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ASYMPTOTIC DISTRIBUTION OF THE DISCRETE TRANSFORM
OF A NONUNIFORMLY SAMPLED MULTIDIMENSIONAL PROCESS

INTRODUCTION

Multidimensional discrete transforms that map arbitrarily spaced sampled data into
arrays of coefficients of arbitrary basis functions were considered in Ref. 1. These
studies are motivated by a model of observations uniformly spaced in time obtained simul-
taneously at a nonuniform set of spatial points. For the uniformly spaced samples the
transformation becomes the familiar discrete finite Fourier transform (DFT), and fast-
Fourier-transform processing is applicable. The nonuniformly spaced samples generally
require a transformation matrix that is not as highly factorable. For a two-dimensional
sample space consisting of M nonuniform spatial points and N uniform temporal points,
an efficient transformation is possible if M <€ N. Under the same assumption this two-
dimensional transformation will be shown to approximately diagonolize the covariance
matrix. “Asymptotic’ will refer here to the limit as N - oo, with M finite.

As with the conventional DFT the basis functions for the nonuniform transforma-
tion may also be imaginary exponentials. This provides an efficient representation of
plane-wave signals, concentrating the information for discrimination between hypotheses
in a particular region of the transformed space. The nonuniform transformation will not
be restricted here to imaginary exponentials, since no simplification results from this
specialization.

For the special case of uniform sampling in all dimensions (the multidimensional
DFT) the asymptotic distribution of the transform of a zero-mean stationary stochastic
process was considered in Ref. 2. The present report is intended to be an extention of
the earlier work and to be a link between Refs. 1 and 2. It can however be read inde-
pendently of the earlier reports. Minor changes in notation were required, and the rele-
vant definitions and theorems will be restated as needed for clarification. Only one- and
two-dimensional processes will be considered. The cumbersome notation required alone,
not any conceptual problems, inhibits consideration of higher dimensionality.

THE TRANSFORMATION

Consider a collection{ ye(xi,t):x; € X, t€T, r=1,... ,R} of R observations of a

. . . ) 7 . :
two-dimensional wide-sense stationary stochastic process, where X = {xl, ey X M} and
T = {1, cee ,N}. Under the null hypothesis the process has zero mean and crosscorrelation
functions represented as

Rrr'(xj - xj" t - t') =,E{yr(xj’ t)yr'(xj', t,)}

T . ’
=6rr'_1—f fel[x(x’_x” etk ) drdo, @)
@2m)2 Ly g

Manuscript submitted January 9, 1974.
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where the two-dimensional spectral density f(k, w) is a bounded absolutely continuous
function with continuous first partial derivatives for k, w e [-m, 7]. If x; and t are
space and time variables, k& = k/27 may represent wavenumber and f = w/27 may repre-
sent frequency.

Under the alternative hypothesis,

yr(xj7 t) = sr(xj, t) + nr(xj, t)9 (2)

i=1,....M,t=1,...,N,r=1,...,R, where s,(x;, t) is either a deterministic signal func-
tion (regression function) with unknown parameters or a random signal conditioned on
certain random variables (such as amplitude and phase) and where n, (x]-, t) is a zero-mean
wide-sense stationary process.

For each realization r = 1,...,R, let y = [y,(x]-, t)] be the M-by-N matrix of obser-
vations. Let

y = PYQ +¢, 3)

where P = [p;; ] and Q = [g;;] are respectively M-by-M and N-by-N transformation ma-
trices chosen to minimize the error of representation of the class of signals {s,(x-, t)}
under an appropriate criterion and € is an M-by-N error matrix. That is, P and Q are
“matched” as closely as possible to the signal function. For example, if s(x, ¢) is a
superposition of two-dimensional plane-wave signals, each of the form A cos (kx + wt + ¢),
where k/27 and w/27 are unknown wavenumber and frequency respectively and

¢ € [0, 27] is an unknown epoch, then we may let p;; = M"1/2exp(21rix]-k/M),i
yk=1,...,M, and qj = N-1/2exp(27ijk/N), j, k = 1,...,N. In this case (which is
fairly general in view of Fourier’s theorem and its various extensions), Q is the matrix of
a one-dimensional DFT, and the basis functions {g;;} form an orthonormal set. Because
of the nonuniform spacing of the{ xj}, the subset of basis functions{ ij} are not
orthogonal.

