain III constant or
(b) maintain JEl constant. Equations (A4) and (A6) report the same velocities when
either (a) or (b) is adopted. However, if III is maintained constant as w is changed, the
velocities reported by Eq. (A6) are at different voltages. Similarly, if JEl is maintained
constant the velocities reported by Eq. (A4) are at different currents.
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RADIATION MODAL IMPEDANCES

In Eq. (3.1) the forcing function Pi is deemed to have an acoustic component (i.e., a
component dependent upon normal velocity). To illustrate, we take the case of cylindrical
shells and consider the normal radial velocity. Let (2ij(w)5j3 be the acoustic operator
having only a normal (33) component. Then the inner product of the acoustic reaction
with a normal mode has the form

(Ldijsj3{Ui}, i)(131)

The acoustic operator (i has an adjoint (i* such that

(d 3 3 {U 3 }, Y3 ) = (U3 , 33 Y3 ). (B2)

Now in the case where normal modes can be described as spherical, spheroidal, or circular
cylindrical harmonics, we may define the following adjoint operation in terms of modal
resistances R(q) and modal reactances M(q), so that

a()[ Yi (q; xX2)] = [jcR(q;w) - w2 M(q;w)] Y 3(q;xjx 2). (B3)

Thus,

(W33 IU3(xl, X2)}, Yi(q; X1, X2))

= ([jR(q; w) - w2M(q; w)] U3(X1, X2), Y3 (q; x1 , X2)). (B4)

The amplitude factor for the acoustic reaction therefore involves only the inner product
of the normal components (3-direction) of displacement. We compare this with the
amplitude factor for the general forcing function (Eq. (3.10)) and note that the latter
involves the inner product of all components of displacement with the modal functions.
To group both acoustic and nonacoustic amplitude factors together one defines a shape
factor S(q) such that

(U3(X1, X2), Y3 (q;xl, x2)) = (Ui(x1,X 2), Yi(q;xlX 2)) (B5)
S(q)

where
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S(q) = 1 + (UL(x1 , x2), Y 1(q;XI, X2))
S~q) = 1+(U 3(xl,X2), Y3(q;x1,X2))

(U2(X1 , X2 ), Y 2 (q;x 1,x 2))
(U3(X1,X2), Y 3(q;xl,X 2)) (B6)

Since Ui(xI, X2) is expandable in orthogonal modes Yi(q; x1 , x2), S(q) can be further re-
duced to the form

(Y 1(q; XI, X2), Yl (q; X1, X2))Sq=1 (Y3 (q;x 1 ,X 2), Y3 (q;x 1,X 2))

(Y 2(q;x1,x2), Y 2(q;xi,X2))
(Y3(q;xX2), Y3(q;x1,x 2)) (B7)

When the shell vibration has other normal velocity components (e.g., in the axial direction
at each edge) we may construct similar shape factors. However, in all cases treated here
the axial component of acoustic radiation is neglected. We now return to Eq. (3.1) and
group all terms in the steady state in a power series of w. Thus,

w2{ (Ui(xI, X2), MEYi(q;x 1, X2)) + (Ui(x, X2), Yi(q;XI,X 2 )) X

[M(q) + Mf(q)]} - jw 1(Ui(x1,x 2), Yi(q;x [X2)) S(q) + Rf(q) (B8)

-(Ui(X1 , X2), Yi(q; x1, X2))Kf(q) - A2 (q)(Ui(xI, X2), MEYi(q;x 1, X2)) =

(QX(X, x 2), Yi(q;X 1 , X2)). (B9)

The quantity Qi represents all terms of Pi excluding foundation and acoustic response.
Here we have added a foundation forcing operator F(w) which provides an amplitude
factor of the form

(F(w) {Ui(xI, X2)}, Yi(q;x, X2)) =

(Kf(q) + jwRf(q) - w2Mf(q))(Uj(xlx 2 ), Yi(q; X1, X2 )), (B10)

that is, the foundation supplies stiffness Kf, resistance Rf, and mass Mf, which, though
shown here as lumped quantities, may be functions of coordinates.

Solving Eq. (B9), we obtain

(Ui (X 1, X, Yi (q; x , X 2 )) M-(Q (x 1 , X2 ), Yi(q; x 1 , X2 )) (Bil)
mED (wo)

where
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D(q; w) = A2 (q) - w 2 + M(q) + Mf (q)

+jwE R (q) + Rf (q)] Kf (q) (B12)
JtiMES(q) mE I mE

Using Eq. (B10) in Eq. (3.4) and considering that the othorgonality weighting function ¢

is the constant mE = pb for a thin shell, we write the thin-shell expansion constants as

- EQi (X1, X2;C0), Yi(q;X1, X2))

A(q; w) = (B13)

mED(q;w) 2 (Yj(q;x1 ,x 2 ), Yj(q;x1 ,x2 ))

In general there is a largest (Yi, Yi) (call it (Y3, Y3)) in the sum E (Yj, Yj). Dividing by
this (Yi, Yi) we rewrite A as I

-(Y 3 , Y3 )- 1 2 (Q, Y't)8

A(q, r; w) = t (B14)

where S = reference area of thin shell. The symbol ME(q, r) designates the modal mass
in the q mode and is defined as

