SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
NRL Report 7656
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

NRL MODIFIED VERSION OF CINDA-3G PROGRAM E‘;ﬁ:&f‘nal report on the

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Mary E. Gealy
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Naval Research Laboratory

Washington, D.C. 20375 None
11. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy August 22, 1974
Naval Research Laboratory 13. NUMBER OF PAGES
Washington, D.C. 20375 207
14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)
Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, {f different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)
CINDA-3G program for CDC-3800
Numerical differencing analysis
Heat transfer

20. ABSTRACT (Continue on reverse side if necossary and identify by block number)
N,

A programming manual has been prepared for the thermal analyzing program, CINDA. The
program’s options offer the user a variety of methods for solution of thermal analog models
presented to it in a network format. The network representation of the thermal problem is
unique in that it has a one-to-one correspondence to both the physical model and the mathemati-
cal model. This analogy enables engineers quickly to construct mathematical models of complex

(Continued)

DD ! 52:"73]473 EDITION OF 1 NOV 65 1S OBSOLETE
S/N 0102-014-6601 |

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

JLCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

thermophysical problems and prepare them for program input. In addition, the program contains
numerous subroutines for handling interrelated complex phenomena such as sublimation; diffuse
radiation within enclosures; simultaneous, one-dimensional, incompressible fluid flow including
valving and transport delay effects; etc. It can handle all three types of heat transfer—conduction,
convection, and radiation. The optional combinations of these capabilities, in conjunction with
the model size allowable (4000 nodes on a 65k-core machine), make CINDA an extremely potent
analytical tool forthermal systems analysis in the hands of a competent engineer analyst. Its uses
include determining temperatures of structures such as bridges, rockets, and buildings; finding
cooling requirements for electric circuits; and studying the thermal properties of adverse thermal
systems such as nuclear reactors and automobile engines.

The programs on pp. 104, 105, 106 are adaptations of similar programs published in “MITAS
User Information Manual (Martin Marietta Thermal Analyzer System),” CYBERNET
Publications Division, Control Data Corporation, Copyright 1972.

11 sEcURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

I. INTRODUCTIONttt iieeninnenn 1
Background i, 1
Overviewot i e

I DISCUSSION.ttt e e 2
Lumped-Parameter Representation 2
Basics of Finite Differencing 4
Iterative Techniques. 6
Pseudo-Compute Sequence 8
Data Logistics00 iiiiiiieneennn. 10
Order of Computation. 11
Systems Programmingc.ocvevan 11

III. DATA INPUT REQUIREMENTS 13
Title Blockcv it ettt 13
NodeDataBlocko 14
Conductor DataBlock 16
Constants DataBlock.................oono.. 19
Array DataBlock............... ... oot 20
Program Control, 21
Execution OperationsBlock 23
Variables 1 Operations Block................... 25
Variables 2 Operations Block................... 26
Output Calls Operations Block 28
Parameter Runst 29
Store and Recall Problem Options 30
Data Printing Option, 31

IV.ERRORMESSAGESot i i 31

V. OPERATING SYSTEM DESCRIPTION............... 33
General it i, 33
Preprocessor. ciiiii it 35

VI. EXTERNAL PLOTTING PACKAGE. PPN 37
DataSet...... ..o 37
Diagnostics. v ittt it e 39

i

VII. TAPE USAGE ANDDECKSETUPS................ 39

CINDA Operating System 39
Plot Package.civiniiiiineiiiinnnns 44

VIII. ALPHABETIC LISTING OF AVAILABLE
SUBROUTINES. v, 48
Executionot nneennn. 50
Interpolation 57
Arithmetic..... i ... 67
Output....... .. .o i i it 83
Matrixoi i i e e e e 86
Special i e e e e 99
Internal i, 108
ACKNOWLEDGMENTS ittt iiiiianennn 108
APPENDIX A —Sample Problem 1A..................... 109
APPENDIX B — Sample Problem 1B 161

iv

NRL MODIFIED VERSION OF CINDA-3G PROGRAM

I. INTRODUCTION
Background

When it was recognized that a thermal analyzing system was needed at the Naval
Research Laboratory, the Chrysler Numerical Differencing Analyzer for third-generation
computers (CINDA-3G)* was obtained for use on the CDC-3800 computer. CINDA-3G
was developed by the Thermodynamic Section of the Aerospace Physics Branch of the
Chrysler Corporation Space Division at NASA’s Michoud Assembly Facility. A major
portion of this work was done as a NASA-funded project from the Manned Spacecraft
Center in Houston, Texas.

CINDA was programmed in FORTRAN V for the Univac 1108. Because of differ-
ences between the computers, modifications to the program were necessary before it
could be usable on the CDC-3800. The task of conversion required compensating for
compiler differences (FORTRAN V vs 3800 FORTRAN), rewriting some routines in
COMPASS, and in general, adapting CINDA to the Drum SCOPE system. Documenta-
tion supplied with the Univac version of CINDA was a most useful aid in the conversion
process. This NRL report represents the CDC-3800 version of CINDA-3G, and is partly
a rewrite of the original Chrysler document. While most of the sections have been only
slightly modified, the section on tape usage and deck setups is strictly applicable to
CDC-3800 software. The external plotting package in Section VI for the CALCOMP
plotter replaces plotting routines used by the Univac 1108 for the SC-4020.

Overview

This programming manual deals with the CINDA system in two general categories—
the logic and data needed in setting up the problem data deck, and the actual structure
of the operating system.

The logic in constructing a problem for CINDA involves developing a lumped-
parameter representation of the physical problem. This model simulates the elements of
heat transfer, and the user must supply the corresponding network data, which will be
used by one or more routines selected from a large subroutine library. The user must
determine which routines are needed and the order in which they are to be activated.
This information and the other related logic are entered in a modified FORTRAN
language. The major routines involved use various iterative techniques for solutions,
with the program-formed compute sequences minimizing the required operations.

Note: Manuscript submitted September 5, 1973.
*D.R. Lewis, J.D. Gaski, and L.R. Thompson, “Chrysler Improved Numerical Differencing Analyzer for

3rd Generation Computers,” Technical Note TN-AP-67-287, Chrysler Corporation Space Division, New
Orleans, La., 1967.

1

MARY E. GEALY

CINDA is not merely a single execution program, but is an operating system in itself.
It consists of two software packages of its own (the preprocessor and subroutine library
file) and is also quite dependent on the computer’s system software (at NRL, the CDC-
3800’s Drum SCOPE system). This dependence is largely due to language and allocating
differences of FORTRAN compilers, as well as computer work size and assembly language
routines. The preprocessor reads and processes the two types of user data—the network
data and the logic data. From the former, its output is a binary data file, and from the
latter, it generates five FORTRAN subroutines which, when compiled, are referred to as
the processor. The processor makes user-requested calls to subroutines in the library file,
executing the binary data output from the preprocessor. The user’s logic controls the
processor until the end of the job. For any particular problem the arrays in the processor
are dimensioned exactly as needed by the preprocessor. This feature, together with user-
controlled output, saves computer time and money.

II. DISCUSSION
Lumped-Parameter Representation

The key to utilizing a network-type analysis program lies in the users’ ability to de-
velop a lumped-parameter representation of the physical problem. Once this is done,
superimposing the network mesh is a mechanical task at most and the numbering of the
network elements is simple although perhaps tedious. It might be said that the network
representation is a “crutch” for the engineer, but it does simplify the data logistics and
allow easy preparation of data input to the program. In addition, it allows the user to
identify uniquely any element in the network and modify its value or function during
the analysis as well as sense any potential or current flow in the network. Another fea-
ture of the network is that it has a one-to-one correspondence to the mathematical model
as well as the physical model.

Perhaps the most critical aspect of the lumped-parameter approach is determining
the lump size. There are methods for optimizing the lump size, but they usually involve
more analytical effort and computer time than the original analysis. One must also keep
in mind that for a transient problem, time is being lumped as well as space. Of prime
importance is what information is being sought from the analysis. If spot temperatures
are being sought, nodes must at least fall on the spots and not include much more physi-
cally than would be expected to exist at a relatively similar temperature. Nodes must
fall at end points when a temperature gradient is sought. Of necessity, lumping must be
fairly fine where isotherms are sought. Lumping should be coarse in areas of high ther-
mal conductivity. When nonlinear properties are being evaluated, the lumping should be
fine enough so that extreme gradients are not encountered. The lumping is also depend-
ent on the severity of the nonlinearity.

To reduce round-off error, the explicit stability criteria of the lump (the capacitance
value divided by the summation of conductor values into the node) should be held fairly
constant. The value C/2G is directly proportional to the square of the distance between
nodes. Although refining the lumped-parameter representation will yield more accurate
answers, halving the distance between nodes decreases the stability criteria by a factor of
four and increases the number of nodes by a factor of two, four, or eight depending
upon whether the problem is one, two, or three dimensional. For the explicit case,

NRL REPORT 7656

halving the distance between nodes increases the machine time for transient analysis by a
factor of 8, 16, or 32, respectively. The increase in solution time for the implicit methods
is somewhat less but proportional.

When lumping the time space, consideration must be given to the frequency of the
boundary conditions. A time step must not step over boundary excitation points or
they will be missed. Do not step over pulses; rather, rise and fall with them. Generally
the computation interval for the explicit methods is sufficiently small so that frequency
effects can be ignored. However, care must be exercised when specifying the time step
for implicit methods. If only a small portion of a transient analysis involves frequency
considerations, the time step used may be selectively restricted for that interval. By
setting the maximum time step allowed as a function of time, we may utilize an inter-
polation call to vary it accordingly.

One must also realize that the problem being solved is linearized over the time step.
Heating rate calculations are usually computed for a time point and then applied to a
time space. If the rates are nonlinear, a certain amount of error is introduced, partic-
ularly so with radiation. These nonlinear effects may cause almost any method of solu-
tion to diverge. A brute force method for forcing convergence is to limit the temperature
change allowed over the time space. Consideration of the factors mentioned above, cou-
pled with some experience in using the program, will aid the observant analyst in choosing
lump sizes that will yield answers of sufficient engineering accuracy with a reasonable
amount of computer time,

Figure 1 shows the lumped-parameter representation and network superposition of a
one-dimensional heat transfer problem.

‘ ¥
| I '
Q1 T (¢} T2 G2 T3 | G3 T4 | G4
T W WV

T5
Ter Tz | Tes | Tca { Tes

|
1

Fig. 1—One-dimensional network

The “node” points are centered within the lumps, and temperatures at the nodes are con-
sidered uniform throughout the lump. The capacitors hung from the nodes indicate the
ability of the lump to store thermal energy. Capacitance values are calculated as lump
volume times density times specific heat. The conductors (electrical symbol G) represent
the capability for transmitting thermal energy from one lump to another. Conductor
values for energy transmission through solids are calculated as thermal conductivity times
the energy cross-sectional flow area divided by path length (distance between nodes).
Conductor values for convective heat transfer are calculated as the convection coefficient
times the energy cross-sectional flow area. Conductors representing energy transfer by
radiation are usually indicated by crossed arrows over the conductor symbol. Radiation
transfer is nonlinear; it is proportional to the difference of the absolute temperatures
raised to the fourth power. Utilization of the Farenheit system allows easy automation
of this nonlinear transfer function by the program and reduces the radiation conductor
value to the product of the Stephan-Boltzmann constant times the surface area times the
net radiant interchange factor (script F).

MARY E. GEALY
Basics of Finite Differencing

The concept of network superposition on the lumped-parameter representation of a
physical system is easy to grasp. Describing the network to the program is also quite
straightforward. Having described a network to the program, what information have we
really supplied and what does the program do with it? Basically, we desire the solution
to a simultaneous set of partial differential equations of the diffusion type; i.e.,

oT 9 9 —
— = + =
m aV<T + S, 'V

22_ + ﬁ + .2_2_ . (1)
0x2 9y2 ,0z2

That the diffusivity (a = k/pCp) may be temperature varying or nonlinear radiation trans-
fer occurring is immaterial at this point. Of importance is how Eq. (1) is finite differ-
enced and its relationship to the network and energy flow equations more commonly
utilized by the engineer. The partial of the T-state variable with respect to time is finite
differenced across the time space as follows:

oT T - T
ot At (2)

where the prime indicates the new T value after passage of the At time step.

The right side of Eq. (1) could be written with T primed to indicate implicit “back-
ward” differencing or unprimed to indicate explicit ‘“forward” differencing. The follow-
ing equation is illustrative of how “backward” and ‘‘forward” combinations may be
obtained.

I - BPT+S) + 1-HE@ VT +8); 0<p<1. 3)

Any value of § less than 1 yields an implicit set of equations which must be solved in a
simultaneous manner (more than one unknown exists in each equation). Any value of §
equal to or less than 1/2 yields an unconditionally stable set of equations or in other
words, any time step desired may be used. Values of § greater than 1/2 invoke stability
criteria or limitations on the magnitude of the time step. A value of 8 equal to 1/2
yields an unconditionally stable implicit set of equations commonly known as ‘‘forward-
backward’ differencing or the Crank-Nicholson method. Various transformations or first
order integration applied to Eq. (1) generally yield an implicit set of equations similar to
Eq. (3) with § equal to 1/2. The following finite difference approach generally applies
to transformed equations.

Let us consider the right side of Eq. (3) with § = 1 and rewrite it as follows:

2T + ~ &
aVaT S Ax<

dx— Ox+ Ay Az

oT oT\ , « (T oT\ , o (0T 3T
dy— Oyt

>+s. (4)

0z— oz+

The minus or plus signs on the first partial terms indicate that they are taken on the
negative or positive side, respectively, of the point under consideration and always in the

NRL REPORT 7656

same direction. If we consider three consecutive points (1, 2, and 3) ascending in the x
direction we can complete the finite difference of the x portion of Eq. (4) as follows:

T T T - T T — T
a(az _3_2_>~o<<1 2, I3 2>. 5)
0x— ox+

Ax T Ax Ax- Ax+
Applying the above step to.the y and z portions of Eq. (4) yields .the common denomi-
nator of volume (V = Ax* Ay™ Az). Using Eq. (3) with § = 1, finite differencing with
the steps used for Egs. (3), (4), and (5), substituting o = k/pCp, and multiplying both
sides by pVCp yield

pVCp _, kAx kAx
7 (To~To) = Ae (T~ To) + A 5 (T~ To)
+ ____kAy + kAy T, — T,
kAz kAz
+ Az (Ty — Ty) + Azt (Tg —Tp) + Q, (6)

where Ax = Ay Az, Ay = Ax Az, Az = Ax Ay and Q = pVCpS.

%, ¥, and z correspond to the coordinates of Fig. 2a.

+y

+X

(a)

Fig. 2—Network of a three-dimensional system

MARY E. GEALY

The numbering system corresponds to a three-dimensional network, shown in Fig. 2b.
It should be obvious that the network capacitance value is pVCp, that the Gy value is
kAx/Ax—, etc. Equation (6) may then be written as

Co(T4 — To)/At = Gy (Ty - Ty) + Gg(Ty—Tp) + Gg(Ty —~ Ty) + Ga(Ty ~ Tp)
+ Gg(T5 - Tp) + Gg(Tg —To) + Qo (7)

or in engineering terminology, the rate of change of temperature with respect to time is
proportional to the summation of heat flows into the node.

It should be noted that Fig. 2 is essentially superimposed on a lumped-parameter
cube of a physical system and is the network representation of Eq. (1). Since Eq. (7) is
written in explicit form, only one unknown (T(;) exists and all of the information neces-
sary for its solution is contained in the network description. If it had been formulated
implicitly, it would have to be solved in a simultaneous manner. No matter what method
of solution is requested of the program, the information necessary has been conveyed by
the network description. When an implicit set is used with § > 0, the energy flows based
on old temperatures are added to the Q term and the equations are then treated in the
same manner as for § = 0;

av2T + S = 0. (8)

The solution of Poisson’s equation (8) is the solution utilized for steady state analy-
sis. It is extremely important because virtually all of the unconditionally stable implicit
methods reduce to it. If Eq. (7) had all the right side values primed and the left side
was subtracted from both sides, we could think of Cy/At as a G term and Ty (old)
would then become a boundary node. In a manner of speaking, the capacitor we look at
in three dimensions becomes a conductor in four dimensions. We could draw a four-
dimensional network, but since there is no feedback in time it is senseless to take more
than one time step at a time. However, various time-space transformations can be uti-
lized such that a one-dimensional ““transient” yields the solution to a two-dimensional
steady state problem, etc. This is analogous to the “Particle in Cell” method developed
in the nuclear field for following shock-wave propagation.

Iterative Techniques

Now that we have discussed the correlation between the physical, network, and
mathematical models, let’s investigate the commonality of the various methods of solu-
tion. By describing the network of Fig. 1 to the program, we have supplied it with five
temperatures, five capacitors, five sources (four not specified and therefore zero), four
conductors, and the adjoining node numbers of the conductors. An explicit formulation
such as Eq. (6) has only one unknown. Its solution is easily obtainable as long as any
associated stability criteria are continuously satisfied. A more interesting formulation
would be a set of implicit equations as follows:

NRL REPORT 7656
(T{ - Ty)Cy/At = Q) + Gy(Ty—Ty)
(Tg — Tg)Cy/At = Qy + G (Ty — Ty) + Ggo(Tg = Ty)
(T}~ T3)Cy/At = Qy + Go(Ty— T4) + Gg(T, - T3) (9)

(T — T4)Cy/At = Q) + Gg(Tg —Ty) + Gu(Ts - Ty)

1l

(T5 -~ T5)Cy/At = Q + Gu(Ty —T).

If the above had been formulated as partly explicit and implicit, the known explicit por-
tion would have been calculated and added to the @ terms, then the §§ factor would have
been divided into the Q terms and multiplied by the At term.

If we divide the At term into the C terms and indicate this by priming C, we can
reformulate Eq. (9) as follows:

(Cy +Gy) Ty = Q) + CiTy + GyTy
(Ca+Gy +Gy)Ty = Qy + CyTy + GyTy + G,Tg
(C3+Gy+G3)Tg = Qg + C3Ty + GoTy + GgTy (10)

(Cy +G3+G)Ty = Q) + CyT, + GgT3 + G,T¢

(Cg + Gy) T = Q + CyTy + G,Ty .

This equation can be generalized as

o 2 Gt t 26Ty + Q
i Cl + =G,

, (11)

where the subscript a indicates connection to adjoining nodes. A C' value of zero yields
the standard steady state equation, the conductor weighted mean of all the surrounding
nodes. We see here that the C' can be thought of as a conductor to the old temperature
value and therefore Eq. (11), although utilized to obtain transient solutions, can be con-
sidered as a steady state equation in four dimensions. By rewriting Eqgs. (10) in the form
of Eq. (11) we are in a position to discuss iterative techniques. By assuming all old
values on the right hand side of Eq. (10), we could calculate a new set of temperatures
on the left which, although wrong, are closer to the correct answer. This single set of
calculations is termed an iteration. By replacing all of the old temperatures with those
just calculated, we can then perform another iteration. This process is called “block”
iteration. A faster method is to utilize only one location for each temperature. This way,
the newest temperature available is always utilized. This method is termed ‘‘successive
point” iteration and is generally 25% faster than “block” iteration. The iterative process
is continued a fixed (set by user) number of times or until the maximum absolute differ-
ence between the new and old temperature values is less than some prespecified value
(set by user).

MARY E. GEALY

Although the above operations are similar to a relaxation procedure, there is a slight
difference. We are performing a set of calculations in a fixed sequence. A relaxation
procedure would continuously seek the node with the maximum temperature difference
between old and new and calculate it. Programmingwise, as much work is required in
the seeking operation, which must be consecutive, as in the calculation. For this reason
it would be wasteful to code a true relaxation method.

In addition to the iterative approach, several solution subroutines utilize an accelera-
tion feature and/or a different convergence criteria. Once it can be determined that the
temperatures are approaching the steady state value, an extrapolation is applied in an
attempt to accelerate convergence. This convergence criterion is the maximum absolute
temperature change allowed between iterations. This criteria, however, is generally one
sided and any associated errors are accumulative. In order to obtain greater accuracy,
some subroutines are coded to perform an energy balance on the entire system (a type
of Green’s function) and apply successively more severe convergence criteria until the
system energy balance (energy in minus energy out) is within some prespecified tolerance.

Pseudo-Compute Sequence

A set of simultaneous equations such as Egs. (10) is quite often treated by matrix
methods and formulated as follows:

[A] {T'} = {B}, (12)
where
[(C1 +Gy) -Gy 0 0 0
~Gyq (Cy + Gy + Gy) -Gy 0 0
{A} = 0 -Gy (C3 + Gy + Gg) -Gy 0
0 0 -Gy (Cy + Gg + Gy) -Gy
|0 0 0 -Gy (Cg +Gy) |
and (13)
Ty Q1 + C1Ty)
T, Qg + CTy
{T'} ={Tsp {B} ={Qj + CjTyf
T, Q) + CyT,
3 Q5 * C5Ts)

The inverse of [A] is then calculated and the solution obtained by matrix multiplication;

NRL REPORT 7656
{T'} = [A]7" {B}. (14)

It should be noted that the one-dimensional problem has no more than three finite
values in any row or column of the coefficient matrix [A]. A three-dimensional problem
would generally have no more than seven finite values in any row or column. It is easy
to see that a 1000-node, three-dimensional problem would require one million data loca-
tions, of which approximately 993,000 would contain zero. The inverse might require
an additional one million data locations. Aside from exceeding computer core area, the
computer time required to calculate the inverse is proportional to the cube of the prob-
lem size, and large problems soon become uneconomical to solve.

The explicit and iterative implicit methods previously discussed are well suited for
optimizing the data storage area required. Note the adjoining node numbers associated
with the conductors of Fig. 1,

1,1,2 - G1 between nodes 1 and 2
2,2,3 - G2 between nodes 2 and 3
3,3,4 - G3 between nodes 3 and 4
4,45 - G4 between nodes 4 and 5.

(15)

Note also the row and column position of conductor values off the main diagonal in the
[A} coefficient matrix, Eq. (13). By retaining the adjoining node numbers for each con-
ductor we are able to identify its element position in the coefficient matrix. As a con-
sequence we need store only the finite values. The main diagonal term in a composite of
the node capacitance and conductor values off the main diagonal.

The program operates on the adjoining node numbers to form what is termed the
pseudo-compute sequence (PCS). The nodes are to be calculated sequentially in ascend-
ing order, so the adjoining nodes are searched until the number 1 is found. When this
occurs the conductor number and the adjoining node number are stored as a doublet
value. The search is continued until all nodes one are located and the conductor number
for the last receives a minus sign. The process is then continued for node two, etc., until
all the node numbers have been processed. The pseudo-compute sequence formed (LPCS)
is shown below left. A slight variation to this operation is to place a minus sign on the
original other adjoining node number so that it is not recognized when it is searched for.
The resulting pseudo-compute sequence thus formed (SPCS) is shown below right.

LPCS SPCS

-1,2 -1,2
1,1 -2.3

~2,3 -3,4
2,2 -4,5

-8,4 ~0,0
3,3

-4,5

~4,4

MARY E. GEALY

The above pseudo-compute sequences are termed long (LPCS) and short (SPCS), respec-
tively. By starting at the top of the pseudo-compute sequence, we are operating on node
1. The two values identify the conductor into the node (the position of the conductor
value in an array of conductor values) and the adjoining node (the position of the tem-
perature, capacitor, and source values in arrays of temperature, capacitor, and source
values, respectively). The node being operated on starts as one and is advanced by one
each time a negative conductor number is passed.

It is easy to see that the LPCS identifies the element position and value locations of
all the off-diagonal elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited for “successive point” iteration
of the implicit equations because all elements in a row are identified. When a row is
processed and the new T value obtained, the new T can then be used in the calculation
procedure of succeeding rows.

The SPCS identifies each conductor only once and in this manner takes advantage
of the symmetry of the coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the adjoining node num-
ber reveal their temperature value locations and their source value locations. The explicit
solution subroutines calculate the energy flow through the conductor, add it to the source
location of the node being worked on, and subtract it from the source location for the
adjoining node. However, if the short pseudo-compute sequence were utilized for im-
plicit methods of solution, they would require the use of slower “block” iterative proce-
dures. The succeeding rows do not have all of the elements defined, and the energy rates
passed ahead were based on old temperature values.

Data Logistics

The pseudo-compute sequence formulated as shown above allow the program to store
only the finite values in the coefficient matrix, thereby taking advantage of its sparsity.
In addition, the SPCS takes advantage of any symmetry which may exist. Multiply-
connected conductors which will be covered in the next section allow the user to take
advantage of similarity as well. The foregoing is fairly easy to follow, especially if the
nodes and conductors start with the number 1 and continue sequentially with no missing
numbers. This restriction is too limiting for general use on large network models. To
overcome this restriction the program assigns relative numbers (sequential and ascending)
to the incoming node data, conductor data, constants data, and array data in the order
received. Any numbers missing in the actual numbering system set up by the user are
packed out, thereby requiring only as much core space as is actually necessary.

All solution (Execution) subroutines require three locations for diffusion node data
(temperature, capacitance, and source) and one location for each conductor value. They
also may require from zero to three extra locations per node for intermediate data
storage. Each node in a three-dimensional network has essentially six conductors con-
nected to it but only three are unique; i.e., each additional node requires only three
more conductors. Hence, each node in a three-dimensional system requires from six to
nine storage locations for data values (temperature, capacitance, source, three conductors,
and up to three intermediate locations). The two integer values that make up a doublet
of the PCS are packed into a single core location. Hence, for a three-dimensional network,

10

NRL REPORT 7656

each node requires approximately three locations for data addressing for the short and
six locations for the long pseudo-compute sequence. The number of core locations re-
quired for node can vary from 9 to 15.

The program requires the user to allocate an array of data locations to be used for
intermediate data storage and initialize array start and length indicators. Each subroutine
that requires intermediate storage area has access to this array and the start and length
indicators. They check to see that there is sufficient space, update the start and length
indicators, and continue with their operations. If they call upon another subroutine re-
quiring intermediate storage, the secondary subroutine repeats the check and update
process. Whenever any subroutine terminates its operations it returns the start and length
indicators to their entry values. This process is termed dynamic storage allocation and
allows subroutines to share a common working area.

Order of Computation

A problem data deck consists of data and operations blocks which are preprocessed
by CINDA and passed on to the system FORTRAN compiler. The operations blocks are
named EXECUTION, VARIABLES 1, VARIABLES 2 and OUTPUT CALLS. The
FORTRAN compiler constructs these blocks as individual subroutines with the entry
names EXECTN, VARBL1, VARBL2 and OUTCAL, respectively. After a successful com-
pilation, control is passed to the EXECTN subroutine, Therefore, the order of computa-
tion depends on the sequence of subroutine calls placed in the EXECUTION block by
the program user. No other operations blocks are performed unless called upon by the
user either directly by name or indirectly from some subroutine which internally calls
upon them. The network execution subroutines listed on p. internally call upon
VARBL1, VARBL2, and OUTCAL. Their internal order of computation is quite simi-
lar, the primary difference being the analytical method by which they solve the network.
Figure 3 represents a flow diagram of all the network solution subroutines; the subroutine
writeups contain the comparisons made at the various check points and the routings taken.

Systems Programming

CINDA is actually an operating system rather than an applications program. Two
programs are run and executed, the second program being the product of the first. The
initial program, the preprocessor, operates in an integral fashion with a large library of
assorted subroutines which can be called in any sequence desired. It reads all of the in-
put data, packs them, assigns relative numbers, forms the pseudo-compute sequence, and
writes the data on two different peripheral units. One unit contains FORTRAN source
language generated from the operations blocks, with all of the data values dimensioned
exactly in name COMMON. This program, the processor, is then compiled and executed,
using as input the data from the first-mentioned peripheral unit. The FORTRAN allo-
cator has access to the CINDA subroutine library and loads only those subroutines re-
ferred to by the problem being processed.

Due to this type of operation, CINDA is extremely dependent on the system soft-
ware supplied. However, once the program has been made operational on a particular
machine, the problem data deck prepared by the user can be considered as machine
independent.

11

START

3

MARY E. GEALY

OPERATION

B__
VARBL1

A

TH

VARBL2

MTC

TS

VARBL1

1T VARBL2

OUTCAL

il

MTC

:

OUTCAL

o offs

m

ND

v

Check

OOV

DESCRIPTION
Calculate time step
Variables 1 operations
Solve network
Variables 2 operations
Output calls operations
Modify time control

Erase iteration

Reverse direction if

Backup nonzero

Relaxation criteria not net

Time or temperature change too large
Backup nonzero

Not time to print

Problem stop time not reached

Fig. 3—Basic flowchart for network solution subroutines

NRL REPORT 7656
II. DATA INPUT REQUIREMENTS

A CINDA problem data deck consists of both data and instruction cards. The card-
reading subroutines for CINDA do not utilize a fixed format type of input; but instead
use a free-form format. The type of data is designated by a mnemonic code in columns
8, 9, and 10. This is followed by the data field which consists of columns 12-80 or the
instruction field which consists of columns 12-72. Although blanks are allowed before
or after numerical data they may not be contained within, The number 1.234 is fine,
but 1. 234 will cause the program to abort. The program processes the problem data
into FORTRAN common data and reforms instructions into FORTRAN source language
which are then passed on to the system FORTRAN compiler. Instruction cards which
contain an F in column 1 are passed on exactly as received. Any instruction card with
or without an F in column 1 may contain a statement or sequence number in columns
2-5 which is passed on to and used by the FORTRAN compiler.

The most frequently used mnemonic code is three blanks. The data following this
blank mnemonic code may be one or more integers, floating-point numbers (with or with-
out the E exponent designation) or alphanumeric words of up to six characters each.

The reading of a word or number continues until a comma is encountered and then the
next word or number is read. As many numbers or words as desired may be placed on

a card, but they may not be broken between cards. A new card is equivalent to starting
with a comma and therefore no continuation designation is required. All blanks are
ignored and reading continues until the terminal column is reached or a dollar sign en-
countered. Comments pertinent to a data card may be placed after a dollar sign and are
not processed by the program. If sequential commas are encountered, floating-point zero
values are placed between them.

The next most frequently used code is BCD (for binary-coded decimal) which must
be followed by an integer 1 through 9 in column 12. The integer designates the number
of 6-character words immediately following it. Blanks are retained and only the desig-
nated number of 6-character words are read from the card. The mnemonic code END is
utilized to designate the end of a block of input to the program. The code REM serves
the same function as a FORTRAN comment card; it is not processed by the program
but allows the user to insert nondata for clarification purposes. The special codes CGS,
CGD, and GEN will be discussed later in this section.

The data deck prepared by a program user consists of various input blocks contain-
ing either data or instructions. A fixed sequence of block input is required, and each
block must start with a BCD 3 header card and terminate with an END card (mnemonic
codes). Specific details about these blocks follows.

Title Block
The first card of a problem data deck is the title block header card. It conveys in-

formation to the program as to the type of problem, which data blocks follow, and how
they should be processed. The three options presently available are

13

MARY E. GEALY

8

2

BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

The GENERAL indicates that a nonnetwork problem follows and therefore no node or
conductor data is present. The THERMAL cards indicate that a conductor-capacitor
(CG) network description follows and that either a short (SPCS) or long (LPCS) pseudo-
compute sequence should be constructed. The title block header card may be followed
by as many BCD cards as desired. However, the first 20 words (six characters each) are
retained by the program and used as a page heading by the user-designated output rou-
tines. The block must be terminated by an END card and is then followed by node data
for a CG network problem or constants data for a nonnetwork problem.

Node Data Block

As discussed in Section II, there are three types of nodes; diffusion, arithmetic, and
boundary. Diffusion nodes are those nodes with a positive capacitance and have the
ability to store energy. Their future values are calculated by a finite difference represen-
tation of the diffusion partial differential equation. Arithmetic nodes are designated by
a negative capacitance value; they have no physical capacitance and are unable to store
energy. Their future values are calculated by a finite difference representation of Pois-
son’s partial differential equation. This is a steady state calculation which always utilizes
the latest diffusion node values available. Boundary nodes are designated by a minus
sign on the node number; they refer to the mathematical boundary, not necessarily the
physical boundary. Their values are not changed by the network solution subroutines
but may be modified as desired by the user.

A diffusion node causes three core locations to be utilized, one each for tempera-
ture, capacitance, and a source location. An arithmetic node receives core locations only
for temperature and source and a boundary node receives only a temperature location.
The program user is required to group his node data into the above three classes and sub-
mit them in that order. Node data input with the three-blank mnemonic code always
consists of three values—the integer node number followed by the floating-point initial
temperature and capacitance values. A negative capacitance value is used to designate an
arithmetic node while a negative node number designates a boundary node. Although the
capacitance value of a boundary node is meaningless, it must be included so as to main-
tain the triplet format.