Given the observations y, we seek the least-squares estimator

L)

Y = UyV. (4)

It is shown in Ref. 1 that U = P-1 and V = Q-1, provided the inverses exist. The matrix
representation (3) provides a simple derivation of (4), which is given below, with the re-
quired lemmas on complex matrix differentiation given in Appendix A. If P or Q is com-
plex, some additional restrictions are required, since 2MN real variables {Y(R(m, n),

Yy (m, n)}, where ® and 8 refer to the real and imaginary parts respectively, cannot be
linearly independent. In the case of the two-dimensional DFT, for example, with real

y(x,t),
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M N
Y(M-m, N-n) = —= D0 Dy, el m M+ (N /N ]

M N
1 Z Zy(x’ t)e2ni(mx/M+nt/N)

where Y(m, n) is the complex conjugate of Y(m, n). A set of sufficient statistics can
easily be chosen and the redundant terms ignored. In the general case a linearly inde-
pendent set of MN transformed variables cannot be as easily selected. It will be shown
later (Eq. (12)) that if the basis functions are chosen as complex conjugate pairs, then
with real observations the transformed variables will also occur as complex conjugate
pairs. We deal only with the case where M and N are not both odd. We can then require
that none of the transformed variables Y(m, n) be purely real in general and hence avoid
special consideration for particular values of m and n. Identification of redundant terms
is particularly simple; if we take N even for convenience, then, for example, the MN

real variables

{Ya(m,n)Yg(m,n): m=1,...,M,n=1,...,N/2} (5)

form a sufficient set. These restrictions are easily imposed in practice and will be as-
sumed in the following. (The case of odd M and odd N can be included, but the purely

real Y(m, n) must be treated separately both here and in the later statistical considerations.)

Let AT = A’ denote the Hermitian conjugate of the matrix A, where the overbar de-
notes the complex conjugate and the prime denotes the transpose. Let tr(A) denote the
trace of A when A is square. In (3) we wish to minimize

M N
tr(eTe) = Z Z Ie]-klz.
j=1 k=1

Now

tr(ete) = tr[(y - PYQ)T (y - PYQ)]

tr(yty) - tr(QytPY) - tr(PTyQf YT) + tr(PYQQT YT PT)

by Theorems 9.1.1 and 9.1.4 of Graybill [3], which can easily be shown to be valid for
complex matrices. Let Y = A + iB, where the elements of A and B are real, and let

Y;; = Y,y for some i' # i and j' # j but otherwise be independent of Y, for i # i" # i
and j # " # j. Assume that py; = Py, and g = ;s for all k whenever Y;; = Y;.,1.
Then by Lemmas A1l through A3 (Appendix A)

!
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otr(ete) . iatr(eTe) _

— TPyt i T + T
A 5 2(QytP) - 2PTyQ! + 4PtPYQQT.

Setting this equal to zero yields
PTPYQQ! = PyQt,
which is Eq. (44) of Ref. 1. If P and Q are nonsingular, we have
Y = Plya?l = uyy, (6)
where U =P and V = Q71
For the special but 1nterest1ng case of equally spaced samples in one dimension, let

x = N-1/2 exp[rik(2j — N — 1)/N] and vjp = N-1/2 exp[-mij(2k - N - 1)/N],
j, k =1,...,N. Then, for all j and all &,

1/2 nik(N+1-2])IN _ —
Uys1g6 =N e Uk

and

1/2 -mij(N+1-2k)N _ —
Vin+1k = N e i W= Yk (7)

