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SOLITARY OCCUPANCY FOR UNEQUAL CELL PROBABILITIES
WITH APPLICATION TO DOPPLER RADARS FOR OCEAN SURVEILLANCE

INTRODUCTION

There is a need in ocean surveillance to have information on surface ships of every
type [1], and candidates for meeting this need are the doppler radars of continuous-wave
and pulse types. A concise description of these radars is presented by Skoinik [2,3].
The doppler radar uses range, azimuth, and doppler gating to resolve ships. If more than
one ship is contained in the same range and azimuth celi (termed here the ocean-
surveillance resolution cell), then to resolve these ships they need to be separated in
doppler by an amount equal to or greater than the doppler resolution capability of the
radar. The doppler resolution capability is doubled to obtain a doppler segment that is
used in decomposing the doppler dimension into disjoint doppler cells of equal width.
The doubling accounts for the plus and minus differences needed to resolve in doppler.

The probahility that a ship possesses a speed falling in one doppler cell may differ
from that probability of falling in another. For a given density of ship speeds the prob-
ability associated with each doppler cell can be computed. In general these doppler-celi
probabilities will not be equal. The problem of determining a doppler radar’s capability
to resolve N ships contained in the same range and azimuth cell is therefore a problem of
calculating the probability of N ships’ dopplers occupying solitary doppler cells when the
cells have unequal probabilities. This is an occupancy problem in the category of com-
binatorial theory.

In combinatorial theory the solution to the solitary occupancy problem is well known
for the case that all doppler-cell probabilities are equal [4]. Tractable results are lacking
for the case that the doppler-cell probabilities are unequal [5]. The objective of this re-
port is to investigate this latter case.

The investigation is conducted in the next section. Therein the probability of re-
solving NV ships (N = 2, 3, ..., 10) contained in the same range and azimuth cell is given
as a polynomial function of N - 1 quantities. The quantities are the sum of the doppler-
cell probabilities when raised to the tth power, t = 2, 3, ..., N. With M representing the
number of doppler cells and N the number of ships (M = N, since otherwise solitary oc-
cupancy is impossible), the theory of the next section transforms the problem involving
M probabilities into a solution embracing N — 1 quantities. This transformation is very
useful when M is large compared to N. The polynomial functions of the N — 1 quantities
were obtained with the aid of the computer for N = 2, 3, ..., 10.

Note: Manuscript submitted January 3, 1974.
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The third section presents an application of the theory to doppler radars performing

ocean surveillance. The obtained resulfs are compared in the fourth section with those
calculated by means of an integration mefhod, and an excellent agreement is received.

SOLITARY OCCUPANCY FOR UNEQUAL CELL PROBABILITIES
Prohlem Statement
Let there be M distinct cells with probabilities q4, g9, ..., g3 of an object occupying

them. Suppose there are N distinct objects, with N << M. An object falling into the M
cells must occupy some cell, Therefore

f%=1 (1)
N=1

Problem. Calculate the probability that the N objects occupy solitary cells when they
are allowed to fall into the 3 cells according to the probabilities ¢4, 94, .+, Q-

Fort=1,2,...,N define
M
K, =) qf. 2
i=1

Note that Ky = 1. Define Py to be the probability that all N objects occupy solitary
cells and refer to PF,, as the probability that at least a pair of the NN objects will occupy
a common ceil. Thus.

PFy = 1-Py. {3

The formulas for the probabilities Py, and PFy, where N = 2, 3, 4 are derived in the
next two subsections. Then the probabilities Py, and PF,, for arbitrary N is discussed.
The approach adopted for deriving these formulas is to calculate PFy first and then ob-
tain Py from Eq. {(3). These formulas are shown to be functions only of the terms K,
Kg,...,Ky.

Bolitary Occupancy When N = 2, 3

Let i be contained in the set {1, 2, ..., M}, and let C; denote the ith cell. The
probability P(1 € C;, 2 € ;) that objects 1 and 2 are both contained in the ith cell C;
is given by

PLEC,2€EC) = g7 (4)

Thus
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M
PFy = ) g = Ky (5)
i=1
is the probability that the pair of objects will occupy the same cell. The probability P,
that each object occupies a solitary cell is
Py = 1-K,. (6)

For N = 3 we fail to have solitary occupancy in the following three mutually exclu-
sive cases,

ii. Objects 1 and 2 occupy separate cells. Objects 2 and 3 occupy the same cell.
iii. Objects 1 and 2 occupy separate cells. Objects 1 and 3 occupy the same cell.