ME(q) = mES S(q) (B15)

where

mES = static mass of unloaded shell. (B16)

Substituting Eq. (B14) into Eq. (3.4) we find the steady state displacement in a forced
harmonic drive of a thin shell to be

(Y3(q; x1 , X2), Y3(q; x1 , x2 )) 15
Uj (XI, X2; Cl)) = -E l ME(q; w)D(q; w)

X [I((Qt(xl, x2; co), Yt(q; X1 , x2)) Yj (q; xl X X2) (B17)
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=1, 2, 3

q 1, 2, .. ,oo

t =, 2, 3. C

We note in Eq. (B17) that the amplitude of motion in any mode (i.e., in any Yj) is inde-
pendent of coordinates x1, X2, but does depend on the modal numbers q and on the
frequency co. This amplitude is maximized when D(q; w) is minimized, i.e., at the fre-
quencies of amplitude resonance (w(q)),

jDn(w(q))j = minimum. (B18)
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Appendix C

MATHEMATICAL MODEL OF A FREE-FLOODED
MAGNETOSTRICTIVE RING TRANSDUCER

The analysis carried out in the main body of this report deals primarily with the
vibration of an elastic continuum describable by mode superposition. This extensive de-
velopment in modes is superfluous when the shell axial length is much less than a wave-
length of the lowest mode of free axial vibration. We present here a formulation of the
mathematical model of a free-flooded magnetostrictive shell of such short axial length
that a steady state solution by Fourier methods is directly available. We restrict the
analysis to axisymmetric motion. While portions of this appendix are a restatement of
classical theory, other parts contain new information. The chief objective in presenting
this theory in one complete form is to provide a reservoir of defined parameters, concepts,
circuits, etc., from which needed parameters appearing in the main body of this report can
be drawn or to which they can be compared.

THEORY OF THE MAGNETOSTRICTIVE RING SOURCE: SPECIFIC EQUATIONS

Mechanical Shell Equations

We consider a thin shell of revolution (Fig. Cl) with an axisymmetric reference sur-
face, whose points may be described by the meridian coordinate s, the circumferential
coordinate angle 0, the normal coordinate T, and the angle 0 which the normal makes with
the "axis of revolution." Since 0 and s are not independent, we shall refer to either, as
convenient. According to thin-shell theory, for shell thickness b and shell radius of curva-
ture R, we shall assume b2/R2 << 1. Then the displacement of any point on the refer-
ence surface will be given by

U (0, 0t)= ukto + wtt + Bit,

where uo,, w are displacements in the coordinate directions 0 and ¢ respectively, and dig
is the rotation of the reference normal in the plane containing the shell axis (Fig. C2).
When the shell is deformed, we assume infinitesimal strain theory to hold and, indicating
differentiation by a comma, we write the strains in the form

0. starting edge

a - b. final edge
c. reference surface

Fig. C1-Coordinates for a rotationally symmetric thin shell
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where R0, RO are the principal radii of curvature of the reference surface and r is the
distance of the reference surface from the axis. From geometrical considerations, it is
seen that r = RO sin 4, and ds = Rodo. The stresses accompanying these strains are de-
fined by Fig. C3. By use of the stresses To, To, Tot we define the stress resultants No,
Q0, MO, No, MO in the usual way,*

No TO

= fJ

{ N =} - To (1 + )d.

* - _. -..

Fig. C3-Bending moment and shear stresses of a
typical element on the reference surface

The equations of motion are standard,*

(rNO),s - No cos O + r-0 + rpo = r(bluo,tt + b2/3,tt)

(No
(rQo) , - r + :~L) + rpP = rblwtt

(rM¢),, - MO coso - rQ0 + rmo = r(b2UO,tt + b33,utt)

*H. Kraus, Thin Elastic Shells, 2nd ed., Wiley & Sons, New York, 1973.
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where

bi= / , + +)~+ ~ 1 d~, i =1, 2

p = vector mechanical surface load =poto + pt

m = vector surface couple = mot o

p = shell density.

The types of deformation described by these equations is shown in Fig. C4. At the start-
ing edge and final edge, the boundary conditions to be prescribed are

either w or Q.

either uo or No

either go, or Mo. b

a. undeformed
b. deformed

Fig. C4-Displacements described by standard equations

MAGNETIC FIELD EQUATIONS

At each point in the interior of the shell we require that

V-B= 0

VXH = 0.

On the surface of the shell

B -1 = 0,

viz, B must be in the plane defined by to and to; and

q X H = R = vector surface current density.

Thus, from V X H = 0, the differential equations governing the components of H in
the to, to, tt directions are

61



HANISH, BAIER, KING, AND ROGERS

a_ - Ro - -(1 + R-) Ho = 0; a r( + ) Ho = 0.

If there are N windings carrying current IeiWt over the shell surface, then*

NIe jC t
K = - to> .

27rr (1 + R.

Thus, if one sets

NIeJ o t
27rr (1+ R-

Ht = Ho = 0; Bt = Bo = 0,

it will be seen that magnetic field equations and surface conditions are satisfied.