Dropping the circumflex, we have the transformation

M N
—fw,t
Y,(m,n) ———Z Z um].yr(xj, t)e “n
j=1 t=1
”R(m,n)—in&(m,n), m=1,....M,n=1,...,N, (8)
where
w, = m(2ny -N - 1)/N > cono as N — oo 9)

and where we have suppressed the dependence of n on N and where

N
Z ¥ (%}, t)[um].(ﬁ cos W, t — Upid sin w, 1],
=1

"™ =

Fatnm -k

[y
A Y

j=

M N
Y ¢(m,n) = Z Z ¥ (g, 8)[u mjd COS Wyt +u miR sin w, t]. (10)

i=1

9
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Provided, for all j and all %,

Upi1om,j = Umjo (11)
we have for real y (x;, t), using (7),
M N
Y, (M+1-m, N+1-n) = 3" 5" tpreq g i 9,85 00y yay oy = Y, (). (12)
j=1 t=1

We can require that p. .., . = p;, forallj and all m, but in general U = Pl cannot be
written explicitly. To’assure that the conditions (11) hold, we require the following

Definition: An M-by-M matrix A = [a;;] is row-Hermitian if a; P M1 EJ for all i
and all j. A column-Hermitian matrix is 51m11ar1y defined. (These deflmtlons imply that
a row- (column-) Hermitian matrix with more than one real column (row) is singular.)

Lemma 1. If Aij is the_cofactor of the element aj of an M-by-M row-Hermitian
matrix A, then A; p4q-; = -Ajj

Proof. Let m;; be the minor of a;; (the determinant of the submatrix obtained by
deleting the ith row and jth column of A). Then M e -] mu or -my; according as
M is even or odd, since an even or odd number of column 1nterchanges respectively
make one the complex conjugate of the other. But

A a1 = ('1)i+M+1_jmi,M+1-j = _(_1)i+j,§ij = _Zij- Q.ED.

Lemma 2. If det(A) is the determinant of the M-by-M row-Hermitian matrix A,
then det(A) = -det(A).

Proof.

Case 1, M even. For any i

M M2 M

det(A) = Z @A = + Z a4
=1 R %’ +1
M2

Z (aA;; + 0; pa1-5Ai M1+

M2

). (@A =T Ay)
=1

GITITSSYIONN



DAVID A. SWICK
by the definition and Lemma 1. Therefore det(A) is purely imaginary.

Case 2, M odd. The proof is similar, with a; (37412 purely imaginary. Hence-det(A) is
always purely imaginary. Q.E.D.

Theorem 1. If a matrix is row- (column-) Hermitian, its inverse, if it exists, is
column- (row-) Hermitian.

Proof. Let A = [a;;] be an M-by-M row-Hermitian matrix and let A™ = B = [;]1.
Let A;; be the cofactor of a;;. Then bj; = Aj;/det(A) and

bM+1-ij - Aé,M+1-i - _Aji _ -gij
et(A) det(A)
using Lemmas 1 and 2. Q.E.D.
We cah, for example, let
Py = M1/2 xR M1)M 13)

for arbitrary {xj}. Then

- ix;(M+1-2k)}M — . .
Pim+1-r =M 1/24™ =Dy dk=1,..., M.
We are assured by Theorem 1 that (11) (and hence (12)) is valid even though u;; cannot
be explicitly written in this case.* The theorem holds of course for the orthogonal case
where the inverse is explicit, as exemplified by (7). Henceforth we assume that P is row-
Hermitian and restrict attention to the set of transformed variables indicated in (5).

ASYMPTOTIC CORRELATION OF THE TRANSFORMED VARIABLES

We consider the transformation defined by (8) through (10), applied to the observa-
tions y. Under the null hypothesis it follows from (1) that cov[Y,q(m, n), Yr,a(m’, n)]
cov[Y,q(m, n), Y,y (m', n")] = cov[Y,y(m, n), Y,g(m',n')] =0if r#r. Forr=r" we
drop the subscript. Using (10) and (1), we have

1

*I am grateful to F. M. Young for pointing out that the choice of (13) led to (11).