The probability of case iii occurring is equal to that of case ii. The probability of case i
is equal to Ko, as obtained in Eq. (5). Thus there is need to calculate only case ii.

ie o 201 I
i}

Summing over all i, i = 1,2, ..., M, we obtain the probability that case ii occurs:

f g1 - q;) = Ky - K3. )
i=1
As a result
PRy = Ky + 2(Ky - Ky) (8)
and
Py = 1 - 3K, + 2K,. (9)

Solitary Occupancy When N = 4

For N = 4 we fail to have solitary occupancy in the following (4 - 1)! mutually
exclusive cases:

a. Same as case i with the addition that object 4 occupies any cell.

b. Same as case ii with the addition that object 4 occupies any cell.

c. Same as case iii with the addition that object 4 occupies any cell.

Efl.

O .eﬂfe 1 2 and 2 nrenny
uS Ly & MU UL

cell,

2

II
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e. Objects 1, 2, and 3 occupy separate cells. Objects 2 and 4 occupy the
same cell,
f. Objects 1, 2, and 3 occupy separate cells, Objects 3 and 4 occupy the
same cell,

The probability that either case a, b, or ¢ oeccurs is equal to PFy, given by Eq. (8).
The probabilities of cases d, &, and f are equal. We therefore calculate only case d.

The probability that objects 1 and 4 occupy the same ith cell is given by qf. The
prohability that objects 1 and 2 occupy separate cells conditioned on object 1 being lo-
cated in cell { is

)9 (10)

The probability that cbjects 1, 2, and 3 occupy separate cells conditioned on objeet 1
- and 2 being located in cells { and  respectively is

M | '
2 9% (1)
k=1
k]
ki

Multiplying qiz times the sums in (10) and (11) and then summing over i,i=1,2,.... M,
gives

M M
RS Z%(Z qk> (12)
=1 {j=1 \k=1

2 Ve
A
as the probability that case d occurs. Note that
M

% = 1-g -4 (18)
k=1
k¥
k

st that the two inner sums of {12) hecome

M M M
Dogi-g-g)=(1-g) ) g - ) ¢ = (1-g)1-q)~(Kz~q?) (14)
=1 s =L
FEI 7 =i
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In view of Eq. (14) the sum in (12) becomes
oz 2
D a2 - 2q; +20° - Ky) = Ky - 2K3 + 2K, ~ K%, (15)
=1

Consequently, the probability that cases d, e, or f occur is equal to 3(Kq ~ 2Kg + 2K, ~
K,2), and the probability PF is given by

PF, = PFy + 3(Ky - 2Kg + 2K, - K,%), (16)
As a result
Py = Py - 3(Ky - 2K5 + 2Ky - K,7) a7
or, in view of Eq. (9),
Py = 1-86Kq + 8Kg — 6K, + 3K,2. (18)

Solitary Occupancy for Arbitrary N < M

Suppose we have N objects with N = 4. Assume that we have calculated PFy_4
and therefore P,,_;. Consider the following two mutually exclusive situations:

1. At least two objects out of the first N~1 objects share a cell together, The
Nth object is contained in any cell,

II. None of the first N-1 objects share a common cell. Leti€ {1,2,...,N-1}.
The Nth object shares a cell with the ith object.

The probability that case I occurs is PFy ;. Observe that the probabilities of case II for
ief{1,2,...,N=1} are equal. Thus we calculate the probability for case II to occur
with { = 1. Consider the following sum defined as PF(II, N, 1):

M ’ M M M
PF(II,N, 1) = Z a2 Z %y Z Gg | Z %y 4
f1=1 jo=1 jg=1 iv-1=1
ia¥Fi1 isFis i
Fa¥Fiq for 1si<¥-1 (19)

The first sum, quzl, states that the Nth object and the 1st object occupy the same cell.