ELECTROMECHANICAL CONSTITUTIVE RELATIONS

In the first approximation the electromechanical constitutive relations, when referred
to a three-dimensional coordinate system xi, are given by the linear set of equations

Ti = cf! (Si - aoiS ) - hkBk I j = 1, 2, ... , 6; k = 1, 2, 3

HQ = -hkm(Sm -am (3) + YSBQ, Q = 1, 2, 3; m = 1, 2, ... , 6

where aj is the coefficient of thermal expansion and 0 the temperature increment. Since
there are only three component stresses To, To, Tot and one component of magnetic inten-
sity Ho, we write the explicit forms of the above set in the following way:

To = CBSO + CBoSo _ {CBo + C~eae + Cor¢a h-o}-

To = COpSO + CooSo -_C0 ouo + C00 ao + Cora E h - oBo

T6 = Tor = CBrOSo = S6

Ho = -hoo (SO - ao SO) hoo(So - a0SO) + ) yBO.

*See ref. [ 2].
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Applying basic definitions and integrating across the thickness, we arrive at the following
formulas for the stress resultants and stress couples:

B B B BNo = C11eo + C13e0 + d1lk, + dl3ko - Ntho - Ba

No C3 1 e> + C3 e0 - Ntho - B/3

Not =

MO =

MO =

Y0 =

where the subscripts 1,

QO~ = BQ 66 ap

B B b Bdlje¢ + d13eO + kilko + k13h0

B B B B
d31 4e, + d 33e0 + k 3 1ko + k 33kO

-h3jeo - h33 e0 - f3lko - f33kO

2, 3 correspond to coordinates 0, ¢,

- Mth - B-

- MthO - B5

- HthO + Be

0, respectively, and
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{B} d{ ; fht } doBoQ A d¢;

B =fySBoQd¢; Hoo = ( + ( )

(Note: T4 = T23 = T- 0 ; T5 = T13 = Too; T6 = T1 2 = Tg). We shall define Nthp, Ntho,
MthO, Mtho in the following section.

CONSTITUTIVE EQUATIONS OF THE MAGNETOSTRICTIVE RING

We now apply the above general equations to the specific case of a right circular
cylinder of short axial length (a ring) made of magnetostrictive metal. It will be assumed
that the material is transversely isotropic in its elastic properties and is wound toroidally
with electric current-carrying wire. The elastic constants, therefore, take on the forms

B B B B B B B BC1 1 = EO ; C3 3 = E0 ; C1 3 = E0 Poo; C3 1 = EO v¢o

EP = Yi (_' 1-vijvji),

where Y.B = Young's modulus in the i direction,

C66= 2(C01 -C 3 ) = G13.

Most magnetostrictive materials exhibit no isotropy in the modulus h. However, various
S Sauthorities* assume hoop = -1/2 hoo. The basic constitutive relations in stress resultant

form now reduce to the set

No = KjjeO + K1 3eO + Dj1 kO + D13ko - Ntho - Ba

No = K31e 1,, + K33e0 + D3 1ko + D3 3ko - Ntho - Bo

QO = L6670t

MO= D1 1e + D1 3 eO + E11ko + E1 3ko - Mtho - Be

Ma= D3 1ep + D33e4 + E31k0 + E3 3ko - MthO - B6

J(0= -h31eo - h33e0 - f31kO - f33ko - Htho - Be.

*Y. Masiyama, "On the Magnetostriction of Iron-Nickel Alloys," The Science Reports of the Tohoku Impe-
rial University, First Series 20, 574-593 (1931).
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Assuming that T/Ri is small compared to unity, we write the definitions

Kll = E d¢; K13 = fEovokd 
0~~~~~~~~~~

D, = fEf Btd; D13 = fEovoo¢dt

K31 = fE Bvjo d¢; K3 3 = EoB d¢; D3 1 = fE BvBoodt

D33 = fEoBd¢; El, = fE B¢2d¢; E1 3 = J E0 00 2dt

L6 6 = fGl 3 d¢; E3 1 = fE0 %0Bv 2dD; E33 f E 62dt

=f (Euato + vooEoato) Odt

Nthrt {i} IMtho1 
M =o J (Eoato + vooEoatt) Odt

MthOJ 

fBal 1Bo
hJ 55 Bo d¢; B - h33 BO d -

The algebraic signs to be associated with the stress resultants and couples are chosen
for convenience (Fig. C5). On the stress plane s = const., and the stress resultant NO is
positive (i.e., tensile) if its vector representation points in the direction of 0, (as shown).
The stress No is positive if it turns as a right-hand screw in the direction of 0+. The terms
Dl l ko, D13 ko, D31 ko, D3 3ko are positive in the directions shown in Fig. C6. The flux-
density vector Bo is positive if it points in the direction of positive No. The shear-stress
vector Qq0 is positive if it is directed along the outward normal to the reference surface.