6
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E{Yg(m,n)Yy(m',n")}

, M N MoN g ™
(2”)2Nj=1 t;lJ; t; '(”

n . ! Vo .y
f flk, w)el[K(x" xj Fw(t-t)] drkdew

-

. ! .
X (umj(R cos w t - Up, ;3 Sin wnt)(um,j,& cos w, ,t° + Up, i@ SN wn,t,)

f
|-
M=
M=

|;)
3
NN.
X
&
—
g
=
g

j=]_j’=1 T -
4

X D Gym,m'sj, ) Hy (@, 0y, @) dedk, (14)
k=1

where each of the four terms Hj, in the inner integral can be expressed as products of
the form Dy (w ~ N)Dy(w - \')/2nN, where Dy (x) = sin(Nx/2)/sin(x/2) is the Dirichlet -
kernel and where A = *w,, X' = *w,.. Typically

N

. y N 1 . - 2
Z @t cos w t =%DN(“" -y )ez(wm,,)( +1)/2 +%DN(°’ _ wn)e'(“’ wp)(N+1)/ .
t=1

Using Lemma 8.3.4 of Anderson [4a], if f(k, w) is bounded in (A-§, A+8) and (\'-$,
N'+8) for some § > 0 and A # X', |\ = \'| # 27, then we have

1 (" , . n
2N [ﬂ f(k, wW)Dp(w = N) Dy (w +N) dw = O(N)'

By virtue of (9), if n # n’, then w, #* *w,, and |w, - w,,| # 27 for 1 <n, n’ <N/2.

Since the existence of U = P} implies that u,, ; is finite for all j and all m, we have

E{Yg(m, n)Y;(m', n')}= o(ﬁ), n#n'. (15)
Similarly,
' ' 1 '
E{Yg(m,n)Yp(m',n')} = o<ﬁ>, n#n', (16)
and
E ' [ — 1 !
{Yy(m,n)Yy(m',n')}= 0<1_v)’ n#n' 17)

GITITSSYIONN
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For a single (m, n) pair the correlation between the real and imaginary parts is
given by (14) with m = m' and n = n’. For N even and 1 < n < N/2 we have
w, # 0, i, so that all terms involving the product Dy (w - w,)Dy(w + w,) will be
O(1/N), as before. Writing only the remaining terms explicitly, with Fy(x) = DNz(x)
denoting the Fejér kernel, we have

E{Y(R(m, n)Y&(m, n)}= O(%) 1@ )2Nf f f(k, w) Z Z lx(x~x

j=1j'=
X {(ummumj,& - umj&umj'(ﬂ)[FN(‘*’ +wy) + Fy(w - wy,)]
+ i(umj(R”mj'(R + umj&umj,&)[FN(w +wp) = Fy(w - w,)] }dicdw.

Now

f f f(x, w)Z Z HCT Y qua [Py [w+wn)+FN(w w )] drde

j=1j'=

f f F(~k, =) Z Z G Y g @y (=0 + @) + Fy(=w - @,) didew

=1 j=1

M M
f f f(k, w) Z Zem( J') mjﬁumj,&[FN(w—wn)+FN(w + w,)] drdw

j=1j'=1
and
T AT M . )2 M .12 :
f f flk, ) 12 upige |+ (D el | |Fy(@ + @) dide
- ~T ]=1 ]=1
n s M l x 2
K KX;
= f f(k, w) Zu |Zuml&e T Fy(w - w,) dedw,
~ir j=1
so that
E{Yg(m,n)Yy(m,n)}= o(%), w, # 0, *m. (18)
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The variances also follow from (10) and (1):

M N M N
var[Yg(m, )] = — lzNZ 2 Z{f J. flte, w)e TGN gge
@mN i 131 =1 e

-

X (”mjﬁ cos wy,t ~ Uy i 8 sin wnt)(umj,(ﬁ €os Wyt = Uy g sin wnt)}

O<1> 4(21r)2NZ f fﬂK )T

=1 -7 “w

s { Ui @' @ * Y Syt (0 + ) + Fy (@0 = op)]

