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A CATEGORIZATION OF TWO-PERSON ZERO-SUM DIFFERENTIAL GAMES

INTRODUCTION

In a two-person zero-sum differential game in which all strategies of one player are
playable with all strategies of the other player, several relations are known to hold [1-13].
One relationship is that the upper game value (i.e., inf. sup. value) is never less than the
lower game value (i.e., sup. inf. value). Another is that if a saddlepoint strategy exists
then the saddlepoint value is unique and is equal to the upper and lower game values.
A third is that a player's saddlepoint strategy assures him, regardless of his opponent's
strategy, a cost that is at least as favorable as the saddlepoint game value. In a recent
paper [14], it is shown by example that these relations can fail to hold in differential
games in which open-loop strategy pairs are subject to terminating conditions. By an
example, the same fate is demonstrated in this report for closed-loop strategies.

The choice of a particular strategy by one player can limit the choices of strategies
of the other player. For example, some strategies of the other player may violate state
constraints or never bring the game to termination. In general, therefore, it is not valid
to assume that all strategies of one player are playable with all strategies of the other
player. Because of this, it is not necessarily in a player's best interest to observe his
opponent's strategy before choosing his own. He may well want to disclose his strategy
first, provided that a more favorable outcome could result. Whether it is best to play
first or second is determined by the difference between the upper and lower game values.
If this difference is positive, each player will want his opponent to play first. If it is
negative, each player will want to be first in selecting a strategy. There is little concern
if this difference is zero. Consequently, the difference between the upper and lower game
values permits a categorization of two-person zero-sum differential games. These three
types are referred to as play-second, play-first, and play-anytime. Examples of each are
discussed in the third section, and a saddlepoint strategy pair of a play-first game is
presented in the fifth section. Before describing mathematically the relations between
the various game values, we give a rigorous development of the two-person zero-sum dif-
ferential game.

STATEMENT OF A DIFFERENTIAL GAME

We consider a two-person zero-sum differential game with state equations

x = f(x, us v) (1)

Note: Manuscript submitted March 6, 1974.
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HAROLD L. STALFORD

where

x is contained in El'
* is contained in E-
u is contained in Es
f is a Borel measurable function with domain El X El X EP and range in El.

The playing space denoted by X is a Lebesgue measurable subset of El. The target i)
is a closed set contained in the closure of X.

The two players are denoted by P and E. They choose the values of u and v,
respectively, for all points x of the playing space X, Let U and V be compact subsets of
E" and Es, respectively. Let 3' denote the set of all strategies p: X - U such that there
is some Borel measurable function p1 -,En - U with p - pj IX. The notation pi IX = p
means that p1 (x) = p(x) for all x C X, i.e., p is the restriction of plto X. Let 'S denote
the set of all strategies e : X - V such that e = e1 ;X for some Borel measurable function
e : El' - V. The sets 3 and & constitute the sets of admissible strategies for players P
and E, respectively.

Let x0 E X. For p E T and e E the pair (p, e) is said to be a playable strategy
pair at the point x0 C X if it generates at least one terminating trajectory p satisfying the
equation

t
(t) = q (00) + f f(07), p(p(r)), ep(r)))dr (2)

for all t C It,), tf where ½0(to) = x0 , x(t) E X for all t C Ito9, it), and tf is the first time
for which p(tf) E e. Let i (xo) denote the set of all playable strategy pairs at the point
x0 . Define

(X) f (xn)
xEEX

We assume that §1(X) is nonempty.

For x0 E X, define ? (x0 ) as the set of p E? such that there is some member e
of & , with (p, e) playable. The set S (x) is defined analogously.

Let x0 E X. For each e CS (x0 ), we define? (e, x0 ) to be the set of all strategies
p C (x0 ), such that (p, e) is a playable strategy pair at x0 , The set E (p, xD) is defined
analogously for each p C? (x0). Note that the following equalities hold:

2
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?(Xo) = U (e, x0 )
eC6(xo)

(x)= U (p,x0 ).
pwj'(xo)

Observe that if the initial state of the game is x0 and if player E has not yet announced
some strategy from 6(x 0), then player P may choose any strategy from ?P (x0). However,
if E announces e E 6(x 0 ) as his choice, then P may choose only from Y(e, x0 ) which is,
in general, a much smaller class of strategies. In a game situation it is apparent then that
a player must decide whether it is more important to limit his opponent's playable
strategies or to let his opponent disclose the strategy he intends to play.