DYNAMIC EQUATION OF MOTION OF MAGNETOSTRICTIVE RING

For a right circular cylinder the radii of curvature reduce to Ro - and Ro = a =
radius of cylinder. We restrict our attention here to radial motions only, and in the first
approximation assume (a) the transverse shear Q0j, is negligible; (b) stresses due to rotary
motion (i.e., D3 1ko, D33 ko) are negligible; and (c) the low-frequency linear piezomagnetic
constitutive equations are valid.
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' stress plane

Fig. C5-Convention of positive resultant stresses
and angles used in this report

|D31 K0+ l I D13 K8+f
D33 Kg+J

Fig. C6- Convention of positive directions for
D3aK0 +,D33Ko+ and DiiKp+, D13 K6+

Noting that 0 = 900 and I/RO is negligible, we write

No =J (EoBdo)(E.) (EB at0 + VaOE Bato) t)d -4f hooB'd.

We next assume that all parameters are independent of thickness b of the shell. Thus,

YO_ bw_ (yoBato + vYfOBatc) b 0 t

N0 (1 -iV2 )a (1 - V2 ) - h0 0Bob.
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To find Bo in terms of H0 we turn to the formula for Ho and write

Ho = -h31e6 - h33eO + Be,

neglecting the thermal effect HthO. Since Be = ySBO b,

B = ho0 p- (a-) + SHo, eo = 0

where ps = incremental permeability at the induction Bo (polarizing induction). Thus,

BOBbY(-bw
N0 = (1- V2 )a

- (YoB ato + VytBatt bO
(1- V2)

(hao) psb a - hoobuSHO.

w(hd0 ) pSy 0 Bl _ V2

aYoB(l - V2)

yoB bw 2

-(1- ,2)a
kc2

(h S )2 A S( - V2 )

yoB

where kc is the coefficient of electromechanical coupling. Also we desire to consider cer-
tain transduction losses due to eddy currents and hysteresis which can be accounted for
by replacing p's by the product uSX, where X = X0 exp [-j(rq + a)]. The stress resultant
now appears in the form

No - YOBbw (1- k 2X) _ (YBato + iyOB ato) bE
(1 -tV2)as it 1- -r

Substituting this into the equation of radial motion, we obtain

b a2 w + YoB bw 1 (- k2x) =apt+b1 at2 O (1 - V2)a\ k( /

- ho0 bySH .

(y0B atO + VY Bato)bo

1 - p2

+h0 0 buSHo X-

The dimensions of this equation are Newton's per meter (force per unit axial length). The
l.h.s. of this equation can be interpreted as the inertial and stiffness reaction forces of the
shell per unit axial length corresponding to the applied forces (pressure, thermal, and mag-
netostrictive) on the r.h.s. Since there is a purely mechanical loss due to internal friction
accompanying shell motion, we shall add to the l.h.s. a resistance force proportional to
reference surface velocity, writing it in the form Jqm aw/at, where the resistance constant
& has the dimensions N-sec/m2 . In addition we shall consider the external pressure pt
to consist of a normally applied (tensile) force f per unit area and an acoustic load PL.
In symbols

P= PL-
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Substituting the explicit form for H0 found earlier, we now write the equation of motion
as follows:

at2 +mat

+OB bw _ 2 (Yo 0to + PY0p to
(1- V2)a (1 C ) + aPL = a- + ( - b2 + hoo0 bs NIX

We next assume that the acoustic load can be written in terms of a resistance component
rL(w), an inertial component mL(w) and a stiffness component kL(w), such that

PL = rL 3W + mL at + kL Jwdt

(dimensions of rL, 3 ; dimensions of mL, 3c ; dimensional of kL, N3)

Treating the applied quantities (Y, 0, I) as sinusoidal (e1i"t) and writing

X = XR - jXI, Rm = aRm . (dimensions of Rm. N-sec)
m3 J,

The equation of motion, in terms of velocity v = jww, results in

[ jw(bl + mL) + (Rm yoB bkC2 xi+ L+(1- V)a2wCI

kL yOBb(l - kc2XR)1
jw0 (1 - v 2 )a 2 jw 

Y0 at +zvY~a~o) bO
V ~ + Ia -.'J)a~

hoo bpSNIX
2ira2

All terms in this equation can be interpreted as mechanical pressure (or stress) with di-
mensions N/M2 . Multiplying through by the reference area of the shell (27ral, 1 = axial
length of shell) we can write

-hoopSxbINI [ M ,, YOBibikc22rxXI) KL
F = +jWt(PV+ML) + +~ g RL + (lV2a _W (

-. Yo b2r(1 -kc2XR)] ( 0 a + VY0 0ato)b127rO
(1-pv2 )ac (1-v 2 )

where
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F = mechanical force = f(27ral)

p = density of shell

V = volume of shell

ML = ML( 2 7ral), KL = kL(2'ral)

R'm = Rm (27ral)

RL = rL (2 7ral).

For purposes of convenience in later discussions, we rewrite the equation for F in the form

F = -ZemI + Zmv

or

F + Zem I
Zm

where

Zem = hO lisXblNla; Zm = (Rm +Rm +RL) + i(Xm +X" +XL)

with

Rm = mechanical loss coefficient which is independent of mechanical couplingm
and acoustic load

Rm =yBblkC 2 217xI/(1 - V2 )(aw)

RL = real part of acoustic load

xm y 0BIb2lxRkc 2 (1 -V 2 )(aw)

Xm =wpV- Y0 bi2Ir/(l - V2 )(aco)

XL = imaginary part of acoustic load = cML.