+ i(umj&umj’(ﬁ UmiR%mj' 3 [Fy(w +wp) - Fy(w - Wy)] } dwdk

M M
1 _ T ik (xi-x;1)
%E E U jUm j f e 17

j=1j'= -

Juy

‘ m
X [471N f Fy(w = wy)f(k, w) dw]d,( + O(—%)

-

M M T .
Z]__ Z Z um]a-m],f elK(xj'xj’)f(K’ wn) dik + O(%) (19)
j=1j'=1

-

by Theorem 2.1 of Ref. 2. Similarly

M M ’
Var[Y& (m, n)] = %Z Z mJ mJ J- lK(xj-xj')f(K, wn) dk + O(%). (20)
j=1j'=1

-

For the special case of the two-dimensional DFT (if {x]} ={j}) we can let

D0 Umimjt U= Ml' 5y —ri(i')(2m-M-1)/M _ix (")
i=1j'=1 j=1j'=1
1 M 1
=H Zel(K'Km).’ =—M-FM(K_Km),
j=1

GITITSSYTIIND
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where k,, = m(2my, - M ~ 1)/M ~> Kim o 35 M — oo, In this case

n
MLM‘L Fyp(k, k) (K, w,) di + O(Tb—)

var[Y(R(m, n)] =~ var[Yy(m,n)]

31+ o)

as shown in Ref. 2. If f(x,,, w,) varies slowly with m and n, then so too will
var[Y(m, n)] = var[Yg(m, n)] + var[Yy (m, n)].

In the general case the m dependence of (19) and (20) will be erratic. If the spec-
tral density is independent of wavenumber, that is, if f(k, w) = g(w), then

1 (™ ik(x;-xpr sin w(x; — x;1)
%‘f etK(x] X )f(K, (4)) dk = g(w) —W (21)
-
If we now let
M M : 1/2
—  sinw(x; - xj)
Z(m,n) = Y(m, n)/ Z Z umjumj,w , (22)
j=1j'=1
then from (19) through (21)
Zg(m,m)] ~ var[Zy(m, n)] = £8(w,) + O (23)
var| (R(m, n) var{Z, (m, 2g n N/

One consequence of this “semiwhite noise” is that the correlation function given by (1)
becomes

. , sin 1r(x] - le) '
R(xj—xj1, t=t') = E<y(x;, t)y(xjn,t') { = WR(O’ t=t),

where

T . ,
R(0, t-t') = E{y(x,-, 1y (), t’)} = o [ e g(0) doo.

-

10



NRL REPORT 7711

THE ASYMPTOTIC DISTRIBUTION

The transformation (8) may be written for each r=1,...,R as

M
Y(m,n) = ) u, 5(x;,n), (24)
=1
where
¥(xj,n) = —Zy( e n, (25)

Equation (25) is the celebrated one-dimensional DFT. We define the one-dimensional
periodogram at each sample point xj as

Iy, (%), @) = [3(x;, m)? (26)

and let

T
#(@) = 5= [ fix, ) ax
-

denote the one-dimensional spectral density. The existence of the spectral density im-
plies [4b,5] that the wide-sense stationary process {y(xj, t)}can be represented as a
moving average

(==}

Y@, t) = )y, t- k),

k=~oco

where I’y(k)l2 < oo, The residual process {A(x;, t)} is orthonormal:
J

E{\xj,t)} = 0 and E{\(xj, ON(x;, t')} = 8.

Theorem 2. Let g[wn(k 1#0, w, #= 0, m k= ., K. Then as N = oo, under
the null hypothesis the joint tstrzbutton o ya [x ,n(k)] y 9 [x k1, k=1,...,K
tends to that of 2K mutually independent zero- mean normally dzstrzbuted random vari-
ables and the joint distribution of Iy [x;, n(k)] k=1,...,K tends to that of K
mutually independent random variables wzth

11
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L1
IN,y [xj, wn(k)] - Eg[wn(k)] X2(2),

where x2(2) denotes a random variable having the central chi-square distribution with two
degrees of freedom.