Let x0 G X and (p, e) ( §1 (xo). We define T(xo; p, e) to be the set of all solutions
- fl Ifl% C~~~~~~~_ 4- - - _ /f l M . . - _ 

U ol Eq. ,2) eflllaLating froim x0 and assolau u wiuLet J1 , W ). S -L- ei"a

with the quadruple (x0, p, e, Up) there is a real number V(x 0; p, e, %o), termed the cost, and
defined by

V(x 0 ;p, e, vp) = ft0o (v.(r), p[p(T)J el[lo(T)) dr (3)

where f0 is a real-valued, bounded Borel measurable function with domain En X El X E.,.
For each x0 e X, the player P desires to minimize V(x0; p, e, P), wnereas player E wants to
maximize it.

Let x0 G X, (pt e*) E §(x 0 ) and sp* E T(xo; p*e*). The pair (p*, e*) constitutes
a saddlepoint strategy pair at the point x0 if and only if

V(xo; ply e*, t *) • V(xo; p,e,*jp) for all p C C(e*, xo)

for all c E T(xo; p,e*), (4)

and
V(xo;p*, e, p) < V(xo;p*, e*, v.*) for all e E, (p*, x0 )

for all sp E T(xo; p *, e) (5)

If and only if (p*, e*) EC(X) and Eqs. (4) and (5) hold for all x0 CX, the pair constitutes a
saddlepoint strategy pair over X.

Let the pair (p*, e*) be a saddlepoint strategy pair over X and let x0 C X. The
value V(x0 ; p*, et **) that satisfies Eqs. (4) and (5) is termed a saddlepoint game value
at x0 . It follows immediately from Eqs. (4) and (5) that if sp* and (p** EE T(xo; p*t e*),
then V(x0; p*, e*, A*) = V(x0; p*, e*, p**). Since the trajectory as an argument is
redundant, we make the definition

3



HAROLD L. STALFORD

V*(x 0; p *,e) V(x0 ; p*, e *, p*) for allx E X (6)

For x0 C X, the upper value Vaxo) of the game is defined by Eq. (7) and the lower
value V(x0 ) by Eq. (8):

V(x0 ) = Inf Sup V(x 0 ; p, e, f)
p C(x 0 ) e E 60 x0 )

E Tx 0;p,e) (7)

Vax0 ) = Sup Inf V(x 0 ;p, e, <)
e E(x 0) pCE§(ex0)

; E T(xo; p, e)

We make the assumption that V(x0) and V(xo) are finite in value.

A CATEGORIZATION OF DIFFERENTIAL GAMES

The upper and lower values can be utilized to classify distinct types of differential
games. In doing this we need some lemmas and a theorem.

For use in the following lemmas, theorem, and definition 1 let x0 C IC and let 5 > O.

Lemnma 1. If P, playing first plays p C N(xo) then E, going second, can play a
strategy e E (px 0) so that

V(x0;pe,#) > V(x) - ()

for some <p C T(x0 ; p, e). If P plays first then P can play a strategy p C Y(x 0) assuring that

V(x 0 ;p, e, W) < V(x0 ) + 4 (10)

for all e CGp, x0) and for allnp G T(x0; p, e).

Proof. Define the function

6UE (1X x()) Rx0

so that

V(x0 , p) Sup V(xo p, ef )
e C 6(. x0 )
CGT(x0 ;p, e)

Note that

V(x0) = Inf V(Xp). 11)

P 5'x)
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If P, playing first, plays p e Y (x0) then

V(x0 ) v (X0 , P)

By definition of V player E can play a strategy e such that

V(x07p) - 6 < V(x0 ;p, e, p)

for some p E T(xo; p, e). The two letter inequalities imply(9).

From (11) it follows that player P, playing first, can play a strategy p such that

V(x0,p) < •V(x 0) + 6.

By definition of V we have

V(x 0; p, e, q) < V (xo0 p)

for all p G 1? (xo), for all e e F (p, x0 ), and for all yo E T(xo; p, e). Inequality (10) now
follows.

The following lemma has a similar proof.