All nodes are renumbered sequentially (from one on) in the order received. The
user input number is termed the actual node number while the program assigned number
is termed the relative node number. This relative numbering system allows sequential
packing of the data and does not require a sequential numbering system on the part of
the program user. It is worth noting that the pseudo-compute sequence is based on the
relative numbering system. Hence, the computational sequence of the nodes is identical
with their input sequence. If a user desired to reorder the computations in order to aid
boundary propagation, he needs merely to reorder his nodal input data.

14

NRL REPORT 7656

The mnemonic codes CGS, CGD, and GEN may be used. The CGS and CGD codes
are used when one or two materials, respectively, with temperature-varying properties are
to be considered. For a single material the node number and initial temperature remain
the same but instead of a capacitance value, the user may input the starting location
(integer count) or a doublet array of the temperature-varying property followed by the
actual (literal) multiplying factor value to complete the calculation or a constants loca-
tion containing it. For a node consisting of two materials, the node number and initial
temperature remain the same but the user would use two array addresses and multlplymg
factors with a CGD code. These codes would look as follows:

8
\

CGS N#,TI,Al,Fl
or CGD N#,TI,Al,F1,A2,F2

where N# is the integer node number and Ti is the floating-point initial temperature.

The A arguments refer to doublet arrays of temperature-varying Cp or p*Cp, and the F
arguments may be or refer to a constant location containing the weight or volume, re-
spectively. The CGS code causes the product of the interpolated value times the F factor
to be used as the capacitance value. The CGD code uses the sum of the separate inter-
polations times the factor products as the capacitance value.

To input a group of sequential nodes, the following code is available:

3
\
GEN N#'#N'IN'TI'X'Y'Z'W

where

N# is the starting node number

#N is the total number of nodes desired (integer)
IN is an increment for the generated nodes (integer)
Ti is the initial temperature for all nodes,

and the capacitance value is calculated as the produce of X times Y times Z times W. If
this product is negative, arithmetic nodes will be generated. If N# is negative, boundary
nodes will be generated. A sample node data block could be as follows:

8 12
Vool
BCD 3NODE DATA
+8004142,2,804,1.3 $TWO DIFFUSION NODES
CGS 3,80.,A1,4.63 $SINGLE MATERIAL NOD:e
CGD 4,80.4,A1,2.31,A2,4.76 $DOUBLE MATERIAL NODE
GEN 5,10,1480¢44.63,1ay14,1. SGENERATE 10 NODES,5-14
15480¢ 4=l ¢4 16,804,-1. $TWO ARITHMETIC NODES
-18,~-460.,0 SONE BOUNDARY NODE
END

15

MARY E. GEALY

The above does not correspond to a problem; it just represents data input. Note that the
nodes are input in the order: diffusion, arithmetic and boundary. The factor portion of
the CGS and CGD codes may be a literal (actual value) as shown or reference a constant’s
location containing the value. Either one (not both) of the array arguments on the CGD
code may be a literal if the property is constant. Both codes set up linear interpolation
calls which utilize the node temperature as the independent variable and interpolate a
dependent value which is then multiplied by the factor to obtain the capacitance value.
The CGD call causes two interpolations and multiplications to be performed and sums
the products to obtain the capacitance value. These interpolations are performed each
iteration during the transient analysis.

The GEN code expects values in the following order; starting node number, number
of nodes to be generated, an increment for indexing the generated node numbers, the
initial temperature for all nodes, and four floating point numbers, the product of which
is the capacitance value.

Conductor Data Block

Two basic types of conductors may be used, regular or radiation, and either may
utilize temperature-varying properties in calculating the conductance value. When utilizing
the blank mnemonic code a regular conductor consists of the integer conductor number
followed by two integer adjoining node numbers and the floating-point conductance
value. If more than one conductor has the same constant value, they may share the
same conductor number and value. This is accomplished by placing two or more pairs of
integer adjoining node numbers between the conductor number and value. The CGS and
CGD mnemonic codes may also be utilized for conductors. They would appear as follows:

8
\
CGS G#,NA,NB,Al,FI
or CGD G#,NANB, Al F1,A2,F2
where
G# is the integer conductor number
NA is one adjoining node number
NB is the other adjoining node number.
The A arguments refer to doublet arrays of temperature-varying thermal conductivity
k(T), and the F arguments may be or refer to a constant location containing the cross
sectional area divided by path length.
For CGS with F1 positive
G = k1(Tm)*F1, Tm = (Ta+ Tb)/2.0. (16)
For CGS with F1 negative

G = k1(Ta)*|F1]. (A7)

16

NRL REPORT 7656

For CGD 1.0

1.0 .\ 1.0
k1(Ta)*F1 k2(Tb)*F2~

(18)

The CGS mnemonic code may be utilized for either regular or radiation conductors.
The data consist of the integer conductor number and one pair only of integer adjoining
node numbers, and are followed by an array address and multiplying factor. A regular
conductor would normally utilize the CGS code where the addressed array would be
thermal conductivity vs temperature, and the multiplying factor would consist of the
cross-sectional area divided by path length. A surface radiation conductor would utilize
the CGS code for a temperature-varying array of emissivity with the multiplying factor
being the product of surface area times the Stephan-Boltzmann constant (F = 1.0).

The CGD code may be utilized for regular conductors passing through two mate-
rials. In this case two temperature-varying property arrays and multiplying factors are
input. Two conductance values are calculated and one over the summation of their in-
verses is returned as the conductor value. Either of the array addresses may be a literal
if one of the properties is a constant. The GEN code is also available for conductors and
is input as follows:

8

\
GEN G#,#G,IG,NA,INA,NBy INB,X,Y,Z,W

where

G# is the starting conductor number

#G is the total number of conductors desired (integer)

IG is an increment for the generated conductors (integer)

NA and NB are initial adjoining node numbers (integers)

INA and INB are increments for the generated adjoining nodes (integers),

and all generated conductors receive the same conductance value of X times Y times Z
divided by W. A negative G# will cause radiation conductors to be generated.

The GEN code may be used to generate sequential conductors, either radiation or
regular. The data consist of the integer conductor number, an integer for the number
of conductors to be generated, an integer increment for indexing the generated conduc-
tors, the first integer adjoining node number, an integer increment for indexing the first
adjoining node number, the second integer adjoining node number, an integer increment
for indexing the second adjoining node number, and finally four floating-point numbers;
the product of the first three divided by the fourth is the constant conductance value.
For example:

8

\

GEN 1,2,1 41414241 42¢42¢42442.

GEN =3,3,0,1,1,10,041¢y1eyleyl.E+15

is equivalent to

17

MARY E. GEALY

12

\

P4142,4.,2,2,3,)
—3'1’|0 03 , E—IS.

An additional feature of the program is the one-way conductor. This is a conductor
value which enters into the temperature calculation of only one of its adjoining nodes
and is indicated by placing a minus sign on the unaffected node. The CGS, CGD, and
GEN codes may be used for one-way conductors. Physically this occurs in incompres-
sible fluid flow, and therefore the upstream node would receive the minus sign.

A program idiosyncrasy which should be mentioned is that while a single-valued
conductor with as many adjoining node pairs as desired may be used, extending several
cards if necessary, an adjoining node pair must not be split between cards. In addition,
the CGS, CGD, and GEN card may have more than one set of data on a card, but a set
of data may not be broken between cards. All regular conductors must be entered prior
to any radiation conductors. The following is illustrative of the various conductor input
options.

8
\
BCD 3CONDUCTOR DATA
1ol 4241.2,24243,1.7 $TWU REGULAR CONDUCTORS
3,3,4 4 515464,1.5 STRIPLE PLACED CONDUCTOR
~T7484=8,9,7.6 $DOUBLE PLACED ONE-WAY COND.
CGS 5,1 ll,A3 4 6 $VARIABLE CONDUCTOR, SINGLE
CGD 6,412 ,13 A3,4.1,A4,7.6 SVARIABLE CONDUCTOR, DOUBLE
GEN 7,3, 1,1,1,9 1,1.6,4.041.41. SGENERATE THREE CONDUCTORS
=10,1,99,1.E-15 SRADIATION CONDUCTOR
CGS =11 2 99 AS,1.E-14 $SVARIABLE EMISSIVITY RADIATION
GEN -12, 3 1,99,0,1E-14,1.,1.,1. SGENERATE FOUR RADIATION COND.
END

The first GEN card is equivalent to the following:

12
\
T914946.4,8,2,10,6.4,9,3,11,6.4

and the second GEN card is equivalent to

12

\
_12’3’99’1.E-I4,-‘3'4|99|IcE-]4
-14,5,99,1.E~14,~15,5,99,1.E~-14

If the second GEN card had incremented the conductor number by zero, it would have
been equivalent to

18

NRL REPORT 7656

12

\
=1243,99,4,9945,99,6,99,1.E~-14

Once the node and conductor data have been read by the program, construction of
the pseudo-compute sequence is performed. Any errors encountered cause an appropriate
error message to be printed and a ‘‘do not execute” switch to be set. However, the pro-
gram will continue to process input data and attempt to discover any and all recognizable
errors. Items checked for are no duplicate node or conductor numbers, all conductor ad-
joining nodes must have been specified in node data, and all diffusion and arithmetic
nodes must have at least one conductor into them. A missing comma will dislocate the
data input sequence causing pages of error messages. If over 200 error messages are
printed, the program gives up and immediately terminates.

Constants Data Block

Constants data are always input as doublets, the constant name or number followed
by its value. They are divided into two types, control constants and user constants, and
may be intermingled within the block. Control constants (= 50) have alphanumeric
names while user constants receive a number. User constants are simply data storage
locations which may contain integers, floating-point numbers, or up to 6-character alpha-
numeric words. It is up to the program user to place data in user constant locations as
needed and supply the location addresses to subroutines as arguments.

Control constant values are communicated through program COMMON to specific
subroutines which require them. However, any control constant name desired can be
used as a subroutine argument. Wherever possible, control constant values not specified
are set to some acceptable value. If a required control constant value is not specified, an
appropriate error message is printed and the program terminated. It is up to the user to
check the writeups of subroutines he is using to determine control constant requirements.
A list of control constant names and brief description of each follows; check subroutine
writeups for exact usage.

ARLXCA The maximum arithmetic relaxation change allowed.
ARLXCC The maximum arithmetic relaxation change calculated.
ATMPCA The maximum arithmetic temperature change allowed.
ATMPCC The maximum arithmetic temperature change calculated.
BACKUP If nonzero, the time step just done is erased and redone.
BALENG User-specified system energy balance to be maintained.
CSGFAC Stability criteria multiplication/division factor.

CSGMAX Maximum stability criteria for the network. } (C/G) max and min
CSGMIN Minimum stability criteria for the network.)
CSGRAL Stability criteria range allowed.

CSGRCL Stability criteria range calculated.

DAMPA Arithmetic node damping factor.

DAMPD Diffusion node damping factor.

DRLXCA The maximum diffusion relaxation change allowed.

DRLXCC The maximum diffusion relaxation change calculated.

DTIMEH Highest time step allowed (maximum).

DTIMEI Input time step for implicit solutions.

19

MARY E. GEALY

DTIMEL Lowest time step allowed (minimum).

DTIMEU Time step used for all transient network problems.

DTMPCA The maximum diffusion temperature change allowed.

DTMPCC The maximum diffusion temperature change calculated.

ENGBAL The calculated energy balance of the system.

IDCNT A counter for STOREP and RECALL identification (integer).

LAXFAC Number of iterations before radiation conductor is linear (integer).

LINECT A line counter location for program output.

LAOPCT Program count of iteration loops performed (integer).

NLO@P User input number of iteration loops desired (integer).

@PEITR Causes output each iteration if set nonzero.

@UTPUT Time interval for activating OUTPUT CALLS.

PAGECT A page counter location for program output.

TIMEM Mean time for the computation interval.

TIMEN New time at the end of the computation interval.

TIMEND Problem stop time for transient analysis.

TIME@ Old time at the start of the computation interval, also used as problem
start time, may be negative.

ITEST JTEST , KTEST,LTEST MTEST are dummy control constants with integer
names.

RTEST,STEST, TTEST,UTEST,VTEST are dummy control constants with noninteger
names.

The following is representative of a constants data block:

8

\

BCD 3CONSTANTS DATA
TIMEND,10.0,0UTPUT, 1.0 $CONTROL CONSTANTS
1,1042434,347,4,8 $ INTEGERS
5elegby1eE3,741.E-3 $FLOATING POINT
8,TEMP,9, ALPHA $ ALPHANUMERIC

END

Array Data Block

Array data are exceedingly simple to enter. The user inputs an array number, se-
quentially lists his information, and terminates it with an END (data END, not mnemonic).
Numerous subroutines (interpolation, matrix, etc.) require that the exact number of values
in an array be specified as an integer. In order to reduce the number of subroutine argu-
ments and chance of error, the CINDA preprocessor counts the number of values in an
array and supplies this integer count as the first value in the array. The writeup of any
subroutine whose array arguments require the array integer count will list the array argu-
ment as A(IC). Subroutines whose array arguments require the first data value rather
than the integer count will list the array argument as A(DV). When a user inputs the
array number as positive, the integer count is calculated by the preprocessor and supplied
as the first value in the array. For example,

20

NRL REPORT 7656

12

\
1,1.642.4,3.8,END

The above array (Array 1) contains three data values and was input as a positive
array. By addressing Al as a subroutine argument the integer count 3 would be the first
value followed by 1.6,2.4 and 3.8, If the user wanted the 1.6 data value to be addressed
the argument should be A1+1. The user has the option of placing a minus sign on the
input array number. In this event the integer count of data values in the array is not
calculated or stored and addressing the array as Al obtains the first data value. For
example:

12

\
-2’106'2.4'308.END

Entering the argument A2 would address the 1.6 data value; the integer count is not
available. The following is an example of various types of arrays.

8
4
BCD 3ARRAY DATA
19y1e6,2.4,3.8,END SFLOATING POINT NUMBERS
2,TEMP1 ,TEMP2,END $ ALPHANUMERIC
3 $ ALPHANUMERIC
BCD 3TEMPERATURE STUDY
END
-4 ,SPACE, 100,END $SPACE OPTION
END

Two types of alphanumeric inputs are shown above. The first allows each word to
be separated by a comma, requires each word to start with a letter, and does not allow
the use of blanks. The second requires use of the BCD mnemonic code and the integer
word count. It allows use of letters, numbers, or characters anywhere and retains blanks.
The space option is an easy way for the user to specify a large number of locations
which are initialized by the preprocessor as floating-point zeros. : The space option re-
quires the word SPACE followed by the number of locations to be initialized. It may
be used anywhere in an array and as many times as desired as long as total available core
space is not exceeded.

Program Control

Aside from the title block, there are either two or four data blocks depending upon
whether the problem is GENERAL or THERMAL, respectively. No matter which, there
are also four operations blocks entitled EXECUTION, VARIABLES 1, VARIABLES 2,
and OUTPUT CALLS. The operations or instructions called for in these blocks determine
the program control. They are preprocessed by CINDA and passed on to the system
FORTRAN compiler as four separate subroutines entitled EXECTN, VARBL1, VARBL2,
and OUTCAL, respectively. When the FORTRAN compilation is successfully completed,
control is passed to the EXECTN subroutine which sequentially performs the operations

21

MARY E. GEALY

in the same order as entered by the user in the EXECUTION block. None of the opera-
tions specified in the other three blocks will be performed unless they are called for,
either directly by name in the EXECUTION block or internally by some other called-for
subroutine.

No operations will be performed unless requested by the user, and, no control con-
stants will be utilized unless some subroutine calls for them. Network solution subrou-
tines internally call upon VARBL1, VARBL2, and OUTCAL (see Fig. 3). They also use
numerous control constants, but their individual writeups in Section VIII must be con-
sulted to determine which ones and their exact usage. Network solution subroutines re-
quire no arguments but most others do. These arguments may be addresses which refer
to the location of data or they may be literals; i.e., the actual data value. All of the
input data can be addressed by using alphanumeric arguments of the following form.

TN for the temperature location of node N

CN for the capacitance location of node N

QN for the source location of node N

GN for the conductance location of conductor N
KN for the value location of constant N

AN for the starting location of array N

and control constants utilize their individual names.

When addressing arrays the user must be cautious as to the use of positive or nega-
tive arrays and address them accordingly. However, the user may uniquely address any
item in an array. For instance, the one-hundredth value in a positive array ten could be
uniquely addressed as A10+100. This plus option is available only for arrays. If perhaps
a user desired to address the 20 BCD words for the title block which were retained for
output page headings, he could do so by using the argument H1.

Dynamic Storage Allocation is a unique feature of the CINDA-3G program. Al-
though not carried to the ultimate, all subroutines which require working space generally
obtain it from a common working array. However, it is up to the user to specify infor-
mation about this array to the program. To do so, the user must place three FORTRAN
cards at the start of the Execution block, the first of which must come before the BCD
3EXECUTI@N card. For example,

1 7 21 25

\ ¥ Voo

F DIMENSION X 100)
BCD 3EXECUTION

F NDIM = 100

F NTH = O

In the DIMENSION card, columns 21-25 must be reserved for the integer which
must be in an I5 format. The names used must be exactly as shown and in the above
would cause a working array of 100 locations to be created. If fewer or more locations
are needed, the integer 100 may be changed as desired (both for DIMENSION and
NDIM). If no working locations are required, the cards should be omitted.

22

NRL REPORT 7656

An F in column 1 indicates to the preprocessor that the card is FORTRAN and
should be passed on as received. This F option allows the user to program FORTRAN
operations directly into the operations blocks. However, the CINDA arguments listed
above are not FORTRAN compatible with the exception of the control constant names.
Therefore, it is recommended that the program user utilize CINDA subroutine calls
wherever possible. This is impossible however when logical operations are required. In
this case it is recommended that the user place CINDA data values as needed into the
available dummy control constant names allowed for that purpose. Then, FORTRAN
logical operations can be utilized with the dummy control constant names as arguments.
FORTRAN statement numbers for routing purposes may be placed in columns 2-5 on
any operations cards.

The data field for node, conductor, constant, and array data consists of columns
12-80. However, the data field of operations cards ends with column 12. In a manner
of speaking, a CINDA subroutine call is a special array and should terminate with a data
END. In order to simplify input for the user, the operations read subroutines recognize
two special characters; the left and right parentheses. The left parenthesis is accepted as
a comma, while the right parenthesis is accepted as a comma followed by a data END.
This allows what would have been

12

{

ADD,K1,K2,K3,END
to be more aesthetically formatted as

12

{

ADD(KI1,K2,K3)

which is almost identical to a FORTRAN subroutine call.

Execution Operations Block

An Execution operation block might be as follows:

1 7 12 21 25
+ \ ¥ Vool
F DIMENSION X(25)
BCD 3EXECUTION
F NDIM = 25
F NTH = 0
F 10 TIMEND = TIMEND + 1.0
CNFRWD SEXPLICIT FORWARD DIFFERENCING
STFSEP(T20, TTEST) $PLACE TIO INTO DUMMY CC
F IF(TTEST .LE. 100.) GO TO 10
END

23

MARY E. GEALY

The above indicates a transient thermal problem in which the user desires to terminate the
analysis when the temperature at node 20 exceeds 100°F. The problem must have been
fairly small because only 25 working locations were dimensioned and CNFRWD requires
one per node. It does demonstrate the use of both CINDA calls and FORTRAN opera-
tions and that control constants are referred to by name in either. Another example
might be

8 12 21 25
Vool Voo
DIMENSION X(500)
BCD 3EXECUTION
NDIM =500
NTH =0
CINDSL $STEADY STATE (USES LPCS)
TIMEND = 10.0
CNFRWD STRANSIENT ANALYSIS (USES SPCS)
END

T T Tl <= =

In this case the user desires to have a steady state analysis performed on the network and
then a transient analysis performed utilizing the steady state answer as initial conditions.

However, the two-network solution subroutines referred to are incompatible in their PCS
requirements and the program would be terminated with an appropriate error message.

A further example might be

8 12

Yool

BCD 3EXECUTION
INVERSE(A1,A2) $SEE MATRIX SUBROUTINE
MULT(A2,A3) S$WRITEUPS FOR OPERATIONS
LIST(A2,Kl,17) $PERFORMED
LIST(A3,K2,17)

END

The above problem consists entirely of matrix operations and therefore is run as a GEN-
ERAL. The subroutines do not require any working space so none have been dimensioned.
Furthermore, no reference, direct or indirect, is made to VARBL1, VARBL2, or OUTCAL,
and those operations blocks should be empty. Even though they may be empty or not
referred to, their blockheader and mnemonic END cards must still be entered.

There is no end to the variety of examples that could be generated. In reality, the
program user is actually programming, although it is comewhat disguised as data input.
However, the program does simplify the task of data logistics, and it automates data input
and output, construction of the PCS, loading the subroutine library, and other systems
features, thereby greatly lessening the programming knowledge which might otherwise be
required of a user.

A point well worth considering is proper initialization. All instructions contained in
the other three operations blocks are performed each iteration or on the output interval.
If an operation being performed in Variables 1 is utilizing and producing nonchanging
constants, it should be placed in the Execution block (prior to the network solution call) so
that it will be performed only once. Input arrays requiring postinterpolation multiplication

24

NRL REPORT 7656

for units conversion only could be prescaled, thereby deleting and multiplication process.
Complex functions of a single independent variable requiring several interpolation values
which are then combined in a multiplicative fashion can be precalculated vs the independ-
ent variable. Such a precalculated complex function reduces the amount of work per-
formed during the transient analysis. A great many operations of this type can be per-
formed in the Execution block prior to call for a transient analysis. Also, output operations
to be performed once the transient analysis is completed may be placed directly into the
Execution block following the transient network solution call.

Variables 1 Operations Block

The statement that this program solves nonlinear partial differential equations of the
diffusion type is not quite accurate. In reality the program only solves linear equations.
However, nonlinearities are evaluated at each computation interval and in this manner
generally yield acceptable answers to nonlinear problems. This method is more properly
termed quasilinearization. The Variables 1 operation block allows a point in the computa-
tional sequence at which the user can specify the evaluation of nonlinear network ele-
ments, coefficients, and boundary values (see Fig. 3). The CGS and CGD mnemonic
codes utilized for node and conductor data cause the construction of various subroutine
calls which are placed in this block by the CINDA preprocessor. The user must specify
any additional subroutine calls necessary to completely define the network prior to enter-
ing the network solution phase.

Prior to inclusion of the CGS and CGD mnemonic codes, the Variables 1 operations
block primarily consisted of linear interpolation subroutine calls input by the user for the
evaluation of temperature varying properties. While these linear interpolation calls are
automated through use of the CGS and CGD codes, it is up to the program user to
specify any required bivariate or trivariate interpolations or other functional evaluations
necessary. dJust prior to performing the Variables 1 operations, all network solution sub-
routines zero out all source locations. Therefore, the user is required to specify constant
as well as variable or nonlinear impressed sources in this block. A Variables 1 operations
block could be as follows:

1 8 12
\ Vool
BCD 3VARIABLES |
STFSEP(10.0,Q17) $CONSTANT IMPRESSED SOURCE
DIDEGI (TIMEM,A8,Q19) $TIME VARYING SOURCE

D2DIWM(TI8, TIMEN,A19,7.63,G18) $BIVARIATE FUNCTION
F TTEST=11.6
F IF (TIMEN.GT. 10.)TTEST =0.0
STFSEP(TTEST,Q27) $VARTABLE SOURCE
END

The first call above places a constant heating rate of 10.0 into the source location of
node 17. The second call causes a linear interpolation to be performed on array 8 using
mean time as the independent variable to obtain a time-varying heating rate for node 19.
The third call uses mean time and the temperature at node 18 as independent variables
to perform a bivariate interpolation. The interpolated answer is then multiplied by 7.63

25

MARY E. GEALY

and placed as the conductance value of conductor 18. The next two cards are FORTRAN
and allow a value of 11.6 to be placed into control constant TTEST until TIMEN exceeds
10.0, after which a value of 0.0 is placed into TTEST. This amounts to a single step in

a “staircase” function. The last card places the value from TTEST into the source loca-
tion for node 27. Another sample Variables 1 block might look as follows:

8 12

4 \

BCD 3VARIABLES | :
BLDARY(A12+1,T1,T7,T3,T4) $CONSTRUCT VECTOR
DIDEGI(T7,A19,A13+2) $ INTERPOLATION
IRRADE(A7,A13,A10,A12) $IR RADIOSITY EXPLICIT
BRKARY(A12+1,Q1,07,Q3,Q04) $DISTRIBUTE Q RATES
DIDIWM(TIMEM,A9,0.35,TTEST)

ADD(TTEST,Q1,Q1) $ADD TWO RATES

END

The first call causes the construction of an array of four temperature values necessary as
input to an infrared radiosity subroutine (third card). The second call causes the linear
interpolation of a temperature-varying property from array 19 to be placed into array

13 + 2 which is the second array argument for the radiosity call. This second argument
must be an array of surface emissivities for the surfaces under consideration; therefore
array 19 must be an array of temperature-varying emissivity. The BRKARY call takes
data values from array 12 + 1, 2, 3, and 4 and places them into the source locations for
nodes 1, 7, 3, and 4, respectively. The fifth call performs linear interpolation on array 9
using TIMEM as the independent variable, multiplies the result by 0.35 and places it in
control constant TTEST. This might be a time-varying solar heating rate where 0.35 is the
solar absorptivity. The ADD call adds this rate to what is already contained in the source
location for node 1. Each node has one and only one source location. If a user desires
to impress more than one heating rate on a node, he must sum the rates and supply the
value to the single source location available per node.

The Variables 1 operations block is the logical point in the network computational
sequence for the calculation of impressed sources whether they are due to internal dissi-
pation of power components, radiation depositation, aerodynamic heating, or orbital
heating. If a desired subroutine is not available, the user may always add his own; data
communication is obtained through subroutine arguments as in any other subroutine.

Variables 2 Operations Block

With regard to the network solution, the Variables 1 operations may be thought of
as presolution operations and the Variables 2 operations as postsolution operations. In
Variables 1 the network was completely defined with respect to nonlinear elements and
boundary conditions. Variables 2 allows the user to look at the network just solved. He
may meter and integrate flow rates, make corrections in order to account for material
phase changes, or compare answers just calculated with test data in order to derive em-
pirical relationships. A simple Variables 2 operations block might be as follows:

26

NRL REPORT 7656

8 12

\ \

BCD 3VARIABLES 2
QMETER(T1,T2,G1,K1)

$METER HEAT FLOW

QINTEG(K2,DTIMEU,K2) $INTEGRATE HEAT FLOW
RDTNQS(T5,T1,G8,K3) SMETER RADIATION FLOW
QINTEG(K3,DTIMEU,K4) SINTEGRATE RADIANT FLOW
ADD(K2,K4,K5)

END

The first call measures the heat flow from node 1 to node 2 through regular con-
ductor 1 and stores the result in constant location 1. The second call performs a simple
integration with respect to time and sums the result into constants location 2. The third
call measures heat flow through a radiation conductor which is then integrated by the
fourth call. The sum of the two integrations is obtained by the fifth call. Another Vari-
ables 2 operations block might be as follows:

8 12

\ \

BCD 3VARIABLES 2
ABLATS(A1,1.76,K8,A7,T15,C15) $ABLATIVE ON NODEISB

END

Phase change subroutines such as the above are unique in that they perform auto-
matic corrector operations. Node 15 has been solved by the network solution subroutine
as though no ablative existed. The ABLATS subroutine then corrects the temperature at
node 15 to account for the ablative material. It does this by calculating the average
heating rate to node 15 over the time step just performed and utilizes it as an inner-
surface boundary condition for the internally constructed one-dimensional network repre-
sentation of the ablative material. The correctness of this analytical approach can be
rigorously substantiated for use with explicit network solution subroutines. However,
when used with large time step implicit methods it yields a controlled instability and the
results may be questionable. It is up to the user to determine the solution accuracy by
whatever means available. A more complicated Variables 2 operations block could be
as follows:

1 5 8 12
Voo \
BCD 3VARIABLES 2

DIDEGI(TIMEN,A10,K8) SGET TEST TeMPERATURE

SUB(T8,K8, TTEST) SOBTAIN TEMP DIFFERENCE
F IF(TTEST.LE.2.0)GO TO 10

MLTPLY(G7,0.99,G7) $REDUCE CONDUCTANCE

5 STFSEP(-1.0,BACKUP) $SET BACKUP NON-ZERO

F GO TO 20
F 10 IF(TTEST.GE.-2.0) GO TO 15

MLTPLY(G7,1.01,G7) $INCREASE CUNDUCTANCE
F GO TG 5

15 QMETER(T8,T15,K9)
QINTEG(K9,DTIMEU,K10)
F 20 CONTINUE
END

27

MARY E. GEALY

~460

I8

)\ G7

T15

Fig. 4—Three-dimensional
network

This corresponds to a portion of a network such as shown in Fig. 4.

Array 10 is a time-temperature test history of node 8, and node 15 is a known
boundary reference temperature. The problem is to calculate the value of conductor 7
which will yield a calculated temperature at node 8 that is within 2.0 degrees of the test
history. The above Variables 2 operations will attempt to modify conductor 7 so that it
will meet the constraints on temperature 8. It is quite “‘brute force” and unsophisticated.
However, the corrector operations are at the discretion of the user. If the tolerances
were too severe or the correction operations too strong, the correction for one tolerance
could lead to dissatisfaction of the other and an impasse result. If the reference tempera-
ture at node 15 were incorrect, possibly no value of conductor 7 would satisfy the con-
straints. The end result of such a study would be to produce a plot of conductance 7 vs
time which could be used to derive an empirical relationship with other parameters. Too
wide a tolerance would cause the plot to resemble a staircase function. Please note that
either condition being unsatisfied causes control constant BACKUP to be nonzero and
the iteration to be redone with the corrected conductor 7 value. Only when all criteria
are met are the metering and integration operations performed.

Output Calls Operations Block

This operations block could have been entitled Variables 3 but Output Calls seemed
more appropriate. In it a user may call upon any desired subroutine. However, its con-
tents are performed on the output interval (see Fig. 3), so it is only logical that it would
primarily contain instructions for outputting information. There is a variety of output
subroutines offering the user several format options. A very simple Output Calls block
would be as follows:

8 12
) s
BCD 30UTPUT CALLS
PRNTMP
END
The above call will output certain time control information and the temperature of every

node in the network under consideration. The node temperatures will correspond to the
relative node numbers set up by the preprocessor, not the actual node numbers set by

28

NRL REPORT 7656

the user. The preprocessor lists out all of the input data. Immediately after the
input node data a dictionary of relative node numbers vs actual node numbers is
listed. By utilizing it a user can correlate the relative node temperatures with his
actual numbers.

The Output Calls will be performed at problem start time and on the output inter-
val until problem stop time is reached. For example, a 100-min transient analysis
with an output interval of 5 min would cause the Output Calls operations to be per-
formed 21 times.

The above data and operations blocks constitute a problem data deck which must be
terminated by the following card:

8 12
+ \
BCD 3END OF DATA

Parameter Runs

Parametric analyses which do not involve network of operations changes to the
original problem may be performed on the same computer run. Only data values such
as output page heading, temperatures, capacitances, conductances, constants, and arrays
may be changed. The data change blocks must all be specified whether changes occur
in the block or not, and the data input is identical to the preceding discussion with the
exception-of conductors. When specifying new conductances, the adjoining node infor-
mation is deleted; only the conductor number and value are required. The only mnemon-
ics allowed are the three blanks and BCD. When changing an array, the entire new array
must be entered and be exactly the length of its original. No new arrays or numbered
constants may be defined.

Two parametric run options are available, INITIAL and/or FINAL, and they may
be used several times within the problem data deck. The problem data deck as initially
entered is referred to as the original problem. Any and all INITIAL parameter runs refer
to it exactly as it was put in. The FINAL parameter run refers to the problem just com-
pleted exactly as terminated. When two INITIAL parameter runs are attached to the end
of a problem data deck, they both refer to the original problem at start time. However,
when two FINAL parameter runs are attached to the end of a problem data deck, the
first refers to the original as terminated, and the second refers to the first FINAL param-
eter run as completed. The CINDA control cards necessary to specify a parameter run
are as follows: -

29

MARY E. GEALY

8 12

\ V

BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

END

BCD 3NGDE DATA

END

BCD 3CONDUCTOR DATA

END

BCD 3CUONSTANTS DATA

END

BCD 3ARRAY DATA

END

The parameter run decks are inserted in the problem data deck immediately preceding the
BCD 3END OF DATA card. After the BCD parameter card, the user may insert addi-
tional BCD data to replace the original problem output page heading. Parameter runs
conserve machine time mainly because the PCS does not have to be reformed. If a user
desires, he may accomplish FINAL parameter runs by calling the network execution sub-
routine twice in the Execution block and inserting the necessary calls to modify data val-
ues between them.