We also adopt the following notation for later use:

m = Rm + Rm + j(Xn +X )

Re{Zm } = Rd = Rm + Rm

Re {Zm} = Rd + RL = Rm(TOT).
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ELECTRICAL IMPEDANCE OF THE MAGNETOSTRICTIVE RING

It has been noted above that the magnetic flux density B0 , under the simplifying
assumptions of thin-shell theory and negligible thermal effects, has the form

Bo = hoo8s (a) X + PSXHO -

The sinusoidal magnetic flux 4D threading the cross-sectional area bl may therefore be ex-
pressed in terms of velocity and current as

hoO pSXb1 NIpSXbl

a (j=a) 2 + i7ra

The applied (external) voltage E is therefore given by

E =jwNb
or

N2 IuSXbl hoOg SX biN
E = jw -i + a v.

Due to flux leakage, there is an additional purely electrical voltage drop in the exciting
circuit which we assume to be proportional to current. Inserting this additional drop in
the above formula (which does not contain it) and using appropriate definitions, we may
write

E = (Zl + ZC)I + Zemv

where

Zb = ZI + ZC = total blocked electrical impedance

ZI = electrical impedance due to flux leakage - RI + jwL1

ZC = jwN 2,uSXbl/(27ra) = Rc + jwLC

Rc =coN 2 ASxjbl/(27ra)

Lc N2 JSXR bl/(2lra)

R= resistance of wiring

L= inductance due to flux leakage.

Substituting for velocity by using the formulas developed in the previous section, we ob-
tain the following set of canonical equations:
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E = (ZI + Zc + Z2M) I + (Zm F

V (= Zm) I + (m).

We wish to obtain the electrical driving-point impedance, defined by the relation

Zee = (E) = ZI + Z + (Zm = Ree + jXee

In view of the definitions provided above, we can write this explicitly in the form+ (eZ )
-1 -1

I (Zem

\R /

-1

+ +

2 -1

+f Zem)

where

Z 2 =[h20(pS)2(b1)N 2 (x 2 - Xl - j2XRXI 2/a2 -em L O O XR I 2XX]a 
The term in braces is in the form of the reciprocal of six reciprocal quantities. It

can therefore be interpreted as the impedance of six elements connected in parallel. Fig-
ure C7 is an equivalent circuit that describes the electrical driving-point impedance. In
the figure,

RI = Rleakage

LI = Lleakage

RC = wN 2 ASX bl/2ira

LC = N 2 ASXR bl/27ra
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Fig. C7-Equivalent circuit of a magnetostrictive ring transducer vibrating as a
single-degree-of-freedom system

C1= ~2C, = PV/Zem

C2= MI2
C2 =ML/Zem

_ Z2 '
R3 - em IRm

B4=2

R4 = Zem /RL

R= 2 ,rBbi 22 '-2
R5 = Zem/[yo blk, 27TxI/(l - V2)aw]

L3 = Ze~m (1 - v 2 )a/ [YoBbl2ir(1 - kC2 XR)].

It will be noted that Z2m is a complex number, so that the parameters of the equivalent
circuit are themselves complex numbers.

ELECTROACOUSTIC EFFICIENCY

If vexp(jwt) is the radial velocity of the reference surface and RL the effective
radiation resistance of the medium, then the radiated acoustic power is RL IVl2. Similarly,
if the driving-point current is Iexp(jwct) and the real part of the driving-point electrical
impedance is Re{Zee}= Ree, then the dissipated power seen from the electrical termi-
nals is lI12 Ree. Thus the electroacoustic efficiency 71 is the ratio (RL/Ree)lv/1I 2. Now
when F = 0 the ratio (v/I) = Zem /Zm. Thus, the efficiency is

RL lZemI

Ree lZm12

where

Zeml12 = ho (S )2(xR2 + x 2 )b2l2N2/a2

r B 2 2
j~mj R~ + L +Y 0 bike 27rX11 PV+ML FYobl2i(1 -k cXR)

i~mi= K M +R (1 - V2)aw +L VML- (1 - p2)aw j
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1 /h2 0(,US) 2b2iF2N2 (2 1 ,
Ree = RI + Rc + 12 2 x -xI) [Rm + RL

BZ 2 Lr (R 

Y 0B b Ik 2 2 irX I rF 2 S 2 2 2 L+ ] + f - 2XRxI [h0(S) b212N2/a] }[co(pV+ML)
(1 - V2)aw j L 0 

Y0 bi27r(1 -kC 2 XR) .

(1- V2)aw

COMBINED ELASTIC-MAGNETOSTRICTION-ACOUSTIC FIELDS

The equations of motion of forced vibration of a magnetostrictive ring in a liquid
medium, in which the magnetostriction effect is mathematically accounted for by analog,
to the thermal effect, may be written as follows in operator notation:

Mi fu0, W) = p){P} + SiH){H} +

where Mi, Yi are differential (or integral) operators; uo, w are displacements; and p, H, 0
are forcing parameters (pressure, magnetic intensity, and heat). The particular solutions
of this equation (in the steady state) are directly obtainable by symbolic inversion of the
operator:

{v0, vw} = jwMi1YP){p} + jwMiYfH){H} + jwMi3YI(0 ){E}

where vo = jwuo, and vW = jww. We now define the products jcwMi ¶ on the r.h.s. as
influence coefficients, i.e., as resultant surface velocities per unit external pressure, mag-
netic intensity, and heat. For convenience we adopt the following symbols:

(P)VI)jWMi S(b) _

j@M(H) = (w)
jwMi J - (H)Vje

Y(0) - (W)ijwMi (E)j

= radial surface velocity of the jth band due to a unit applied
external pressure on the Ith band at zero applied magnetic
intensity and heat.