Lemma 2. If E, playing first, plays e C L (x0 ) then P, going second, can play a
strategy p G 5P(xO, e) so that

V(xo;pe,q}) < V(xo0) + 6

for some p E T(x0 ; p, e). E, playing first, can play a strategy e (E tW (xo) so that

V(xo;p, e, o) > V(xo) -

for allpC (Exe xO) and for all so FE T(xo;p, e).

Definition 1. A player is said to play 6-optimal at x0 if he plays a strategy
resulting in a cost that is within 6 of the most favorable cost possible to him at x0,
taking into account his playing order.

The above lemmas give rise to the following result.

Theorem 1. If P plays first and both players play 6-optimal then they play
strategies p and e such that

IV(xo ;p, e, ) - V(xo)) < 6

for some p E T(x 0; p, e). On the other hand, if E plays first and both players play 6-optimal
then they play strategies p and e so mat

5
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iV(*xobp, eb s) - VSxeN) 'C 6

for some ; C=. Tr~l x0 ; p1 e) I

We permit the player going second his choice of the trajectory ; ( T(x 0 ;pe). Thus, if
P plays first the cost lies in a 6-neighborhood of V(x0). If £ plays first,however, then the
cost lies in a 6-neighborhood of 1V(x0 ).

Definition 2. Let g1 and g2 be real-valued functions defined on X. The function
g1 is said to be less than g2 , i.e-, g1 <g 2 , if and only if gi(x) <g2 (x) for at x E X and
there is at least one x C X such that g1 (x) < g2 (x).

The inequality

VV <112)

characterizes those games in which each player desires to play last. Let x0 E X be such
that V(x0 ) < V(x0 P If P plays first then according to Theorem I he loses an amount
arbitrarily close to V(xo) - V(x0) over what he can profit by playing second. If E plays
first he likewise loses the same amount. These games are termed play-second.

The inequality

V>V (13)

represents those games in which each player desires to choose his strategy first. Let
Xc E X such that Vx 0) > V(x0 ). If player P plays first he gains an amount arbitrarily
close to V(x0 ) - V(x 0) over what he can profit by playing second. The same gain hold
for player E if he plays first. These games are termed play-first

The equality

V (14)

classifies those games in which the players are willing to play in any order. The player
P loses an amount arbitrarily close to l(xo) - V(xo ), which is nothing in this case, if he
plays first. He gains an amount arbitrarily close to V(xo) - 17xo), which is again nothing,
if he plays second. Also, there is no loss or gain for the player E. These games are
termed play-any time.

For a given gamne, let X, denote the set of all states x C X such that /(x) K VUx).
Let XC be the set of x E:IC such that J(x) > V(x). And let 4 represent e set of

X I=_ A suchI t'Rat V1x Vkx). NoULte sat

X = Xs .JfUN 

The relations (12)-(14) refer onlv to cases in which either X- is emntv or XP is emotv.
There are games in which both X and X, are nonempty. Such games are not analyzed
in this report.

1u
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We shall now illustrate the three types of games by using simple examples.
Example 1: Consider the state equations

xl u1 a < v1 < b

X2 =u 1 a ' u1 < b,

where a and b are real numbers with a K b. Let the target set be the straight line
defined by

e ({(xI,x2 ) G E 2 :x1 + X2= 1

The integrand of the cost, Eq. (3), is given by

f0 (x 1 , X2 , U1 , V1 ) = (U1 - )2 (15)

for all (x1, x2) e E2 and for all u1 , v1 ( [a, bJ. The state space X is taken to be the
set {(xi, x 2 ) G E2 : x 1 + x2 '1J .

If a = 0 and b = 2, one can verify that

V(x?,x?) = 0

l/(x?, x°) = 3 (2 - x° - x2) (16)

for all (x?, x(2) E X; that is, the inequality (12) holds, and the game is of the play-
second type.

Example 2: For a = -1 and b = 2 one has

V(x°x2) = 9(1 - x4 - x)

V(x?,x°) = 2(1 - x - x2 (17)

for all (x4 x4) e X, so that inequality (13) holds. The game is of the play-first type.