The proof is given by Walker [6] if Z|y(k)| < o. It is extended by Olshen [7], who
requires only that X |y(k)|2 < oo, and strengthens the needed convergehce of Y(xj, n) and
I N, y(xj, w, ) to variables proportional to the transform and periodogram respectively of
the residual process {)\(xj, t)}.

This theorem, together with (24) and the earlier results on asymptotic correlation,
shows that if n(k) # n(k') whenever k # k', then under the null hypothesis the limiting
joint distribution of Y [m(k), n(k)], Yy[m(k),n(k)], k = 1,...,K is that of 2K
mutually independent zero-mean normally distributed random variables, with variances
given by (19) and (20). It follows that the two-dimensional periodogram, defined as

Ly N, y(Km»> @p) = 1Y (m, n)l?, (27)

is asymptotically distributed as h(m, n) times a central chi-square variable with two de-
grees of freedom and is asymptotically independent of I MN,yEn1, wp1) forn #n'. In
the case of uniformly spaced sampling in two dimensions, h(m, n) = f(k,,, w,)/2. In the
general case however the dependence of h(m, n) on m will be more erratic than that of
f(Kp, wy). If f(k, w) is independent of k, the erratic behavior can be eliminated by
“normalization” as in (22). Under the alternative hypothesis, Y (m, n) and Yy (m, n)
will be normally distributed with nonzero mean, so that I M.N, y(Km, w,, ) will be propor-
tional to a noncentral chi-square variable.

CONCLUSIONS

We have considered some properties of a discrete transform of two-dimensional
sampled data. In a case of considerable practical interest, sampling in one dimension
(time) is at uniformly spaced intervals, and that in the other dimension (space) is at non-
uniformly spaced intervals. The two-dimensional discrete Fourier transform is applicable
only to data uniformly sampled in both dimensions. In that case it is well known that
nearly half of the transformed variables are redundant, since they occur as complex-
conjugate pairs. In the general case the complex transformed variables are also inter-
dependent. They can be separated into complex-conjugate pairs if the basis functions
used for the transformation also have this relationship. The spatial transformation matrix
considered here is the inverse of a matrix chosen to provide an efficient representation of
plane-wave signals and in general cannot be written explicitly. It has been shown that if
the elements of the representation matrix are chosen as complex-conjugate pairs, its in-
verse, the transformation matrix, will also have this desired property. These have been
called here ‘‘row-Hermitian” and ‘‘column-Hermitian’’ matrices respectively.
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The correlation between the real and imaginary parts of the transformed variables,
both within the same cell and from different cells has been shown to be O(1/N), where
N is the number of time samples. The convergence is thus faster than the O(In N/N)
stated in the literature for the one-dimensional discrete Fourier transform. The price of
this more rapid convergence is the requirement that the spectral density be continuously
differentiable. This does not appear to be too restrictive, since a finite sampling interval
implies that any spectral lines are broadened and are not delta functions.

In the special case of uniform sampling in space as well as in time, the correlation
is O(1/M) X O(1/N), where M is the number of space samples. In this case the variances
of the real and imaginary parts are (1/2)f(k, w) + O(1/M) + O(1/N), where f(k, w) is the
spectral density. In the general case of nonuniform spatial sampling the variances depend
on the transformation matrix and the sample spacing as well as the unknown spectral
density.

