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EMPIRICAL BAYES ESTIMATION OF THE PROBABILITY DENSITY
OF THE RADAR CROSS SECTION OF THE SEA SURFACE

INTRODUCTION

It has been recognized for some time that when sea clutfer is viewed at low grazing
angles with a high-resolution radar the envelope of the return is not distributed accord-
ing to a Rayleigh distribution; see Nathanson [1] and Skolnik [2]. A number of re-
searchers have attempted to characterize the distribution of the return as a function of
various experimental parameters. For example, Nathanson [1] uses the coefficient of
variation (ratio of standard deviation to mean) as a measure of departure from a Rayleigh
distribution, and Trunk and George [3] modeled the distribution of the return with both
log-normal and contaminated-normal distributions, Ballard [4] being one of the first to
suggest the log-normal distribution. The recent works by Guinard [5], Valenzuela, Laing
and Daley [6], and Wright [7] are concerned with predicting the expected value of the

return. Although some of these alternative models are good nnnrnv1mnhnnq t0 exneri-
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mental results, they yield little insight into the physical mechamsm to which the true
distribution of the envelope of the return can be attributed.

In a more recent paper, Trunk [8] considered a composite scattering model to ex-
plain the non-Rayleigh nature of sea clutter when viewed at low grazing angles with a
high-resolution radar. Hereinafter the term high-resolution radar refers to a radar which
illuminates a patch of sea that is not large relative to the wave structure of that sea. The
rationale behind this composite model is that the radar cross section (RCS) of the illumi-

i 1 e o oidd
nated patch is a function of the slope of that patch. This function is extremely sensitive

to the grazing angle whenever the grazing angle is less than the critical angle, a nominal
value of the critical angle being 10°, Thus, the variation of the RCS of the patch depends
on the variation of the slope of the patch. Since the slope does not vary in a determinis-
tic fashion, the sea surface can be considered to be a fluctuating target, In this report
nonparametric estimates of probability density functions of the RCS of the sea surface,
obtained from both real data and computer simulations, are presented.

Valenzuela and Laing have taken a similar approach in Ref. 9, Assummg a perfectly
conducting sea and assuming that the slope of the surface is normally distributed, they
obtain theoretical probability densities for the RCS of the patch. Because these densities
depend only on the grazing angle and the root-mean-square (rms) of the slope of the
patch, they do not reflect the orientation of the radar relative to the surface waves. This

is an important consideration in the high-resolution case [10].

Note: Manusecript submitted March 4, 1974.
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M. E. B. OWENS
THE RCS OF A PATCH OF THE SEA SURFACE

Consider a particular pateh of sea surface 7 at a fixed point in time. At this instant
the apparent RCS of the patch is given by

g = ff o(alglx, v, 2)dx dy” (1)
{x,%)?

where

2 is the height of the surface at the point {x,y)

o = ofx,v,2) is the angle between the normal fo the surface at {x,y,2} and the
vector from the point fo the radar antenna

o(w) is the reflected power given the incident angle o (to be detailed later)

glx, v, 2} is the two-way anterma power gain at the point {x, v,z

Now as time passes or as the patch moves along the surface, 6 will vary in a stochastic
manner, Thus in general the RCS of a patch of the sea surface is a random variable,
denoted g, with probability density f1(0).

As a conseguence of the composite model * the probability density of the relurn is
given by

pir) = f pafrie}f,{oydo,
1]

where py(rlo) is the conditional density of the retwrn given 6. Most of the work in the
study of returns from sea cluiter has been concerned with the various properties of pir).
However, from an analysis based on data taken with frequency-agile, high-resolution radar,
Trunk {8} concluded that the form of f; has an important influence on that of p. These
data, used in this report, consist of independent, paired samples {two puises at different
frequencies) of the return, the time between the paired samples being small. Under the
assumption that p,{rio) is essentially of the form

pr(rlo) = L(Z),

Trunk noticed that the ratio of the two samples in a given patch will change very little
during the time interval corresponding to the time between the paired observations. On
the basis of these ratios, Trunk was able to make inferences concerning the nature of
pi{ric). He concluded that p,{(r!¢) depends on polarization and direction relative to the
wave fronts. '

In this report, nonparametric estimators of the density f;(0), or equivalently the
probability density of 10 log, 50, are developed. Estimates of the density are computed
for experimental data as well as for data generated by 2 computer model.