Store and Recall Problem Options

The purpose of the store and recall options is to provide the user with the means to
interrupt his program at any point, store the current data values on tape, and continue
processing. While the parameter run capability is useful for performing parametric analy-
ses in the same run, the store and recall capability allows an indefinite time lapse between
parametric analyses. In addition, long duration problems may be broken into several
short duration runs. If a parametric analysis is such that the first portion of the runs are
identical, then the problem can be run for the constant portion, stored and then recalled
as many times as necessary.

The store problem feature is achieved by a user initiated subroutine call which is
as follows:

12
\
STOREP (KX)

where KX refers to a constant location containing an alphanumeric identification name
for the stored problem. The call may be used as many times as desired, but each activa-
tion must reference a unique name. To allow the STOREP call to be placed in a loop,
the programmer must use the control constant IDCNT. By incrementing this constant
within the loop (not to exceed 999), a unique combination of KX and IDCNT will be
available to identify the problem.

The recall problem feature is a CINDA preprocessor option, which is activated by
the following card:

30

NRL REPORT 7656

1 13 22
J/ \ ¥
RECALL AAAAAA NNN

where AAAAAA is the alphanumeric identification name of the stored problem, and NNN
is the integer IDCNT. (If IDCNT was not used with STOREP, NNN = 0). This single
card replaces the blank card preceding the problem data deck and must be followed by a
BCD 3INITIAL PARAMETERS data deck. The stored problem identified will be searched
for and brought into core from the two storage tapes. Any data changes specified will be
performed and the control is passed to the first subroutine call in the EXECUTION block.

The problem is stored on logical unit 22 and recalled from unit 21; the processor
(tape 40) must be saved in a store run and remounted on a recall run. The user must
remember that the recalled problem contains the STOREP call. Because of this feature,
the user has the option whether or not to store the problem again. Logical unit 22 is
equipped depending on this option. Section VII should be consulted for details concern-
ing deck setups, tape usage, and Job Request forms.

Data Printing Option

At times, the user may wish to see what is being stored on the data tapes during
preprocessing (i.e., LUT1, LUT2, LUT3, LUT4, and LB3D). A printout will occur if an
asterisk is put in column 80 of the first BCD card (the GENERAL, THERMAL, INITIAL
PARAMETERS, or FINAL PARAMETERS card). After each block of the problem deck
is printed, there will be a listing of the appropriate data (most of which will be binary).

IV. ERROR MESSAGES

Due to the variety of subroutines available and the variable number of arguments
which some of them have, no check is made to determine if a subroutine call has the cor-
rect number of arguments. An incorrect number of arguments on a subroutine call will
generally cause job termination immediately after successful compilation, usually without
any error message. If the above occurs, the user should closely check the number of ar-
guments for his subroutine calls.

Numerous error messages can be put out by the preprocessor. These error messages
are listed below and are grouped according to various preprocessor functions. All error
messages are preceded by three asterisks, which have been deleted below. Self-explanatory
messages are not enlarged upon.

Processing Data Blocks—

DATA BL@CKS IN IMPR@PER @RDER QR ILLEGAL BLO®CK
DESIGNATI@®N ENCOUNTERED.
AN IMBEDDED BLANK HAS BEEN ENCQUNTERED IN THE LAST LINE.

BLANK C@QUNT QF 10 HAS BEEN EXCEEDED.

31

MARY E. GEALY

INTEGER FIELD EXCEEDS 10.

REAL NUMBER FIELD EXCEEDS 20.

ALPHAMERIC FIELD EXCEEDS 6.

MULTIPLE DECIMAL P@QINTS HAVE BEEN ENCQUNTERED.

N@DES MUST BE @RDERED - DIFFUSI@N, ARITHMETIC, BOUNDARY.
CONDUCT@RS MUST BE @RDERED - REGULAR, RADIATI@N.

N@DE NUMBER, XXXXX, IS THE DUPLICATE @F THE XXXXXTH N@DE.

CONDUCT@R NUMBER, XXXXX, IS THE DUPLICATE @F THE XXXXXTH
CONDUCTQR.

CONSTANT NUMBER, XXXXX, IS THE DUPLICATE @F THE XXXXXTH
CONSTANT.

ARRAY NUMBER, XXXXX, IS THE DUPLICATE @QF THE XXXXXTH ARRAY.
FIXED CONSTANT NAME NQT IN LIST.
NUMBER @F GEN ARGUMENTS, XXX, EXCEEDS NUMBER REQUIRED.

STO@RAGE ALLOTTED F@R THIS DATA BL@CK HAS BEEN EXCEEDED.
PR@CESSING WILL RESUME WITH THE NEXT DATA BL@CK.

Forming PCS—

N@DE, XXXXX, HAS N® MATCH IN THE NA-NB PAIRS.

ADJQINING N@DE, XXXXX, @F NA-NB PAIR HAS N® MATCH IN THE N@DAL
BLOCK, CONDUCTOR IS N@., XXXXX

Processing Program Blocks—
EXECUTI®QN BLOCKS IN IMPR@PER @RDER @R ILLEGAL BLO@CK
DESIGNATI@N ENC@UNTERED.

Explanation: Some alpha character other than K or A has been used to reference a
data block. In a thermal problem a designator other than G, K, or A
is assumed to be referencing the nodal block.

MISSING N@DE NUMBER, XXXXX.

MISSING CONDUCT@R NUMBER, XXXXX.

MISSING CONSTANT NUMBER, XXXXX.

MISSING ARRAY NUMBER, XXXXX.

FIXED CONSTANT NAME, AAAAA, N@T IN LIST.

32

NRL REPORT 7656

NUMBER @F SUBR@UTINES REQUESTED EXCEEDS 75.

Explanation: More than 75 unique subroutines have been called.

Processing Parameter Changes—The first five parameter change error messages are
prefaced with the words: PARAMETER CHANGE ERRQR.

N@DE NUMBER, XXXXX, WAS N@T DEFINED IN THE @RIGINAL PROBLEM.

CONDUCT@R NUMBER, XXXXX, WAS N@T DEFINED IN THE @RIGINAL
PROBLEM.

CONSTANT NUMBER, XXXXX, WAS N@T DEFINED IN THE QRIGINAL
PROBLEM.

ARRAY NUMBER, XXXXX, WAS N@T DEFINED IN THE @RIGINAL PROBLEM.
CONSTANTS BLOCK WAS EMPTY IN THE @RIGINAL PR@BLEM.

ARRAY BL@OCK WAS EMPTY IN THE @RIGINAL PROBLEM.

ARRAY NUMBER XXXXX - DIMENSI@NS NPT EQUAL. @RIGINAL,

XXXXX, CHANGE, XXXXX.
Terminations Due to Errors (no preceding asterisks)—

THE ABOVE PARAMETER CHANGE WILL N@T BE EXECUTED.
ERROR TERMINATIQN - LOADING IS SUPPRESSED.

V. OPERATING SYSTEM DESCRIPTION
General

The CDC-3800 (FORTRAN 1V) version of CINDA exists logically as a preprocessor,
processor, and library. The operational continuity of these portions is made possible by

the CDC Drum SCOPE system (see Fig. 5).

The function of the preprocessor is to operate on a user-supplied problem and pro-
duce the following items.

1. Processor Main Program—This small routine acts primarily as a communications
link in providing addressing relationships between the operational user program and user
data.

2. User Program—These FORTRAN source subroutines are operational equivalents
of the user’ Execution, Variables 1 and 2, and Qutput Calls blocks.

3. User Data—Binary data generated consists of definitions of parameters referenced
in the various user data blocks and their corresponding values.

33

MARY E. GEALY

PROBLEM
. STORED
PROBLEM DATA DECK

PREPROCESSOR
|
|
. | OPERA- 3
N DATA 1 Ti0NS 1
BLOCKS | gj ocks
, GENERATED
3 FORTRAN
BINARY SUBROUTINE
DATA W ON DRUM UNIT
ON DRUM
UNIT FORTRAN |, N2
COMPILER [€
, CINDA
< LIBRARY
, / BINARY
< DECKS (if any)
4
A 4
< ?| PROCESSPR |
d STORED 1. STORED
-1 PROBLEM
PUNCHED PRINTED OUTPUT 2 PLOTTING
CARDS OUTPUT DATA

Fig. 5—Flow of CINDA operating system

34

NRL REPORT 7656

The preprocessor and appropriate use of the CDC-3800 system control cards allows con-
struction of the above from tape when the RECALL option is utilized.

The processor performs reading of the user data values prepared previously and calls
the user program (i.e., Execution block).

The CINDA library contains a large number of various types of subprograms to ac-
complish most user requirements. Drum SCOPE’s LIBEDIT provides simple, flexible
methods for the maintenance of this library. In addition, it is not necessary that a sub-
routine be updated to the library prior to availability in the user problem.

Preprocessor

Operation of the Preprocessing Phase.—(See Fig. 6 for flowchart.) The main pro-
gram PREPRO accomplishes the initialization of data values and tape units and defines
the order of processing by calling seven subroutines.

1. If the problem being processed is a RECALL problem, subroutine SPLIT is
called to read the recalled problem data and number definitions from the input tape and
write these on the appropriate work tape. SPLIT calls SKIP if the input tape is not posi-
tioned at the problem being recalled (see Store and Recall Problems Options).

2. CODERD reads the title block and the block title cards. It then calls DATARD,
which reads the free-form data cards in the four (or two, if General Problem) data blocks
and any parameter change data. Each card is read, a format is constructed for it, and
then it is reread. The data from each block are written on the data tape as one record.
The number definitions of the data and the NA-NB pairs are written on work tapes.

3. PSEUDO reads the node number definitions and NA-NB pairs from work tape.
The PCS (long or short) is constructed, packed by PACK43 and flagged by ORMIN, and
written on the data tape. PACK43 and ORMIN call BIT, a COMPASS packing and un-

packing routine.

4. GENLNK constructs the main program of the processor (LINKO), including
COMMON and DIMENSION information. BLKCRD and STFFB are called upon to fill
an array with FORTRAN source code, which is then written onto logical unit LB4P by
WRTBLK. WRTSCOPE writes SCOPE at the end of LB4P after completion of the other
four subroutines (EXECTN, VARBL1, VARBLZ2, and OUTCAL).

5. PRESUB reads the title cards of the four program blocks and initiates the con-
struction of each new subroutine. CINDA4 converts the CINDA “‘calls” in the program
blocks into FORTRAN subroutine calls. Data referenced by input number definition is
changed to refer to its relative location in COMMON data arrays.

6. INITAL combines the original set of the data and the nitial parameter changes
and writes the updated set of data on the data tape.

35

MARY E. GEALY

‘L€ ‘gg soded ‘9x9) ay) ui sydeafesed patequinu
Aj8urpuodser1od 01 19)ax seserjjuated ul sisquin (QUIHUJ weido1g) 1ossadoidead YANID JO mo(d—9 "Sid

aggi sun
oluo wajqosd
pabueyd aiip

IVILING

é

gegn wun

unJ
ojuo sabueya JerWwesed
J8)aweled M YoIym

Iomwosu

yo0iq abueyd
Jslawesed
$58004d

Mo0)q s)e9 ind
FInQ ay1 Bumo)|oy,
pled sy} peay

aNns34dd
OLND T19HVA
L19YVYA 'NLO3IX3
sauinoigns

UL

dvg7 uun ojuo
uallum ase
S3UIIN0J 983y]

elep uns
1319Wweley

O

ANINID

dt81 un ojuo

OXNIT
UM S| weaboad
aunnos sy ajesauan

oan3sd

aouanbas
aindwod
-opnasd woy

AYWHIHL

Jws|qoud jo
adA1 1eym

YH3INGD

/ H@GHYIDSD \

agg1 vun ‘papd

Jossaooud
01 Indur aq {Im

w02 aq o1 Apeas
s db87 Hun

IVoLNG
‘T salqelsen ‘|
$3jQelIEA UOHNDEXT
$¥00|g suonesad

341

$320]q elep
$53204d

wa|qo.d
Tvo3d

qgo!
Aeuiwia]

¢
Buissaoosdasd

uj sjoss3

AVLING

ggg7 1un ouo
{sabueyo yum)
wajqoud s11um

a43ae

%I0|9
sJalsweley
u| $5350.d

elep
SHIL3IWVHVY
AVILING

|¢ ader
woij waqoid
paios peay

Qg8 uun uo
Aleuiq uj
ualllIMm eleq

-3NPUoY ‘apoN

elep Aesse pue
‘Sjuejsuoo ‘1ol

pieo
elep
s peay

(1}

S}UN wnip
pummal
pue auljag

36

NRL REPORT 7656

7. FINAL converts final parameter change data (number definitions and values) to
relative array locations and values and writes number-value records on the data tape.

VI. EXTERNAL PLOTTING PACKAGE

CINDA'’s plot package, for use on the CALCOMP plotter, is an external program that
will plot a graph of time vs temperature for each problem node. The input to this pro-
gram is an output file (unit 24) generated by TSAVE during a previous CINDA problem
run. The program can be run separately from the CINDA problem using the tape from
TSAVE as input, or it can be placed behind the CINDA problem in a single run. In the
latter case, unit 24 may be either a drum unit or a tape equipped for later use.

The package, available as a binary deck, consists of three routines. The main pro-
gram, PLOTTEMP, calls PLOTPREP, which rearranges the data from the input tape and
writes it on unit 25. Unit 25 contains the actual node numbers, the time array, and the
temperature profile for each node. PLOTTEMP then reads a set of data cards which give
the plot heading, X- and Y-axis limits, and nodes to be plotted. The temperature array .
for each node is read, and if the node is to be plotted, PLOTT is called, which in turn
activates CALCOMP routines. A separate set of axes is drawn for each node. When all
temperatures have been read, the tape is rewound and a new set of data (if any) is read.

Data Set
A data set consists of at least three cards.
*CARD 1—TITLE
Columns 1—40 will be used as the plot heading.
*CARD 2—AXIS LIMITS and TEMPERATURE SCALE OPTION
Four floating-point values must be entered in an E9.2 format. The minimum
and maximum times (X-axis) must be in fields 4~12 and 14-22, respectively; the mini-
mum and maximum temperatures (Y-axis) must be in fields 24-32 and 34-42, respectively.
Column 43 contains the temperature scale option. A blank indicates that the data will be
plotted in Fahrenheit temperatures, and a 1 specifies Centigrade.
4 12 ‘ 22 32 43
' I ' 0 | '
NNNNNN.NN NNNNNN.NN NNNNNN.NN NNNNNN. NN
(TIMEMIN) (TIMEMAX) (TEMPMIN) (TEMPMAX) (Centigrade scale)
*CARD 3—NODES and OPTION

Options:

Plot all nodes—card is blank.
Plot certain nodes—column 1 contains a $; nodes are listed.

37

MARY E. GEALY

Plot all but certain nodes—column 1 contains any character but * or $;
nodes are listed.

The nodes may be listed individually or in inclusive pairs. Each node must be fol-
lowed by a comma except for the inclusive pair, which must be separated by a blank in-
stead of a comma. (The second node of the pair must be followed by a comma, how-
ever.) An asterisk (*), instead of a comma, must follow the last node.

The node numbers must be in 14 format, right adjusted to columns 5, 10, 15, . . .,
80. The commas or separating blanks go in columns 6, 11, 16, . . ., 76. Data may be
continued to a following card by putting a comma or blank in column 1 of that card.
Data cards will be read until an asterisk is encountered (limit of nine cards).

Examples

1. 1 5 10 15 20
ol \ \ \
$ 10, 15, 25 30%

Plot nodes 10, 15, 25, 26, 27, 28, 29, 30. (Pairs must be in ascending order;
otherwise, order of magnitude isn’t important.)

2. 1 5 10 15 20 25
\: 1 \ ¥ v \
+ 5 8, 10 12, 15%
Plot all nodes but 5, 8, 10, 11, 12, 15.
3. 1 5 10 15 2 75 80
{ 1 { \: { \ \
(Card 1) $1050,1060 1062410704 « oo vrvniniiniiinennennnnn 2000, 2005

(Card 2) 2007,2012%

Plot 1050,1060,1061,1062,1070, ... ,2000,‘2005,2006,2007,2012.
(A comma in column 1 of card 2 would exclude node 2006.)

4. 1 5 1 I 5 80

{ \’ \ \’ {

(Card 1) 4 30y 25 28, tveemeenennean it aanaraneaeas 100
(Card 2) *

Plot all but nodes 30, 25, 26, 27, 28, ..., 100.
Another set of data may follow the last node card, thus enabling the programmer to

redefine the title and limits and to plot different nodes. Any number of data sets may
be used.

38

NRL REPORT 7656

Diagnostics

Messages that may be encountered while plotting are listed below. The first two will
not cause job termination. \

1.

4% SOME NODES T@® BE PLOTTED WERE N@T FOQUND @N INPUT TAPE,
@R WERE DUPLICATED @N N@DE CARD. *#*

N@DES @N INPUT TAPE —
(listing of nodes)

N@DES T® BE PLOTTED—
(listing of nodes)

Cause: The number of nodes to be plotted is larger than the number of nodes
actually plotted.

IN FOLLOWING N@DE CARD, AN INCLUSIVE PAIR @F NODES IS
FOLLOWED BY A BLANK—A C@MMA IS ASSUMED AND PR@CESSING
IS C@NTINUED.

#xk5%% WRONG FORMAT USED @N FOLLOWING N@DE CARD—
PROCESS NEXT SET @F DATA, IF ANY.

Cause: A character other than a comma, blank, or asterisk has been found in a
column intended for those characters only.

This error terminates the processing of a current data set, and processing con-
tinues to the next set if there is one. (Most data format errors will cause job
termination by the system.)

VII. TAPE USAGE AND DECK SETUPS

This section shows deck setups and tape usage for various types of runs on the 3800
Drum SCOPE system.

CINDA Operating System

Table 1 lists the program and data files used in the preprocessor, processor, and

library.

Units 15, 17, 18, 19, and 27 are preprocessing units only and are available as scratch
units during processing. Units 16, 21, 22, 24, 30, 33, and 40 can also be used for that
purpose if the corresponding options are not activated.

39

MARY E. GEALY

Table 1
CINDA Tape Usage
Logical Program .
Unit Variable Function
*9 - CINDA Master tape; (file 1 contains preproc-
essor, file 2 contains Library).
12 LB3D Data tape (original problem and all parameter
changes).
14 LB4P Program tape (contains generated FORTRAN
routines LINKO, EXECTN, VARBL1,
VARBLZ2, OUTCAL).
15 LUT7 Variables 1 calls generated from node and
conductor data blocks.
*%*16 — Matrix retrieval unit in library.
17 NA-NB pairs; data number definitions.
(From parameter changes.)
18 LUT3 Copy of original problem data.
19 LUT4 Parameter Change data.
20 LUT1 Data number definitions.
*%21 - Problem recall data tape.
%29 — Problem store data tape.
*%24 - Output from TSAVE.
27 INTERN Data conversion scratch tape.
*%30 KRR FORTRAN reread unit in preprocessor.
Matrix storage unit in library.
33 — Scratch unit in STOREP.
*%4(— Binary program tape (processor) used with
store and recall options.

*Equipped units.
**Equipped units depending on options. Matrix storage and retrieval requires equipping tapes 16 and 30.
The STOREP option requires equipping tapes 40 and 22; the RECALL option requires 40 and 21 (and
22 if desired).

General deck structures for different kinds of CINDA runs are shown below. The
character A denotes a 7 and 9 punch in the column, and a A is for an 11(-), 0, 7, 9
punch. The number enclosed in parentheses in the job card (e.g., 5) may have to be in-
creased if several tapes are used. The current label for tape unit 9 is CINDA MASTER,
1,1,999. The other tapes may be unlabeled. Corresponding job request forms are found
in Fig. 7.

40

NRL REPORT 7656

N

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NDW-NRL-10462/ 6006 (5-66)

1BM B45077

(a) Not RECALL (ordinary run)

MAGNETIC TAPES

LOGICAL
UNIT #

TAPE
SERTAL NO.

CINDA

INPUT OUTPUT

9 XA O X mesrer
O O O
4o X [0 X %
R I o O o R
L X O X

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS

NDW-NRL-10462/6006 (5-66)
1BM B45077

(c) RECALL

P
MAGNETIC TAPES MAGNETIC TAPES
LOGICAL TAPE LOGICAL TAPE
UNIT # INPUT OUTPUT SAVE SERIAL NO. UNIT # INPUT ouTPUT SAVE SERIAL NO
CINDR CINDA
_2 [] MASTER Z (] X nasrer
R T R B _ O O O .
O O O 40 [£aoe
O oo __| (——0 OO0
Stored
L1 O O 22 [] Proplem

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS

NDW-NRL-10462/ 6006 (5-66)
1BM B45077

(b) Not RECALL (STOREP run)

MAGNETIC TAPES ‘
LOGICAL TAPE
UNIT # INPUT QUTPUT SAVE SERIAL NO.
CINDA

_ 2 XI O X rasrer
700~

Yo X O X 4%
o Slored

2/ D gfoéém
m.

22 [X A
SEE REVERSE SIDE FOR ADDITIO(NAL)INSTRUC.TIONS
NDW=NRL=-10462/6006 (5-66

18M B45077

(d) RECALL (Re-store new problem)

Fig. 7—Job Request forms (magnetic tape portions)

41

MARY E. GEALY

EQF
GRUN, t, ¢

JLOAD

oFTN, 1=14, L, X

sLIBRARY, 9, LCINDA

BCD 3 END @QF DATA

PROBLEM
DATA
DECK

(blank card)
SRUN, t, ¢
JLOAD, 9

JBANK, (0), /4/

sEQUIP,9=... RQ .

$4@B (5), ...

Fig. 8—Ordinary CINDA run

42

NRL REPORT 7656

Not RECALL (Ordinary Run)—(See Fig. 8.)

AJDB(5),...

AEQUIP, 9= (label), R@,HI, DA
ABANK, (0),/4/

ALPAD,9

ARUN,t,2

blank card

problem data deck through BCD 3END @F DATA

ALIBRARY,9,LCINDA
AFTN,I=14,L,X
AL@AD

binary decks, if any

ARUN,t,2
EQF

Not RECALL (STOREP run)

AJPB(5),...

AEQUIP, 9= (label), R@,HI,DA
AEQUIP,40=(label), RW,HI, DA
AEQUIP, 22= (label), W@, HI, DA
ABANK,(0),/4/

ALPAD, 9

ARUN,t,1

blank card

problem data deck through BCD 3END @F DATA (includes at least one call to
STOREP)

ALIBRARY,9,LCINDA
AFTN,1=14,L,X=40
AL@AD,40

binary decks, if any

ARUN,t,%
EQF

43

MARY E. GEALY
RECALL

AJOPB(5), . ..

AEQUIP,9=(label),R®,HI,DA

AEQUIP,40=(label),R@HI, DA
- AEQUIP,21=(label),RQ,HI,DA
*AEQUIP,22=(label),W®,HI,DA

ABANK,(0),/4/

ALPAD,9

ARUN,t,2

RECALL Card

INITIAL PARAMETERS blocks and BCD 3END @F DATA

ALIBRARY,9,LCINDA
AL®AD,40

binary decks if any

ARUN,t,2
EQF

For any other options using tapes, the tapes should be equipped as those shown
above, using the appropriate logical unit number and label. The user must also designate
whether the tape is read only (R@), only written on, (W@), or both (RW). In the latter
case, if the tape is written on first, the output block of the job request form is checked.
If the tape is read, then written on, both the input and output blocks should be checked.
(Check the Drum SCOPE manual for more details.)

Plot Package

Table 2 lists the files used in the plot packages.

*Optional—used only if problem is to be restored.

44

NRL REPORT 7656

Table 2
Logical Unit Function
10 Plotting unit
24 Output from TSAVE;

Input to PLOTPREP

25 Output from PLOTPREP;
Input to PLOTT

NOTE: Units 25 and 10 are drum units. Unit 24 is usually a tape,
but can also be a drum unit if the plotting run follows the CINDA
run in the same job.

Below are sample deck sets showing a CINDA run that generates the TSAVE tape,
and a plotting run that uses the TSAVE tape as input. Figure 9 shows a job request
form for the plotting run. Figure 10 displays the deck setup for a combined CINDA and
plotting run.

Not RECALL (Generate TSAVE tape)

AIDB(5),...
AEQUIP,9=(label),R@ HI,DA
AEQUIP,24=(label),WQ® , HI,DA
ABANK,(0),/4/

AL@PAD,9

ARUN,t,£

blank card

problem data deck through BCD 3END @F DATA (includes a call to TSAVE
in Output Calls)

ALIBRARY,9,LCINDA
AFTN,I=14,L.X
ALPAD

binary decks, if any

ARUN,t,2
EQF

45

MARY E. GEALY

|

— e ——""(IDENTIF ICATION)

MAXIMUM TIME THIS JOB 5
TOTAL # OF PRINT LINES 35'00

MIN

ON RUN CARDS LINES
PUNCHED CARD OUTPUT [X
PAPER TAPE OUTPUT: APPROX. LENGTH FT.

PLOTTER OQUTPUT: CHART PAPER #

0o .
NUMBER OF PLOTS_LAPPROX LENGTH . 77 & qXJ

PAPER TAPE INPUT

TAPE LABELS

MAGNETIC TAPES

LOGICAL TAPE
UNIT # INPUT OUTPUT SERIAL NO.

29 5

w
>
<
m

HINIRIm

UODODOX
HINININ

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NDW=N®L-10462/6006 (5-66)

K IBM B45077

Fig. 9—Sample Job Request form for plot run

Plotting Run
N@B,....
AEQUIP,24=(label), RO, HIL,.DA

' PLOTTEMP
bmary deck< PLOTPREP

PLOTT
ARUN,,1

plotting data

EQF

46

NRL REPORT 7656

[E(DF

DATA

7
JRUN, t, ¢

binary
PLOQTTEMP

PLQTPREP
PLOTT

= CINDA deck
9BANK ... with all
9 control cards
BEQUlP,24= .. RW... A
GEQUIP,9=... RO ... N
~
7
oJ@B (5), ... \ \TSAVE tape; card

needed only if tape

\ is to be saved

CINDA MASTER tape

Fig. 10—Combined TSAVE and plot run

47

MARY E. GEALY

VIII. ALPHABETIC LISTING OF AVAILABLE SUBROUTINES

Name

AABB
ABLATS
ACSARY
ADARIN
ADD
ADDALP
ADDARY
ADDFIX
ADDINV
ALPHAA
ARCCOS
ARCSIN
ARCTAN
ARINDV
ARYADD
ARYDIV
ARYEXP
ARYINV
ARYMNS
ARYMPY
ARYPLS
ARYSTQ
ARYSUB
ASNARY
ASSMBL
ATNARY
BIT
BIVLV
BKARAD
BLDARY
BRKARY
BTAB
BVSPDA
BVSPSA
CALL
CDIVI
CINCQS
CINDSL
CINDSM
CINDSS
CINSIN
CINTAN
CMPXDV
CMPXMP
CMPXSR

Page

Name

CMPYI
CNBACK
CNEXPN
CNFAST
CNFRWD
CNFWBK
COLMAX
COLMIN
CQOLMLT
COPY
CPSARY
CSGDMP
CSQRI
CVQ1HT
CVQl1wM
DA11CY
DA11IMC
DA12CY
DA12MC
DIAG
DISAS
DIVARY
DIVFIX
DIVIDE
D1DEG1
D1DEG2
D1DG1I
D1D1DA
D1D1IM
D1D1MI
D1D1WM
D1D2DA
D1D2WM
DIMDG1
D1MDG2
DIM1DA
D1IM1MD
DIM1WM
D1IM2DA
D1M2MD
D1IM2WM
D11CYI
D11DAI
D11DIM
D11IMCY

48

Page

Name

D11MDA
D11MDI
D12CYL
D12MCY
D12MDA
D2DEG1
D2DEG2
D2D1WM
D2D2WM
D2MXD1
D2MXD2
D2MX1M
D2MX2M
D3DEG1
D3D1IWM
EFACS
EFASN
EFATN
EFCQS
EFEXP
EFFEMS
EFFG
EFLOG
EFPOW
EFSIN
EFSQR
EFTAN
ELEADD
ELEDIV
ELEINV
ELEMUL
ELESUB
ENDMQ@P
EQF
EXPARY
EXPNTL
FILE

FIX

FLIP
FLOAT
GENALP
GENARY
GENCOQL
GENM
GENST

Page

Name

GSLQPE
HEDCOL
INPUTG
INPUTT
INTRFC
INVRSE
IRRADE
IRRADI
ITRATE
JAC@BI
JOIN
LAGRAN
LGRNDA
LINE
LIST
LOGE
LOGEAR
LOGT
LOGTAR
LQDVAP
LSTAPE
LSTPCS
LSTSQU
MASS
MATRIX
MAXDAR
MLTPLY
M@DES
MPYARY
MPYFIX
MULT
MXDRAL
NEWRT4
NEWTRT
@NES
PLYARY
PLYEVL
PLYNML
PNTABL
POLMLT
POLSOV
POLVAL
P@LYADD
PRESS

Page

NRL REPORT 7656

Name

PRINT
PRINTA
PRINTL
PRNTMA
PRNTMP
PSINTR
PSNTWM
PS@FTS
PUNCH
PUNCHA
PYMLT1
QFPRCE
QINTEG
QINTGI
QMAP
QMETER
QMTRI
RDTNQS
READ
REFLCT
REWIND
ROWMLT
RTPQLY
SCALAR
SCALE
SCLDEP
SCLIND
SCRPFA
SETMNS
SETPLS
SETUP
SHFTV
SHFTVR
SHIFT
SHUFL
SIGMA
SIMEQN
SINARY
SKPLIN
SLDARD
SLDARY
SLRADE
SLRADI
SM@PAS

49

Page

Name

SMPINT
SPLIT
SPREAD
SPRESS
SQROPT
SQROTI
STATE
STFSEP
STFSEQ
STFSQS
STIFF
STNDRD
STPARY
STOREP
SUB
SUBARY
SUBFIX
SUMARY
SYMINV
SYMLST
TANARY
TOPLIN
TPRINT
TRANS
TRNPRT
TRPZDA
TRPZD
TSAVE
TSQFP
UNPAK
UPDMQP
UNITY
VARCCM
VARCSM
VARC1
VARC2
VARGCM
VARGSM
VARG1
VARG2
WRITE
WRTARY
WRTLOS8
ZERQ

Page

MARY E. GEALY

Execution Subroutines

Name Page
CINDSS (Steady state, block iteration)
CINDSL (Steady state, accelerated)
CINDSM (Steady state, radiation dominated)
CNFRWD (Explicit forward differencing)
CNFAST (Accelerated forward differencing)
CNEXPN (Explicit exponential prediction)

CNFWBK (Implicit forward-backward differencing)
CNBACK (Implicit backward differencing)

Execution Subroutine CINDSS

Purpose—This subroutine ignores the capacitance values of diffusion nodes to calcu-
late the network steady state solution. Due to the SPCS requirement, diffusion nodes are
solved by a “block” iterative method. However, if all diffusion nodes were specified as
arithmetic nodes they would be calculated by a successive point iterative method. The
user is required to specify the maximum number of iterations to be performed in attempt-
ing to reach the steady state solution (control constant NLOOP) and the relaxation cri-
terion which determines when it has been reached (DRLXCA for diffusion nodes and/or
ARLXCA for arithmetic nodes). The subroutine will continue to iterate until one of the
above criteria is met. If the iteration count exceeds NLOOP, an appropriate message is
printed. Variables 1 and Output Calls are performed at the start and Variables 2 and Out-
put Calls are performed upon completion. If not specified, control constants DAMPD and
DAMPA are set at 1.0. They are used as multipliers times the new temperatures, whereas
1.0 minus their value is used as multipliers times the old temperatures in order to ‘“‘weight”
the returned answer. This weighting of so much new and so much old is useful for damp-
ing oscillations due to nonlinearities. They may also be used to achieve overrelaxation.

If a series of steady state solutions at various times is desired it can be accomplished
by specifying control constants TIMEND and OUTPUT. OUTPUT will be used both as
the output interval and the computation interval. In this case appropriate calls would
have to be made in Variables 1 to modify boundary conditions with time,

If desired, the CINDSS call can be followed by a call to one of the transient solution
subroutines which has the same SPCS requirement. In this manner the steady state solu-
tion becomes the initial conditions for the transient analysis. However, since CINDSS
utilizes control constants TIMEND and OUTPUT the user must specify their values in the
execution block after the steady state call and prior to the transient analysis call.

Restrictions—The SPCS option is required. Diffusion nodes receive a ‘“block” itera-
tion, while arithmetic nodes receive a successive point iteration; no acceleration features
are utilized. Control constants NLOOP and DRLXCA and/or ARLXCA must be speci-
fied. Successive steady state solutions can be obtained by specifying control constants

50

NRL REPORT 7656

TIMEND and OUTPUT. Other control constants which are activated or used are
LOOPCT, DRLXCC and/or ARLXCC, TIMEN, TIMEM, TIMEO, DAMPD, DAMPA,
DTIMEU, LINECT, and PAGECT. Control constant OPEITR is checked for output each
iteration.