The second sum is conditioned on the two objects 1 and N occupying the j;th cell. It
states that the 2nd object occupies a cell separate from object 1. The third sum is con-
ditioned on objects 1 and N occupying the j; th cell and the 2nd object occupying the
Jath cell. This sum corresponds to the 3rd object occupying a cell other than those
occupied by the objects 1, 2, and N. The other sums are similar, with the last sum
being conditioned on objects 1 and N occupying the j,th cell, object 2 occupying the
Joth cell, ..., and the (N-2)th object occupying the jy _oth cell.
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We ciiesigzzate PF{II N, i} io be the probability that case Hocours for i=1,2,...,
N-1. This notalion corresponds with that given in Eq. {(19). The probability PF(II, N)
that case I occurs for any { is '

N-1 ‘
PF(IIL,N) = Z PF{IL, N, i) = (N - 1)PF(L N, 1), 20)
=1

since PF{IL, N, i) = PF(II,N,1)fori=2,8,...,N-1.
The probability PFy, of failing to have solitary occupaney for all objects is
| PRy = PFy.; + (N - DPF(IL N, 1). (21)
Thus the probability of having solitary occupancy is

P, = P, 4 — (N - 1)PF(ILN, 1). {22}

N N1 T AT

By induction it can be verified that Py is a polynomial function of Ko, K3, ..., Ky
Ref. 6. For example it can be shown that

Py = 1 - 10K, + 20K, — 30K, + 24K5 - 20K,Kg + 15K,2. {23}

Note that in each of the equations (6), (9), (18), and (23} the sum total of the coeffi-
cients of the negative terms is equal to the sum total of the coefficients of the positive

[y
ToL1iNs,

A computer program has been used in Ref. & to derive the algebraic formulas for
P, P;,...,Pp. The probabilities P;4 and above can be derived by the procedure de-
scribed therein. The computer program uses prime numbers as variables for the purpose
of reducing the sum in Eq. (19) to a polynomial equation in terms of Kp, K3, ..., Ky.
Thus PF(II, N, 1) as a function of Ky, K3, ..., Ky is substituted into Eq. (22) to obtain
Py as a funciion of Ky, Ky, ..., K. In this manner we obtain

- - - il

Pg = 1 - 15K, + 40K3 — 90
+ 40K 2 — 120K4K, - 15K, + 45K 2, 24)

Pv;f =1 - 21K2 + ?GKa o 210K4 + 504K5 - S‘iGKG + 7 K'?

~ BO4K 5Ky ~ 420K, K, + 630K Ky + 280K 2

o
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Pg = 1 - 28K, + 112K, - 420K, + 1344Ky - 3360K,
+ 760K, — 5040Kg + 3360KgK, + 2688K5K 4
- 4032K;K, + 1260K,2 ~ 3360K,K; - 1260K,K,2
+ 2520K Ky - 1120K 2K, + 1120K,2 + 1680K 3K ,2
- 1120K 3K, + 105K,* ~ 420K,3 + 210K 2. (26)

The equations for Py and P;, are tabulated in Tables 1 and 2 respectively, since they are
lengthy. To obtain Pg from Table 1 multiply the sign, the coefficient and the factor to-

RIS TR R SRR [, B | IRVGRUI § ISR, SIS SR & MY RN
FCLIIED 4Ild Lell daad all resulting prouauces, viidr 1s,

Py = 1 - 36K, + 378K,% - 1260K,° + -, (27)

making use of K; = 1. Obtaining P4 from Table 2 is similar. The note immediately
following Eq. (23) applies also to Egs. (24) through (26) and to Pg and P, contained
in Tables 1 and 2.

In obtaining PF(II, N, 1) as a function of Ko, K3, ..., Ky one must collect (N-1)!
terms to reduce the sum of Eq. (19) to an algebraic equation in these quantities. Thus
in deriving Py one would have the lifetime task of more than 3 million operations.
The computer performs this task in less than 30 seconds with the computer program
described in Ref. 6.

Table 1
Equation for Py

Sign Coefficient Factor Sign Coefficient Factor
+ 1 K; (=1) - 15120 K K,
- 36 Ko + 15120 K K K,y
+ 378 K2 + 11340 K2
- 1260 K3 + 3024 K,
+ 945 Kt ~ 18144 KK,
+ 168 K, + 9072 KyK,2
- 2520 K.K, + 24192 KiKg
+ 7560 K3K 2 - 18144 KK,
- 2520 K3K 3 - 10080 K
+ 3360 K= * 30240 KgK,
- 10080 K 2K, - 20160 KgKgq
+ 2240 K3 + 25920 K,
- 756 Ky - 25920 KK,
+ 7560 K,Ko - 45360 Ky
- 11340 K,K? + 40320 K,