*The composite sea-surface scatfering mode is based on the hypothesis that the only contribution of the
large wave stracture in the determination of ¢ is in the tilting of the slightly rough surface composed
of eapillary waves.
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NONPARAMETRIC ESTIMATION OF A PROBABILITY DENSITY

Let x4, ...,Xy be a sequence of identically distributed random variables, each having
probability density f. An estimator of f evaluated at the pecint ¥ of the form

N
v ®) = %2 En0nx))

for a known function Ky is called a kernel estimator. A common form of the function
Ky is

Ky (y,x) = h—l}m Ky [y = 2)/hy (V)]

for some function K; and sequence of numbers h(N}). It is generally assumed that Ky
is even, continuous, and non-negative and that

r K (x)dx = 1.

Under these two conditions, the estimator fN is a density function, If K, satisfies the
above conditions and if

sup K (x)i<e
—eCx g
and
lim jxK;(x)/ =0,

fx| e

then it is shown in Ref. 11 that fN (v} is asymptotically consistent in N when f is con-
tinuous and when

im Nh{(N)=-
N-=
and
lim h{(N)=0.
N-w

However, Rosenblatt [12] shows that under fairly general and reasonable conditions
there is no estimator, say f5 (¥), of f(y) for which

Efy () = ()

for all y. If the reader is interested in the area of nonparametric density estimation, he
is referred to the two basic papers by Rosgenblatt [12] and by Parzen [11] and to a
recent survey article by Wegman [13].
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Before one can apply a kernel estimator to estimate a probability density, he must
specify a function X; and a number A,(N). Exactly how one should proceed in making
this choice appears to be an open guestion. In any case, the function

N2
Kq(x) = %(ﬁm "‘)

X

has been employed with some success. Another common choice of the kernel is the
standardized Gaussian density, but the former will be used in this analysis. The sequence
of constants employed here is given by

oy = 2

JF

in decibels. Thus, if f is the density function of x = 10 log, ,& then

h

- fsm t}
W) =55 v’N Z (2)

is an estimator of f{y) where

G =y —=x;) VN/20

: : .l... hhhhhhhh <+l ek aden il‘

Tam 22 o e o e A= s <
LIULELLIL Y Wb, Uﬁﬁeﬁi ﬂbbﬁit{i&iﬁ LI UTlIbl),

and X4, ..., %y ate ind
Hecall that the probability density of the retuimn is

p(r) = J py{rio)f(o)do,
[i]

and the density to be estimated is f{x), where x = 10 log, 40.

The difficulty in applying Eq. (2) to obiain an estimate f{x} based on experimental
data is that the random variable x is not observed directly. The daia consists of samples
of the random variable r. If the conditional density p;{r!0) is known precisely, there
are a numbher of procedures, called empirical Bayves methods {see Ref. 14 and references
therein), that could be employed to estlmate f;(ﬁ) ot ﬁqm?a}eﬁﬂy f{x} But, as it was
previously mentioned, Trunk [8] has shown that p, (r! o) depends on varicus experi-
mental conditions. Moreover, it is safe to assume that

pitr1o) = 3 4(7)

for some density . Now let
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o

a = S.o rh(r)dr,

and hence, note that for all o
Elrlol =

In this situation a procedure, based on the concepts in Refs. 15 and 16, can be em-
ployed to use Eq. (2) as an estimator of f(x). Consider the following sampling scheme.
For each i = 1, , N select a sample say 0y, from the distribution having density fy
and then select k samples denoted ry, ..., Iy from the distribution having density
p1(rlo;). Observe that

E(r;) = a0
forj=1, ..., k and that
1 k
SR L @)
is an estimator of go;. Now
; = 10 log; 4ad; = 10 log,40; + 10 log, ya. (4)

That is x; is an estimate of 10 log, 40, shifted by a constant which is independent of i.
As k mcreases without bound, x; converges to 10 log; (0; in probability. Thus, the x;
defined by Eq. (4) can be used in Eq. (2) to obtain an estimate of f(y).