Calling Sequence—CINDSS — This subroutine utilizes one dynamic storage core loca-
tion for each diffusion node.

Execution Subroutine CINDSL

Purpose—This subroutine ignores the capacitance values of diffusion nodes to calcu-
late the network steady state solution. Since this subroutine has the LPCS requirement,
both diffusion and arithmetic nodes receive a successive point iteration. In addition, each
third iteration a linear extrapolation is performed on the error function plot of each node
in an attempt to accelerate convergence. The user is required to specify the maximum
number of iterations to be performed in attempting to reach the steady state solution
(control constant NLOOP) and the relaxation criterion, which determines when it has
been reached (DRLXCA for diffusion nodes and/or ARLXCA for arithmetic nodes). The
subroutine will continue to iterate until one of the above criteria is met. If the iteration
count exceeds NLOOP an appropriate message is printed. Variables 1 and Output Calls
are performed at the start, and Variables 2 and Output Calls are performed upon comple-
tion. If not specified, control constants DAMPD and DAMPA are set at 1.0. They are
used as multipliers times the new temperatures while 1.0 minus their value is used as
multipliers times the old temperatures in order to weight the returned answer. This
weighting of so much new and so much old is useful for damping oscillations due to non-
linearities. They may also be used to achieve overrelaxation.

If a series of steady state solutions at various times is desired it can be accomplished
by specifying control constants TIMEND and QUTPUT. OUTPUT will be used both as
the output interval and the computation interval. In this case appropriate calls would
have to be made in Variables 1 to modify boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the transient solution
subroutines which has the same LPCS requirement. In this manner the steady state solu-
tion becomes the initial conditions for the transient analysis. However, since CINDSL
utilizes control constants TIMEND and OUTPUT the user must specify their values in the
execution block after the steady state call and prior to the transient analysis call.

Restrictions—The LPCS option is required. Diffusion and arithmetic nodes receive a
successive point iteration and an extrapolation method of acceleration. Control constants
NLOOP and DRLXCA and/or ARLXCA must be specified. Successive steady state
solutions can be obtained by specifying control constants TIMEND and OUTPUT. Other
control constants which are activated or used are: LOOPCT, DRLXCC, and/or ARLXCC,
TIMEN, TIMEM, TIMEO, DAMPD, DAMPA, DTIMEU, LINECT, and PAGECT. Control
constant OPEITR is checked for output each iteration.

51

MARY E. GEALY

Cualling Sequence—CINDSL — This subroutine utilizes two dynamic storage core loca-
tions for each diffusion and arithmetic node.

Execution Subroutine CINDSM

Purpose—This subroutine is designed to calculate the network steady state solution
of moderately radiation-dominated problems. It is similar to CINDSL in that the LPCS
option is required and that all nodes receive a successive point iteration and the same ex-
trapolation method of acceleration. Other execution subroutines evaluate the nonlinear
radiation conductors each time they are encountered during an iteration. CINDSR differs
in that it linearizes the problem by calculating effective radiation conductors and solves
the linearized problem. It then reevaluates the effective radiation conductors, solves the
linear problem and continuously repeats the process. The user must specify the maximum
number of iterations to perform in attempting to reach the steady state solution and the
energy balance of the system to be satisfied as a criterion. This system energy balance is
the difference between all energy into the system and all energy out and is specified as
control constant BALENG. CINDSM internally calculates the iterative relaxation criteria
damping factors and loopings to be performed in solving the linearized problem. It con-
tinuously increases the severity of the relaxation criteria until the BALENG criteria is
met for two successive linearized problems with virtually no temperature change between
the two. Systems with small energy transfer rates to the boundaries are difficult to solve.
A reasonable rule is to set BALENG at 1% of the rate in or out. Successive steady state
analyses may be performed and CINDSM may be followed by a call to a transient analysis
routine with the same LPCS option requirement.

Restrictions—The LPCS option is required. Control constants NLOOP, LAXFAC,
and BALENG must be specified and be greater than zero. DAMPD may be used. If it is
not specified, the routine will set DAMPD to 1.0. Successive steady state solutions can
be obtained by specifying control constants TIMEND and OUTPUT. Other control con-
stants which are activated or used are LOOPCT, ENGBAL, and/or ARLXCC, TIMEN,
TIMEM, TIMEO, DTIMEU, LINECT, and PAGECT. Control constant OPEITR is checked
for output each iteration. Caution: Each radiation conductor must have a unique con-
ductor number.

Calling Sequence—CINDSM — This subroutine utilizes three dynamic storage core
locations for each diffusion and arithmetic node and one more for each radiation eexn
conductor.

Execution Subroutine CNFRWD

Purpose—This subroutine performs transient thermal analysis by the explicit forward-
differencing method. The stability criterion of each diffusion node is calculated and the

52

NRL REPORT 7656

minimum value is placed in control constant CSGMIN. The time step used (control con-
stant DTIMEU) is calculated as 95% of CSGMIN divided by CSGFAC. Control constant
CSGFAC is set at 1.0 unless specified larger by the user. A ‘“look-ahead” feature is used
when calculating DTIMEU. If one time step will pass the output time point, the time
step is set to come out exactly on the output time point; if two time steps will pass the
output time point, the time step is set so that two time steps will come out exactly on
the output time point. DTIMEU is also compared to DTIMEH and DTIMEL. If DTIMEU
exceeds DTIMEH it is set equal to it, if DTIMEU is less than DTIMEL the problem is
terminated. If no input values are specified, DTIMEL is set at zero and DTIMEH it is
set at infinity. The maximum temperature change calculated over an iteration is placed
in control constant DTMPCC and/or ATMPCC. They are compared to DTMPCA and/or
ATMPCA, respectively, and if larger cause DTIMEU to be modified so that they com-
pare as equal to or less than DTMPCA and/or ATMPCA. If DTMPCA and/or ATMPCA
are not specified they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes. The user
may iterate the arithmetic node solution by specifying control constants NLOOP and
ARLXCA. If the arithmetic node iteration count exceeds NLOOQOP, the answers are ac-
cepted as is and the subroutine continues without any user notification. In addition the
user may specify control constant DAMPA in order to dampen possible oscillations due
to nonlinearities. The arithmetic nodes may be used to specify an incompressible pressure
or radiosity network. In this manner they would be solved implicitly each time step, but
evaluation of temperature varying properties would suffer a lag of one time step.

Restrictions—The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. Problem start time if other than zero may be specified as
TIMEO. Other control constants used or activated are: TIMEN, TIMEM, CSGMIN,
CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC,
NLOOP, LOOPCT, DAMPA, ARLXCA, ARLXCC, OPEITR, BACKUP, LINECT, and
PAGECT.

Calling Sequence—CNFRWD — This subroutine utilizes one dynamic storage core
location for each diffusion and arithmetic node.

Execution Subroutine CNFAST

Purpose—This subroutine is a modified version of CNFRWD which allows the user
to specify the minimum time step to be taken. The time step calculations proceed ex-
actly as in CNFRWD until the check with DTIMEL is made. If DTIMEU is less than
DTIMEL it is set equal to it. As each node is calculated its CSGMIN is obtained and
compared to DTIMEU. If equal to or greater, the nodal calculation is identical to
CNFRWD. If the CSGMIN for a node is less than DTIMEU the node receives a steady
state calculation. If only a small portion of the nodes in a system receive the steady
state calculation the answers are generally reasonable. However, as the number of nodes
receiving steady state calculations increases, so do the solution inaccuracies.

53

MARY E. GEALY

Restrictions—The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. The checks on control constants DTMPCA, ATMPCA and
BACKUP are not performed. Other control constants which are used or activated are
TIMEN, TIMEM, TIMEO, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCC,
ATMPCC, DAMPA, ARLXCA, ARLXCC, NLOOP, LOOPCT, LINECT, and PAGECT.

Cualling Sequence—CNFAST — This subroutine utilizes one dynamic storage core
location for each diffusion node.

Execution Subroutine CNEXPN

Purpose—This subroutine performs transient thermal analysis by the exponential
prediction method, and the solution equation is of the following form:

ZGjTjQi _ EGjAt EGjAt
? Y Ci
T, =\———/\1-¢ + T.e
EGJ-
j
This equation is unconditionally stable, no matter what size time step is taken, and it re-
duces to the steady state equation for an infinite time step. However, stability is not to
be confused with accuracy. Time steps larger than would be taken with CNFRWD re-
main stable but tend to lose or gain energy in the system. For this reason this subroutine
is not recommended where accuracy is sought. However, it is suitable for parametric
analysis where trends are sought and a more accurate method will be utilized for a final

analysis.

The inner workings of the subroutine are virtually identical to CNFRWD with the
exception of the solution equation and the use of CSGFAC. The time step used
(DTIMEU) is calculated as CSGMIN times CSGFAC. The look-ahead feature for calcu-
lating the time step is identical, as are the checks with DTIMEH, DTIMEL, and DTMPCA.
The diffusion nodes are calculated prior to the arithmetic nodes, and the arithmetic nodes
utilize NLOOP, ARLXCA, and DAMPA, exactly the same as CNFRWD.

Restrictions—The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. Problem start time if other than zero may be specified as
TIMEO. Other control constants used or activated are TIMEN, TIMEM, CSGMIN,
CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC,
ARLXCA, ARLXCC, DAMPA, OPEITR, BACKUP, LINECT, and PAGECT.

Calling Sequence—CNEXPN — This subroutine utilizes one dynamic storage core
location for each diffusion and arithmetic node.

54

NRL REPORT 7656
Execution Subroutine CNFWBK

Purpose—This subroutine performs transient thermal analysis by implicit forward-
backward differencing. The LPCS option is required and allows the simultaneous set of
equations to be solved by ‘‘successive point” iterations. During the first iteration for a
time step, the capacitance values are doubled and divided by the time step and the energy
transfer rates based on old temperatures are added to the source locations. Upon com-
pleting the time step the capacitance values are returned to their original state. The itera-
tion looping, convergence criteria and other control constant checks are identical to
CNBACK. The time step checks and calculations and look ahead feature are identical to
that used for CNBACK.

The automatic radiation transfer damping and extrapolation method of acceleration
mentioned under the CNBACK subroutine writeup are also employed in this subroutine.
Diffusion and/or arithmetic temperature calculations may be damped through use of
DAMPD and/or DAMPA respectively. Control constants BACKUP and OPEITR are con-
tinuously checked. CNFWBK internally performs forward-backward differencing of
boundary conditions. For this reason the user should utilize TIMEN as the appropriate
independent variable in Variables 1 operations.

It is interesting to note that CNFWBK generally converges in 25% fewer iterations
than CNBACK. The probable reason for this is that the boundary of the mathematical
system is better defined. While every future temperature node under CNBACK is con-
nected to its present temperature, under CNFWBK every future temperature node is also
receiving an impressed source based on the present temperature.

Restrictions—The LPCS option is required. Control constants TIMEND, OUTPUT,
DTIMEI, NLOOP and DRLXCA and/or ARLXCA must be specified. Other control con-
stants which are used or activated are TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or
ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, and PAGECT.

Calling Sequence—CNFWBK — This subroutine utilizes three dynamic storage core
locations for each diffusion node and one for each arithmetic and boundary node.

Execution Subroutine CNBACK

Purpose—This subroutine performs transient thermal analysis by implicit backward
differencing. The LPCS option is required and allows the simultaneous set of equations
to be solved by ‘‘successive point” iteration. Each third iteration, diffusion node tempera-
tures which trace a continuous decreasing slope receive an extrapolation on their error
function curve in an attempt to accelerate convergence. For convergence criteria the user
is required to specify NLOOP and DRLXCA and/or ARLXCA. If the number of itera-
tions during a time step exceeds NLOOP a message is printed but the problem proceeds.

55

MARY E. GEALY

Variables 1 is performed only once for each time step. Since this subroutine is im-
plicit the user must specify the time step to be used as DTIMEI in addition to TIMEND
and OUTPUT. The look ahead feature for the time step calculation in CNFRWD is used
as are the checks for DTIMEH, DTMPCA and ATMPCA but not DTIMEL. Damping of
the solutions can be achieved through use of control constants DAMPD and/or DAMPA.
Control constants BACKUP and OPEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary step changes
when radiation conductors are present. CNBACK contains an automatic damping feature
which is applied to radiation conductors. The radiation transfer to a node is calculated
for its present temperature and a temporary new temperature is calculated. Then the
radiation transfer is recalculated and the final node temperature is calculated based on
the arithmetic mean of the two radiation transfer calculations. This automatic radiation
damping has proven to be quite successful and lessens the need for use of DAMPD and
DAMPA.

Restrictions—The LPCS option is required. - Control constants TIMEND, OUTPUT,
DTIMEI, NLOOP and DRLXCA and/or ARLXCA must be specified. Other control con-
stants which are used on activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEV,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or
ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, and PAGECT.

Calling Sequence—CNBACK — This subroutine utilizes three dynamic storage core
locations for each diffusion node and one for each arithmetic and boundary node.

56

NRL REPORT 7656

Interpolation Subroutines

Name Page
LAGRAN, LGRNDA, D1DEG1, DiDIDA, D1D1IWM, DIIMDA 58
D1iMDG1, D1IM1DA, D1IM1WM, DIM1MD, D1IDEG2. D1D2DA
DID2WM, DI12MD A . i i ittt et i e e et 59
DIMDG2, D1IM2DA, D1M2WM, D1M2MD, D1DG1I, D1D1IM, D1D1MI, D11DAI,
DI1DIM, DIIMDI .. i e e et i e 60
D11CYL, DA11CY, D12CYL, DA12CY, D11MCY, DA11MC,
DI2MCY, DALZMC ... ittt ittt ittt netterentoneneeneruennnneneennan 61
CVQ1HT, CVQ1WM, GSLOPE, PSINTR, PSNTWMcccivininin... 62
Bivariate Array Format, BVSPSA, BVSPDA, BVTRN1, BVTRN2
D2DEG1, D2DEG2, D2D1WM, D2D2WM . . .ottt ittt i it inenianennean 63
D2MXD1, D2MXD2, D2MX1M, D2MX2M,
Trivariate Array Format oo i i i i e e 64
D3DEGI1, D3D1WM, VARCSM, VARCCM, VARC1, VARC2 65
VARGSM, VARGCM, VARGI, VARG2 ... -ttt ittt i ee i iieiann s 66

57

MARY E. GEALY
Subroutine LAGRAN or LGRNDA

Purpose—These subroutines perform Lagrangian interpolation of up to order 50. The
first requires one doublet array of X,Y pairs while the second requires two singlet arrays,
one of X’s and the other of Y’s. They contain an extrapolation feature such that if the
X value falls outside the range of the independent variable the nearest dependent Y vari-
able value is returned and no error is noted.

Y = P (X) = ZYkn Xk _X , n.=123,...,50max.

1'T‘k

Restrictions— All values must be floating point except N which is the order of inter-
polation plus one and must be an integer. The independent variable values must be in
ascending order.

Calling Sequence—LAGRAN(X,Y,A(IC),N) or LGRNDA(X,Y,AX(IC),AY(IC),N)

NOTE: A doublet array is formed as follows:

IC, X1, Y1, X2, Y2, X3, Y3,..., XN, YN
where IC = 2*N (set by program).

Singlet arrays are formed as follows:
IC, X1, X2, X3,...,XN
IC, Y1, Y2, Y3,..., YN
and IC = N (set by program).
Subroutine D1IDEG1 or D1D1DA

Purpose—These subroutines perform single variable linear interpolation on doublet or
singlet arrays respectively. They are self-contained subroutines that are called upon by
virtually all other linear interpolation subroutines.

Restrictions— All values must be floating point numbers. The X independent variable
values must be in ascending order.

Calling Sequence—DI1DEG1(X,A(IC),Y) or D1D1DA(X,AX(IC),AY(IC),Y)

Subroutine D1ID1WM or D11MDA
Purpose—These subroutines perform single-variable, linear interpolation by calling on

D1DEG1 or D1D1DA, respectively. However, the interpolated answer is multiplied by
the value addressed as Z prior to being returned as Y.

58

NRL REPORT 7656
Restrictions—Same as D1DEGI1 or D1D1DA, and Z must be a floating-point number.

Calling Sequence—D1D1IWM(X,A(IC),Z,Y) or D11IMDA(X,AX(IC),AY(IC),Z,Y)

Subroutine D1IMDG1 or DIM1DA

Purpose—These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two singlet arrays,
respectively.

Restrictions—See D1DEG1 or D1ID1DA as they are called on, respectively.
Calling Sequence—D1MDG1(X1,X2,A(1IC),Y) or
DIM1DA(X1,X2,AX(IC),AY(IC),Y)
Subroutine DIM1WM or D1IM1IMD

Purpose—These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is multiplied by the Z
value prior to being returned as Y.

Restrictions—Same as D1IMDG1 or DIM1DA, and Z must be a floating-point number.
Calling Sequence—DIM1WM(X1,X2,A(IC),Z,Y) or
DIM1IMD(X1,X2,AX(IC),AY(IC),Z,Y)
Subroutine D1DEG2 or D1D2DA
Purpose—These subroutines perform single-variable parabolic interpolation. The first
requires a doublet array of X, Y pairs while the second requires singlet arrays of X and
Y values. They call on subroutines LAGRAN and LGRNDA, respectively.
Restrictions—See LAGRAN or LGRNDA.

Calling Sequence—D1DEG2(X,A(IC),Y) or D1D2DA(X,AX(IC),AY(IC),Y)

Subroutine D1D2WM or D12MDA

Purpose—These subroutines perform single-variable parabolic interpolation by calling
on LAGRAN or LGRNDA, respectively. However, the interpolated answer is multiplied
by the value addressed as Z prior to being returned as Y.

Restrictions—Same as LAGRAN or LGRNDA, and Z must be a floating-point
number.

59

MARY E. GEALY

Calling Sequence—D1D2WM(X,A(IC),Z,Y) or
D12MDA(X,AX(IC),AY(1C),Z,Y)

Subroutine DIMDG2 or D1IM2DA

Purpose—These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. They require a doublet or two singlet arrays,
respectively.

Restrictions—See LAGRAN or LGRNDA as they are called.

Calling Sequence—D1IMDG2(X1,X2,A(IC),Y) or
D1M2DA(X1,X2,AX(IC),AY(IC),Y)

Subroutine D1IM2WM or D1M2MD

Purpose—These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. The interpolated answer is multiplied by the
Z value prior to being returned as Y.

Restrictions—Same as D1IMDG2 or D1M2DA, and Z must be a floating point number.

Calling Sequence—D1M2WM(X1,X2,A(1C),Z,Y) or
D1M2MD(X1,X2,AX(IC),AY(IC),Z,Y)

Subroutine D1IDG1I or D1D1IM or D1D1MI

Purpose—These subroutines perform single-variable linear interpolation on an array
of X’s to obtain an array of Y’s. D1D1IM multiplies all interpolated values by a constant
Z value while D1D1MI allows a unique Z value for each X value. They all call on
D1DEGT1.

Restrictions—The number of input X’s must be supplied as the integer N and agree
with the number of Y and Z locations where applicable. Z values must be floating-point
numbers.

Calling Sequence—D1DG1I(N,X(DV),A(IC),Y(DV)) or
D1D1IM(N,X(DV),A(IC),Z,Y(DV)) or
D1D1MI(N,X(DV),A(IC),Z(DV),Y(DV))

Subroutine D11DAI or D11DIM or D11MDI

Purpose—These subroutines are virtually identical to D1DG1I, D1D1IM, and D1D1MI,
respectively. The difference is that they require singlet arrays for interpolation and call
on D1D1DA.

60

NRL REPORT 7656

Restrictions—Same as D1DG1I, D1D1IM, and D1D1MI.

Calling Sequence—D11DAI(N,X(DV),AX(IC),AY(IC),Y(DV)) or
D11DIM(N,X(DV),AX(IC),AY(IC),Z,Y(DV)) or
D11IMDI(N,X(DV),AX(IC),AY(IC),Z(DV),Y(DV))

Subroutine D11CYL or DA11CY

Purpose—These subroutines reduce core storage requirements for cyclical interpola-
tion arrays. The arrays need cover one period only, and the period (PR) must be speci-
fied as the first argument. Linear interpolation is performed, and the independent variable

must be in ascending order.

Restrictions— All values must be floating point. Subroutine INTRFC is called on by
both D11CYL and DA11CY, then D1IDEG1 or D1D1DA, respectively.

Calling Sequence—D11CYL(PR,X,A(IC),Y) or
DA11CY(PR,X,AX(IC),AY(IC),Y)
Subroutine D12CYL or DA12CY

Purpose—These subroutines are virtually identical to D11CYL and DA11CY, except
that parabolic interpolation is performed.

Restrictions—See D11CYL and DA11CY. Subroutines LAGRAN and LGRNDA,
respectively, are called on.

Calling Sequence—D12CYL(PR,X,A(IC),Y) or DA12CY(PR,X,AX(IC),AY(IC),Y)

Subroutine D11MCY or DA11MC

Purpose—These subroutines are virtually identical to D11CYL or DA11CY, except
that the interpolated answer is multiplied by the floating-point Z value prior to being
returned as Y.

Restrictions—Call on subroutines D1DEG1 and D1D1DA, respectively.

Calling Sequence—D11MCY (PR, X,A(IC),Z,Y) or

DA11MC(PR,X,AX(IC),AY(IC),Z,Y)

Subroutine D12MCY or DA12MC

Purpose—These subroutines are virtually identical to D11MCY and DA11MC except
that parabolic interpolation is performed.

61

MARY E. GEALY
Restrictions—Calls on subroutines LAGRAN and LGRNDA, respectively.
Calling Sequence—D12MCY (PR X,A(IC),Z,Y) or
DA12MC(PR,X,AX(IC),AY(IC),Z,Y)

Subroutine CVQ1HT or CVQ1WM

Purpose—These subroutines perform two single-variable linear interpolations. The
interpolation arrays must have the same independent variable X and dependent variables
of, say, R(X) and S(X). Additional arguments of Y, Z, and T complete the data values.

The postinterpolation calculations are, respectively:

Y

S(X)*(R(X)-T) or

Y ZFS(XNR(X)-T).

Restrictions—Interpolation arrays must be of the doublet type and have a common
independent variable. All values must be floating-point numbers.

Calling Sequence—CVQ1HT(X,AR(IC),AS(IC),T,Y) or
CVQ1WM(X,AR(IC),AS(IC),T,Z,Y)

Subroutine GSLOPE

Purpose—This subroutine will generate a slope array so that point slope interpolation
subroutines can be used instead of standard linear interpolation subroutines. The user
must address two singlet arrays, and a singlet slope array will be produced.

Restrictions—The X independent-variable array must be in ascending order. All ar-
rays must be of equal length and contain floating-point numbers.

Calling Sequence—GSLOPE(AX(IC),AY(IC),AS(IC))

Subroutine PSINTR or PSNTWM

Purpose—These subroutines perform linear interpolation and require arrays of the Y
points and slopes which correspond to the independent variable X array. All values must
be floating-point numbers. PSNTWM multiplies the interpolated answer by Z prior to
returning it as Y.

Restrictions—The independent X and dependent Y and slope arrays must be of
equal length.

Calling Sequence—PSINTR(X,AX(IC),AY(IC),AS(IC),Y) or
PSNTWM(X,AX(IC),AY(IC),AS(IC),Z,Y)

62

NRL REPORT 7656
Bivariate Array Format, Z = £(X,Y)

Bivariate arrays must be rectangular and full and must be entered in the following
row order:

ICN X 1,X2X3,...,XN

Y1,711,7212,713, ..., Z1N

Y2,7221,7222,723, ..., Z2N

YM,ZM1,ZM2,ZM83, . .. ,ZMN
where N is the integer number of X variables. All other values must be floating-point num-
bers, and the X and Y values must be in ascending order.
Subroutine BVSPSA or BVSPDA

Purpose—These subroutines use an input Y argument to address a bivariate array and

pull off a singlet array of Z’s corresponding to the X’s or pull off a doublet array of X,Z
values, respectively. The integer count for the constructed arrays must be exactly N or 2*N,
respectively. To use the singlet array for an interpolation call, reach the X array by address-

ing the N in the bivariate array.

Restrictions—As stated above, and all values must be floating point.

Calling Sequence—BVSPSA(Y,BA(IC),AZ(IC)) or BVSPDA(Y,BA(IC),AXZ(IC))

Subroutine D2DEG1 or D2DEG2

Purpose—These subroutines perform bivariate linear and parabolic interpolation, re-
spectively. The arrays must be formatted as shown for Bivariate Array Format.

Restrictions—For D2DEG1, N = 2, M = 2| See bivariate
For D2DEG2, N = 3, M = 3] array format

Calling Sequence—D2DEG1(X,Y,BA(IC),Z) or D2DEG2(X,Y,BA(IC),Z)

Subroutine D2D1WM or D2D2WM

Purpose—These subroutines perform bivariate linear or parabolic interpolation by
calling on D2DEG1 or D2DEG2, respectively. The interpolated answer is multiplied by
the W value prior to being returned as Z. '

Restrictions—Same as D2DEG1 or D2DEG2, and W must be a floating-point value.

Calling Sequence—D2D1WM(X,Y,BA(IC),W,Z) or D2D2WM(X,Y,BA(IC),W,Z)

63

MARY E. GEALY
Subroutine D2MXD1 or D2MXD2
Purpose—These subroutines are virtually identical to D2DEG1 and D2DEG2 except
that the arithmetic mean of two X values is used as the X-independent variable for
interpolation.

Restrictions—Same as D2DEG1 or D2DEG2.

Calling Sequence—D2MXD1(X1,X2,Y,BA(IC),Z) or D2MXD2(X1,X2,Y,BA(IC),Z)

Subroutine D2MX1M or D2MX2M

Purpose—These subroutines are virtually identical to D2D1WM and D2D2WM except
that the arithmetic mean of two X values is used as the X-independent variable for
interpolation.

Restrictions—Same as D2D1WM and D2D2WM.

Calling Sequence—D2MX1M(X1,X2,Y,BA(IC),W,Z) or
D2MX2M(X1,X2,Y ,BA(IC),W,Z)

Trivariate Array Format, T = £(X,Y,Z)

Trivariate arrays may be thought of as two or more bivariate arrays, each bivariate
array a function of a third independent variable Z. Trivariate arrays must be entered in
row order and be constructed as follows:

IC,NX1,NY1,Z1,X 1,X 2,X 3,...,X N
Y1, T11, T12, T13, ..., TIN
Y2, T21, T22, T23, . . ., T2N

YM,TM1,TM2,TM3, . .. ,TMN

NX2,NY2, 72, X 1,X2,X 8,..., X J
Y1, T11, T12,T13, ..., T1d
Y2, T21, T22, T23, . .., T2J
YK,TK1,TK2,TKS, . . ., TKJ

NX3,NY3, 73,

The trivariate array may consist of as many bivariate “‘sheets’ as desired. The num-
ber of X and Y values in each sheet must be specified as integers (NX-NY). The “sheets”
must be rectangular and full but need not be identical in size.

64

NRL REPORT 7656
Subroutine D3DEG1 or D3D1WM

Purpose—These subroutines perform trivariate linear interpolation. The interpolation
array must be constructed as shown for the Trivariate Array Format. Subroutine D2DEG1
is called on, which calls on DIDEGI1. Hence, the linear extrapolation feature of these
routines applies. Subroutine D3D1WM multiplies the interpolated answer by F prior to
returning it as T.

Restrictions—See Trivariate Array Format. F must be a floating-point value.

Calling Sequence—D3DEG1(X,Y,Z,TA(IC),T) or DSDIWM(X,Y,Z,TA(IC),F,T)

Subroutine VARCSM or VARCCM or VARC1 or VARC2

Purpose—These are linear interpolation subroutines which are set up as Variables 1
calls by the preprocessor when processing the CGS and CGD mnemonic codes in the nodal
data block. VARCSM is utilized for the CGS code. VARCCM is utilized for the CGD
code when two array arguments appear. VARC1 and VARC2 are used for the CGD code
when either the first or second respective array arguments are entered as a constant. The
following mnemonic codes in the nodal block

8

\

CGS 1,80.4A1,10.2

CGD 2 80.,AI,10.2,A2,I.6
CGD 34804 41.4,5.1,A2,1.6
CGD 4,80.,Al.5 146.3,8.7

would cause the construction in Variables 1 of

12
\

VARCSM(TI1,C1,A1,10.2)
VARCCM(T2,C2,A1,10.2,A2,1.6)
VARCI (T3,C3,1.4,5.1,A2,1,6)
VARC2(T4,C4,A1,5.1,6.3,8.7)

The second call causes the sum of two interpolations with multiplications to be used as
the C2 value. The latter two calls only perform one interpolation but use the sum of the
two products as the C value.

Restrictions—The array arguments must address the integer count.

Calling Sequence—VARCSM(T,C,A(IC),F) or VARCCM(T,C,A1(IC),F1,A2(IC),F2) or
VARC1(T,C,X,F1,A2(IC),F2) or VARC2(T,C,A1(IC),F1,X,F2)

65

MARY E. GEALY
Subroutine VARGSM or VARGCM or VARG1 or VARG2

Purpose—These are linear interpolation subroutines set up as Variables 1 calls by the
preprocessor when processing the CGS and CGD mnemonic codes in the conductor data
block. They are similar to the preceding four calls for the nodal data block except that
the conductor argument is first followed by two temperature arguments. VARGSM is
used for the CGS code. If the F value is positive, the mean of the two addressed tem-
peratures is used for interpolation. If it is negative, only T1 is used for interpolation and
the absolute value of F is used as a multiplier. VARGCM, VARG1, and VARG2 per-
form the one or two interpolations required, multiply by the F values to obtain G1 and
G2 components, and then calculate G as

G = 1.0/(1.0/G1 + 1.0/G2).
Restrictions—The array arguments must address the integer count.
Calling Sequence—VARGSM(G,T1,T2,A(IC),F) or
VARGCM(G,T1,T2,A1(IC),F1,A2(IC),F2) or

VARGI1(G,T1,T2,X,F1,A2(IC),F2) or
VARG2(G,T1,T2,A1(IC),F1,X,F2)

66

NRL REPORT 7656

Arithmetic Subroutines
Name

FLOAT, FIX, INTRFC, SHFTV, SHFTVR, FLIP,

SETPLS, ARYPLS .« et ittt ettt et et et e e e e e e e e e
SETMNS, ARYMNS, ADD, ADDFIX, ADDARY, ARYADD
SUB, SUBFIX, SUBARY, ARYSUB, MLTPLY, MPYFIX,

MPYARY, ARYMPY ..ottt ittt e e e e e et
DIVIDE, DIVFIX, DIVARY, ARYDIV, GENARYcouuvunennenn..
BLDARY, BRKARY, BKARAD, STFSEP, SCALE,ouueenennnennnn..
STFSEQ, STFSQS, SUMARY, MAXDAR, MXDRALovuurenneennn..
ARYINV, ARINDV, ADDINV, ADARIN, STOARY, ARYST®
SCLDEP, SCLIND, SLDARY, SLDARD, SPLIT, JOINovueenennn...
SPREAD, QMETER, RDTNQS, QMTRI, QF@RCE, QINTEG,

QINTGI vttt e e e e e e e
CINSIN, SINARY, CINCOS, COSARY, CINTAN, TANARY,

ARCSIN, ASNARY .\ttt ettt et e e e e e e e
ARCQS, ACSARY, ARCTAN, ATNARY, EXPNTL,

ARYEXP, EXPARYouviniinnnnnnnn.. e
LOGT, LOGTAR, LOGE, LOGEAR, SQROOT, SQROTI, CMPXSR,

OSQRI ettt ettt et e e e
CMPXMP, CMPYI, CMPXDV, CDIVI, NEWTRT, NEWRT4,
PLYNML, PLYARY, SMPINT, TRPZD, TRPZDAoouueenenanennnn..
PRESS, SPRESS, EFFG, EFFEMSutiurttne et el

67

MARY E. GEALY
Subroutine FLOAT or FIX or INTRFC

Purpose—Subroutine FLOAT will convert an integer to a floating-point number.
Subroutine FIX will convert a floating-point number to an integer. Subroutine INTRFC
will fracture a floating-point number to yield the largest integer value possible and the
remainder or fractional portion is a floating-point number. Their respective operations
are

X
or N
or N =

Y:

F

[
HKZ MK Z

-Y

Restrictions—X and F arguments must address floating-point values and the N argu-
ment must address an integer.

Calling Sequence—FLOAT(N,X) or FIX(X,N) or INTRFC(X,N,F)

Subroutine SHFTV or SHFTVR or FLIP

Purpose—Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place it in another
array in reverse order. Subroutine FLIP will reverse an array in its own array location.
Their respective operations are

A() = B(), i=1,N
or A(N-i+1) = B(i), i=1,N
or A(i),, = AN-i+2) 4, i=2, N+L.