By a central-limit type argument the limiting joint distribution of a collection of
transformed variables was shown to be that of mutually independent normally distributed
random variables. This limiting distribution does not depend on the selection of spatial
sample points. The asymptotic normality and independence of the transofrmed variables
Yg(m, n) and Yg(m, n) can be used to justify statistical tests of the hypothesis “noise
alone” against the alternative hypothesis ‘“signal plus noise.””> This can be done on a
cell-by-cell basis, for each (m, n) pair, thus testing each cell for the presence of a signal
component. For example, if the unknown spectral density f(k, w) varies slowly, data
from nearby cells may be used to approximately “Studentize”: The ratio of the mean
of R observations of the periodogram (27) to the sum of K similar means of periodo-
grams of nearby cells has asymptotically an approximate F distribution with 2R and
2KR degrees of freedom. In the general case however this ratio will not be approximately
independent of the unknown variances (19) and (20) unless all K+1 periodograms have
the same value of m. For the special case of uniformly spaced sampling in two dimen-
sions, Iy n y(Kp 1, Wpr) with m' # m may also be used, as shown in Ref. 2. In this case
if f(k, w) is slowly varying, or in the general case if f(k, w) is also independent of k,
analysis of variance and methods of multiple comparison may be applied in the trans-
formed domain.
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Appendix A
DERIVATIVE OF THE TRACE OF SPECIAL COMPLEX MATRICES
WITH RESPECT TO A REAL MATRIX

In the following let Z = X + iY denote an M-by-N matrix whose elements occur in
complex conjugate pairs but are otherwise independent. That is, for all i and j, there
exists i’ # i and j' # j such that z;j = 2, but z;; is independent of Zinjn for i # " # 1
and j # j” # j'. Here the overbar denotes the complex conjugate, and the elements of
X and Y are real. Let A and B be matrices of complex constants such that AZB is
defined. The derivative of a function f of the real matrix X is defined* as

of _|af

where each partial derivative af/ax,-j is assumed to exist. Let ATF= A’ denote the Her-
mitian conjugate of the matrix A, where the prime denotes the transpose, and let tr(C)
denote the trace of the square matrix C. '

Lemma Al. If A = [aij] is N by M and a; = ;i'j' whenever z;; = 7'y, then

otr(AZ) . 3tr(AZ)

= 9AT
X =y 2A'. (A1)

Proof.

N M N M
otr(AZ)  otr(AZ) | 9 1. 8 <
ax T 'Tavy ax,-jz D GamEmn| * ’a“—yijZ > GymYmn
n=1 m=1 n=1m=1

= [aj; + @j; - a;; +a@;] = 2[aj;] = 2AT. QED.

Lemma A2. If B = [by;] is N by M and b;; = Ei'j' whenever z;; = z;'y', then
atrBTzt) .\ iatr(BTz’f) _

T
ax 3V 2B'. (A2)

The proof is similar to that of Lemma Al.

*F. A. Graybill, Introduction to Matrices with Applications in Statistics, Wadsworth, Belmont, Calif.,
1969, p. 263.
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Lemma A3. If A is K by M and B is N by L, ay; = ;' and by, = byyfor all k

whenever z;; = z;';' and AZB is real, then
a—E;( tr(AzBBTZTAT) + iaivtr(AZBBTzTAT ) = 4AtAzBBT. (A3)
Proof.
3 3 K M N L N M
Wtr(AZBBTZTAT) - l:_i_)x—l] Z Z Z Z Z Zakmzmnbnpbqurqakr]‘
k=1 m=1 n=1 p=1 g=1 r=1
B [Z ZZZ (a1ibjpbgpZrq®er + aktbfpbqp 2rq Ok r)
k p qr
+ Z ZZ Z (akmzmnbnpb_jp_a—ki + akmzmnbnpb]paki)]
kR m n p
= [(A'AZBB'); + (ATAZBBT); + (ATAZBBT);
+ (A’AZBB’),-J-]
= 2A'AZBB’ + 2 ATAZBBT.
Also

d
i3y tr(AZBBTZTAT)

3 K M N L N M L
[ 8 2 % 2 2 LiomemntusFor]
k=1 m=1 n=1 p=1 q= =1

[-(A'AZBB); + (ATAZB BT); + (ATAZBBY);

- (A'AZBB');]

—9A'AZBB’ + 2ATAZBBT. Q.E.D.
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