THE DATA

The data, on which the analysis in this report is based, were taken by an airborne,
high-resolution, noncoherent, pulsed, X-band radar, the radar being capable of frequency
diversity on a pulse-to-pulse basis, The PRF was 2560 Hz, and adjacent pulses were trans-
mitted at different frequencies. Data were taken with both horizontal and vertical polari-
zations. The pulse length was 20-ns, the grazing angle 4.7°, the range 2 n.mi., yielding an
illuminated patch of approximately 10 ft in range and 105 ft in azimuth. Upwind, down-
wind, and crosswind measurements were made. The experiment was performed on
March 11 and 12, 1969, when the aircraft flew 200 miles off the east coast of Virginia.
During the time of the experiment, 8-ft waves, 12-ft swells, and 25- to 31-knot winds
were observed.

DATA ANALYSIS

Procedures for obtaining a nonparametric estimate of a probability density function
have been detailed in a previous section; however, these procedures cannot be applied to
these data in a routine manner to estimate accurately the probability density of the
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Table 1
Decorrelation Times and Sampling Intervals®
Decorrelation Sampling No. .
Direction Polarization Time Interval Samples Intl:fv als
{ms) {ms} in Interval
Upwind Horizontal 106 33 12 258
Upwind Vertical 193 63 Z2 2586
Downwind Horizontal 181 39 14 208
Downwind | Vertical 168 51 18 256
Crosswind Horizontal 112 33 12 266
Crosswind Vertical 3 9 4 192

*From G. V. Trunk, IEEE Trans. AES9, No. 1, 110 (Jan, 1973), Table IV,

normalized RCS. The problem here is that the RCS of the illuminated paich is con-
stantly changing, but the RCS can be considered to remain constant over a small time
interval. Trunk calculated the correlation functions for data records taken over a 12.8s
time interval and presenfed the decorrelation times in Table VI in Ref. 8, the decorrela-
tion time being that time which the correlation function is equal to 1/e. Selected decor-
relation times taken from Trunk’s Table VI are presented in Table 1.

Since the samples of the return from sea clutter taken at least 10 ms apart can be
considered uncorrelated when the RCS of the patch remains constant (see Ref, 3}, it is
fell that the decorrelation times listed in Table 1 are good estimates of the times re-
guired for the RCS of the illuminated patch to decorrelate. Based on these times a time
interval, called the sampling interval, was selected during which it is assumed that the RCS
of the patch essentially remains constant. The lengths of these time intervals, each of
which is approximately a third of the corresponding decorrelation time, are listed in the
fourth column of Table 1. Averages of the data points falling within the same sampling
interval can be used in Eq. (2) to estimate the RCS of the patch that the radar was view-
ing during that time,.

For each record every eighth sample was selected to form a new record with samples
spaced 3 ms apart. Since adjacent samples in the new records were recorded at different
frequencies, adjacent observations can be assumed to be uncorrelated, and samples re-
corded at the same frequency are spaced 6 ms apart. The fotal numbers of samples in
the sampling intervals are listed in the fifth column of Table 1, and the total numbers of
intervals employed in this analysis are given in the sixth colummn,

The procedure for computing an estimate of the probability density for each of the
six data sets indicated in Table 1 is as follows: ‘

1. Using Eq. {(3) average the retumns in each sampling interval.
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2. Compute the estimates x; of the RCS in dB of the patch corresponding to the
ith sampling interval by Eq. (4).