The answer array may not be overlayed into the input array.

Restrictions—The data values to be shifted or reversed in order may be anything.
The N must be an integer.

Calling Sequence—SHFTV(N,B(DV),A(DV)) or SHFTVR(N,B(DV),A(DV)) or
FLIP(A(IC))
Subroutine SETPLS or ARYPLS

Purpose—SETPLS will set the sign positive for a variable number of arguments while
ARYPLS will set the sign positive for every data value in a specified length array.

Restrictions—The values addressed may be either integers or floating-point numbers.
The number (N) of data values in the array must be specified as an integer.

68

NRL REPORT 7656
Calling Sequence—SETPLS(A,B,C...) or ARYPLS(N,A(DV))
where N may be a literial integer or the address of a location containing an integer, and
A(DV) addresses the first data value in the array.
Subroutine SETMNS or ARYMNS

Purpose—SETMNS will set the sign negative for a variable number of arguments,
while ARYMNS will set the sign negative for every data value in a specified length array.

Restrictions—The values addressed may be either integers or floating-point numbers.
The number (N) of data values in the array must be specified as an integer.

Calling Sequenée—SETMNS(A,B,C, ...) or ARYMNS(N,A(DV))
where N may be a literial integer or the address of a location containing an integer and
A(DV) addresses the first data value in the array.
Subroutine ADD or ADDFIX
Purpose—To sum a variable number of floating-point or integer numbers, respectively.
S=2X,1=1,2,8,...,N, N=2

Restrictions—Subroutine ADD is for floating-point numbers, while subroutine
ADDFIX is for integers.

Calling Sequence—ADD(X1,X2,X3, ...,XN,S) or ADDFIX(X1,X2,X3,...,XN,S)

Subroutine ADDARY or ARYADD
Purpose—Subroutine ADDARY will add the corresponding elements of two specified

length arrays to form a third array. Subroutine ARYADD will add a constant value to
every element in an array to form a new array. Their respective operations are

The answer array may be overlayed into one of the input array areas.

Restrictions— All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence—ADDARY(N,B(DV),C(DV),A(DV)) or
ARYADD(N,B(DV),C,A(DV))

69

MARY E. GEALY

Subroutine SUB or SUBFIX

Purpose—To subtract a variable number of floating-point or integer numbers,
respectively,

R=Y-2X,1i=1,2,3,...,N, N>1

Restrictions—Subroutine SUB is for floating-point numbers while subroutine SUBFIX
is for integers.

Calling Sequence—SUB(Y,X1,X2,X3,...,XN,R) or
SUBFIX(Y,X1,X2,X3,...,XN,R)

Subroutine SUBARY or ARYSUB

Purpose—Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a constant value
from every element in an array to form a new array. Their respective operations are

Ai=Bi_Ci’
OrAiz"Bi—C,

i
i

1, N
1, N
The answer array may be overlayed into one of the input array areas.

Restrictions—All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence—SUBARY(N,B(DV),C(DV),A(DV)) or
ARYSUB(N,B(DV),C,A(DV))
Subroutine MLTPLY or MPYFIX

Purpose—To multiply a variable number of floating-point or integer numbers,
respectively.

P=X1*X2#*X3%*.,.*XN, N=>2

Restrictions—Subroutine MLTPLY is for floating-point numbers, while subroutine
MPYFIX is for integers.

Calling Sequence—MLTPLY (X1,X2,X3,...,XN,P) or MPYFIX(X1,X2,X3,...,XN,P)

Subroutine MPYARY or ARYMPY
Purpose—Subroutine MPYARY will multiply the corresponding elements of two

arrays to form a third. Subroutine ARYMPY will multiply a constant value times each
element of an array to form a new array. Their respective operations are

70

NRL REPORT 7656

-
"

A =B *C;, i=1,N
Aj=B;*C, i=1,N

or

2

—
[

The answer array may be overlayed into one of the input array areas.

Restrictions— All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence—MPYARY(N,B(DV),C(DV),A(DV)) or
ARYMPY(N,B(DV),C,A(DV))
Subroutine DIVIDE or DIVFIX

Purpose—These subroutines are used to perform a division of floating-point or inte-
ger numbers, respectively;

Q=Y/ZX, i=1,2,8,....N, N>1.

Restrictions—Subroutine DIVIDE is for floating-point numbers, while DIVFIX is for
integers.

Calling Sequence—DIVIDE(Y,X1,X2,X3,...,XN,Q) or
DIVFIX(Y,X1,X2,X3,...,XN,Q)

Subroutine DIVARY or ARYDIV
Purpose—Subroutine DIVARY will divide the elements of one array into the corre-
sponding elements of another array to produce a third array. Subroutine ARYDIV will

divide each element of an array by a constant value to produce a new array. Their re-
spective operations are

The answer array may be overlayed into one of the input array areas.

Restrictions— All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence—DIVARY(N,B(DV),C(DV),A(DV)) or
ARYDIV(N,B(DV),C,A(DV))

Subroutine GENARY

Purpose—This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number of values in
the array to be generated, and the space for the generated array.

71

MARY E. GEALY
Restrictions— All numbers must be floating point.
Calling Sequence—-GENARY (B(DV),A(DV))
where
B(1) = minimum value

B(2) maximum value
B(3) length of array to be generated (floating point).

Subroutine BLDARY

Purpose—This subroutine will build an array from a variable number of arguments in
the order listed. The operation performed is

Ai=Xi’ i=1,N.

Restrictions—Data may be of any form. The subroutine obtains the integer array
length N by counting the arguments.

Calling Sequence—BLDARY(A(DV),X1,X2,X3,...,XN)

Subroutine BRKARY or BKARAD

Purpose—These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into the location
while the second adds it to what is in the location. Respective operations are

Xi = Ai’
or Xi = Xi + Ai,

i=1,N
i=1,N.

Restrictions—Floating-point numbers must be used for BKARAD. The integer array
length N is obtained by the routines by counting the number of arguments.

Calling Sequence—BRKARY(A(DV),X1,X2,X3,...,XN) or
BKARAD(A(DV),X1,X2,X3,...,XN)
Subroutine STFSEP or SCALE
Purpose—Subroutine STFSEP will place a constant value into a variable number of
locations. Subroutine SCALE will utilize a constant value to multiply a variable number

of arguments, each having a location for the product. The respective operations are

X; =Y, i=1,2,3,...,N
orX;=Y *Z;, i=1,2,3

72

NRL REPORT 7656

Restrictions—STFSEP may be used to move any desired value, but SCALE can only
be used for floating-point numbers.

Calling Sequence—STFSEP(Y,X1,X2,X3,...,XN) or
SCALE(Y,X1,721,X2,7Z2,...,XN,ZN)

Subroutine STFSEQ or STFSQS

Purpose—Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant data value to be in
the first array location, while STFSQS requires it to be supplied as an additional argu-
ment. The respective operations performed are

Restrictions—N must be an integer, but the constant data value may be integer, either
floating point or alphanumeric.

Calling Sequence—STFSEQ(A(DV),N) or STFSQS(B,N,A(DV))

Subroutine SUMARY
Purpose—SUMARY is used to sum an array of floating-point values:
S=2A;, i=1,N.

Restrictions—The values to be summed must be floating-point numbers and the array
length N must be an integer.

Calling Sequence—SUMARY(N,A(DV),S)

Subroutine MAXDAR or MXDRAL

Purpose—These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array values must be
floating-point numbers. The operation performed is

D=|Ai_Bi| i=1,N.

max’

Subroutine MXDRAL also locates the position P between 1 and N where the maximum
occurs.

Restrictions—The N argument must be an integer. The D and P arguments are re-
turned as floating-point numbers.

Calling Sequence—MAXDAR(N,A(DV),B(DV),D) or MXDRAL(N,A(DV),B(DV),D,P)

73

MARY E. GEALY
Subroutine ARYINV or ARINDV

Purpose—Subroutine ARYINV will invert each element of an array in its own loca-
tion. Subroutine ARINDV will divide each element of an array into a constant value to
form a new array. Their respective operations are

1, N
1, N.

Ai = 1.0/Ai, i=
or Ai = B/Ci, i

Restrictions— All data values must be floating-point numbers. The array length N
must be an integer.

Calling Sequence—ARYINV(N,A(DV)) or ARINDV(N,C(DV),B,A(DV))

The ARINDV answer array may be overlayed into the input array area.

Subroutine ADDINV or ADARIN
Purpose—Subroutine ADDINV will calculate one over the sum of the inverses of a
variable number of arguments. Subroutine ADARIN will calculate one over the sum of

inverses of an array of values. These subroutines are useful for calculating the effective
conductance of series conductors. Their respective operations are

Y = 1.0/(1./X;+1./Xg+...+1./Xy), N>2
or Y = 1.0/3(1./X;), i=1,N.

Restrictions— All data values must be floating-point numbers. The array length N
must be an integer.

Calling Sequence— ADDINV(X1,X2,X3, ...,XN,Y) or ADARIN(N,X(DV),Y)

Subroutine STOARY or ARYSTO

Purpose—These subroutines will place a value into or take a value out of a specific
array location, respectively. Their respective operations are

A=X, i=N, N>0
orX=4;, i=N, N>O0.

Restrictions—The values may be anything, but N must be an integer.

Calling Sequence—STOARY(N,X,A(DV)) or ARYSTO(N,X,A(DV))

74

NRL REPORT 7656

Subroutine SCLDEP or SCLIND

Purpose—These subroutines will multiply the dependent or independent variables of
a doublet interpolation array, respectively. Their respective operations are

Restrictions—All values must be floating point. The arrays must contain the length
integer count as the first value, which must be even.

Calling Sequence—SCLDEP(A(IC),X) or SCLIND(A(IC),X)

Subroutine SLDARY or SLDARD

Purpose—These subroutines are useful for updating fixed-length interpolation arrays
during a transient analysis. The array data values are moved back one or two positions,
the first one or two values are discarded, and the last one or two values updated, respec-
tively. The “sliding array” thus maintained can then be used with standard interpolation
subroutines to simulate transport delay phenomena. Their respective operations are

Ai = Ai+1’ i= 2, N
and A, = X, i=N+1
or Ai = Ai+2’ i= 2, N-1
and A; =X and A, =Y, i=N.

Restrictions—The addressed arrays must have the array integer count N as the first
value. For SLDARD, N must be even.

Calling Sequence—SLDARY(X,A(IC)) or SLDARD(X,Y,A(IC))

Subroutine SPLIT or JOIN

Purpose—These subroutines separate a doublet array into two singlet arrays or com-
bine two singlet arrays into a doublet array respectively. Their respective operations are

B; = Agj_1,

i = Agis
or AZi—l = Bi’

Ag; =G,

2

9

?

]
=t el
ZZ22Z2

’

Restrictions—The arrays may contain any values, but N must be an integer. N is the
length of the B and C arrays, and the A array must be of length 2N.

Calling Sequence—SPLIT(N,A(DV),B(DV),C(DV)) or
JOIN(N,B(DV),C(DV),A(DV))

75

MARY E. GEALY

Subroutine SPREAD

Purpose—This subroutine applies interpolation subroutine D1D1DA to two singlet
arrays to obtain an array of dependent variables vs an array of independent variables. It
is extremely useful for obtaining singlet arrays of various dependent variables with a cor-
responding relationship to one singlet independent variable array. The dependent variable
arrays thus constructed can then be operated on by array manipulation subroutines in
order to form composite or complex functions. Doublet arrays can first be separated
with subroutine SPLIT and later reformed with subroutine JOIN.

Restrictions— All data values must be floating point except N, which must be the
integer length of the array to be constructed. The arrays fed into D1D1DA for interpola-
tion must start with the integer count. X is for independent and Y is for dependent. I
is for input and O for output.

Calling Sequence—SPREAD(N,X(IC),Y(IC),XI(DV),YO(DV))

Subroutine QMETER or RDTNQS or QMTRI or QFORCE

Purpose—These subroutines are generally used for calculating flow rates. Their
respective operations are

A =B * (C-D)
or A = B * ((C+460.)% — (D+460.)4)
or Ai = Bi * (Ci—Ci+1)’ i= 1, N
or Ai = Bi * (Ci'—Di), i= 1, N.

Restrictions— All values must be floating-point numbers except the array length N,
which must be an-integer.

Calling Sequence—QMETER(C,D,B,A) or RDTNQS(D,C,B,A) or
QMTRI(N,C(DV),B(DV),A(DV)) or
QFORCE(N,C(DV),D(DV),B(DV),A(DV))

Subroutine QINTEG or QINTGI

Purpose—These subroutines perform a simple integration. They are useful for ob-
taining the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI, or QFORCE.
Their respective operations are

S+ Q x DT
S;+Q; *DT, i=1,N.

S

or 5

Restrictions— All values must be floating-point numbers except N which must be an

integer. Control constant DTIMEU should be used for the step size when doing an inte-
gration with respect to time. These subroutines should be called in Variables 2.

Calling Sequence—QINTEG(Q,DT,S) or QINTGI(N,Q(DV),DT,S(DV))

76

NRL REPORT 7656
Subroutine CINSIN or SINARY

Purpose—These subroutines obtain the sine function of an angle or an array of
angles. Their respective operations are

A =sin (B)
or A; =sin (B;), i=1,N.

Restrictions— All angles must be in radians. All values must be floating-point num-
bers except N, which must be an integer.

Calling Sequence—CINSIN(B,A) or SINARY(N,B(DV),A(DV))

Subroutine CINCOS or COSARY

Purpose—These subroutines obtain the cosine function of an angle or array of
angles. Their respective operations are

A = cos (B)
or A;=cos (B;), i=1,N.

Restrictions— All angles must be in radians. All values must be floating-point num-
bers except the array length N, which must be an integer.

Calling Sequence—CINCOS(B,A) or COSARY(N,B(DV),A(DV))

Subroutine CINTAN or TANARY

Purpose—These subroutines obtain the tangent function of an angle or array of
angles. Their respective operations are

A = tan (B)
or A; = tan (B;), i=1,N.

Restrictions— All angles must be in radians. All values must be floating point num-
bers except the array length N, which must be an integer.

Calling Sequence—CINTAN(B,A) or TANARY(N,B(DV),A(DV))

Subroutine ARCSIN or ASNARY

Purpose—These subroutines obtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are

A
or A;

sin~1(B)
sin"1(B;), i=1,N.

Restrictions—The angles are returned in radians with the limits - 7/2<A<#w/2. All
values must be floating point except for the array length N, which must be an integer.

7

MARY E. GEALY

Calling Sequence—ARCSIN(B,A) or ASNARY(N,B(DV),A(DV))

Subroutine ARCCOS or ACSARY

Purpose—These subroutines obtain the angle corresponding to a cosine function
value or array of cosine values. Their respective operations are

A
or A;

cos~1(B)
cos‘l(Bi), i=1,N.

Restrictions—The angles are returned in radians with the limits 0 < A <. All
values must be floating-point numbers except for the array length N, which must be an
integer.

Calling Sequence— ARCCOS(B,A) or ACSARY(N,B(DV),A(DV))

Subroutine ARCTAN or ATNARY

Purpose——These subroutines obtain the angle corresponding to a tangent function
value of array of tangent values. Their respective operations are

A = tan~1(B)
or A; = tan-1(B;), i=1, N.

Restrictions—The angles are returned in radians with the limits -7/2 < A < 7/2. All
values must be floating-point numbers except the array length N, which must be an integer.

Calling Sequence— ARCTAN(B,A) or ATNARY(N,B(DV),A(DV))

Subroutine EXPNTL or ARYEXP or EXPARY

Purpose—These subroutines perform an exponential operation. Their respective
operations are

A:BC
or A;=B¢ I=1,N

or Ai=Bici, I=1,N

Restrictions— All values must be positive floating-point numbers except N, which
must be an integer.

Calling Sequence—EXPNTL(C,B,A) or ARYEXP(N,C,B(DV),A(DV)) or
EXPARY(N,C(DV),B(DV),A(DV))

78

NRL REPORT 7656

Subroutine LOGT or LOGTAR

Purpose—These subroutines obtain the base 10 log function of a number or array of
numbers. Their respective operations are

A =log, ((B)
or A; = log, o(B;), i=1,N.

Restrictions—All values must be positive floating-point numbers except N, which
must be an integer. :

Calling Sequence—LOGT(B,A) or LOGTAR(N,B(DV),A(DV))

Subroutine LOGE or LOGEAR

Purpose—These subroutines obtain the base e log function of a number or array of
numbers. Their respective operations are

A =log,(B)
or A; =log.(By), 1i=1,N.

Restrictions— All values must be positive floating-point numbers except N, which
must be an integer.

Calling Sequence—LOGE(B,A) or LOGEAR(N,B(DV),A(DV))

Subroutine SQROOT or SQROTI

Purpose—These subroutines obtain the square root of a number or array of numbers,
respectively. Their respective operations are '

A =+/8B

or Ai=+\/—B_i, i=1,N.

Restrictions—The A and B values must be floating-point numbers. The N must be
an integer.

Calling Sequence—SQROOT(B,A) or SQROTI(N,B(DV),A(DV))

Subroutine CMPXSR or CSQRI

Purpose—These subroutines obtain the complex square root of a complex number
or an array of complex numbers, respectively. Their respective operations are

A +iB=,/C+iD, i=./-1
or AJ "'lBJ =\/Cj +iDj,] = 1, N.

79

MARY E. GEALY

Restrictions— All numbers must be floating-point except N, which must be an
integer.

Calling Sequence—CMPXSR(C,D,A,B) or CSQRI(N,C(DV),D(DV),A(DV),B(DV))

Subroutine CMPXMP or CMPYI

Purpose—These subroutines will multiply two complex numbers or the correspond-
ing elements of arrays of complex numbers. Their respective operations are

A +iB = (C + iD)*(E + iF), i=+y/~1
or A; +iBj = (Cj + iDj)*(E; +iF;), j=1,N

Restrictions— All numbers must be floating point except for N, which must be an
integer.

Calling Sequence—CMPXMP(C,D,E,F,A B) or
CMPYI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

Subroutine CMPXDV or CDIVI

Purpose—These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are

A +iB = (C +iD)/(E + iF), i

Restrictions— All numbers must be floating point except for N, which must be an
integer.

Calling Sequence—CMPXDV(C,D,E,F,A B) or
CDIVI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

Subroutine NEWTRT or NEWRT4

Purpose—These subroutines utilize Newton’s method to obtain one root of a cubic
or quartic equation, respectively. The root must be in the neighborhood of the supplied
initial guess, and up to 100 iterations are performed in order to obtain an answer within
the specified tolerance. If the tolerance is not met, an answer of 1038 is returned. The
respective equations are

f(X) = A1+A2¥X+A8*¥X2+A4%X3 = 0.0+T
or g(X) = A1+A2*X+A3%X2+A4*X3+A5%X4 = 0.0+T

where X starts as the initial guess RI and finishes as the final answer RF. T is the
tolerance.

80

NRL REPORT 7656
Restrictions—All data values must be floating-point numbers.

Calling Sequence—NEWTRT(A(DV),T,RI,RF) or NEWRT4(A(DV),T,RLRF)

Subroutine PLYNML or PLYARY
Purpose—These subroutines calculate Y from the following polynomial equation:
Y = A1+A2%X+A3%X2+A4*X3+ . +AN*XN-1,

The number of terms is variable, but all the A coefficients must be entered no matter
what their value.

Restrictions— All values must be floating-point numbers except the number of coeffi-
cients N, which must be an integer.

Calling Sequence—PLYNML(X,A1,A2,A3,... AN,Y) or PLYARY(N,X,A(DV),Y)

Subroutine SMPINT or TRPZD

Purpose—These subroutines perform area integrations by Simpson’s rule and the
trapezoidal rule, respectively. Simpson’s rule requires that an odd number of points be
supplied. If an even number of points is supplied, SMPINT will apply the trapezoidal rule
to the last incremental area but Simpson’s rule elsewhere. The respective operations are

A = DX*(Y1+4Y2+2Y3+4Y4+ ... +YN)/3
or A = DX*(Y1+2Y2+2Y3+2Y4+ ... +YN)/2.

Restrictions—The DX increment must be uniform between all the Y points. All
values must be floating point except N, which must be an integer.

Calling Sequence—SMPINT(N,DX,Y(DV),A) or TRPZD(N,DX,Y(DV),A)

Subroutine TRPZDA

Purpose—This subroutine performs area integration by the trapezoidal rule. It
should be used where the DX increment is not uniform between the Y values but the
corresponding X value for each Y value is known. The operation performed is as follows:

A =_; T (X-X-1)#(Y+Y;-1), i=2, N

Restrictions— All values must be floating-point numbers except the array length N,
which must be an integer.

Calling Sequence—TRPZDA(N,X(DV),Y(DV),A)

81

MARY E. GEALY

Subroutine PRESS or SPRESS

Purpose—These routines are useful for impressing nodal pressures in one-dimensional
flow paths once the entry pressure P1, path conductance G, and flow rate W are known.
The respective equations are

P2 = P1-W/G
or Pli+1 = Pli—W/Gi, i= 1, 2, 3,. ey N.

Restrictions—For SPRESS, the pressures and conductors must be sequential and in
ascending order; the number of pressure points to be calculated must be supplied as the
integer N.

Calling Sequence—PRESS(P1,W,G,P2) or SPRESS(N,P1(DV),W,G(DV))

Subroutine EFFG
Purpose—Subroutine EFFG is a pressure network of the type in Fig. 11.

P1 * p2
G2

Fig. 11

Where the values of the identified elements are known, this subroutine will calculate the
effective conductance GE from P1 to P2. Any interconnections may occur in the space,
but only P2, P3 and P4 may be on the boundary and no elements may cross it. The
equation utilized is

GE = (G1*(P1-P3) + G2*(P1~-P4))/(P1-P2).

Restrictions—See above. May not be used where capacitors appear on the internal
nodes.

Calling Sequence—EFFG(P1,P2,P3,P4,G1,G2,GE)

Subroutine EFFEMS

Purpose—This subroutine calculates the effective emissivity E between parallel flat
plates by the following equation:

E =1.0/(1.0/E1 + 1.0/E2 - 1.0),
where E1 and E2 are the emissivities of the two surfaces under consideration.

Restrictions— Arguments must be floating-point numbers.

Calling Sequence—EFFEMS(E1,E2,E)

82

NRL REPORT 7656

Output Subroutines

Name Page
STNDRD, PRNTMP, PRINT, PRINTL 83
PRINTA, PRNTMA, PUNCHA 84
TPRINT, READ, WRITE, EOF, REWIND 85

Subroutine STNDRD or PRNTMP

Purpose—Subroutine STNDRD causes a line of output to be printed giving the
present time, the last time step used, the most recent CSGMIN value, the maximum dif-
fusion temperature change calculated over the last time step, and the maximum relaxation
change calculated over the last iteration. RNN refers to the relative node number on
which something occurred. The line of output looks as follows:

* * * * *

TIME____DTIMEU__ CSGMIN(RNN)__DTMPCC(RNN)____ ARLXCC(RNN)

Subroutine PRNTMP internally calls on STNDRD and also lists the temperature of every
node in the network according to relative node number. The relative node number vs
actual node number dictionary printed out with the input data should be consulted to
determine temperature locations on the thermal network model.

Restrictions—No arguments are required or allowed. These subroutines should be
used with network problems only.

Calling Sequence—STNDRD or PRNTMP

Subroutine PRINT or PRINTL

Purpose—These subroutines allow individual floating-point numbers to be printed out.
The arguments may reference temperature, capacitance, source locations, conductors,
constants, or unique array locations. In addition, subroutine PRINTL allows each value
to be preceded or labeled by a 6-character alphanumeric word. The number of arguments
is variable, but the “label’ array used for PRINTL should contain a label for each
argument.

83

MARY E. GEALY

Restrictions—These subroutines do not call on STNDRD. The user may call on it if
he desires time control information. Any control constant may be addressed in order to
see what its value is; integers must first be floated.

Calling Sequence—PRINT(T,C,Q,G,K,...,A+) or PRINTL(LA(DV),T,C,Q,G,K,...,A+)

Subroutine PRINTA

Purpose—This subroutine allows the user to print out an array of values, five to the
line. The integer array length N and the first data value location must be specified. Each
value receives an indexed label, The user must supply a 6-character alphanumeric word L
to be used as a common label and an integer value M to begin the index count.

Restrictions—The array values to be printed must be floating-point numbers.
Calling Sequence—PRINTA(L,A(DV),N,M)

If the label was the work TEMP, N was 3, and M was 6, the line of output will look as
follows:

TEMP (6) valueTEMP (7)value TEMP (8)value

Subroutine PRNTMA

Purpose—This subroutine allows the user to print out up to 10 arrays in a column
format. The individual elements are not labeled, but each column receives a 2-line head-
ing of 12 alphanumeric characters each. The 2-line heading must be supplied as a single
array of four words, six characters each. The user must supply the starting location of
each label array and value array. The number of values in each value array must agree
and be supplied as the integer N. The value arrays must contain floating-point numbers.

Restrictions—Labels must be alphanumeric, while values must be floating point. All
floating-point-value arrays must contain the same number of values.

Calling Sequence—PRNTMA(N,LA1(DV),VA1(DV),LA2(DV),VA2(DV),...)

Subroutine PUNCHA
Purpose—This subroutine enables a user to punch out an array of data values in any
desired format. The F argument must reference a FORTRAN format which has been
input as an array, including the outer parentheses but deleting the word format. The
second argument must address the first data value of the array of sequential values. The
third argument N must be the integer number of data values in the array.
Restrictions—Punched cards must be asked for on the job request form.

Calling Sequence—PUNCHA(F(DV),A(DV),N)

84

NRL REPORT 7656
Subroutine TPRINT

Purpose—Subroutine TPRINT makes a call to STNDRD, then lists the actual node
number and corresponding temperature for every node in a network.

Restrictions—This subroutine may be called from any of the operations blocks.

Calling Sequence—TPRINT

Subroutine READ or WRITE

Purpose—These subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer number of the
logical tape being addressed. The second argument X must address the first data value
of the array to be written out or the starting location for data to be read into. The third
argument N must be an integer. For WRITE it is the number of data values to be written
on tape as a record. For READ it is the number of data values to be read in from tape
from the next record, not necessarily the entire record.

Restrictions—The user should check section VII to determine which logical units
are available and control card requirements. All processed information must be in binary.

Calling Sequence—READ(L,X(DV),N) or WRITE(L,X(DV),N)

Subroutine EOF or REWIND

Purpose—These subroutines enable the user to write end of file marks on magnetic
tape and to rewind them. They are generally used in conjunction with subroutines READ
and WRITE discussed above. The single argument L. must be the integer logical tape
number of the unit being activiated.

Restrictions—The user should check section VII to determine available logical units.

Calling Sequence—EOF (L) or REWIND (L)

85

MARY E. GEALY

Matrix Subroutines

Name Page
ZERO, ONES, UNITY, SIGMA, GENALP, GENCOLccivieinnn. 87
SHIFT, REFLCT, SHUFL, COLMAX, COLMIN 00iutnnn... 88
ELEADD, ELESUB, ELEMUL, ELEDIV, ELEINV,
EFSIN, EFASN ittt it ittt et tn ittt aataeananeeaanassnoans 89
EFCOS, EFACS, EFTAN, EFATN, EFLOG, EFSQR 90
EFEXP, EFPOW, MATRIX, SCALAR, DISAS, ASSMBL 91
DIAG, COLMLT, ROWMLT, ADDALP, ALPHAA, AABB 92
BTAB, INVRSE, MULT .. .ottt inaeaeraeaentneennnenens 93
TRANS, POLMLT, POLVAL, PLYEVLo 94
POLSOV, JACOBI, MODESt itiitiiiiiaeniniitanaeneoens 95
1Y 7N 96
S 1 R 9 £ 97
PUNCH, Matrix Data Storage and Retrieval, CALL, FILE,
ENDMOP, LSTAPEttt ittt iitanereaasatenontneonns 98

NOTE: All of the above subroutines require that matrixes be entered as positive num-

bered arrays having the integer number of rows and columns as the first two data values
followed by the floating-point element values in row order. The above package of sub-

routines is referred to as MOPAS, for Matrix Oriented Production Assembly System.

86

NRL REPORT 7656
Subroutine ZERO or ONES

Purpose—These subroutines generate a matrix [Z] such that every element is zero or
one, respectively. .

Restrictions—The matrix to be generated must contain exactly enough space in addi-
tion to having the integer number of rows and columns as the first two dai;a values. The
NR and NC arguments are the integer number of rows and columns, respectively.

Calling Sequence—ZERO(NR,NC,Z(IC)) or ONES(NR,NC,Z(IC))

Subroutine UNITY or SIGMA

Purpose—These are square matrix generation subroutines. UNITY generates a square
matrix such that the main diagonal elements are one and all other elements are zero.
SIGMA generates a square matrix such that all elements on and below the main diagonal
are one and the remaining elements are zero.

Calling Sequence—UNITY(N,Z(IC)) or SIGMA(N,Z(IC))

Restrictions—The matrix [Z] to be generated must contain exactly enough space in
addition to having the integer number of rows and columns as the first two data values.
The integer number of rows and columns are equal and must be input as the argument N.

Subroutine GENALP or GENCOL

Purpose—These are special matrix generation subroutines. GENALP will generate a
matrix such that every element is equal to a constant C. GENCOL will generate a column
matrix such that the first element is equal to X1 and the last element is equal to X2. The
intermediate elements receive equally incremented values such that a linear relationship is
established between row number and element value.

Restrictions—The NR and NC arguments refer to the integer number of rows and
columns, respectively. X1, X2, and C must be floating-point values. The generated
matrixes must contain exactly enough space in addition to having the integer number of
rows and columns as the first two data values.

Calling Sequence—GENALP(NR,NC,C,Z(IC)) or GENCOL(X1,X2,NR,Z(IC))

87

MARY E. GEALY

Subroutine SHIFT or REFLCT

Purpose—These subroutines may be used to move an entire matrix from one location
to another. SHIFT moves the matrix exactly as is and REFLCT moves it and reverses
the order of the elements within each column. The last element in each column becomes
the first and the first becomes the last, etc.

REFLCT uses three dynamic storage locations plus an additional one for each row.

Restrictions—The matrixes must be of identical size, and the integer number of rows
and columns must be the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence—SHIFT(A(IC),Z(IC)) or REFLCT(A(IC),Z(IC))

Subroutine SHUFL

Purpose—This subroutine allows the user to reorder the size of a matrix as long as
the total number of elements remains unchanged. The row order input matrix [A] is
transposed to achieve column order and then reformed as a vector by sequencing the
columns in ascending order. This vector is then reformed into a column order matrix by
taking a column at a time sequentially from the vector. The newly formed column ma-
trix is then transposed and output as the row order matrix [Z].

Restrictions—The matrixes must be identical in size and have their respective integer
number of rows and columns as the first two data values. The number of rows time

columns for [A] must equal the number of rows times columns of [Z].

Calling Sequence—SHUFL(A(IC),Z(1C))

Subroutine COLMAX or COLMIN

Purpose—These subroutines search an input matrix to obtain the maximum or mini-
mum values within each column, respectively. These values are output as a single row
matrix [Z] having as many columns as the input matrix [A].

Restrictions—Each matrix must have its integer number of rows and columns as the
first two data values.

Calling Sequence—COLMAX(A(IC),Z(IC)) or COLMIN(A(IC),Z(IC))

88

NRL REPORT 7656
Subroutine ELEADD or ELESUB

Purpose—These subroutines add or subtract the corresponding elements of two
matrixes, respectively;

m*n m*n m*n

[Z] = [A] * [B], =z =a; % by

Restrictions— All matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] or [B] matrix.

Calling Sequence—ELEADD(A(IC),B(IC),Z(IC)) or ELESUB(A(IC),B(IC),Z(IC))

Subroutine ELEMUL or ELEDIV

Purpose—These subroutines multiply or divide the corresponding elements of two
matrixes, respectively;

m*n m*n m*n
[Z] = [A] *; [B], z; = a; */ by;.
Restrictions— All matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the
[A] or [B] matrix.

Calling Sequence—ELEMUL(A(IC),B(IC),Z(IC)) or ELEDIV(A(IC),B(IC),Z(IC))

Subroutine ELEINV

Purpose—This subroutine obtains the reciprocal of each element of the [A] matrix
and places it in the corresponding element location of the [Z] matrix;

Zij = 1.0/aij.
Restrictions—The matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the

[A] matrix.

Calling Sequence—ELEINV(A(IC),Z(IC))

Subroutine EFSIN or EFASN

Purpose—These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zj; = sin (a;;) or 1z = arcsin (a;;).

89

MARY E. GEALY

Restrictions—The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the
[A] matrix.

Calling Sequence—EFSIN(A(IC),Z(IC)) or EFASN(A(IC),Z(IC))

Subroutine EFCOS or EFACS

Purpose—These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

z;j = cOs (aij) Or 1z = arccos (aij)-

Restrictions—The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence—EFCOS(A(IC),Z(IC)) or EFACS(A(IC),Z(IC))

Subroutine EFTAN or EFATN

Purpose—These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

z;; = tan (ay;) or z;; = arctan (ay;).