= radial surface velocity of the jth band due to a unit applied
magnetic intensity on the Ith band at zero applied external
pressure and heat.

= radial surface velocity of the jth band due to a unit applied
thermal excitation on the Ith band at zero pressure and
magnetic intensity.

When axial displacement u rather than radial displacement w is to be calculated, we replace
the superscripts w by u. The three influence coefficients noted above are assumed to be de-
terminable by calculation using the shell theory outlined above. With these coefficients on
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hand we may formulate the problem of finding (say) all radial surface velocities Wj ,
j = 1, 2, ... , M, through solving the set of linear simultaneous equations,

M M M

E L (P)Vjl )wi + 21 (H)|I H1 = w, , = 1, 2, ... , M.
1=1 i= 1=1

We note in particular that wj is a function of radius r, so that the thickness effect is not
negligible in these equations.

EVALUATION OF PARAMETERS OF MATERIAL AND PERFORMANCE

When the external applied mechanical force F vanishes, it is seen from the first ca-
nonical set that the driving-point electrical impedance Zee is given by

Zee = Z1 + ZC + Z 2

We write (as before) the eddy-current factor as a complex number,

X = XR - iX = IxIe if; / = tan-1( ), Ix12 = XR + Xl 2 .

The transduction force factor Zem is thus also written as

h0 0 gSbLNlXlejie
Zem a

Similarly, the core impedance may be represented by

Zc = Rc + jwLc = IZcje"pc

where

Rc = wN2pASxibl/27ra

Lc = N2 gUSXRbi/27ra

tan 4)c = wLc/Rc = XR /XI-

Since tan /3 = cot (e, (/3 + 'Ic) = ir/2. Hence,

2 h20 (S) 2 b2 l2N2 ,Xx2e ji2'c 2

Zem a 2 = -Zemle c.

Now
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z2 I2 l-j29 4Zem _ lemle
ZMOt= Zm Z = RMot + jXMot.

2 = os. .ThnITWe consider first that /3 0 and lZemI const. = A. Then c:

'7 = ,-1 = ~~~~y, 2 _X, I ,12=
ZMot (Rm +jXm)= RmY - XmYml m

where

R Rm

X= m.
A

We then define an angle 0 by the relation

Rm I Ym 1 RMot
cos 0 = , -=

I1Ym l ZMotl

Thus,

m I 1 1s IRMot
RYi RmcoO IZMotI

This is seen to be

2 2 1
RMot +XMot - R RMOt

or

(RMot - 2RM) + X2 = 1 A
Rm

This is a circle with center at RMot = lZ2ml/ 2 Rm; XMOt = 0 and radius of IZ m2 /2 Rm. We
consider next that / is finite. Then the circle is rotated clockwise by angle 2p. The new
coordinates Rj 0ot, Xlot, are related to the old by the formula

RMot = Rfot cos 2/ + XMOt sin 2/3

XMot = -Rjit sin 2/ + Xj 0ot cos 2/.

Thus, the rotated circle has the mathematical form
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IR~ot ARm )2
(R~t- A cos 2/3 + (X~ot - 2A sin 23) A 2 '

The center of this circle is at

R~0 t = -- cos 2p; 0Mot ;Rm- si2

When R, 0t -- 0, the circle intercepts the ordinate at two points:

X~ 0 t = - 2 [sin 1231 ± (1- cos2 12/1)1/2]

The tip of the diameter of the rotated circle, originating at the origin, has the coordinates

R.Ot = RMot cos 1201

XMOt = -RMot sin 12/
} at XMot = 0.

Now the Im {Zm}= wM* - S*Iw where M*, S* are the general expressions for mass and
stiffness of the ring. If we set Cw = wOR + AXo = WR(I + Awl/R), where coR is the reso-
nant frequency as defined above, we see that for Aw/w << 1,

Im {Zm} - (wR + A)M M S* ( ) /WR

Since w)R2 = S*/M*, we reduce the above to Im {Zm} - 2AwM*. Hence,

tan 'I'm - Re {Zm}

Now let w" = wR + AX", w1 = wR - Aw', then

- + 1-=
co co

Aw/wR << 1.

1 ( 1 +

I1 +
C)R

2-
+ Aw"

Cl r

Aw' + Aww'
w)R W 2

WR CwR2

If
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WzR

Aw << 1,
WR

then

1 + 1 2
w" w' wR

Now

Re{Zm}= Rm + RL
YoBblk 21

+ c
(1 -V2a

B 2G2_ - Yo bike2 2ix 1

g (1 - V2 )a

D = Rm + RL.