Example 3: Suppose that, instead of to given by Eq. (15),

to (X1, X2 U1 ' uu 1 (18)

for all (xl, x2}) E 2 and for all u1, v1 C [a, bJ. For a = -1 and b = 1, it follows that

V(xo) = V(XO) = 0 forallx 0 EA X. (19)

Thus, the equality (14) is met and the game is of play-anytime type.

A game of the play-first type is analyzed in greater detail in the fifth section.

7
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GAME VALUE RELATIONS

As pointed out in the Introduction, using the notation of the previous sections1 the
four relations in question are given as {-IV below.

I. VKXO) < V(X0 )

Irf. V*(xo; P*' el ) - V* (xo; *e*

for all x0 XA.

for all xC A T and for all saddlepoint strategy
pairs (pT, et) and (pt, et) over X.

If Condition fI hoids1 then we make the definition

V*(x0) = V* (xo; pt, et)

111. Vx 0)= V*(x)- (XO)

IV. V(x;p*',m so) < C x()

V(xo;p, e*7 p) > VX 0 )

for all x E( X.

for all x0 e X.

for al x E X, for all e G 6 (p*,x), and
for all p T(x 0 ;p*,e).

for all xo C X, for all p E T lp*, x) and
forall (3 T(x0 ; p, e* f

where Qr*, e*) is a saddlepoint strategy pair over X.

Condition I implies that each player prefers that his opponent be first to choose
(and disclose) a strategy. For, if Condition I holds and player P chooses any p E C xo),
with player E optimizing his choice in 6 (p, x0 ), then the resulting cost is no better than
the upper value of the game. On the other hand, if player E chooses first e from e(xo),
followed by player P optimizing his choice in l (e, x0 ), then the resulting cost is not
above the lower value of the game. Consequently, if I holds, the player choosing first
sustains a loss, the absolute value of which is V(xo) - V(xo).

Condition II states that the saddlepoint value of the game is unique. Condition III
is a statement about equality among the lower, saddlepoint, and upper values of the game.
Condition IV states that it a player uses his strategy of a saddlepoint strategy pair, then
he is guaranteed the upper value as player P and the lower value as player E.

In two-person zero-sum differential games, the relations I-IV are usually presupposed
because their analogs hold for classical games (e.g. Ref. 2), and hold also for differential
games in which every strategy of one player is playable with every strategy of the other
player. But, as we shall demonstrate by the example in the next section, conditions I-I
need not hold.

SADDLEPOINT STRATEGIES OF A PLAY-FIRST GAME

We borrow the following game from Ref. 14 and show that it is of the type described
by inequality (13). In Ref. 14, open-loop strategiesare presented. Closed-loop strategies e
provided below for this game.

8
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Consider the differential game with state equations

(Xi,x9,x8) (vXu 1 ,v9 + 12)I

where ui v1, ( [0, 2] and u2, v2 e [-2, 2]. The state space is defined by

AT= {(x1,x2,x3) (E3 Ex 1,X2 > o p.

(20)

The target set is

X2
{3 = (X1 X2 , x3 ) ( X:x + X2 - 3- 1 = 0}

and the integrand of the cost, Eq. (3), is

fo (XI I X2, XV, UI I u, I 2U 2 ) = 2(x 2 uI - xiv, ) (21)

for all (x , x2, X3 ) E E3 and for all uI, /v1, C [0, 21 and u2, V2 ( [-2, 2].

In view of Eqs. (20) and (21), Eq. (3) becomes

r n ;P e, A} = r2 (tf) -_y 2(t) -_r(0ff + x2jt_) (22)
~ ~~o *I -'2'~ff' ~I~71' -2-U' -- i'U'

In Eq. (22), X0 = (x (t0 ), X2 (t9), x3(to)), a playable strategy (p, e) transfers the state
from x0 to the terminal point xf = (XI(t{), x2(tf), X3(tf)) E e, and s is a path associated
with (p, e). Note that Eq. (22) is path independent.

Let c ( [0, 1]. For each such c we define the strategy pair (pc*, e*) as follows, where

pc= (Pl, p5,) and et = (e1c, ec):

Ptc(XpI X2,Xs) =

2c(x1 x 2, X3) =

et,(x-,, X2, X) =

( 0 ifx-

2 if x

C -2 if x,

1 if xi

L 2 ifxi

I ifxif

0 if x

t 2 if X

T X2 s ^ 2

+ X2 < x and x2 nCc

+ X- _ x42< K and x3 > 0

+ X2 - :4 = I and all x3

+L x - x2 I landx 3 K 0, or

+ x - A > 1 and all x3 .