Restrictions—The matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence—EFTAN(A(IC),Z(IC)) or EFATN(A(IC),Z(IC))

Subroutine EFLOG or EFSQR

Purpose—These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zj; = log (aj;) or zj; =+/g; .

Resirictions—The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. All elements in the [A] matrix must be
positive.

Calling Sequence—EFLOG(A(IC),Z(IC)) or EFSQR(A(IC),Z(IC))

90

NRL REPORT 7656
Subroutine EFEXP or EFPOW

Purpose~—These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

.= a%.

z:=el or z
i ij ij

j
Restrictions—The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix. The exponent a may be an integer or floating-point number. However,
if any elements in [A] are negative then « must be an integer.

Calling Sequence—EFEXP(A(IC),Z(IC)) or EFPOW(A(IC),&,Z(IC))

Subroutine MATRIX or SCALAR

Purpose—Subroutine MATRIX allows a constant to replace a specific matrix element,
and subroutine SCALAR allows a specific matrix element to be placed into a constant
location. The integers I and J designate the row and column position of the specific
element;

z;; =C or C=gz;.

Restrictions—The matrix must have the integer number of rows and columns as the
first two data values. Checks are made to insure that the identified element is within the
matrix boundaries.

Calling Sequence—MATRIX(C,LJ,Z(IC)) or SCALAR(Z(IC),1,J,C)

Subroutine DISAS or ASSMBL

Purpose—These subroutines allow a user to operate on matrixes in a partitioned
manner by disassembling a submatrix [Z] from a parent matrix [A] or assembling a sub-
matrix [Z] into a parent matrix [A].

Restrictions—The I and J arguments are integers which identify (by row and column
number, respectively) the upper left-hand corner position of the submatrix within the
parent matrix. All matrixes must have exactly enough space and contain the integer
number of rows and columns as the first two data values. The NR and NC arguments are
the integer number of rows and columns, respectively, of the disassembled submatrix. If
the submatrix exceeds the bounds of the parent matrix an appropriate error message is
written and the program terminated. '

Calling Sequence—DISAS(A(IC),1J,NR,NC,Z(IC)) or ASSMBL(Z(IC),L,J,A(IC))

91

MARY E. GEALY

Subroutine DIAG

Purpose—Given a 1*N or N*1 matrix [V], this subroutine forms a full square N*N
matrix [Z]. The [V] values are placed sequentially on the main diagonal of [Z] and all
off-diagonal elements are set to zero.

Restrictions—Both matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

Calling Sequence—DIAG(V(IC),Z(IC))

Subroutine COLMLT or ROWMLT

Purpose—To multiply each element in a column or row of matrix [A] by its cor-
responding element from the matrix {V] which is conceptually a diagonal matrix but
stored as a vector; i.e., 1*N or N*1 matrix. The matrix [Z] is the product.

Restrictions—The matrixes must have exactly enough space and contain the integer
number of rows and columns as the first two data values. The matrixes being multiplied
must be conformable.

Calling Sequence—COLMLT(A(IC),V(IC),Z(IC)) or ROWMLT(V(IC),A(IC),Z(IC))

Subroutine ADDALP or ALPHAA

Purpose—These subroutines add a constant to or multiply a constant times every
element in a matrix;

z;; = C+a; or z

= (%q..
ij C*ay;.

ij
Restrictions—The matrixes must have exactly enough space and contain the integer

number of rows and columns as the first two data values. C and all elements must be
floating-point numbers. The [Z] matrix may be overlayed into the [A] matrix.

Calling Sequence—ADDALP(C,A(IC),Z(IC)) or ALPHAA(C,A(IC),Z(IC))

Subroutine AABB
Purpose—To sum two scaled matrixes;

m*n m*n m*n
[Z] = C1[A] + C2[B] and Zj5 = Cl*aij + CZ*bij.

Restrictions— All matrixes must be of identical size, contain exactly enough space,
and contain the integer number of rows and columns as the first two data values. The
output matrix [Z] may be overlayed into either of the input matrixes.

Calling Sequence—AABB(C1,A(IC),C2,B(IC),Z(IC))

92

NRL REPORT 7656

Subroutine BTAB
Purpose—To perform the following matrix operation:

n*n n*m m¥*m m*n
[Z] = [B]* [A] [B]°
Restrictions—The matrixes must be conformable, contain exactly enough space, and
contain the integer number of rows and columns as the first two data values. Subrou-
tines MULT and TRANS are called on.

This subroutine (due to MULT and TRANS) uses 2*m*n+6 dynamic storage
locations.

Calling Sequence—BTAB(A(IC),B(IC),Z(IC))

Subroutine INVRSE
Purpose—To invert a square matrix;

n*n n*n n*n
given [A], [Z] = [A] -1,

This subroutine requires n dynamic storage locations.
Restrictions—The matrixes must be square, identical in size, and contain the integer
number of rows and columns as the first two data values. The output matrix [Z] may

be overlayed into the [A] matrix.

Calling Sequence—INVRSE(A(IC),Z(IC))

Subroutine MULT
Purpose—To multiply two conformable matrixes together;

m*n m*p p*n
[2] = [A] [Bl, z; = aj *by;.

This subroutine requires n*m dynamic storage locations.
Restrictions—The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values. If [A] and [B] are square,

[Z] may be overlayed into either of them.

Calling Sequence—MULT(A(1C),B(IC),Z(1C))

93

MARY E. GEALY
Subroutine TRANS

m*n n*m
Purpose—Given a matrix [A], form its transpose as [Z].

This subroutine requires n*m dynamic storage locations.
Restrictions—Both matrixes must have exactly enough space and contain their inte-
ger number of rows and columns as the first two data values. The output matrix [Z]

may be overlayed into the [A] matrix.

Calling Sequence—TRANS(A(IC),Z(IC))

Subroutine POLMLT

Purpose—This subroutine performs the multiplication of a given number of nth
order polynomial coefficients by a similar number of mth order polynomial coefficients.
The polynomials must be input as matrixes with the number of rows equal, and each row
receives the following operation:

(€1,€9,C3,...,Cx) = (a1,89,...,8,)%(by,bg,... by), k= m+n-1.

Restrictions—The matrixes must have exactly enough space and contain their inte-
ger number of rows and columns as the first two data values.

Calling Sequence—POLMLT(A(IC),B(IC),((IC))

Subroutine POLVAL

Purpose—Given a set of polynomial coefficients as the first row of matrix [A], this
subroutine evaluates the polynomial for the input complex number X+iY. The answer is
returned as U+iV.

Restrictions—[A] may be m*n, but only the first row is evaluated.

Calling Sequence—POLVAL(A(IC),X,Y,U,V)

Subroutine PLYEVL

Purpose—Given a matrix [A] containing an arbitrary number NRA of nth order
polynomial coefficients and a column matrix [X] containing an arbitrary number NRX
of x values, this subroutine evaluates each polynomial for each x value. The answers are
output as a matrix [Z] of size NRX*NRA. Each set of polynomial coefficients in [A]
is a row in ascending order. An x value evaluated for the polynomials creates a row in
[Z] where the column number agrees with the polynomial row number.

94

NRL REPORT 7656

Restrictions—The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

Calling Sequence—PLYEVL(A(IC),Z(IC),Z(IC))

Subroutine POLSOV

Purpose—Given a set of polynomial coefficients as the first row in matrix [A],
size (m,n+1), this subroutine calculates the complex roots which are returned as matrix
[Z], size (n,2). Column 1 contains the real part and column 2 the imaginary part of
the roots.

" Restrictions—This subroutine presently is limited to n = 20. It internally calls on
RTPOLY and utilizes some double precision.

Calling Sequence—POLSOV (A(IC),Z(IC))

Subroutine JACOBI

Purpose—This subroutine will find the eigenvalues [E] and eigenvector matrix [Z]
associated with an input matrix [A];

n*n n*n - n*n n¥*l
[A] [Z] = [Z] [E]

This subroutine requires 2*n*n+6 dynamic storage locations.

Restrictions—The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

Calling Sequence—JACOBI(A(IC),E(IC),Z(1C))

Subroutine MODES
Purpose—This subroutine solves the dynamic vibration equation
n*n n*n n*n n*n n*l
[A] (2] = [B] [2] [1],
w2
where [A] is the input inertia matrix associated with the kinetic energy and [B] is the
input stiffness matrix associated with the strain energy. [Z] is the output eigenvector
matrix associated with the frequencies of vibration W; which are output in rad/sec as

[R] and in hertzes as [C]; both [R] and [C] are n*1 matrixes.

This subroutine requires 3*n*n+9 dynamic storage locations.

95

MARY E. GEALY

Restrictions-—The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine JACOBI is called
on.

Calling Sequence—MODES(A(IC),B(IC),Z(IC),R(IC),C(IC))

Subroutine MASS

Purpose—If a dynamic vibration problem is referred to a set of coordinates consist-
ing of the deflections {; and the rotations 0; at N collocation points along the beam
under consideration, then this subroutine generates the 2N by 2N inertia matrix [A]
which appears in the following expression for kinetic energy.

1. .o : ;
T='§{§1"'§N01"’0N}[A] §1

Restrictions—The mass and inertia data inputs to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary size and differ-
ent in length from each other. The number of collocation points N which determines the
ultimate size, 2N by 2N, of the output inertia matrix, is also chosen arbitrarily.

Calling Sequence—MASS(X(IC),DMPL(IC),RIPL(IC),CM(IC),A(IC))
Here

X is an N*1 matrix of collocation points referred to an arbitrary origin.
DMPL is an NDM#*4 matrix of distributed mass per unit length slices, in which
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.
RIPL is an NRI*4 matrix of distributed rotary inertia per unit length slices. The
columns here are similar to DMPL.
CM is an NCM*4 matrix of concentrated mass items, where
Col 1 is the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location of its center of gravity.
Col 4 is the amount of inertia about the center of gravity.
A is a 2N*2N output inertia matrix.

NOTE: Since this applies to DMPL, RIPL, and CM, the location of the values may not
go beyond the limits of the collocation points in either direction.

96

NRL REPORT 7656
Subroutine STIFF

Purpose—If a dynamic vibration problem is referred to a set of coordinates consist-
ing of the deflections {; and the rotations 6; at N collocation points along the beam
under consideration, then this subroutine generates the 2N by 2N stiffness matrix [K]
which appears in the following expression for the strain energy

1 —
U = §{§1§N010N}[K] §1

Restrictions—The stiffness and shear data inputs to this subroutine are to be sup-
plied as piecewise continuous slices; however, these arrays may be of arbitrary size and
different in length from each other. The numbeyr of collocation points N, which deter-
mine the ultimate size (2N by 2N) of the output stiffness matrix, is also chosen arbitrarily.

Calling Sequence—STIFF(X(IC),EI(IC),GA(IC),K(IC))
where

X is an N by 1 matrix of collocation points referred to an arbitrary origin.
El is an NEI by 4 matrix of bending stiffness slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice.
GA is an NGA by 4 matrix of shear stiffness slices, where the columns here are
similar to those for the EI distribution.
K is the output stiffness matrix size 2N by 2N.

NOTE: Since this applies to EI and GA, the location of the values may not go beyond
the limits of the collocation points in either direction.

Subroutine LIST

Purpose—This subroutine prints out the elements of a matrix [A] and identifies each
by its row and column number. The user must supply an alphanumeric name ALP and
integer number NUM to identify the matrix. This is to maintain consistency with sub-
routines FILE and CALL.

Restrictions—The matrix must have its integer number of rows and columns as the
first two data values.

Calling Sequence—LIST(A(IC),ALP,NUM)

97

MARY E. GEALY

Subroutine PUNCH

Purpose—This subroutine punches out a matrix [A], size n*m, one column at a
time in any desired format. The argument FOR must reference a FORTRAN format
statement that has been entered as a positive array. It must include the outer paren-
thesis but not the word FORMAT. The argument HEAD must be a single BCD word
used to identify the matrix. Each column is designated and restarts use of the FORMAT
statement.

This subroutine requires n+3 dynamic storage locations.

Restrictions—The matrix [A] must have exactly enough space and contain the inte-
ger number of rows and columns as the first two data values. Punched cards must be
asked for on the job request form.

Calling Sequence—PUNCH(A(IC),HEAD,FOR(IC))

Matrix Data Storage and Retrieval

The ability to store and retrieve matrixes from tape is easily achieved through the
use of the FILE and CALL subroutines. Matrixes are identified by an alphanumeric
name, integer problem number, and the core address of or for the matrix. The CALL
subroutine searches the matrix storage tape on logical 16 and brings the desired matrix
into core. The FILE subroutine writes a matrix onto the logical 30 tape. Subroutine
ENDMOP causes all matrixes from the logical 30 tape to be updated onto the logical 16
tape. In case of duplicate matrixes the one from logical 30 replaces the one on logical
16. A matrix which has been filed cannot be called until an ENDMOP operation has been
performed. To create a new tape the user merely sets control constant NOCOPY nonzero
and has a scratch tape mounted on logical 16. The user should check the section on con-
trol cards and deck setup to determine control card requirements.

Subroutine CALL or FILE

Purpose—To allow the user to retrieve or store matrixes on magnetic tape, see above.
The H argument must be a 6-character alphanumeric word and N must be an integer
number, both of which are used to identify the matrix.

Restrictions—See above. The matrix must have exactly enough space and contain
the integer number of rows and columns as the first two data values.

Calling Sequence—CALL (H,N,A(IC)) or FILE (A(IC),H,N)

Subroutine ENDMOP or LSTAPE

Purpose—Subroutine ENDMOP should be used in conjunction with subroutines CALL
and FILE, see above. It causes matrixes which have been filed by FILE on logical 30 to
be updated onto logical 16. A call to subroutine LSTAPE will cause the output of the
name, problem number, and size of every matrix stored on tape on logical 16.

Restrictions—See above.

Calling Sequence—ENDMOP or LSTAPE

98

NRL REPORT 7656

Special Subroutines

Name Page
SIMEQN, LSTSQUccvveeen.. .. 99
IRRADE, IRRADIiiiiiinnnnn. 100
SLRADE, SLRADI, SCRPFA 101
ABLATS .ttt ittt ittt nnnennenennsnnss 102
LQDVAP,BIVLVot 103
LINE ittt it i itnirennonaenonnns 104
STATE i iiit it et iiieneneananns 105
PSOFTS, TSOFP, TRNPRT 106
GSGDMP, LSTPCS, QMAP, TSAVE....... 107

Subroutine SIMEQN

Purpose—This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output values are
communicated as a single, specially formatted, positive input array. The array argument
must address the matrix order (N) which is input by the user. The first data value must
be the integer order of the set (or size of the square matrix) followed by the coefficient
matiix}[A] in column order, the boundary vector { B, and space for the solution vec-
tor{S:

(a1 {5} = {3}

Restrictions—The integer count and matrix size must be integers; all other values
must be floating point. The coefficient matrix is not modified by SIMEQN. Hence,
changes to {B} only allow additional solutions to be easily obtained.

Calling Sequence—SIMEQN(A(N))
where the array is formatted exactly as follows:

IC,N,A(1,1),A(1,2),...,A(N,N),Bl,...,BN,S1,...,8N

Subroutine LSTSQU

Purpose—This subroutine performs a least squares curve fit to an arbitrary number
of X,Y pairs to yield a polynomial equation of up to order 10. Rather than using a
double precision matrix inverse, this subroutine calls on subroutine SIMEQN to obtain a
simultaneous solution.

99

MARY E. GEALY
This subroutine requires 2*M dynamic storage core locations.

Restrictions— All values must be floating-point numbers except N and M, which must
be integers. N is the order of the polynomial desired and is one less than the number of
coefficients desired. M is the array length of the independent X or dependent Y values.

Calling Sequence—LSTSQU(N,M,X(DV),Y(DV),A(DV))

Subroutine IRRADI or IRRADE

Purpose—These subroutines simulate a radiosity network* within a multiple gray
surface enclosure containing a nonabsorbing media. The input is identical for both sub-
routines. However, IRRADE utilizes explicit equations to obtain the solution by relaxa-
tion, and IRRADI initially performs a symmetric matrix algebra inverse and thereafter
obtains the exact solution implicitly by matrix multiplication. The relaxation criteria of
IRRADE is internally calculated and severe enough so that both routines generally yield
identical results. However, IRRADE should be used when temperature-varying emissivi-
ties are to be considered, and IRRADI should be used when the surface emissivities are
constant. Both subroutines solve for the J-node radiosity, obtain the net radiant heat
flow rates to each surface, and return them sequentially in the last array that was initially
used to input the surface temperatures. The user need not specify any radiation con-
ductors within the enclosure.

Restrictions—The Fahrenheit system is required. The arbitrary number of tempera-
ture arguments may be constructed by a preceding BLDARY call. The emissivity, area,
temperature-Q and upper half-FA arrays must be in corresponding order and of exact
length. The first data value of the FA array must be the integer number of surfaces and
the second the Stephan-Boltzmann constant in the proper units and then the FA floating-
point values in row order. The diagonal elements (even if zero) must be included. As
many radiosity subroutine calls as desired may be used. However, each call must have
unique array arguments. The user should follow the radiosity routine by SCALE,
BRKARY, or BKARAD to distribute the @’s to the proper source locations.

Calling Sequences—IRRADI(AA(IC),A€e(IC),AFA(IC),ATQ(IC)) or
IRRADE(AA(IC),A€(IC),AFA(IC), ATQ(IC))

The arrays are formatted as follows:

AA(IC),A1,A2,A3,A4,...,AN,END

Ae(1C),el,e2,e3,e4, ..., eN,END

AFA(IC),N,0,FA(1,1),FA(1,2),FA(1,3),FA(1,4),FA(1,5),...FA(1,N)
FA(2,2),FA(2,3),FA(2,4),FA(2,5),...FA(2,N)

FA(N-2,N-2),FA(N-2,N-1),FA(N-2,N)
FA(N-1,N-1),FA(N-1,N)
FA(N,N),END

ATQ(IC),T1,T2,T3,...TN,END

*A. K. Oppenheim, “Radiation Analysis by the Network Method,” Trans. ASME 78, 725-735 (1956).

100

NRL REPORT 7656

where FA(1,2) is defined as A(1) * F(1,2). After the subroutine has been performed the
ATQ array is ATQ(IC),Q1,Q2,Q3,...QN,END.

Since FA;(1,2) = FA,(2,1) only the upper half triangle of the full FA matrix is
required. IRRADI inverts this half-matrix in its own area; hence, approximately 300
surfaces may be considered using CINDA on a 65k-core machine.

Subroutine SLRADI or SLRADE

Purpose—These subroutines are very similar to IRRADI and IRRADE but are de-
signed to solve for the solar heating rates within an enclosure, SLRADI inverts half a
symmetric matrix in order to obtain implicit solutions while SLRADE obtains solutions
explicitly by relaxation. SLRADE should be used when temperature varying solar emissivi-
ties are to be considered. The second data value of the AFA array must be the solar con-
stant in the proper units. The AT array allows the user to input the angle (degrees) be-
tween the surface normal and the surface-sun line. The AI array allows the user to input
an illumination factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant S, AT, and Al values may vary during the
transient for both routines. No input surface temperatures are required. The absorbed
heating rates are returned sequentially in the AQ array; the user may utilize SCALE,
BRKARY, or BKARAD to distribute the heating rates to the proper source locations.

Restrictions—These routines are independent of the temperature system being used.
All of the array arguments must reference the integer count set by the CINDA preproc-
essor and be of the exact required length. As many calls as desired may be made, but
each call must have unique array arguments.

Calling Sequences—SLRADI(AA(IC),A€(IC),AFA(IC),AT(IC),AI(IC),AQ(IC)) or
SLRADE(AA(IC),Ae(IC),AFA(IC),AT(IC),AL(IC),AQ(IC))

Subroutine SCRPFA

Purpose—To obtain the script FA value for radiant transfer within an enclosure.
The input arrays are formatted as shown for subroutines IRRADI and IRRADE. The
second data value in the AFA array is used as a final multiplier. If 1.0 the script FA
values are returned; if o then script ¢ FA values are returned. The script FA values are
returned in the ASFA array which is formatted identically to the AFA array and may
overlay it.

Restrictions— All array arguments must reference the integer count set by the
CINDA preprocessor, and all arrays must be exactly the required length.

Calling Sequence—SCRPFA(AA(IC),Ae(IC),AFA(IC),ASFA(IC))
NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1) may be called to list the matrix
values and identify them by row and column number. This routine and the implicit

radiosity routines finalize the half-symmetric-coefficient matrix and call on
SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric inverse.

101

MARY E. GEALY
Subroutine ABLATS

Purpose—ABLATS provides a simple ablation (sublimation) capability for the CINDA
user. The user constructs the three-dimensional network without considering the ablative.
Then in Variables 2 he simulates one-dimensional ablative attachments by calling ABLATS.
ABLATS constructs the one-dimensional network and solves it by implicit forward-
backward differencing (Crank-Nicholson method) using the time step set by the execu-
tion subroutine. Separate ablation arrays (AA) must be used for each ABLATS call. Re-
quired working space is obtained from unused program COMMON. Several ABLATS
calls thereby share unused COMMON. The user must call subroutine PNTABL(AA) in the
OUTPUT CALLS to obtain the ablation totals and temperature distribution.

Restrictions—ABLATS must be called in Variables 2 and may be used with any
execution subroutine. Subroutines D1IDEG1, NEWTR4, and INTRFC are called. All
units must be consistent. The Fahrenheit system is required. Temperature-varying mate-
rial property arrays must not exceed 60 doublets. Bivariate material properties may be
simulated by calling BVSPSA prior to ABLATS. Cross-sectional area is always considered
unity. Thermal conductivity, Stephan-Boltzmann constant, and density units must agree
in area and length units.

This subroutine requires 3*(NSL+1) dynamic storage core locations.
Calling Sequence— ABLATS(AA(IC),R,CP,G,T,C)
where

C is the capacitance location of the three-dimensional node,
T is the temperature location of the three-dimensional node.
G is the location of the material thermal conductivity or the starting location (inte-
ger count) of a doublet G vs T array.
CP is the location of the material specific heat or the starting location (integer
count) of a doublet C, vs T array.
R is the location of the material density or the starting location (integer count) of a
doublet p vs T array.
AA(IC) is the starting location of the ablation array which must be formatted as
follows:
AA(IC)+1—the ablative link number, a user-specified identification integer.
AA(IC)+2—integer number of sublayers (NSL) desired; ABLATS subtracts
from this the number of sublayers ablated.
AA(IC)+3—the initial temperature of the material; ABLATS replaces this with
the outer surface temperature, always in degrees F.
AA(IC)+4—the impressed outer surface heating rate per unit area, radiation
rates not included.
AA(IC)+5—material thickness; this is replaced by the sublayer thickness.
AA(IC)+6—surface area of the three-dimensional node; need not be unity.
AA(IC)+T7—ablation temperature, degrees F.
AA(IC)+8—heat of ablation.
AA(IC)+9—=Stephan-Boltzmann constant in consistent units.
AA(IC)+10—surface emissivity.

102

NRL REPORT 7656

AA(IC)+11—space “‘sink” temperature, degrees F.
AA(IC)+12—SPACE,N,END where N equals NSI + 4,

NOTE: The outer surface radiation loss is integrated over the time step.

Subroutine LQDVAP

Purpose—This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the node and is solved
that way by the network execution subroutine. Then LQDVAP, which must be called
from Variables 2, corrects the nodal solution in order to account for the liquid. If the
nodal temperature exceeds the boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is calculated and
considered as absorbed through vaporization. If the liquid is completely vaporized the
subroutine deletes its operations. The method of solution holds very well for explicit
solutions, but may introduce some error when large time steps are used with implicit
solutions.

Restrictions—This subroutine must be called from Variables 2.
Calling Sequence—LQDVAP(T,C,A(IC))
where

T is the temperature location of the node.

C is the capacitance location of the node.

A + 1 contains the initial liquid weight.

A + 2 contains the liquid specific heat.

A + 3 contains the liquid vaporization temperature.

A + 4 contains the liquid heat of vaporization.

A + 5 receives the liquid vaporization rate (weight/time).
A + 6 receives the liquid vaporization total (total weight).
A + 7 contains the liquid initial temperature.

Subroutine BIVLV

Purpose—This subroutine allows the user to specify the percentage flow rates
through two parallel tubes with common end points. One tube must consist of a single
flow conductor (G1) while the other tube may consist of one or more sequential flow
conductors (G2(I), I = 1,N). The ratio of flow through G1 divided by the total flow
may be calculated in any desired manner and must be supplied as the argument W. The
conductor values of either one tube or the other are reduced in order to achieve the de-
sired percentage flow rates irregardless of the pressure drop.

Restrictions—N must be an integer. G2 must address the first of the sequential
conductors in that tube.

Calling Sequence—BIVLV(N,W,G1,G2(DV))

103

MARY E. GEALY
Subroutine LINE

Purpose—This subroutine computes the steady state changes in the thermodynamic
and flow properties through a line of length L. The upstream properties must be de-
fined and supplied. The following equations are simultaneously solved in an iterative
fashion:

PuVu = PgVq (one-dimensional conservation of mass),
where u denotes upstream and d denotes downstream;

Vu2 v 2

L, + -5 % =14 + *3— (one-dimensional energy
equation);

P, = Py (momentum equation, simplified because of a
very small pressure drop and low velocities);

p = fX,Ph)
= g(X,P,h) (equations of state);
X;, = h(X,Ph)
h(Wp)L(TW - T) (energy loss)
R, = W(4A/Wy)/Au (R, is the Reynolds number)

o
i

P, = Cp #/K (P, is the Prandtl number)

~

= 0.332 (R,°-°)(P,%-333) for R, < 2100 (laminar flow)

=2~

= 0.023 (R,"8)(P,%%) for R, > 2100 (turbulent flow)
Cp, u, and K are obtained from subroutine TRNPRT.

Restrictions—Subroutine LINE assumes that the flowing fluid is composed of a per-
fect noncondensable gas and a perfect condensable gas. This assumption involves the
STATE subroutine which is called on. However, LINE does not need the variables Xy,
and T to evaluate the transport properties and the heat transfer coefficient h for the cal-
culation of Q. The thermodynamic property arguments are upstream properties when
calling LINE, but the downstream thermodynamic properties are in the same locations.

Calling Sequence—
LINE(A,W,,L, Ty ,W,A1(IC),A2(IC),A3(IC), . .. ,LA10(IC),P, T, X, ,X,1,V,0,Q)

where
A = flow area
Wp = wetted perimeter
L = tube length (floating point)
T,, = wall temperature

104

NRL REPORT 7656

W = mass flow rate
Al = the doublet interpolation array of condensable gas, 4 vs T
A2 = the doublet interpolation array of noncondensable gas, 4 vs T
A3 = the doublet interpolation array of condensable gas, k vs T
A4 = the doublet interpolation array of noncondensable gas, k vs T
Ab = the doublet interpolation array of condensable gas, C, vs T
A6 = the doublet interpolation array of noncondensable gas, C,, vs T
A10 = the doublet interpolation array of condensable gas, heat of vaporization vs T
= pressure
= temperature
X1, = mass fraction of liquid
X = mass fraction of noncondensable gas
= enthalpy (floating point)

V = v=velocity
p = density
Q@ = energy lost to wall

Subroutine STATE

Purpose—This subroutine computes the thermodynamic state for a mixture of an
assumed noncondensable gas (hydrogen) and a condensable gas (water vapor). The sub-
routine establishes whether the mixture is superheated or saturated and gives its density
(P,), temperature (T), and liquid mass fraction (Xf,). The hydrogen mass fraction (X}),
mixture pressure (P,), and mixture enthalpy (I,,) are input. Vapor components are
assumed to be perfect gases; that is,

Pv 1:’h
= p = em—
Pv = R,T h TR,T
Iv = vaT Ih = CphT

where subscripts h and v refer to hydrogen and water vapor, respectively. The liquid
constituent is assumed to have the following properties:

pL =62.4 and IL = IV —_ HV,

where
HV = heat of vaporization
Cp = gpecific heat at constant pressure
R = gas constant.

If the mixture is saturated, P, is related to T by the saturation equation of sub-
routines PSOFTS and/or TSOFP. Mixture properties are obtained from the following
equations:

105

MARY E. GEALY

b = 1.0
mo Ky A-X - X)X
Pn Py AL

and
I, = Xplp + (1 = Xp)I, - X, (HV).
Restrictions—The restrictions are those that are imposed for perfect gases and incom-
pressible liquids. The pressures must be well below the critical point. A is a doublet in-

terpolation array of HV as a function of temperature T. I, must be a floating-point
number.

Calling Sequence—STATE(X,P,1,0,X;,,T,A(IC))

Subroutine PSOFTS

Purpose—This subroutine computes the saturation pressure of water vapor as a
function of gas temperature. The relationship used is

1 P x[A+Bx+Cx2
%810 P T T ’

P T,\ 1+Dx
where x = T, - T, A, B, C, and D are constants, and P, and T, are critical points.

Restrictions—The gas temperature should be between 10° and 150° C.

Calling Sequence—PSOFTS(TS,P)

Subroutine TSOFP

Purpose—This subroutine computes gas temperature as a function of the saturation
pressure of water vapor, using the same relation as in PSOFTS.

Restrictions—The same restrictions apply to TSOFP as to PSOFTS.

Calling Sequence—TSOFP(P,TS)

Subroutine TRNPRT

Purpose—This subroutine calculates the transport properties of a two-component
gas mixture.

Restrictions—Only a two-component gas mixture is allowed, and the component
properties must have already been evaluated at the desired temperature.

106

NRL REPORT 7656
Calling Sequence—TRNPRT(V1,V2,G1,G2,C1,C2,V,G,C,P1)
where

VN is the viscosity of component N.

GN is the thermal conductivity of component N.

CN is the specific heat of component N.

P1 is the percent (by weight) of component 1.

V, G, and C are the viscosity, thermal conductivity, and specific heat of the mixture.

Subroutine CSGDMP or LSTPCS or QMAP

Purpose—These routines are designed to aid in the checkout of thermal problem
data decks by listing the pseudo-compute sequence. CSGDMP calls upon Variables 1 and
then prints out each relative diffusion node number with the capacitance and CSGMIN
value of the node. For each node, all three routines identify the attached conductors by
relative conductor number and type, and by the relative number of the adjoining node.
CSGDMP also lists the conductance of the attached conductor and the type of the ad-
joining node. Either the SPCS or the LPCS option may be used. While the LPCS option
allows every conductor attached to a node to be identified, the SPCS option identifies
only conductors for the first relative node number on which they occur. After the dif-
fusion nodes are processed, the connection information for the arithmetic nodes is
listed. After listing the above information, control passes to the next sequentially listed
subroutine.

QMAP has all the properties of CSGDMP. In addition, it prints the temperatures of
each node and adjoining node, and the flux between them.

Restrictions—These routines are generally called from EXECTN. CSGDMP and
QMAP should never be called from Variables 1.

Calling Sequence—CSGDMP or LSTPCS or QMAP

Subroutine TSAVE

Purpose—This subroutine generates an external plotting data output file (unit 24)
that can be used with the external plotting option to plot nodal temperature vs time.
TSAVE records each nodal temperature at TIMEN and also saves the actual node
numbers.

Restrictions—This routine should not be called more than 2000 times.

Calling Sequence—TSAVE

107

Internal Subroutines

Name Name
BIT ITRATE
COPY POLYADD
GENM PYMLT1
GENST RTPOLY
HEDCOL SETUP
INPUTG SKPLIN
INPUTT

MARY E. G

EALY

Name

SMOPAS
TOPLIN
UNPAK
UPDMOP
WRTARY
WRTLOS8

These subroutines are called from other routines and not normally by the user.

ACKNOWLEDGMENTS

The author would like to thank Mr. Richard Perlut of the Mechanical Engineering
Branch, Engineering Services Division, for his suggestions and technical assistance.

" 108

Appendix A

SAMPLE PROBLEM 1A

ORIGINAL RUN

A perfectly insulated one-dimensional bar has a constant heating rate applied to one
end. Obtain the 10-min transient temperature response, at half-minute intervals, of the
bar ends and at points 1/4, 1/2, and 3/4 of the way along the bar. The bar is initially
at 80°F and receives a constant heating rate of 3.0 Btu/min. The length of the bar is
4 in., and it has a cross-sectional area of 1 sq. in. It has the following material properties:

density = 172.8 1b/ft3
specific heat = 0.35 Btu/lb°F
thermal conductivity = 0.2 Btu/in.-min.-°F
Figure Ala shows a schematic of the physical problem with the nodes appropriately

placed and the dashed lines indicating the lumping of the system for capacitance purposes.
The network representation is illustrated in Fig. Alb.