From the previous derivations it was seen that

tan <D - 2(w - WR)M*
D - G

At the quadrantal frequencies W2, w 3, by definition,

D - G2 _ 2(CJ2 - CJR)M*
w 2g (tan <1))=IT14

G2 -2(w3 -a R)M*
D 3g (tan (b), =- 7r/4

By adding these two equations, we obtain

+ ) =2 2( 3 - w 2)M* .

Assuming that

-1 1 2ww3 2 WR

we get

Re {Zm} = D
G2 _

WRg

The mechanical quality factor is then defined by
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M (Co.3 - CO2 )

With these factors it is now possible to evaluate important performance parameters of the
ring.

EVALUATION OF hoo

We first note that from the above development we have two formulas for Re {Zm},
viz,

Re {Zm} - D Re {Zm} = (w3 - w 2 )M*

Hence

IZemI = VT(w(3 - (w2 )M*Dm

and

aV(w 3 - w2 )M*Dm

1_SbU\TXj

Thus, to find the magnetostriction constant h we must measure the quadrantal frequencies
w 3 , w 2 , the effective mass M*, the diameter of the motional impedance circle Dm, and
the absolute value of the eddy current "shielding" IXI. The factor PS is the reversible per-
meability at zero frequency, which can be calculated from the core inductance and the
constants of the coil winding. The factors a, b, I are the mean radius of the ring, its
thickness, and its axial length, respectively.

EVALUATION OF VELOCITY, DISPLACEMENT, AND LOSSES

At resonance, defined by OR = (S*IM*)11 2 , the mechanical impedance in the pres-
ence of an acoustic load is Rd + RL. The corresponding electrical impedance is Zem
(Rd + RL). From the canonical set (in the mobility analogy) the velocity is given by

Zem Fv g- I + Z

Note that v is the "velocity of the ring" in a one-dimensional description. If we set F = 0
and consider the condition of mechanical resonance, we see that

IVI, - ~IZem I II 
-R (Rd + RL)

Similarly, the displacement amplitude lxI in the presence of acoustic load is
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lxI = IwI

The internal mechanical power loss at mechanical resonance due to motion in the pres-
ence of an acoustic load is given by

(Mech. Power Loss)&,=wR = RdIVrmsl - 2 RdIIrmsI -

In the presence of radiation the ratio of mechanical to macro-eddy-current loss, repre-
sented by RC is

mechanical loss _ lZem1 Rd
macro-eddy-current loss (RL + Rd)2Rc

4em / RL \fRdt I
RL + Rd (RL + Rd) RL)kRc}

DL2

DvRc

where DL, D, are diameters of the loaded and unloaded circles, respectively. The internal
mechanical loss resistance Rm depends on micro-eddy-currents, magnetic hysteresis, ther-
moelastic effects, and internal friction. It can be estimated by subtracting (Y1 Bh kC2 21x1)I
(1 - v2)acw from Re {Z 0}.

ELECTROSTRICTIVE TRANSDUCTION

When the transduction principle is electrostrictive rather than magnetostrictive, the
preceding analysis is directly applicable with a change of parameters. We first select a set
of constitutive equations of the piezoelectric type, adapted to the low-frequency linear
behavior of an electrostrictive ceramic:

T = CDS - htD

S = -hS + PSD

in which all parameters are matrixes with the following meanings:

T = stress

h = electrostriction constant (subscript t means transposed matrix)

S = strain

D = dielectric displacement

& = voltage gradient

OS = inverse permittivity.
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Note that the units of h are volts per meter or Newton's per Coulomb. We consider two
cases, depending on the axis of polarization.

1. Polarized across the radial thickness or 3-direction; i.e., the ceramic cylinder is.
electroded on the inside and outside radius

2. Polarized in the tangential or 1-direction; i.e., the ceramic cylinder is constructed
of ("barrel") staves electroded on the certical faces which abut each other.

A third case, in which the electrostrictive ring shell is polarized in the axial or 2-direction,
i.e., the cylinder is electroded on the ends, is not considered here.

Case 1. Radial Polarization

The appropriate constitutive relations when the polarization is across the thickness of
the cylinder (in the 3-direction) are

T DT1 =' S, Cl - h31D3

3= -h3 15 + 033D3 .

Since these are low-frequency equations in which the only mechanical impedance is the
stiffness of the shell, we consider the dynamic vibration of the transducer over a frequency
range of its first radial mode. The analysis is then one-dimensional in the radial displace-
ment t driven by the radial force Fr. In linear terms,

Fr = F1 50 = TMbl80

where F1 = tangential force, b = radial thickness, I = axial length of the ring, and 60 = the
incremental tangential angle. The dynamic equation is then

afta (pa6O)bl = -Tlbl60

or

pa -a--=- =

where a = mean radius of the shell and p = density of shell. Substituting for T1 from the
constitutive relations reduces this to

pa a + a = h3 jD 3 .

In terms of radial velocity vr = t/jc, this is
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Cl1 uv h 3 1 1
jwcpav + -j w

Boja jcj27ral

in which we have set the electric current

I - (jwjD3)(27Tal).