3. Estimate the probability density of the return using Eq. (2).
The results of this analysis are presented in another section of this report.

Remark: Note that the procedure for obtaining estimates of the RCS corresponding to
the sampling intervals is a v.1mnh= average, However, the manner in which the qamnhnu‘

mtervals were selected, together with the compomte model, gives a basis for mterpretamon
of the results. This will become apparent when the results of the data analysis are-com-

pared with those obtained from a computer simulation,

SIMULATION

The RCS of -a given patch of sea surface is given by Eq. (1), and the evaluation of
that integral is straightforward once values of the function o(@) is available, For hori-
zontal polarization the RCS [10] is given by*

- 1)
ol Ank* cost a (e
HH [cos a + (€ - sin2 q)1/2)]2

Il

2
W(2k sin o) (5)

and for vertical

e-Dle+(c-Dysina] |2, .,

L
[

- L ar
€ cos & + (€ —sin2 o)1/2]2 |

p—
o
-

o, 47k? cos? al
144 |

where

€ is the complex dielectric constant

k=2m/\

KW(K)dK = S(w)dw

w2 = K2g, where g is the acceleration of g
= 2k sin o

S(w) is the power density spectrum of the sea surface.

Thus, the problem of calculating o(«) has been reduced to that of calculating «.
Recall that o = afx, y,2) is the angle between the vector from the point (x,y,2) to

the radar and the normal to the sea surface at the point (x,v,2). The latter is defined as
that vector which is normal to the large wave structure at the point (x,y,2).

*The notation Oyy refers to the power of the retur: when the signal is transmitted and received with
horizontal polarization.
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Here the approach taken to calculate « is similar to that employed in Ref. 8 and is
based on a concept of constructing a realization of the sea surface given by Neumann
and Pierson {17]. A solution of the Lagrangian equations of motion for a fully devel-
oped sea surface is expressed parametrieally in 8 and y:

=
li

wz
-Za,sm {—-—(8 cas §; +ysm§}%f¥!],
i=1
(7}

w, 1
; €OS [ Brosd, +ysing)+ '}’1] s

N

i
[~]=

5

icirihaitad nhoeoe hotwoarn -&ﬁé 2%.' ?ﬁ.ﬂé Q; are :g‘t;e=

ndonondont niform s phases between @ an
The in-

where v, are independent uniformly distributed

3
pendent Gaussian random variables with zerc mean and standard deviation of 10°.
creasing frequencies wq, ..., Wy are given by

(i, + @2, i=1,..,(N-1)

P .
Wy 14 i=N
where w;, = 0, wy =os,and fori=1,...,N

F

w.

i
J #
G2,

i-1

S(w)dw / j S{w)dw = 1N,
0

The coefficients in g; in Eq. (7) are independent Gaussian random variables with zerc
mean and variance

?

o
2 _ f ¥
g, =2 S(w)dw = 28(w;)w, — w. ).
a; . ¥ i i-1
W,
i-1
It should be mentioned that temporal variation in Eq. {7} can be introduced by re-

For this study N = 100 and
2
S(w) = 2= exp[-big/uc)*],

which is the Kitaigorodskii speetrum {18,193, where d = 0.0081, & = 0.74, and u is the
windspeed.
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Fig. 1--Estimated probability densities of normalized RCS;
horizontal polarization, upwind

To construct a series of realizations of the sea surface, first determine the values of
w; and o¢ . Then for each realization, select the values of a;, 6;, and -y, from their

regnective ﬂ‘”i-rihuﬁnnc The value of g for each realization can be caleulated usine Ea

respective distributions, The value of ¢ for each realization can be calculated using Eq.
(1), (5), and (6). Once a series of values of o is available, the probability density function
of 10 log ¢ can be estimated through Eq. (2).