7

ll
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Table 2
Equation for Py 4
Sign Coefiicient Factor Sign Coefficient Factor
+ 1 K, (=1) + 56700 K2
- 45 K, - 56700 K 2K,
+ 630 K2 + 6048 Ks
- 3150 K3 - 60480 KK,
+ 4725 K2 + 90720 K;K2
- 945 K + 120960 Kz Kg
+ 240 Ky - 120960 Kz KyK,
- 5040 K3K, - 181440 K5K,
+ 25200 K3K,? + 72576 K2
- 25260 E4K,® - 25200 Kg
+ 8400 K2 + 151200 K¢Kqy
- 50400 K2K, - 76600 KgK 2
+ 25200 K2K,? - 201600 KgKg
+ 22400 Kp + 151200 K¢k,
- 1260 K, + 86400 Ky
+ 18900 KKy - 259200 KK,
- 56700 KK + 172800 K;Kg
+ 18900 K KB - 226800 Ky
- 50400 K4Ky + 226800 KgKq
+ 151200 K KK, * 403200 Ky
- 50400 K K2 - 362880 Ko

APPLICATION TO DOPPLER RADARS

Congider a doppler radar system which has a doppler resolution capability of 4,
knots for some {ixed operating freguency and some coherent integration time of process-
ing. We assume this radar system is providing surveillance of an ocean region conlaining
merchant vessels as well as ships of naval interest. Let {ay, B;) represent the latitudinel
and longitudinal coordinates of a position in this ocean region. Suppose there is a ship-
ping lane several hundred nautical miles wide passing through the ocean region and con-
taining (a9, 5y ). Let & be the angle between the shipping lane direction and the radiai
direction to the radar site from the coordinate (a7, #;}. The coordinate {ay, B} is con-
tained in some ocean-surveillance resolution cell whose size is determined by the beam-
width, pulsewidth, operating frequency, and range to {0, B;), Refs. 7 and 8. I two ships
are fraveling with speeds sy and s; in the same direction along the shipping lane and have
their positions in the ocean-surveillance resolution cell containing (e, §;), then these twe

ships are resolvable in doppler provided
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TO RADAR SITE

Fig. 1—Two ships traveling in the same ocean-surveillance
resolution cell

dr

cos

187 — 89| = knots, 0 < @ < m/2. (28)"

This follows since their speeds appear to be s; cos ¢ and s, cos § with respect to the
radial direction of the radar beam (Fig. 1). Two speeds viewed from the standpoint of
the radar systems must be separated by a doppler distance of d, knots to resolve speed
ambiguities. Define d,(0) to be the doppler resolution capability of the radar as viewed
in a direction that makes an angle 8, 0 << 8 < 7/2, with the radial line to the radar site.
Thus

¥
cos 0

d.(9) = (29)

A statistical analysis of the speed of ships in the world’s merchant fleets is tabulated
in Ref. 9. Rounding off all speeds to whole numbers, this reference provides the num-
ber of ships that steam at any given speed between 6 and 32 knots. These values are
presented in Table 3; they represent all types of merchant vessels of 1000 gross tons and
over—combination passenger-and-cargo vessels, freighters, bulk carriers, and tankers. The
number of ships in the category 1000 gross tons and over is 20,544, The cumulative
distribution function of speed is obtained from the data of Table 3 and is plotfed in Fig.
2 over the speed range from 5.5 fo 32.5 knots. We denote this cumulative distribution
function by f. Thus the probability that a randomly selected ship travels at a nominal
speed between the speeds s; and sy is |f(s5) ~ f(s;)|. The density function of speed is
plotted in Fig. 3
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Table 3
Speed Distribution of the World’s Merchant Fleets of 1000 Gross Tons and QOver
{U.S. Department of Commerce, December 1971)

MNominal Speed Number Nominal Speed Number
{knots) of Ships {knots) of Ships
8 2 20 385
7 15 21 181
8 Ga 22 116
9 337 23 63
10 1074 24 &
11 1307 25 4
12 : 2486 26 ¥i
13 2135 27 3
14 3250 28 2
156 3643 29 i
i6 3041 30 0
17 1851 31 2
18 701 - 32 1
19 273
4.0 prptrrrd el pedtnn s e biae g L
E =
0.8 3 =
053 =
3 =
o 3
3 =
g3 =
- 3 3
E o5 3 3
03 -E E’*
8.2-3 =
= =
] T T T O O T T[T O T T T A e e =
5 1D 15 ple] o5 38 k.3