'///T////l////r/JL/I///

| i
(a) e | o | o
| i

I—

1

T T

(a) Parameter lumping

T T2 T3 T4 T5
qy —=
Gl G2 G3 G4

®) T T T T T

(b) One-dimensional network
Fig. A1—Representation of a perfectly insulated bar
Capacitors receive the same number as the temperatures but with a C prefix. From
the above information, we immediately calculate

C2 = C3 = C4 = p*V*Cp = 0.0385 Btu/°F
Cl1 = C5 = C2/2.0 = 0.0175 Btu/°F
Gl = G2 = G3 = G4 = k*Ac/f = 0.2 Btu/min°F,

109

MARY E. GEALY
where V = £*Ac; length times cross-sectional area.
Since this is not a RECALL run, the first data card should be blank.

To apply explicit forward differencing to this problem, we must utilize the CNFRWD
execution subroutine which requires the short pseudo-compute sequence. Hence, the title
block is as follows:

8
\
BCD 3THERMAL SPCS

BCD 9SAMPLE PROBLEM NO. 1A
END

The nodal block is next and requires the node number, initial temperature, and capaci-
tance of each node be listed.

8

\

BCD 3NODE DATA
1480.4.0175,5,80.,.0175

GEN 2,3,1,480.,.035,1.414,1.

END

The conductor block requires that each conductor number be listed with the node num-
bers at either end, and the conductor value.

8
\

BCD 3CONDUCTOR DATA
GEN l,4,1.‘,1;2,],.2,'..]-,'-
END

The only control constants required for CNFRWD are as follows:

8
\

BCD 3CONSTANTS DATA
TIMEND,10.,0UTPUT,.5,CSGFAC,2.
END

There are no array data and only one execution call; hence,

110

NRL REPORT 7656

3 21 25

\ Voo

BCD 3ARRAY DATA

END

F DIMENSION XC 100)
BCD 3EXECUTION

F NDIM=100

F NTH=0

CSGDMP

CNFRWD

«

END

There are no second variables operations, but we must apply the heating rate in the first
variables;

8

{

BCD 3VARIABLES 1
STFSEP (3.,Q1)

END

BCD 3VARIABLES 2

END

The following completes the data input.

8
¥

BCD 30UTPUT CALLS
PRNTMP

END

BCD 3END OF DATA

Since PRNTMP lists the relative node numbers, and not the actual ones, the node dic-
tionary will have to be consulted for conversion of relative to actual.

The above problem data deck processed by the CINDA program on the CDC-3800
as a standard run produces the output as given in the following printouts.

NOTE: The only alternative to the BCD 3END OF DATA card is a parameter change.
A new job would require another set of control cards.

111

MARY E. GEALY

2l/1e/01

000TeTeNNY

60sQv07

/%76 (0) $3NVE

##e3330 AHUNIG#es

VAeIHeOY¢ (6664 T¢T¢yILSYN VONID)=x604dIN03I

S430466840080080%¢ (S) 80N

EL/7€1/L0 (Q31va 122281 3Wli AV Q31¥vls €1.T00 338WNN 3ON3ND3S

%00 NOISH3A 8000LS SI ONVWIO °*XVW °*OMl ¥3LiNdWOD 1°*2 3d402S WNHO
1647 NO S0.S81 iv €L/€1/.0 ONIANI¥d Q31¥VLS €TL10 3ION3NO3S

112

€IT

PROGRAM
77672
74272
71617
70673
62141
56177
$7005
54544
53562
53407
52342

D OO Ot O bt et et et s

PROGRAM
NONE

LABELED
1 76566
1 75654
1 64137

NUMBERED
0 23042

ENTRY PO
TT777
76214
63176
53275
53565
73077
71760
71345
54573
57020
60643
54625
53307
52764
57473
57537
S7073
53532
52627
52664
52732
52750
52454
52535
52512
52474
52420

ODOO0OOOOOOD M OO IO e OO -~ O

EXECUTION STARTED AT

NAMES
SEARCH
SKIP
PACK43
WRTSCOPE
PREPRO
I10H.
RFIe.
EFT,
BSP,
REW.
QRQENTRY

EXTENS,

COMMON
CRDBLK
QLOGIC
DIMARY

COMMON
4

INTS
SENTRY
GENLNK
BLKCRD
ONSTINGL
BSP.
CODERD
PSUEDO
81T
QARAIFUNI
BFO.
FINAL
10P.
I0R,
I0E.
ALLOC.
ALLOCIN,
Q8NOTRAC
Q8QIF10C
016003100
03GQg1040
Q3Q03040
@3Qg5040
@1Q10030
Q1010200
01010310
Q1010420
Q@3Q10340

00105
00322
00210
00036
00605
02246
00065
00024
00072
00015
00056

01015
060003
00454

17500

CO OO

[y~

D OO0 OCOOOOOO O OOCOQIIMIIMFO O OO -

1828 =02

77603
72717
71345
65267
60445
57303
56740
54472
53527
52764

76014
75642
62746

00001

77675
52420
53412
74656
53657
72636
71422
71110
ToT64
62214
57074
53037
56223
53156
57343
60013
57206
52604
52633
52615
52701
52715
52527
52463
52501
52474
52420

STFFB
CODERD
8I7
CINDA4
INITAL
Q@70L00LC
ENCo
SL1.
Q8QIFIOC
10S.

TAPE
PLOGIC
WNJS

SEARCH
Q3010040
REW,
SPLIT
TSB.
DATARD
PACK43
PRESUB
WRTBLK
PREPRO
QBQERROR
QBOHIST.
IOH.
QRBOCHAIN
RETURN,
ELD,
GBQERSET
Q@1Qpo0100
Q1004100
Q3001140
Q3Q03140
23005140
@1@lo0100
Q1010210
@01Q10320
Q1910430
Q3010440

00067
01353
00052
03404
10467
00032
00045
00052
00033
00423

00012
00012
00001

17500

OO O O st bt gt s

OO0 OO0OOOOOOOOHFOOHMMFDOFOOO

76026
71712
71051
62747
57571
54622
56705
54430
53471
52604

75775
72573

17501

52342
52655
53430
74275
53671
54500
71632
66371
56710
52346
52343
57303
60320
53300
57447
60277
57010
52604
52637
52723
52741
52506
52501
52463
52522
52420

GENLNK
PSUEDO
PRESUR
BLKCRD
FINAL
10P.
DEC.
Q8INOUTS
STHe

Q1 OREINT

DATA
LOGIC

Q8QDICT.
03000040
TSHe
SKIP
STR,.
SLO.
ORMIN
CINDA4
DEC.
QBQRENTRY
EXIT
Q7QLODLC
«TSERR,
QNDOUBL. «
BUSY.
«REPCNT,
BFlae
@1001100
Q1Q05100
Q3Q02040
Q3004040
@1Q10010
Q1010120
Q1Q10230
Q1Q10400
@3Q10140

00540
00661
00274
01170
02350
01355
00033
00042
00036
00160

00017
00124

17500

0CO0O0COQOOOOH~MOOOOLDEFOODOOOO ™

QDO QO =IO =t b s

74614
71627
70731
71134
57335
57072
54570
53654
53424
52420

75657
66613

37201

77607
$3303
53475
53536
54446
56472
564547
70701
56743
67407
54430
53004
56177
65644
57456
57072
54012
52623
52607
52673
52707
52506
52460
52527
52515
52420

SPLIT
ORMIN
WRTBLK
DATARD
ALLOC,
Q8QERROR
QBQRIFUNI

Q1QSTORE

SUBLST
NARRAY

STFFB
THEND o
STH.
QBQIFEOF
Q8QINPG
SLI.
EFTe
WRTSCOPE
ENC,
INITAL
QR8QA0UT4
10S.
BCOBUF o
ETAR.
IRETURN,
QBERRORN
ELB,
21002100
Q3000140
Q03R92140
Q3Q94140
81010020
@1Q10130
Q1010300
01810410
Q3010260

01026
00063
00120
06643
00234
00211
00032
00554
00045
00164

00116
00454

17500

999L LYO0dHY TUN

Vil

BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM NOJ1A
END
BCD 3NODE DATA

19804001 75959800900175
GEN 2'3"'80-'-035'100 o'lo
END

RELATIVE NODE NUMBERS

1 THRU 5 1
BCD 3CONDUCTOR DATA
GEN 1%4°1%1°%1%2%1%e2%10%10¢%10
END

RELATIVE CoNDUCTOR NUMBERS

1 THRU 4 1
BCD 3CONSTANYS DATA
TIMEND» 1 0s20UTPUTye5¢CSGFACY2e
END
BCD 3ARRAY DATA
END
DIMENSION X(100)
BCD 3EXECUTION
NDIM = 100
NTH = 0O
CSGOMP
CNFRWD
END
BCD 3VARIABLES 1
STFSEP (3.,9Q1)
END
BCD 3VARIABLES 2
END
BCD 30UTPUT CALLS
PRNTMP
END

ACTUAL NODE NUMBERS

3

ACTUAL CONDUCTOR NUMBERS

4

4

L]

ATVED 'H AUV

NRL REPORT 7656

dWiN¥d

d3s4dis

OMH AND

43033N

SANILNOYBNS

dWa9s2

14

115

MARY E. GEALY

xelepp=IenLd
VANID14 64 A8VHEIN

116

LTT

FTNS¢4A

07/13/73

PROGRAM LINKO

COMMON /TITLE/ H

COMMON /TEMP/ T

COMMON /CcaAP/ Cc

COMMON /SOURCE/ @

COMMON /COND/ 6

COMMON /PCS/ (¢SEQ

COMMON /KONST/ K

COMMON /ARRAY/ A

COMMON /FIXCON/ TIMEN DTIMEU, TIMEND» CSGFACY
INLOOP DTMPCAY OPEITR, DT IMEH DAMPA »
1DAMPD ATMPCA Yy BACKUP o TIMEQ TIMEM
1DTMPCCo ATMPCCy CSGMIN,y QUTPUT, ARLXCA»
1L00PCTs OTIMEL Y DTIMET cSGMAX CSGRAL»
1¢SGReLy DRLXCAY DRLXCCy LINECT PAGECT
1aRLXcCy LSPCS ENGBAL» BALENG NOCOPYs
INCSGM NDTMPCy NARLXCy NATMPCy ITEST »
LUTEST » KTEST » LTEST » MTEST RTEST »
1STEST » TYEST » UTEST » VTEST LAXFAC

1, IDCNTY

COMMON /DIMENS/ NNTsNNDINNCINRGsNNGsNCONsNARY s LSEQsDUMI ¢ NUMR
DIMENSION H{20)

COMMON /PRNT/ NT

COMMON /XSPACE/ NOIM, NTH, X

COMMON /LOGIC/ LNODEe+ LCOND» LCONSTs LARRAY

LOGICAL LNODEs LCONDs LCONSTs LARRAY

DIMENSION Tt SyeCt 5) 9 Q¢ 5) Gt 4) 9K ¢ 1)sat 1),
1¢SEQ 6)sX(100)y NT(5)

LNODE = ,TRUE,

LCOND = «TRUEs

LCONST = oFALSEs

LARRAY = FALSE.
CAaLL INPUTT
CALL EXECTN

GO YO 1

END

PAGE NO,

999.L LYOdTY TUN

Se4DS LINKO

PROGRAM LENGTH

ENTRY POINTS LINKo

BLOCK NAMES
TITLE
TEMP
CaP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
LOGIC

EXTERNAL SYMBOLS
QBQRENTRY
03010040
Q8QDICT,
INPUTT
EXECTN

00126 SYMBOLS

811

00033
00003

00024
000605
0000S
00005
00004
00006
00001
00001
00062
00012
00005
00146
000046

IDENT

LINKO

07/13/73

ED

PAGE NO,

ATIVED "3 AYVIN

61T

FTNS,4A

07/13/73
SUBROUTINE EXECTN
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ c
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ (¢SEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN DTIMEUS TIMENDs CSGFACY
INLOOP » DTMPCAY OPEITRy DTIMEH DAMPA
1pamPp » ATMPCAY BACKUP» TIMEO TIMEM o
1pTMPCCY ATMPCC CSGMINY OUTPUT, ARLXCA»
1LOOPCT) DTIMELs DTIMEIs CSGMAXs CSGRALY
1¢cSGRCLs DRLXCAS DRLXCCY LINECTY PAGECT»
1ARLXCCo LSPCS » ENGBAL BALENG NOCOPY»
INCSGM » NDTMPCy NARLXCe NATMPCs ITEST »
LUTEST » KTEST » LTEST » MTEST RTEST
1STEST o TYEST » UTEST » VTEST » LAXFAC
1, IDCNT
COMMON /DIMENS/ NNToNNDsNNCINRGsNNGoNCON9NARY s LSEQeDUM] 4 NUM2
DIMENSION H{20)
COMMON /PRNT/ NT
COMMON /XSPACE/_ NDIMy NTHs X

EQUIVALENCE (K(1)oXK(
oN Ttlyy ctlyy @tlyy Gtlyy k(lyy ath

DIMENST
’

NDIM =

NTH = 0
caLL ¢
catL ¢
RETURN

END

cseq(ly ’

100

SGOMP
NFRWD

NT (1)

wxk(lyex(ly

PAGE NO,

969L LHOJdHY TUN

MARY E. GEALY

*ON 39vd

a3

eL/el/LO

N133X%3

IN301

€0000
10000
21000
29000
10000
10000
10000
10000
10000
10000
16000
%2000

£0000
12000

SI08WAS 22100

OMYAND
dwaesd
*1310080

STI0EWAS T¥NW3ILX3E
30v4aSX
LNYd
SNAWIQ
NOOXId
INTEL
LSNOY
S3d
aNo?d
324n0S
avd
dwi3l
ERTR SN

SAWVN XIO01H

N123X3 SINIOG AMINI

H1ION3T WVYO0Hd

N133x3

sav*s

120

161

FTNS5e4A

SUBROUTINE

COMMON /TITLE/ H
COMMON /TEMP/ T

COMMON /CAP/

COMMON /SOURCE, Q
COMMON /COND/ [}

COMMON /PCS/

COMMON /KONST/ K
COMMON /ARRAY/ A

COMMON /FIXCON/

INLOOP
1pamPp
1pTMPCCe
1L00PcTs
1CSGRCL
1ARLXCCs
INCSGM o
LUTEST »
ISTEST »
1, IDCNT

COMMON /DIMENS/ NNT¢NNDINNCsNRGsNNGsNCONsNARY s LSEQsDUM] yNUM2

07/13/73
VARBL1
C
CSEQ
TIMEN » DTIMEV TIMENDY CSGFACY

DTMPCAS OPEITRS DTIMEHS DAMPA »
ATMPCAY BACKUPs TIMEO TIMEM »
ATMPCCo CSGMINs OUTPUT, ARLXCA"
DTIMELY DYIMELY CSGMAXy CSGRALY
DRLXCAY DRLXCCY LINECT» PAGECT
LSPCS » ENGBAL BALENG» NOCOPY »
NDTMPCs NARLXCs NATMPCs ITEST »
KTEST » LTEST » MTEST » RTEST »
TYEST o UTEST » VTEST » LAXFAC

DIMENSION H{20)
COMMON /PRNT/ NT

COMMON /XSPACE/

EQUIVALENCE
DIMENSION

’
CALL STFSEP{3,90¢

RETURN
END

NDIMy NTHs X
(K(1)9yXK(1))
Tthys cthyy a(lyy 6ty ktlyy atl)
cSEQ(]) ’
1))

NT(D)

XK (1yex (1)

PAGE NO,

969. LY04dHY TUN

(44

S44DS VARBL)

PROGRAM LENGTH

ENTRY POINTS VARRL1

BLOCK NAMES
TITLE
TEMP
CAP
SOJRCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE

EXTERNAL SYMROLS
O8QRDICT,
STFSEP

00121 SYMBOLS

00016
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

VARBL1

07/13/73

ED

PAGE NO,

XIVED 'H AUV

ger1

FTNS.4A

SUBROUTINE VARBLZ2

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
INLOOP
1paMPD
1pTmPcce
1L00PCTs
1CSGREL
1ARLXCC
INCSGM
1UTEST
1STEST
1, 1

COMMON /DIMENS/ NNToNNDINNCoyNRGyNNGsNCONsNARY o LSEQsDUM] s NUM2

DIMENSI
COMMON
COMMON

EQUIVALENCE

OIMENST

1,
RETURN
END

/TITLEZ H
/TEMP/ T
/CAP/ c
/SOURCE/ @
/COND/ G
/PCcS/ CSEQ
/KONST/ K
ZARRAY/ A

/7 IXCON/ TIMEN o

DTMPCA
ATMPCAY
ATMPCCy
DTIMELS
DRLXCAY
LSPCS
NDTMPCy
KTEST o
TTEST
DCNT

ON H(20)
/PRNT/ NT

OPEITRy
BACKUP »
CSGMIN,
DTIMEI
DRLXCCo
ENGBAL »
NARLXC
LTEST
UTEST »

/XSPACE/_ NDIMs NTHe X

(K1) XK (1))
oN Tty cthye tlyy Gt kKthyy atl)

csea () ’

DYIMEU,

DTIMEH,
TIMEO
OUTPUTy
CSGMAXY
LINECT»
BALENGY
NATMPCo
MTEST
VTEST

NT (1)

TIMENDY

07713773

DAMPA o
TIMEM
ARLXCA»
CSGRAL Y
PAGECT»
NOCOPY
ITEST »
RTEST »
LAXFAC

sXK{1)ex(1y

CSGFACY

PAGE NO,

969L LHOdAY TUN

144!

S5¢4DS VARBL?2

PROGRAM LENGTH
ENTRY POINTS VaRBL2
BLOCK NAMES
. TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
EXTERNAL SYMBOLS
Q8QADICT.
00120 SYMBOLS

0g¢o012
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

VARBL2

07/13/73

ED

PAGE NO,

ATVED '3 AYVIK

el

FTINS,4A

07/13/73
SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ c
COMMON /SOURCE/ @
COMMON /COND/ 6
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN OTIMEU, TIMEND, CSGFACY
InLOOP DTMPCAs OPEITRY DTIMEH, DAMPA »
1paMPD » ATMPCA» BACKUP» TIMEO TIMEM o
1DTMPCC ATMPCCo CSGMIN OUTPUT, ARLXCA¢
1L00PCTs DTIMEL» DTIMELY cSGMaXs CSGRAL
1C¢SGRCL DRLXCAs DRLXCCy LINECT» PAGECT
1ARLXCC LSPCS ENGBAL Y BALENGY NOCOPY+s
INCSGM o NDTMPCy NARLXCy NATMPCy ITEST »
1UTEST » KTEST » LTEST » MTEST » RTEST »
1STEST TTEST » UTEST » VTEST LAXFAC
1, IDCNT
COMMON /DIMENS/ NNToNNDsNNCyNRGNNGyNCONsNARY s LSEQyDUM] o NUMP
DIMENSION H(20)
COMMON /PRNT/ NT

COMMON /XSPACE/ NDIMs NTHs X

EQUIVALENCE (K(1),xK(1))
oN T(hyy cthy atlyy 6ty k(e a(hH
cseatly ’

1DIMENSI

]
CALL PRNTMP

RETURN
END

NT (1)

1 XK(1)9x (1)

PAGE NO,

999L LYOddY TUN

9T

5,4DS OUTCAL

PROGRAM LENGTH

ENTRY POINTS ouTcal

BLOCK NAMES
TI1TLE
TEMP
CAP
SOJRCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT

i XSPACE

EXTERNAL SYMROLS

Q8ADICT,

PRNTMP

00121 SYMBOLS
LOAD
RUN?5¢2500

00014
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

OUTCAL

07/13/73

ED

PAGE NO,

AIVED H AUV

LgT

PROGRAM
77744
77325
74542
73571
72643
70335
64674

B e e el e

PROGRAM
NONE

LABELED
1 77720
1 77675
1 77603
1 77412

NUMBERED
NONE

ENTRY PO
77777
64432
67143
77330
72357
73423
73630
T4314
74753
72040
77253
74542
73455
72463
72516
72602
72620
72232
64544
64625
64602
64564
64510

Bt bt bt bt et et Gt bt bt (et et P bk et et ek et b Pt Bt et D

EXECUTION STARTED AT

NAMES
LINKQ
OUTCAL
O8QERROR
TOPLIN
108,
PRNTMP
INPUTT

EXTENS.

COMMON
TITLE
COND
FIXCON
LOGIC

COMMON

INTS
SENTRY
QBQDICT.
CNFRWD
OUTCAL
THEND»
STHe
TOPLIN
RETURN.,
Q7QLOoDLC
I0E.

BIT
QB8ERRORN
QBQOUT4
Q1Qo1100
Q1Q05100
03002040
Q3Q04040
QB8QCHAIN
31610030
Q1010200
01010310
Q1Q10420
Q3010340

060033
00014
00211
00066
00554
00126
00551

00024
00004
00062
00004

bt s et bt Pt

—

e S kel X i S e Ry S]

1831 =41

77371
77253
74306
73517
72463
70247
64510

77713
77667
77571

77747
64711
77356
70356
72534
73473
73664
74420
72354
75031
76621
74543
73001
72502
12466
72552
72566
71505
64617
64553
64571
64564
64510

EXECTN
BIT
ALLOC,
SLI.
Q1QREINT
STFSEP
Q1QSTORE

TEMP
PCS
DIMENS

LINKO
INPUTT
VARBL1
PRNTMP
Q3Q00040
QBQAINPS
UNPAK
BUSY,
QGNDOUBL »
10H.
ELDs
Q8NOTRAC
ELB.
Q21002100
Q3000140
Q3002140
03004140
ETAB.
Q1010100
Q21Q10210
Q1Q10320
Q01010430
03010440

00021
00052
00234
00052
00160
00066
00164

00005
00006
00012

- et ot et et et

[

e ol e

77353
75005
74165
73455
72040
67107
66432

71706
77666
77564

64436
77374
70252
70466
64433
73517
T4246
T4427
72060
75005
77105
74656
72660
72506
72543
72611
72627
64576
64571
66553
64612
64510

VARBL]
I0H,
STNDRD
QBINOUTS
10S.
CNFRWD
QBQRENTRY

CAP
KONST
PRNT

QBQENTRY
EXECTN
STFSEP
10P.
EXIT
SLYe
STNDRD
IRETURN.
10S.
BCDBUF o
+REPCNT,
QBQERSET
ST8,
01003100
Q3Q01040
03003040
03Q05040
81Q10010
01Q10120
01010230
01010400
03010140

00016
02246
00121
00042
00423
01140
00056

00005
00001
00005

Pt s ot Pt Pt

-

P e s e e e e e el el el i

77341
764753
73657
73417
70463
65445

77701
77665
77416

64510
66110
77344
72113
72646
72351
T4444
T4544
72363
73525
77126
74510
72663
72512
726474
72560
72574
64576
64550
64617
64605
64510

VARBL?2
Q7QLODLC
UNPAK
STH,
10P,
CSGOMP

SOURCE
ARRAY
XSPACE

23010060
CSGOMP
VARBL2
Q8QHIST,
TS8.
GNSINGL
ALLOC,
QB8QERROR
I10R,
SLO,

+ TSERR,
ALLOCIN.
Q1Q00100
Q1Q04100
Q3001140
Q3003140
03Q05140
Q1Q10020
21010130
Q1Q10300
Q1Q10410
@3Q10240

00012
00032
00306
00036
01355
01442

00005
0000}
00146

9694 LYOdHY TUN

8¢1

PAGE
CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER « €00045 (NRL EDITED)

SAMPLE PROBLEM NO,1A

A 5 NODE PROBLEM USING SPCS
NODE 1 HAS THE CSGMIN OF 8745000-003¢ NODE 1 HAS THE CSGMAX OF B7.5000-003

NODE C=VALUE CSG=VALUE COND TYPE G-VALUE TO NODE TYPE
1 17.500%003 87.500"003
1 LIN 20e000-002 3 DIFF
2 17.500=003 87.500~003
4 LIN 20.000~002 S DIFF
3 35.000=003 87.500~003
2 LIN 20.000-002 4 DIFF
4 35,000=003 87.500~-003
3 LIN 20,000-002 5 DOIFF

5 35.000-003 87+500~003
THIS NODE HAS BEEN PROCESSED

AIVED "4 AYVIN

NRL REPORT 7656

31BVIIVAY SNOILYIOT S6

129

0€T

. &
TIME

. »
TIME

. .
TIME

. @
TIME

[
TIME

. .
TIME

. @
TIME

* *

TIME

* ®
TIME

o L]

TIME

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER = C00045

SAMPLE PROBLEM NO.1A

L
00,000004000 DTIMEU

1 THRU S

L
50,00000=002 DTIMEU

1 THRU 5

*« »
10.00000=001 DTIMEV

1 THRU S

15,00000-001 DTIMEU
1 THRU 5

.
20,00000-001 DTIMEU

1 THRU 5

* *

25.00000=-00Y DTIMEU
1 THRU)

* ®*

30,00000-001 DTIMEU
1 THRU 5

.
35.,00000-001 DTIMEU

1 THRU 5

L)
40,00000-001 DTIMEU

1 THRU 5

¢ »
45.00000~001 DTIMEU

1 THRU]

00,000004000 CSGMIN(
8040000004000

21,40625~003 CSGMIN(
1048276334001

21.40625-003 CSGMIN(
12.0763824+001

21,40625=003 CSGMIN{
13.177193+001

21,40625-003 CSGMIN(
14,2536954001

21,40625=003 CSGMIN(
15.325732+9001

21,40625=-003 CSGMIN(
16,397295+001

21,40625-003 CSGMIN(

174687464001

21,40625-003 CSGMIN(

18,540178+001

21,40625=003 CSGMIN(

1946116074001

1) 87,50000=003
80.0000004000

1) 87.50000~003
824523666¢000

1) 87.50000-003
91,468321¢000

1) 87.50000~003
10.188878¢001

1) 87,50000~003
11,2556433+001

1) 87.50000-003
1243260564001

1) 87,50000~003
13,3973484001

1) 87.50000~003

1404687549001

1) 87.50000~003
15.,540179+001

1) 87.50000-003

16¢611607+001

(NRL EDITED)

DTMPCC! 1) 00,000004000 ARLXcCC(

800000004000 800000000000

DTMPCC(1) 62431991+-002 ARLXCC!

95,775126+000 B7.903573+000

DTMPCE(1) #8,58940-002 ARLXCC{

107741994001 98,616072+000

DTMPCC| 1) 46,32151-002 ARLXCC!

118664044001 1009330364001

DTMPCC 1) 45,94534002 ARLXCC{

124941279001 1240044644001

DTMPCC(1) 45,88294=002 ARLXCC!

14,013279+001 13.0758934001

DTMpCC(1) 45,87259-002 ARLXCC(

15,084803+001 14,1473214001

DTMPCCH 1) 45,87088-002 ARLXCC(

16,156247+4001 1542187504001

DTMPCC(1) 45,87059-002 ARLXCC(

17,227678+001 16,290179+001

DTMPCC 1) 45,87055-002 ARLXCC(

184299107+001 173616074001

0)

0)

0)

0)

0)

0)

0)

0)

0)

0)

PAGE

00,000004000
80,000000¢000

00.,000004000
83,778445+000

00,000004000
93,240150+000

00,00000000
10,374667+001

00,000004000
11,4426504001

00,000004000
12,513507+001

00,00000+000
13,584B8404001

00,000004000

14,656253+001

00,00000+000
15,727679+001

00,00000+000

1647991074001

AIVED H AUV

I€T

.« ®
TIME

L)
TIME

. »
TIME

. o
TIME

. @
TIME

. »
TIME

. .
TIME

* *
TIME

. @
TIME

. .
TIME

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER = €00045

SAMPLE PROBLEM NO.1A

. »
50,00000=-001 DYIMEV

1 THRU s

.
55,00000+001 DYIMEU

1 THRU 5

. »
60,00000~001 DYIMEU

1 THRU 5

. o«
65,00000~001 OTIMEY

1 THRU 5

* @
70.00000~001 DYIMEU

1 THRU 5

L
75.,00000=001 DTIMEU

1 THRY 5

¢
80,00000=001 DYIMEU

1 THRU 5

L
85,00000~001 OTIMEU

1 THRy 5

* o
90,00000~001 DTIMEU

1 THRU 5

& @
95.00000-001 DTIMEU

1 THRU 5

21,40625~003 CSGMIN(
204683036+001

21,40625=003 CSGMIN{(
2147544664+001

21.40625-003 CSGMIN(
228258934001

21,40625=003 CSGMIN(
23,897321+001

21,40625-003 CSGMIN(
269687504001

21,40625-003 CSGMINI
26,040179+001

21,40625-003 CSGMIN(
2741116074001

21,40625=003 CSGMIN(
28,1830364001

21,40625~003 CSGMIN(
29,254464+001

21,40625-003 CSGMIN(

3043258934001

1) 87.,50000-003
176830364001

1) 87,50000-003
18,754464+001

1) 87.50000~003
198258934001

1) 87.50000-003
204897321¢001

1} B7.50000~003
219687504001

1) 87.50000-003
23.040179¢001

1) 87.50000-003
26+111607¢001

1) 87.,50000-003
25,183036+001

1) 87.50000-003
2642544644001

1) B87,50000-003
274325893+001

(NRL EDITED)

DTMPCC (1) 45,87054=002 ARLXCC{

1943705364001 1844330364001

DTMPCC(1) 45,87054=002 ARLXCC(

20,4419644001 19,504464+001

DTMPCC(3) 45.87054=002 ARLXCC!
210513393+001 20¢575893+001

oTMPCCH 3)
2245848214001

45,87054-002 ARLXCC(
2126473214001

DTMPCCH 1) 45,87054=002 ARLXCC!

2346562504001 22.718750+001

DTMPCC(1) 45,87054-002 ARLXCC(

24,727679+001 23.,790179+001

DTMPCCH 1) 45.87054=002 ARLXCC(

25¢799107%001 2448616074001

DTMPCC(1)
26,8705364001

45,87054=002 ARLXCC(
25,9330364001

pTMPCCE ! 1)
279419664001

45,87054~002 ARLXcC(
2740064644001

pTMPCCH 1) 45.,87054=002 ARLXCC(

294013393+001 2840758934001

0

0)

0)

o)

0}

0)

0)

0)

0)

0)

PAGE

00,000004000
17,870536+001

00,00000+000
18,9419644001

00,000004000
20+013393+001

00,00000¢000
21,084821+001

00,000004000
22,156250+001

00,00000+000
23,227679+001

00.,00000+000
24.299107+001

00,00000+000
25,3705364001

00,00000+000
26,4419664001

00,00000+000
27,513393+001

969. LY04dAY TUN

¢El

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER « €00045

SAMPLE PROBLEM NO.1A

* & * *

TIME 10,000004000 DTIMEU 21,40625~003 CSGMIN(
1 THRU 5 31.397321+001

END OF DATA

(NRL EDITED)

1) 87.50000~003 DTMPCCI 1) 45.,87054=002 ARLXCC(

28,397321+001

300084821¢001

2941473214001

0)

PAGE

00,00000+000
28,584B821+001

XIvED H AUV

gel

JOB MESSAGES

ST+LPOO

JOB9001713s 300¢8B99RCC
NEED 09 = MT =({CINDA MASTER) 9ED=01+RL=0]19DATE=

LP 000 ASSIGNED
RELEASED 9=MT16=(CINDA MASTER) sED=0]sRL=0]19DATE=052373+RC=999

999/ LYOdHY TIN

VeT

SEQUENCE NUMBER 001713 TERMINATED AT 183150 ELAPSED TIME= 00 HRS, 04 MIN, 01 SEC. OR 260666 MILLISECONDS

MMMMMMMMMMMMMMMMMUMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMAMMMMMMMMMMMMMMMMMMM4MMM MY
MM UMMMMMMMMMMM MM EMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMAMMMMMMMMMMMMMMMMMMMYMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMM 3

THE TOTAL NUMBER OF LINES PRINTED FOR THIS JOB WAS 600

A'IVED 'H XYV

NRL REPORT 7656

SAMPLE PROBLEM NO. 1A (Continued)

TSAVE AND PLOT RUN

This is an example of a TSAVE run that was made after the problem had been satis-
factorily debugged and run. Since that run had produced printed output, all calls to out-

put subroutines were removed from the deck to save processing time. Hence, the Execu-
tion block is now

1 7 21 25
2 \ i |
F DIMENSION X 100
BCD 3EXECUTION
F NDIM = 100
F NIH =0
END

TSAVE is the only subroutine in Output Calls.