NUMERICAL RESULTS

The nonparametric estimates of the probability densities of 10 log ¢ for the six ex-
perimental situations of Table 1 are displayed in Figs. 1-6. In each figure estimated

density depicted by the solid line is based on the experimental data and that renresented

Alell)y oLl L AN Y e MASTAL VLS VAT LAPUILUUII WAL MAVG GUAM VUGV IT I URhLIveRd

by the dashed hne is based on 200 simulated observations of g.

Before the densities were estimated, each set of simulated observations was shifted
so that the median of the simulated cbservations coincided with the median of the cor-
responding set of experimental observations. Since simulated upwind and downwind

Q
o
- - T
—_——7
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Fig. 2-—Estimaied probability densities of normalized RCS;
vertical polarization, upwind

measurements are the same, the estimated density in Fig. 1 is the same as that in Fig. 8.
The same applies to Figs. 2 and 4. Since the simulation is 3 model of a fully developed
sea, the windpseed used was 18 knots corresponding to the observed B-ft waves [8] as
opposed to the reported 25- to 31-knot wind.

In comparing the experimentally derived results with those based on the simuiation,
one should remember that the observations of log o are obtained through different
mechanisms in the two cases. In the simulation the only errors associated with chserva-
tions of log g are caused by the inaccuracies of the model and the mathematical calcula-
tions therein, Whereas, in the experiment log ¢ is observed with an error having essen-
tially two components. The first component of ervor arises from the fact that on a given
sample the only observable variable is the return r, r being related to ¢ through the den-
sity py{r{o). This component of error is further complicated in that various properties
of py{ri{o), which is not known explicitly, depend on experimental parameters. To re-
duce this component of error, a number of observed values of r are averaged to oblain
an estimate of o, the average being carried out under the assumption that g remains
consiant over the appropriate time interval, Of course, this assumption is not precisely
eorrect, thus infroducing a second component of ervor in the estimate of g,

10
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Fig. 3—Estimated probability densities of normalized RCS;
horizontal polarization, downwind

Each pair of densities as displayed in Figs. 1-6 could be subjected to a hypothetical
test that the two members of each pair arose from a common parent population. This
analysis has not been performed, since in each case the hypothesis would be rejecied.
However, considering the complexity of the mechanism producing sea clutter at low
grazing angles and that the two sets of results are not based on the same set of observ-
ables, the author feels that the agreement is good. The greatest discrepancy between the
simulated and experimentally derived results is found in Fig. 6. This is attributed to the
relatively small decorrelation time as indicated in Table 1 for this case. That is, the RCS
of the patch is changing rapidly, and thus its value estimated by averaging only from ob-
servations (see Table 1) is subject to large error. This explains the fact that in Fig. 6 the
variance of the estimated density based on the experiment is larger than that of the den-
sity based on the simulation.

Note the irregularity of the densities corresponding to upwind and downwind meas-
urements. It is conjectured that this effect is caused by shadowing of the patch by the
large wave structure. Moreover, the densities for vertical polarization are more peaked
than those for horizontal polarization, This supports the conclusion in Ref, 8 that the
density of the return (i.e. p(r)) is closer to a Rayleigh distribution for vertical polarization

than for horizontal polarization.

11




M, E. B. OWENS

C.2000

SaTert]
——— e SN RN

EXPERIMENT

G.4250-

00500} i ;

- -
00000 - - r et - |
-55 -45 -35 285 -is -8
DB { ARBITRARY SCALE}

Fig. A—Estimaied probability densities of normalized RCS;
vertical polarization, downwind

SUMMARY AND CONCLUSIONS

Two methods for estimating the first-order probability density function of the ap-
parent RCS of a patch of the sea surface have been presented. One procedure is appli-
cable to experimental data, whereas the other is based on a computer simulation. In the
opinion of the author, results obtained from the two methods are in good agreement,
and thus the computer simulation can be emploved to predict the first-order statistical
variation of the RCS of a patch of sea surface. Moreover, it is possible that an extension
of the simulation described in this report could be employed o examine temporal statis-
tical properties of the BCS of a small patch of sea surface.
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