MOMINAL SPEED IN ®NOTS
Pig. 2—Cumulative distribution function {CDF) of speed for the world’s
merchant fleets {obtained from Table 3}

10
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5- 10 15 20 25 30 35
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Fig. 3—Density function of speed for the world’s merchant fleets

A doppler radar can distinguish between a speed that is advancing and one that is
receding. Negative numbers will be used to denote receding ship speeds. Thus the doppler
range of the radar as viewed along a shipping lane is

[-32.5, -5.5] U [5.5, 32.5].

This doppler range can be decomposed into M disjoint doppler cells of width 2d, (¢},
where

2(27)

M= 24,0y

(30)

If the right-hand side of Eq. (30} is not an integer, then we round it off to the next
integer. The width of each cell is 2d,(f), since a ship with speed s is resolvable provided
no other ship steaming in the same ocean-surveillance resolution cell has its speed between
s—d,(f)and s +d,(f). Fori=1,2,..., M/2 we denote the ith cell C; by

C; = [6.5+ (i -1)d,(8), 5.5+ id,(0)]. (31)

The probability g; that a ship has an advancing speed in C; is given by

11
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_fi55 +id (8)] - fI8.5 + (i - 1)d,(8)]

q; 5 {32)
Forj=(M/2) +1, (M/2) + 3,..., M we dencte the jth cell C; by
C; = [-5.5 - id,(8), -5.5 ~ (i - 1)d,{0)]. (33)

The probability q; that a ship has a receding speed in C"j is given by

g = f[B.E N (j - —J;i)a,(a)] - f[s.s + (; _g - 1)&48)}. (34)

In writing Egs. {31) and {33} we assumed that a ship has an egual likelihood of
steaming in either direction along the shipping lane, Note that

p— {35}
‘fi ‘!I-i-(f,{]!g} AR

fori=1,2,...,M/2. Therefore Eq. {Z) becomes

M2
K =2) g (36)

=1

Define fori=1,2,...,M/2

{Ei = EQ;*! (31)

¢ = {s: 5.5 + (i — 1)d,(8) < s} 5.5+ id,.{@}}, i (39)
b=
M= {40)
Note that
R, = 2k, - 41)

The quantities {§;, C;, K, i = 1,2, ..., M} when substituted into the framework of the
preceding main section lead to the probability of resolving all ships under the condition
that all ships are headed in the same direction of the shipping lane. Since a doppler sys-
tem distinguishes advancing ships separately from receding ships, the quantities {g;, C;,

K,,i=1,2,...,M} when substituted info the theory of the preceding section lead to the
probability of resolving all ships located in the same ocean-surveillance resolution cell,

We qualify these ideas with an example. Let d.{#) = 1.5 knots. From Eq. (30) we
have M = 18 cells. The left and right endpoints of the nine positive ¢celis €,Cy, ..., Cy

iz
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Table 4
Cell Probabilities With d,(f) = 1.5 Knots
. Endpoint for Cell C;
Ind'lces 2q;
‘ Left Right
1 5.5 8.5 0.0041
2 8.5 11.5 0.1318
3 11.5 14.5 0.3831
4 14.5 17.5 0.4009
5 17.5 20.5 0.0613
6 20.5 23.5 0.0173
7 23.5 26.5 0.0010
8 26.5 29.5 0.0003
9 29.5 32.5 0.0002
Table 5
Values of K, With d,(¢) = 1.5 Knots
Indices K,

t

2 0.16446

3 0.03079

4 0.00596

5 0.00117

] 0.00023

7 0.00004

are given in Table 4. The probabilities g; are doubled (Table 4). The quantities K,
K3, ..., Kq are listed in Table 5, and the probabilities Py, Py, ..., P; calculated using
Egs. (6), (9), (18), (23), (24), and (25) are listed in Table 8.