+ X2 > 1 orx1 > 1 - c

+ x2 < I and x, < 1 - c

9
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e* (xl1 x2 ,x3) = P(X 15 x2 X3) forall(tX,x 2,x3) E X. (26X

We claim that the pair (p*, ev) is a saddlepoint strategy over A. This claim is
established by intrduing thle auxilMiay function Vr below and then applying me sur-
ficiency theorem of Ref. 15 to show that V* is, indeed, the functon V*(,; P*, ee3 defined
in Eq. (6). Thus, we make the definition, for

X (x 1 , X.-,x) X 3 X3

f X - (1 - x) 2 if x + x2 < l andx2 C

(1 _ X) 2 - X2 ifx + X2 1 I andx, > 1 - c

V(,x) C2 _ (1 _ 0)2 + 4- if X < 1 - candX 2 < c

1C0 ifxi + X2 >1. (27)

Note that V* is a continuous function on X.C

A decomposition D of the state space X is given by

D = { K 1 , X2, T3, X 4 }

where

1. " ' : t X2 "I tt ,X2 -JA2

X2 = {x C X'xI + x2 K I and x 1 - e 

X,= {x E X:x1 < 1 -cand x < cc

X4 = {x C X: x + X a 2 .
Observe that

4

X= U X.
_ 1

The function Ve' is of class C1 with respect to the decomposition D, Ref. 15, since V* is con-
tinuously differentiable on X. i = 1, 2, 3, 4.

The pair (vP, e*) is pla able for all initial states of X and Vt equals zero on 01. One
can verify that the following two conditions are met:

(i) fo(x, p*(x), v) + grad V*(x) . ftx, p*(x), v) < 0
for all x X and all v = (v1 v2) E 10, 21 X 1-2, 21

10
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(ii) fo(x, us e*(x)) + grad l.*(x) f(x, u, ez(x)) > 0
forallx e XAandall u = (u1'u2) E [0,2] X [-2,2]1

where the function f is defined by Eqs. (1) and (20).

It follows, then, from Theorem 3.1 in Ref. 15 that the strategy pair (pt, e*) is a
saddlepoint strategy over X.

Using Eqs. (7) and (8), we note that

V(xX 2x 3) -xi - (1 - x 2)2 (28)

V(x1, x2 ,X 3 ) = {1 - xl )2 _-x (29)

for x1 + x 2 < 1, and that

V(x1, X2c) = V(x 1 , x2,x3 = 0 (30)

for c + x2 '> 1. From Eqs. (28) and (29) we see that

V(x 1 3x2, X3) K V(x1 , x2 , x3 ) (31)

whenever x1 + xc2 < 1. Thus, the game under consideration is of the play-first type.

Finally, we note that the Condition I-IV do not hold for this game. For, from Eq.
(27), it follows that relation II fails to hold for the saddlepoint strategy pairs (ps, e*),
c E [0, 1]. Relations It and III fail to hold because of Eq. (31). From Eqs. (27)-(29),
it follows that relation IV fails to hold for all (p*, es), c E 10, iii. Furthermore, if c = 0,
then It = V; and if c = 1, then eA = V.

CONCLUSION

Two-person zero-sum differential games can be classified according to whether it is
best for a player to play first, second, or in any order. If the minimizing player P plays
first then the cost of play lies in a neighborhood of the upper value of the game. On
the other hand, if the maximizing player E plays first then the cost of play lies in a
neighborhood of the lower value of the game. Consequently, if the lower value of the
game is less than the upper value then both players desire to play last. If, however, the
lower value is greater than the upper value then each player wants to be first. Thus, the
difference between the upper and lower values of the game provides a criterion for
classifying game types. If this difference is positive, the game is of the play-second type.
If it is negative the game is of the play-first type. Games in which the difference is zero
are termed play-anytime.

Each type of game is illustrated with a simple example. In addition a game of the
play-first type is analyzed in some detail. Closed-loop strategies are presented for this
game and a sufficiency theorem is applied to show that they are saddlepoint strategies.
Furthermore, four classical relations are shown to be invalid for this game.

1
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