Multiplying through by 27r1b leads to the relation

C+ i 2irlba

jw(a / V = ja I I

or

zM V = HI

h3 lb
iwa

Keq
Zm = iMeq +- +j Rm

Meq = pV

D

Keq = a

V = 27ralb.

Here we have included an internal resistance Rm in the definition of mechanical impedance
Zm. When there is an acoustic load FL = -vZL, the total mechanical impedance is written
as ZM, where

ZMV = 1.

The electrical impedance is now determined from the second constitutive relation in terms
of the applied voltage E3 = b 3:

E3 = -h3 1 b a + P33 bD3

or

-h3 1 bv f333bI
E3 = wa Tw + 2r 1-

It is thus seen that the transduction coefficient Term (or Tme), as defined by the canonical
equations

81

(jwpV



HANISH, BAIER, KING, AND ROGERS

E = ZbI + TemV

F = TMeI + ZMv,

is given by

TIM -h 3 lb
emn = ia = / 

and the blocked electrical impedance is

Sb
f333 b

Zb jw2iral

Since

V = MIIZM,

we see that

E3 = Zb I I 
( - Q A

so that the total electrical impedance Zee is

Zee = Zb + )

Here we define the motional electrical impedance ZMOt by

ZMot = 1M

or

h222
w2a2 (zm + ZL)

Case 2. Tangential Polarization

We select the constitutive relations

S = SET + dt&

and

D = dT + eT&

where d = electrostriction constant (subscript t means transposed matrix). For tangential
polarization in a cylindrical ring having N "barrel" staves these relations reduce to
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S3 = s33T3 + d3 3 S3

D3 = d3 3 T3 + e33 &3 -

Replacing T1 of Case 1. by T3 , we see that the dynamic equation is given by

a2t

E -d33 3 
E Eas3 3 S33

In steady state

pajwv + U
jwas33

Multiplying the dynamic equation through by 2irlb, we obtain

v = - E 3 ,

Let

z = (pV)jw0 + Ywt E
\jcoaS33/

or

where

Meq = pV

K27rtb
Keq = E

as3 3

Rm = internal resistance.
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a2t
pa" at2

S3

E
S33

d3 3

__ E3
S33

pa2
paU at2

-d33 E3 -
E (27111

(3 N)

-d3 3 IbN
Es33a

ZM = jJMeq
Keq

+ Keq + Rm
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When there is an acoustic load FL = -VZL, we replace zm by ZM where

ZM = + ZL.

Thus, for a water load,

OE3
ZM

The stress T3 in water is therefore

T3 = 3 d3 3 3

S33 S3 3

__= __E3_ d3 3E3 N
T3 = B

ZMjws3 3 a S33 27ra

Substituting this formula for T3 into the canonical equation for D3 , and noting that

I3
D3 jwlbN'

we reduce the equation for the electrical admittance to the form

13 _ 2 jT3_N2lb /_2 \
E3 ZM 2 lb (1-

dE2
2 33

k33 = T
s3 3 E3 3
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GLOSSARY

a = mean radius of reference surface (m)

a(k) = radius of cylinder at kth band (m)

B = magnetic induction (Wb/m2)

b = shell thickness (m)

CP = stress-strain modulus at constant induction (N/M2 )

Dn(CO) = generalized stiffness (N/m)

E = voltage (V)

G = true surface radiation Green's function (N-sec/m3 )

g (1, r) = reference surface radiation Green's function (N-sec/m3 )

gij = influence coefficient (m3/N-sec)

Hk = magnetic intensity (A/m)

h(t) = transposed piezomodulus (N/Wb or A/m)ik

I = current (A)

V = low-frequency coefficient of electromechanical coupling

I= shell axial length (m)

M, = modal mass (N-sec2 /m)

M, = static mass (N-sec 2 /M)

N = number of turns of wire

Nn = mode shape normalization factor (dimensionless)

5 = equivalent driving pressure (N/M2 )

p = acoustic pressure (N/m2)

p= average pressure (N/m2)
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mechanical resistance (N-sec/m)

surface area (m 2 )

strain 6-vector (dimensionless)

stress 6-vector (N/m2 )

velocity in axial direction (m/sec)

normal component of velocity (m/sec)

modal radial displacement (dimensionless)

surface integral of Wn (m 2 )

velocity in radial direction (m/sec)

modal Young's modulus at constant magnetic induction (N/M2 )

= total blocked electrical impedance (V/A)

= electrical core impedance (V/A)

= electrical leakage flux impedance (V/A)

= mechanical influence function under open-circuit conditions (N-sec/rn

= specific acoustic impedance (N-sec/m3 )

= negative stiffness specific acoustic impedance (N-sec/m3)

= complex number accounting for leakage (dimensionless); sign symbol

= finite increment of coordinate (m)

= permeability at constant strain (Wb/A-m or H/m)

= Poisson's ratio

= modal density (N-sec2/m4)

= static density (N-sec2 /m4)

= magnetic flux vector (Wb)

= eddy current and hysteresis factor (dimensionless)

transduction coefficient (N/A-m2 )

= transduction coefficient (V-sec/m3)

= angular frequency (1/sec)

= volt

= Neumann factor (eo = 1; em = 2, m 0 0)
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