The cells C;, i =1, 2, ..., M/2, defined by means of Eq. (30} initiate at 5.5 knots
and continue sequentially with constant width of 2d,(@) up to 32.5 knots. This design
procedure will usually bring forth biased results, since the best probabilities are obtained
when two adjoining members of the cells meet exactly at the peak of Fig. 3 (nominal
speed = 14.7 knots) and the worst probabilities occur when one member of the cells
straddles the peak. This follows because the summit of Fig. 3 contains those speeds of
highest likelihood. It is better designing to have the cells divide the summit equally rather
than to have the entire summit contained in only one cell. Because of this, an averaging
technique is employed to obtain unbiased results. Let n be an integer greater than or
equal to 2. Define

2d,(6)
a5 —

n (42)

13
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Tabile 6 _
Probability of Resolving N Ships
With d,(9) = 1.5 Knots

Indices

N Py

0.836
0.568
0.305
0.125
0.038
0.008

-3 Ch O e Q0 bD

and foreach k = 1,2,..., n translate all cells, i = 1,2, ...,M/2, by the amount {k — 1}A:
Ci{k) = C; ~{k - 1A, {43)

Additional cells are needed when the right end of the speed spectrum {5.5, 32,51 is uncov-
ered by the translation. Then for each & = 1,2, ...,n the probabilities Py (k), with Py (k)
denoting the probabilities Py calculated for the translation (k - 1)A, are obtained using the
theory of the preceding section. Averaping these probabilities, we have

Fd
Dy == 3 Py (@), (44)
k=1

Since this probebility is unbiased for large n (r = 4 is usually sufficient), we adopt it as
the probability of resolving N ships located in the same pcean surveillance reselution cell
For N = 2,8, ..., 7 this probability is calculated with n = 4 and 4,(0) = 0.1, 0.2, ..., 4.9.
The cases N = 2, 8, and 4 are tabulated out to three significant figures in Tables Ta, Th,
angd 7c respectively. From Table Ta the probability of resclving two ships is equal to
0.755 for a doppler capability of 2.5 knots, The cases N = 5, 6, and 7 are plotied in

Hig, 4, ‘

Table 7Ta
Probability of Resolving Two Ships
Calculated Using Eq. (44) With d,(8) = 0 through 4.9 Knots

0.0 0.1 0.2 0.3 0.4 0.5 0.6 6.7 0.8 0.9 .
1000 0988 0976 09865 09535 0942 0930 0219 0908 0.897
0.887 0.876 0.866 0.856 0.846 0.837 0.828 0.819 03810 0801
0.793 0.785% 0.777 0.769 0.762 0.755 0748 0.741 .735 0729
0.722 0716 0710 0.705 0699 0694 0.690 0686 0682 0.678
0675 0.671 0.668 06656 0662 0658 0655 0.652 0.6489 0.645

W G DD e
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Fig. 4—Probability of resolving five, six, and seven ships calculated
using Eq. (44)

DOPPLER RESOLUTION CAPRBILITT (KNOTS)

ta

Table 7b
Probability of Resolving Three Ships
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 1.000 0965 0930 0.897 0.864 0.833 0.802 0773 0.744 0.717
1 0.690 0665 0.640 0.617 0.594 0.573 0552 0.532 0.513 0.496
2 0.478 0.462 0.446 0.431 0.417 0404 0391 0.379 0.367 0.356
3 0.345 0.335 0.325 0.315 0.306 0.298 0.290 0.283 0.276 0.271
4 0.265 0.260 0.255 0.249 0.244 0.239 0.234 0.229 0.224 0.219
Table Tc
Probability of Resolving Four Ships

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
0 1.000 Q931 0865 0.803 0.745 0890 0639 (0591 0.547 0.505
1 0467 0431 0.397 0.366 0.338 0.312 0.288 0.265 0.245 0.226
2 0,209 0193 0.178 0.165 0.152 0.141 0.131 0,122 0.113 0.106
3 0.099 0.092 0.086 0.081 0.076 0072 0.068 0.065 0.062 0.059
4 0.057 0.0556 0.053 0.051 0.049 0.047 0,046 0.044 0.043 0.042
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H. L. STALFORD
COMPARISON WITH AN INTEGRATION METHOD

A check on the resulis given in the previous section can be made by tediously inte-
grating over conditional probabilities. We will make such a check, maintaining the pre-
vious notation. We will first congider two ships per ocean-surveillance resolution cell and
then consider three ships.

£ 4 , Zam o are B e . U R RS S L T, |
il ITWO 11348 ale Lic 'ﬂ;’-iiﬂg Witdl SPEEUS b]_ aiii 52, O {HFS are rexoiveq prf.}vme&
lsg ~ 591 = d,(8), (45)

where d,{0} is the doppler resolution capability of the radar. The likelihood Pg{s;) of a
ship traveling at a speed s is equal to the derivative of the cumulative distribution func-
tion f evaluated at s;. This derivative is the density function of speed. Thus

dfis )
Py(s;) = ——> (46)
ds
For any given speeds s; and s5 contained in [5.5, 32.5] we define
Fig;,s5,) = 1, if |5, = 84] < d,{8) {d7a)
Wiy 92 » LR 24 FAC ] \ ¥
=0, if {5y ~ 551 2 d (8} (47b)

Thus s; and sy are resoivable with respect to each other (Eq. 45 holds) if and only if
F (81, 52) =4

The probability Pald;{8), s.d.] of resolving two ships that are traveling in the same
divection {s.d.}, selected at random from the stockpile of merchant ships, is equal 1o 1

..... Al sl T Failiem s L 4 MR L

llu.lll.lb lrlld.l: 01 ladiiisg, LilGiviuie

32.5 (325 df(sq) df(sy)
Py{d,(0), sd.) = J J- Fisy, 55) =g~ dsadsy. (48)

it is convenient to lef f{s) = O for all s < 5.5 and let f{8) = 1 for all 5 = 32.5. In view of
this Eq. {48) becomes

32.5 dftsy)
i
Pyld,(6),sd.] = 1 - f {f{sl +d,(9)] - fls; ~d (9)}} dsy.  (49)
5.5
The probability P;[d,{8), s.d.] is tabulated in Table 8 for 4,.(0) = 0.5, 1.0, ..., 5.0 knots.

The probability 3{
e 0

biained by using an integration preeedure m 2 compuler program.

In calculaiing the probability of resolving two ships when each can travel in either
direction, we need to consider the following mutually exclusive cases:

16
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Table 8
Probability of Resolving Two Ships
Traveling in the Same Direction
Calculated Using Eq. (49)

Doppler
Resolution

4.(8) Pyldy(0), 5.d.]

(knots)
0.5 0.883
1.0 0.774
1.5 0.674
2.0 0.586
2.5 - 0.510
3.0 0.445
3.5 0.391
4.0 0.348
4.5 0.312
5.0 0.282

First ship is advancing, second ship is receding

[ e T ]

First ship is receding, second ship is advancing

T mdle oleiono
DOLLL BILIES

¢ advancing

o

ar
4. Both ships are receding,

The probability of case 1 or 2 occurring is 0.5, and the probability of case 8 or 4 occur-
ring is also 0.5. So the probability py{d,(8)] of resolving two ships is

Pald,(0)] = 0.5 + 0.6Py[d,(0), s.d.]. (50)
The probability pyfd,.(#)] is given in Table 9 for d,(0) = 0.5, 1.0, ..., 5.0. The agree-

ment between these results and those contained in Tabile 7a is excellent.

Consider three ships traveling with speeds s, s9, and s3. We shall calculate first the
probability of resolving them when they are traveling in the same direction. Three ships
traveling in the same direction are failed to be resolved if the following three mutually
exclusive events occur:

a. Isl - 32| < dr(e), all 33, (51&)
b sy =831 = d,(8), sy - sy1<d,(0), (51b)
c. I8y ~sgl 2 a(8), lsg-s;1=4d,(0), sy —sy1<d,(0) (5lc)

The probability of failing due to case a is given by

[
-1
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Table 9
Probability of Resolving Two Ships
Using the Integration Method {Eq. {(50))

Doppler
Resolution
d,(6) P2
{knots}
0.5 0.942
1.0 0.887
1.5 0.837
2.0 0.793
2.5 0.765
3.0 0.723
3.5 0.696
4.0 0.674
4.5 0.856
5.0 0.641

82.5 r32.5 d d
J j F(Sl, 82 f{323 i(fsl} dSzdSI

ds
325 d
= J {f{sl + d ()] - fIs; - dr(B)}} f;ii)dsl. (62)
5.5
Define the function 8(., .} by
Sfsy, 89) = 1~ F(s;, sg). {83}

for all sy and sy contained in [5.5, 32.5].

The probability of failing due to case b is

32.5 325 326 df(sq) dfis y df(s )
j f J S(Slv 8o )-F(slr 33} dss ds2 d&l 3@52@31
8.5 5.5 :

32.5
- J {fis; + d,(0)] = flsy - fwn}{z ~ fisy + 4,01
] ,

B

d
fj:‘} ds . (54

+ flag - d,{e*}]}

i8
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The probability of failing due to case c is

=3 -~
F32.5 (32.5 325

J J J S(SI,SZ )S(Sl, S3)F(82, 83) ds ds ds d63d82d31
5.5 5.5

5.5
£32.5 (f179,(0) | df(sg) df(sy)

- J J {FBG1 5201 = Loz = )] —g5 g~ Aoz
5.5 V5.5

l‘32.5 l“32.5

, [
’ J5.5 Js1+ar,,(e)Jl

where B(sy, s5) is the minimum of s; — d,(6) and sy + d,(0) and where A(s,, 83) is the

. o . I Y h] ¥
maximum of sy + 4,(f) and sg — d,(F).

The probability Pg(d,(8), s.d.] of resolving three ships traveling in the same direc-
tion is given by

Pyld,(0), s.d.] = 1 - [right-hand side of Eqgs. (52), (54), and (55)]. (56)

Equations (52), (54), and (55) were integrated on a computer for d,(6) = 0.5, 1.0, ...,
5.0. These values were then substituted into Eq. (56) to obtain the Table 10 values.

Table 10
Probability of Resolving Three Ships

T'raveling in the Same Direction

Calculated Using Eq. (56)

Doppler
Resolution B Ora B .3
dr(g) Fa 3'_(1«’.\\/}, D.\.I.-J
{knots)
0.5 0.689
1.0 0.455
1.5 0.296
2.0 0.195
2.5 0.135
3.0 0.101
3.5 0.082
4.0 0.073
4.5 0.068
5.0 0.066
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Tabie 11
Probability of Resolving Three Ships
Using the Integration Method {Eq. (57)1)

TEET AT AT rr

Doppler Probability
Resolution of Resolving
d_{8) Three Ships
{knots} D3
0.5 .835
1.0 0.694
ib 0.580
2.0 0.488
2.5 0.418
3.0 0.359
35 0.293
4.0 0.261
4.5 0.251
540 0.228

Since all three ships may travel in either direction along a shipping lane, there is a
.75 probability that two ships will travel in the same direction with the third ship travel-
ing in the opposite direction and a 0.25 probability that all three ships will {ravel in the
same direciion. As a result the probability pgid,{§)] of resolving three ships located in
the same ocean surveillance cell is

p3ld, (0)] = 0.76P41d,(0), s.4.] + 0.25P4{d,(8), s.4.]. (57)

This probability is presented in Table 11 for the doppler resolution capabilities of 4,{0} =
0.5, 1.0, ..., 5.0 knots. Note the excellent agreement between Tables 7b and 11,

CONCLUSION

Theory is developed in the second section for caleulating the probability of solitary
occupancy of N objects in M cells of unequal cell probabilities. It is shem that i:his
probability is a function of N-1 quantities Ky, K3, ..., Ky, where K, t= 2,3, ..., N,
is equal to the sum of the cell probabilities when raxsed to the tth power. Polynomlai
equations are given for N =2, 3, ..., 10.

Thig theorv ie annlied in the third section to determine the nnnghﬂ'l'ht n‘F 8 rlnnnjnr
r1iif Ineory appied 1 iae g erermine Opp

radar to resolve N ships contained in a single ccean-surveillance resei&tz{m cell.. The re-
sulting probabilities of this combinatorial approach are presented for N=2,3,..., 7
ships and the doppler resclution capability equal to 0.1, 0.2, ..., 5.0 knois,

A natural approach o calculafing the probability of resolving ¥V ships is the integra-

tion method employed in the preceding section, Using this alfernate approach, the prob-
abilities of resolving N = 2, 3 ships are given for various doppler resolution capabilities.
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For N = 3 the integrals in the approach were cumbersome to implement, not to mention
the tedious effort to derive them and the large computing time to perform the integra-
tion. Furthermore this difficulty increases exponentially as N increases. The reason for
employing the integration method in view of this difficulty is to provide an acceptable
check on the accuracy of the results given by the combinatorial approach. Importantly
the combinatorial approach is simple to implement and is an inexpensive method of ob-
taining the results in a computer program. In view of this the excellent agreement be-
tween the integration and the combinatorial methods demonstrates the utility of the
theory developed in the second section.
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