8 12
Vool
BCD 30UTPUT CALLS

TSAVE
END

Since the time and temperature limits were determined from the output in the previ-
ous run, it is possible to supply the plotting data so that the plot program can be run
immediately after the CINDA problem (in the same job). This eliminates the need for
equipping the TSAVE output tape (tape 24). The plotting data are as follows:

1 12 22 32 42

2 { I 2 {
card 1 CINDA SAMPLE PROBLEM 1A
card 2 0.00 10.00 0.00 320.00
card 3 (blank)

EOF

The above plot data and revised problem data deck for problem 1A produce the
following output and plots when processed on the CDC-3800 and plotted on the
CalComp 565 plotter (the actual dimensions of the X and Y axes are 7 and 9 in., re-
spectively). Plots of the data (Fig. A2a-e) follow the printouts.

135

9¢T

SEQUENCE 01712 STARTED PRINTING 07/13/73 AT 185627 ON LPO1

DRUM SCOPE 241 COMPUTER TWDs MAXe. DEMAND IS 570008
SEQUENCE NUMBER 001712 STARTED AT TIME 183152 DATED
JOB(S) 9408008009899RCCHS

EQUIP+09=(CINDA MASTERs1+19999) sROsHI DA

#o#QINARY DECK###

BANKy (0) 9/4/

LOADy 09

RUNy1,1000

VERSION 004
0T/13/73

10/31/72

AIVHD ' AYVIN

LeT

PROGRAM
77672
74272
71817
T0673
62141
56177
57005
54544
53562
S$3407
52342

PROGRAM
NONE

DO QOO It Ot 1t = bt Bt

LABELED
1 76566
1 75654
1 64137

NAMES
SEARCH
SKIP
PACK&3
WRTSCOPE
PREPRO
IO0H.
BFI.
EFT.
BSP.
REW,
QBQENTRY

EXTENS.

COMMON
CRDBLK
QLOGIC
DIMARY

NUMBERED COMMON

0 23042

4

ENTRY POINTS

71777
76214
63176
53275
53565
73077
T1760
71345
54573
57020
60643
54625
53307
52764
57473
57537
57073
53532
52627
52664
52732
52750
52454
52535
52512
52674
52420

0000V OOODH INMIMOOQOH O MO O M ~O

EXECUTION STARTED AT

SENTRY
GENLNK
BLKCRD
QNSINGL
BSP,
CODERD
PSUEDO
BIT
Q@BQIFUNI
BFO.
FINAL
10P,
I0R,
10E,
ALLOC.
ALLOCIN.
Q8NOTRAC
Q8QIFIOC
Q1003100
Q3Q01040
Q3Q03040
Q3Q05040
Q1Q010030
Q1Q@10200
Q1Q10310
@1Q10420
Q3Q10340

00105
00322
00210
00036
00605
02246
00065
00024
00072
00015
00056

01015

00003
00454

17500

O OOt IO st vt bt b

= gt

OO0 O OO0 HOMOOOMMM IO O O

1832 =~20

77603
72717
71345
65267
60445
57303
56740
56472
53527
52764

76014
75642
62746

60001

77675
52420
53412
74656
53657
72636
71422
71110
70764
62214
57074
53037
56223
53156
57343
60013
57206
52604
52633
52615
52701
52715
52527
52463
52501
52474
52420

STFFB
CODERD
BIT
CINDA4
INITAL
Q7QLODLC
ENCe
SLI.
Q8QIFIOC
10S.

TAPE
PLOGIC
wJS

SEARCH
Q3010040
RE“I
SPLIT
TSBe.
DATARD
PACK43
PRESUB
WRTBLK
PREPRO
QBQERROR
QBQHIST,
10H.
Q8QCHAIN
RETURN,
ELD.
Q8QERSET
Q1Q00100
Q21Q04100
Q3001140
Q23Q03140
Q3Q05140
Q@1Q10100
Q1Q10210
Q1010320
Q1010430
Q3010440

00067
01353
00052
03404
10467
00032
00045
00052
00033
00423

ooo01l2

00012
00001

17500

[-N-N-FN-Y RO NN N

D000 LOOOMOOOOD NIHHMOOHOOO

76026
71712
71051
62747
57571
54622
56705
54430
5347]1
52604

757715
72573

17501

52342
52655
53430
74275
53671
54500
71632
66371
56710
52346
52343
57303
60320
53300
57447
60277
57010
52604
52637
52723
52741
52506
52501
52463
52522
52420

GENLNK
PSUEDO
PRESUB
BLKCRD
FINAL
10P
DEC.
Q8INOUTS
STHe

Q1 QREINT

DATA
LOGIC

QB8QDICT,
03000040
TSHe
SKIP
STBe
SLO.
ORMIN
CINDA4
DEC.
GBQENTRY
EX1IT
Q70LOOLC
«TSERR,
QNDOUBL «
BUSY.
oREPCNT,
BF Y.
01001100
Q1Q05100
Q3Q02040
Q3004040
Q1610010
Q1010120
Q1010230
Q1010400
Q3010140

00540
00661
00274
01170
02350
01355
00033
00042
00036
00160

00017
00124

17500

O DO O Ot

OO0V DOLO DO OOOD MNIHroooOO O

T4614
71627
70731
71134
§7335
sT072
54570

53654 -

53424
52420

75657
64613

37201

77607
53303
53475

53536.

1YY Y
54472
564547
7070}
56743
67407
54430
53004
56177
55644
57456
57072
54012
52623
52607
52673
52707
52506
52460
52527
52515
52420

SPLIT
ORMIN
WRTBLK
DATARD
ALLOC,
Q8QERROR
QBQIFUNI
108,
TSH,
Q1QSTORE

SUBLST
NARRAY

STFFB
THEND o
STH,
Q8QIFEOF
QBRINP S
SLI,
EFT,
WRTSCOPE
ENC,
INITAL
08Q0UT 4
10S.
BCOBUF,
ETAB,
IRETURN,
QBERRORN
ELB,
Q1002100
Q3000140
030021460
Q3004140
Q1Q10020
Q1210130
Q1G10300
Q1Q10410
03010240

01026
00063
00120
06643
00234
00211
00032
00554
00045
00164

00116
00654

17500

999/ 1 90dHYd TIN

8€T

BCD 3ITHERMAL SPCS

BCD 9SAMPLE PROBLEM NOe1A

END

BCD 3INODE DATA
1980¢9s0]175+5980s¢40175

GEN 2939198049035, 1a91,41,

END

RELATIVE NODE NUMBERS

1 THRU 5 1
BCD 3CONDUCTOR DATA
GEN ls4vlolele2eloelolorlonis
END

RELATIVE CONDUCTOR NUMHERS

1 THRU 6 1
BCD 3CONSTANTS DATA
TIMEND 10+ sOUTPUT o5, CSGFACY2,
END
BCD 3ARRAY DATA
END
DIMENSION X(100)
BCD 3EXECUTION

NDIM = 100
NTH = 0
CNFRWD
END

BCL 3VARIABLES 1
STFSEP (344Q1)

END

BCD 3VARIABLES 2

END

HCD 30UTPUT CALLS
TSAVE

END

ACTUAL NODE NUMBERS

3 4

ACTUAL CONDUCTOR NUMBERS

4

AIVED ' AYVIN

NRL REPORT 7656

3AVSY

d3sdLs

Q32033N SINILNOX¥ENS

QMY 4ND

€

139

MARY E. GEALY

x¢Tepp=leNLA
YANID464 AHVHEIT

140

vT

FTNS.4A

07/13/73
PROGRAM LINKO
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CaAP/ c
COMMON /SQURCE/ Q
COMMON /COND/ G
COMMON /PCS/ C(¢SEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEUs TIMEND, CSGFACY
INLOOP DTMPCAs OPEITRy DTIMEH, DAMPA o
1DAMPD » ATMPCAY RACKUP ¢ TIMEO TIMEM o
1DTMPCC, ATMPCCy CSGMINy OUTPUT, ARLXCA, *
1LOOPCT, DTIMEL DTIMEL, CSGMAX, CSGRALy
1CSGRCL» DRLXCAY DRLXCCy LINECTy PAGECTy
LARLXCCY LSPCS ENGBAL Y BALENGY NOCOPY ¢
INCSGM » NDTMPCY NARLXCe NATMPCs ITEST »
1UTEST » KTEST LTEST » MTEST RTEST »
1STEST » TTEST UTEST » VTEST LAXFAC

1y 10CNT

COMMON /DIMENS/ NNToNNDSNNCOINRGINNGINCONSNARYILSEQyDUMI s NUM2
DIMENSION H(20)

COMMON /PRNT/ NT

COMMON /XSPACE/ NDIMs» NTHs X

COMMON /L.0GIC/ LNODEs LCONDs LCONSTs LARRAY

LOGIcAL LNODEs LCONDs LCONSTs LARRAY

DIMENSION T¢ SYsCt S)sQ¢ 5)GH 4) 1Kt Dysat Do
1cSEQ(6)eX(100)s NT(5)

LNODE = ,TRUE,
LCOND = +TRUE,
LCONST = LFALSE.

LARRAY = +FALSE,
CALL INPUTT
CALL EXECTN

G0 To 1

END

969. 1L¥04ddd TIN

(474"

5405 LINKo

PROGRAM LENGTH

ENTRY POINTS LINKo

BLOCK NAMES
TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
LOGIC

EXTERNAL SYMBOLS
QBQENTRY
Q3010040
Q8QDICT.
INPUTT
EXECTN

00126 SYMBOLS

00033
00003

00024
00005
00005
00005
00004
00006
00001
00001
00062
00012
00005
00146
00004

IDENT

LINKO

07/13/73

ED

PAGE NO,

A'IVHED 'H AUV

V1

FINS.4A

SUBROUT
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
InLOOP o
10AMPD
1DTMPCCy
1L00PCT
1CSGRCL s
1ARLXCCo
INCSGM o
LUTEST
1STEST
1y 1
COMMON
DIMENST
COMMON
COMMON

EQUIVALENCE (K(1)eXK(1))}
ON Tye ¢ty QL1)y GL1) e Kil)s All)

DIMENS1]
1y

NDIM =
NTH = 0
-CALL ¢
RETURN
END

07/13/13

INE EXECTN

/TITLE, H

/TEMP/ T

/CAP/ c

/SOURCE/ Q

/COND/ [¢]

/PCS/ CcSEQ

/KONST/ K

/ARRAY/ A

/FIXCON/ TIMEN DTIMEU, TIMEND» CSGFACs
DTMPCA OPEITRy DTIMEH, DAMPA o
ATMPCA BACKUP TIMEO » TIMEM
ATMPCCy CSGMIN» OUTPUT AR|XCA»
DTIMEL s DTIMEIL» CSGMA Xy CSGRAL
DRLXCAY DRLXCCY LINECT PAGECTs
LSPCS » ENGBAL Y BALENG NOCOPYs
NDTMPC NARLXCe NATMPCy ITEST »
KTEST » LTEST » MTEST » RTEST »
TTEST » UTEST VTEST » LAXFAC

DCNY

/OIMENS, NNT,NND,NNC,NRG,NNG,NCON,NARY,LSEG,DUM] ,NUM2

ON H(2g)

/PRNT/ NT

/XSPACE, NDIM, NTH, X

cSeQ(l) ’

100
NFRWD

NT (1)

s XK(1)eX (1)

m™

PAGE NO,

999 LYO0dHY TUN

144"

5,4Ds

EXECTN

PROGRAM LENGTH

ENTRY PQOINTS EXECTN

BLOCK NAMES
TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE

EXTERNAL SYMB0LS
@8QDICT,
CNFRwWD

00121 SYMBOLS

00017
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

TDENT

EXECTN

07/13/73

E0

PAGE NO,

AIVHED "H AYVIN

gyl

FTNS.4A

07/13/73
SUBROUTINE VARBL1
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ c
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN o DTIMEU, TIMEND» CSGFACY
INLOOP DTMPCA» OPEITRy DTIMEHy DAMPA »
1DAMPD » ATMPCA, BACKUP s TIMEO » TIMEM
1DTMPCCy ATMPCC)y CSGMINY OUTPUT, ARLXCA
1,.00PCTy DTIMELY DTIMEL CSGMAXy CSGRAL
1CSGRCL DRLXCA? DRLXCC LINECT PAGECT»
LARLXcC LSPCS ¢ ENGBAL® BALENG NOCOPY s
INCSGM » NDTMPC NARLXC» NATMPCy ITEST »
1UTEST » KTEST » LTEST » MTEST » RTEST »
1STEST » TTEST » - UTEST » VTEST LAXFAC

1, IDCNT

COMMON /DIMENS/ NNTsNNDINNCINRGINNGeNCONSNARY sLSEQsDUMI»NUM2
DIMENSION H(20)

COMMON /PRNT/ NT

COMMON /XSPACE, NDIM, NTH, X

EQUIVALENCE (K{1)eXK(1))

DIMENSION T(1)s c(l)s Q(l)s G(1)y K(1)s All) sXK(1)9X(1)

1y cSEQ(D) ’ NT(1)
CALL STFSEP(3,sQ(1))

RETURN

END

PAGE NO,

969/ LYOdHY TUN

MARY E. GEALY

‘ON 39vd

Q3

EL/EL/L0

178uvA

IN3CI

€0000
10600
21000
29000
18000
10000
10000
10000
10000
10000
10000
%2000

€0000
91000

ST08WAS 12100

d3S41S
¢123Igpso

STOEWAS TVYNH3ILX3
30vgsSx
iNYd
SN3WIaQ
NOOxXx14
I32-2-14
LSNOY
SJd
ONDD
3J%4ros
dvd
diw3l
ERTB Y

SIWVN 2078

178yvA SINIOd AyiIN3

HLION3T WYH¥O0ud

1784vA

sav°*s

146

LyT

FTNS.4A

SUBROUTINE

COMMON /TITLE/ H
COMMON /TEMP/ T

COMMON /CAP/

COMMON /SOURCE/ Q
COMMON /COND/ [

COMMON /P(CS/

COMMON /KONST/ K
COMMON /ARRAY/ A

COMMON /FIXCON/

INLOOP
1DAMPD
1IDTMPCC s
1L00PCTy
1CSGRCLY
1aRLXCCy
INCSGM o
LUTEST »
1STEST o
1y IDCNT

COMMON /DIMENS/ NNToNNDINNCoNRGINNGINCONINARY sLSEQepUM] s NUM2
H(20)

DIMENS]ION

07/13/73

VARBL?2

(o}

CSEQ

TIMEN DTIMEU TIMEND, CSGFACY

DTMPCA» OPEITRy DTIMEH» DAMPA
ATMPCAY RACKUP TIMEO » TIMEM »
ATMPCCo CSGMINY QUTPUT, ARLXCA
DTIMEL » DTIMEL» CSGMAX CSGRAL»
DRLXCA DRLXCC» LINECTy PAGECT»
LSPCS » ENGBAL ¢ BALENGY NOCOPY»
NDTMPC NARLXC» NATMPC e ITEST »
KTEST » LYEST » MTEST o RTEST »
TTEST o UTEST » VTEST LAXFAC

COMMON /PRNT/ NT

COMMON /XSPACE/
EQUIVALENCE (K(]1)eXK(1)}
T(l)e ctl)e QEL)y G(L)y K(1)y AtQ)

DIMENSION

1]
RETURN
END

NDIMy

NTHy X

€SEQ (1) '

NT (1)

PXK(1)oX (1)

PAGE NO,

999L LHOdHY TUN

MARY E. GEALY

*ON 39vd

a3

EL/€1/L0

2I8uvA

IN341

€0000
10000
21000
29000
10000
10000
10000
10000
10000
10000
16000
%2000

€0000
21000

*1d1dpso

30vdsX
ANYd
SN3IWIQ
NOOXId
AVyyv
1SNOY
S3d
aNOD
304n0s
dvd
dWil
3L

28y VA

ST108WAS 02100
ST108WAS TYNMILX3

S3INVYN XJ078
SINIOd AMLINI
H1ON3T WYY90ud

284 vYA

Sav°*S

148

671

FTNS44A

07/13/73
SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ @
COMMON /COND/ 6
COMMON /PCS/ (CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN DTIMEU, TIMEND CSGFACY
INLOOP DTMPCAY OPEITR, DTIMEH, DAMPA o
1DAMPD ATMPCA» BACKUP, TIMEO TIMEM »
1DTMPCCy ATMPCC CSGMINy OUTPUT ARLXCA»
1 ooPcTy DTIMEL » DTIMEI, CSGMAXs CSGRAL »
1¢SGRCL s DRLXCA» DRLXCC LINECT» PAGECT s
1ARLXCC LSPCS ¢ ENGBAL Y BALENG» NOCOPY»
INCSGM » NDTMPC NARLXC» NATMPC) ITEST »

. 1JTEST KTEST LTEST o MTEST » RTEST o
ISTEST » TTEST o UTEST » VTEST » LAXFAC
1, IDCNT

COMMON /DIMENS/ NNTsNNDINNCeNRGsNNGoNCONeNARY 1L SEQyDUML sNUM2
DIMENSION H(20)

COMMON

/PRNT/ NT

COMMON ,XSPACE, NDIM, NTH, X

EQUIVALENCE (K(1)eXK(1})
ON T(He ctlle (L) G(1) e K(V)Vw A(D)

DIMENST

CSEQ(1) ’

CALL TSaAVE

RETURN
END

NT (1)

oXK(1)oX (1)

PAGE NO,.

999L LYO0ddY TUN

0Gt

5.4D8 OUTCAL

PROGRAM LENGTH

ENTRY POINTS ouUTCaL

BLOCK NAMES
TITLE
TEMP
caP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
NIMENS
PRNT
XSPACE

EXTERNAL SYMBOLS
@80DICT,
TSAVE

00121 SYMROLS
LOAD
RUN95+2500

00014
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

OUTCAL

07/13/73

ED

PAGE NO.

AIVAD T AUVIN

TGT

PROGRAM
77744
77327
T4544
73713
72657
70436
66263

PROGRAM
NONE

Y b et ot 4=t et

LABELED
1 77720
1 77675
1 77603
1 77412

NUMBERED
NONE -

ENTRY PO
11777
66263
77360
70540
72730
73667
74276
T4422
72550
75033
77107
74660
7375
72702
72737
73005
73023
66427
66422
66404
66443
66341

bt Gk (ot it ol b ek bt fuit b Pk fad ook b fud od ot Pt pad b O

EXECUTION STARTED AT

NAMES
LINKQ
OUTCAL
Q8QERROR
SLI.
Q1QREINT
STFSEP
QBQENTRY

EXTENS.

COMMON
TITLE
COND
FIXCON
LOGIC

COMMON

INTS
SENTRY
QBQGDICT.
VARBL)
TSAVE .
03000040
QBGINP4
REw.
BUSY.
QNDOQUBL +
10H,
IREPCNTI
QBQERSET
ELB,
01003100
Q3001040
Q3003040
Q3005040
01Q10010
Q1010120
Q1010230
Q1Q10400
Q3Q10140

00033
00014
00211
00052
00160
00066
00056

00024
00004
00062
00004

s e o ot s

— e

e N o e el el el i el ad ol o

1835 =54

77373
77255
74310
73651
72234
67276

77713
77667
77571

77747
66542
70441
70662
66264
73713
73054
74431
72254
75007
77130
745312
72657
72706
72670
72754
72770
66427
66401
66450
66436
66341

EXECTN
BIT
ALLOC,
Q8INOUTS
10Se.
CNFRWD

TEMP
PCS
DIMENS

LINKg
INPUTT
STFSEP
10P,
EX1T
SLI.
ST8.
IRETURN,
105,
BCDBUF,
«TSERR,
ALLOCIN,
01000100
Q@1Q04100
03001140
Q3003140
03Q05140
01Q10020
01010130
Q1010300
01Q10410
Q3010240

00017
00052
00234
00062
00423
01140

00005
00006
00012

- gt b gt et pod

et gt o ik kP et ok okt et G et et Dd et (bt et pd s Gt

77355
75007
76273
73613
T0657
66525

77706
17666
77564

66267
77376
77346
72307
73042
72545
Ta&h6
74546
72557
77255
74544
73721
72657
72712
72776
73014
72426
66375
66456
66433
66415
66341

VARBL1
ION.
REW.
STHe
10P.
INPUTT

CAP
KONST
PRNT

QR8QAENTRY
EXECTN
VARBL2
QBOHIST,
TSB,
QANSINGL e
ALLOC,.
Q@8QERROR
10R,

BIT
QBERRORN
SLO.
Q1001100
01205100
Q30202040
03Q04040
Q8RCHAIN
01010030
@1010200
01010310
01010420
Q23010340

00016
02246
00015
00036
01355
00551

00005
00001
00005

e e

-

P Pt el ot o s P o ot (t ek Pl el (e fu b fed e b e gud b

77343
74755
73765
73037
70524
66341

77701
77665
77416

66341
67332
77332
72553
73617
73772
74316
74755
712234
76623
74545
73651
72676
72662
72746
72762
71701
66450
66404
66422
66415
66364]

VARBL?2
Q7QLOD0LC
UNPAK
108,
TSAVE
Q1QSTORE

SOURCE
ARRAY
XSPACE

Q3Qy0040
CNFRWD
oUTCAL
THEND.
STH,
UNPAK
RETURN,
Q7QLODLC
10E,
ELD,
QBNOTRAC
Q8QOUT 4
Q1002100
Q3Q00140
Q3002140
Q3Q04140
ETAB.
Q1010100
Q@1Q10210
Q1010320
21010430
Q30106440

00012
00032
00306
00554
00133
00164

00005
00001
00146

999 1Y04HY T8N

MARY E. GEALY

152

000T*T*NNY
#2aX030 AHYNIHaaw
vivad 40 ON3

378VIIVAY SNOILVIO0T €6

€q1

PROGRAM
70655
40405
35625
33716
32233
31337
27553

bt ot ot et Gt e ot

PROGRAM
NONE

LABELED
1 64735
1 45207

NAMES
PLOTTEMP
aLLOC,
IOHe
I1GP,
SLI.
REWS,
QIQREINT

EXTENS,
COMMON

™
AXES

NUMBERED COMMON

NONE

ENTRY POINTS

77777
27476
26666
30657
313642
32241
32316
27017
26744
3565]
27602
40343
40517
40662
40121
35407
30436
271576
27672
27710
27455
27427
27476
27464
27367

el R el el el S N TR Y

EXECUTION STARTED AT

SENTRY
Q1010100
QBGWDICT.
PLOT
REW,
SLOe
AXIS
QBQHIST,
I0E.
I10H.
Q1Q04100
ENCI‘
BUSY,
QB8QLDCON
Q8QSINF
QBQERSET
SPACEgp
Q1Q03100
03Q02040
03Q04040
01010010
Q1010130
010910300
Q1Q@10410
Q3Q10240

07122
00234
02246
01355
00052
00015
00160

03720
00022

et et gt et et

—

el I e e e e el R e e e el ad

1836 =06

41101
40340
35536
33572
32175
31245
27367

55075
45203

76723
27606
45024
30135
313690
32233
33035
35275
27136
37746
40125
37441
40526
40657
37725
34740
27553
27556
27642
27656
27455
27504
27461
27443
27367

PLOTPREP
ENC.
QBQRESID
NUMBER
STHe
8SP.
Q1QSTORE

TP
MISCELL

PLOTTEMP
01Qg5190
PLOTPREP
STOPPLOT
TSHe
SLIe
SYMBOL
Q8QERROR
QB8QCHAIN
+TSERR,
SINF
ELDe
IRETURN,
Q8QLODA
«REPCNT.
ETAB.
Q1Q00100
Q03Q00140
@3Q02140
03004140
QlQl0020
Q1Q10200
81810310
Q01Q10420
03010340

04102
00045
00067
00124
00036
00072
00164

07640
00004

b et)t gt it et ot

Pl I e e e el =X Y Py R T e)

40663
40305
35504
33032
31421
31212
26744

45235
27733

26672
27367
27737
31221
31424
27255
33578
35504
26764
35625
40102
40543
26667
40607
35273

- 31557

27553
27633
27701
27717
27423
27432

27459

27443
27367

PLOTT
DEC.
Q7QLODLE
SYMBOL
108,
Q8QIFI0C
10Se.

ND
S1229

GBQENTRY
Q3010060
PLOTS
QBQIFEOF
TSB.
ONSINGL »
NUMBER
Q7QLODLC
10S.
BCDBUF .
COSF
ALLOC.
EXIT
ALLOCIN.
GBERRORN
ELB.
2001100
Q3001040
03003040
Q3005040
01010030
@1Q10210
Q1010320
01Q10430
Q3010440

00216
00033
00032
00540
00554
00033
00423

07640
00001

Gt b i b Pt gt

Ll R e e e ol e e e ol ol

4064]
40073
35273
32305
31354
27734
26666

45231

27263
27624
40675
31250
32201
31436
33721
35542
27267
27260
40310
40613
40641
40076
35274
31215
27572
27564
276590
27664
27450
27432
274T)
27367

QB8QLOADA
SINF
Q8QERROR
AXIS
TSH,
PLOT
QBQENTRY

MINMAX

THEND.
Q3Q00040
PLOTT
8sP,
STH,
STB.
10P,
QBQRESID
I0R,
QNDOUBL
DEC,
RETURN,
Q8QLOADA
Q8QCOSF:
Q8NOTRAC
Q8QIFIOC
Q1Q02100
Q3001140
Q3003140
Q3Q05140
Ql1Q10120
Q1Q102390
Q1010400
Q3Q1p140

00022
00212
00211
00525
00045
01256
00056

00004

999L LHOdHY TUN

MARY E. GEALY

200+02°E ¢000+00°0

=* SL1INIT SIXve)

©031107d 38 717Im S3QON TV
¢100400°T ¢4000400°0 == SLINIT SIXV=X
VI #37808d 37dWvS VONID

154

NRL REPORT 7656

6668 ELE2S0u3 VA [0 ¢ T0=Q3¢ (HILSYW VANID)
*NIW L

=91 We6 Q3ISV3ITIIY
®NI 90 *1i4 ¢ HLON3
107d 17ImM 21410 b3S 8or

20u668400€ ¢2T1L100¢800

S39vSS3N 8or

155

MARY E. GEALY

s!zrzxzzirzzzr!Ii:tiii!!i::ii:zIzzIzz!zxz:z:zIz:zzzzzxzzz:xxzzx::sz:zz
r:txxt!zztzz:zirzzzxzz:zzxzzzr::zzzzzxzzzxzzzzt:zzzzzrzzxr!zzxzz:zzzzz
s!2!!!I!IIZZI:ZII!II!IISIII!ISI!rzIzz!zzz:zs!:zxzzzzzrzzzr:zzz:zsxzzzz

SONOJ3SITIW 0€2952 W0 33§ 91 *NIW %0 °SyH 00 =3WILl Q3SdVI3 ve9Esl

%0s SVYM

WWWHWNWIKWWWHIWWINWNN
NWHRWNWNWWWWRNWW AR
WNHIWWARWWWA NV

156

80F SIHL M04 Q3LNI¥d S3NIT 40 HIBWAN TVLIO0L ELFY

WHN WAV VA VRNV ARV
AR RNV R R AR RN AR RN AN R AR AW
W WA R WA R VWA RN AR
1V 03.iVNIWy3L 212100 ¥38WnN 3ON3N03S

NRL REPORT 7656

pue s,

. 8%l itk

‘UMOTS SB JewIO]] 9U3} Ul Ueyj} I9yjea ‘JBWIO] § oY} Ul 9q [[IA sIdquunu ainjereduwe)
‘poyrold axe £ay) YOIYM UL J9PIO 9U} Ul UMOYS 918 5j0[d 'V we]qoig aidureg VONID *0F sefijoid ainjerodwios sa owiL],—gV 81

(a) (e)

NEW - 3H1L NIW - 3WIl
03 00 084 a0 o0*h WE R i L) cogt k] ®s ouL wy [o W W ot L]
I 1 ! 1 L | | L { 1

300N

oo
oen

T
oanout
4 - dW3L

4 - dW3L

over

juili.Ticq
1
Jubhineg

-

004952
T

00957

X "BEC
T
Juth=rg

w02
T
00402¢

"1 W318045d 314WHS HANID gl W3160Hd 31dWHS BANID

JA0N

157

86T

CINDA SAMPLE PROBLEM 1R NODE CINDA SAMPLE PROBLEM 1A NCBE

320,00

-t

320,00
d

233,00
|
238..0

20600
i

256,00
L

22400

|
20400

192100
1
193,00

160,00
1
TEMP - F

TEMP - ¥

123,00
!

23,
]

3610

2
. 4

Bio)
!

Ea

|

2 2
-] d
2 3
3 . 3
T T T 7 T T 7 T T 1 T T T T T T T 7 T 1
W0 .73 200 3. 42 508 5,00 kY 308 900 18 80 e 00 L0 20 300 4,00 5,00 A0 .0 200 Rt W
TIME - MIN TIME - MIN
() (d)

Fig. A2 (Cont’d)—Time vs temperature profiles for CINDA Sample Problem 1A. Plots are shown in the order in which they are plotted.
Time and temperature numbers will be in the E format, rather than in the F format as shown.

XIVED 'H KUV

68T

TEMP - F
128,00 16300 1200 2400 268,00 285,00 320,00

32:00 8400 96-00

00

e

CINDR SAMPLE PROBLEM 1R NODE

T LR ¥ 1 1 T] 1 IR 1
W0 1200 23 < 308 4,00 S, 00 608 To 0} 200 980 160

TIME - MIN

(e)

Fig. A2 (Cont’d)—Time vs temperature profiles for CINDA Sample
Problem 1A. Plots are shown in the order in which they are plotted.
Time and temperature numbers will be in the E format, rather than
in the F format as shown.

969L LYOdHY TUN

Appendix B

SAMPLE PROBLEM 1B

ORIGINAL RUN

Sample problem 1A was linear and can be rigorously solved by means of the Laplace
transform. However, the introduction of nonlinearities makes rigorous solutions virtually
impossible and makes the use of finite difference techniques mandatory. To demonstrate,
apply the following nonlinearities to sample problem 1A and obtain the solution.

1. Both ends of the bar are uninsulated and allowed to radiate to absolute zero.
The Stephan-Boltzmann constant is 0 = 1.991E-13 Btu/min-in.2R°4, and the emissivity
varies linearly with temperature as follows:

€ = 0.4 at -100°F
€ 0.8 at 300°F.

2. The thermal conductivity of the bar varies with temperature as follows:

= 0.15 at -100°F (Btu/in.-min-°F)
0.25 at 100°F
= 0.40 at 200°F
0.60 at 300°F.

o RN
[l

3. The density remains unchanged but the specific heat varies with temperature
as follows:

Cp = 0.3 at -100°F (Btu/lb-°F)
0.39 at 100°F
0.49 at 200°F
0.65 at 300°F.

4. The heating rate is a function of time as follows:

= 3.0 at 0 min (Btu/min)
4.0 at 3 min

= 4.0 at 7 min

3.0 at 10 min.

O 000
Il

In addition, obtain the rate of heat loss and the integral of the radiation transfer
from the unheated end of the bar. The network representation of this problem (shown
in Fig. B1) differs only slightly from problem 1A. Now however, the capacitances are a
function of temperature. We therefore require multiplying factors such that

161

MARY E. GEALY

9

Ti0 T T2 T3 T4 T5 T10
Gl G1 G2 G3 G4 612

T T T T T

Fig. B1—Network of a nonlinear bar

C = pVCp(T), MF=pV
MF = 0.1 for capacitors 2, 3, and 4
MF = 0.05 for capacitors 1 and 5.

The conductors are now
G = k(Tm)Ac/{¢, MF = Ac/?, where Tm is the mean of the

end T’s.
MF = 1.0 for conductors 1, 2, 3, and 4.

A radiation conductor requires the input value o0eFA; however, FA = 1.0, hence

Grad = o0¢e(T)
MF = 1.991 Btu/min°F.
Also,
q = q(T).

The capacitors and conductors will be specified with CGS and CGD calls.
A. Original Run

Since this is not a RECALL problem, the first card of the problem data deck will
be blank. The rest of the deck may be constructed as follows:

162

NRL REPORT 7656

8 12
\ \
BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM 1B
END
BCD 3NODE DATA
CGS 1,8044A3,.0542480.,A3,.1,3,80.,A3,.1
CGS 4,80.4A3,.1,5,80.,A3,.05
-IO'-4600 gO
END
BCD 3CONDUCTOR DATA
CGS 1,4142yA2,1.42,2,3,A2,1.,3,3,4,A2,1.,4,4,5,A2,1.
CGS =11,1,10,Al4=1.991E=13,-12,5,10,A1,-1.991E-13
END
BCD 3CONSTANTS DATA
TIMEND,10.,0UTPUT, .5,CSGFAC,2.,4,0,5,0,6,STOR1,7,STOR2
BCD 3ARRAY DATA
14-1004¢4.4,300.,0.8,END $ EPSILON VS T
243=1004¢4¢1541006¢4¢25,200, 4.4,300.4.6,END $ K VS T
39=100¢,4¢341004,4.39,200.,.49,300.,.65,END $ CP VST
440093013044047044.4,10443.,END $ Q VS TIME
-5,QRATE,QTOTAL,END $A LABEL ARRAY
END
DIMENSION XC 100)
BCD 3EXECUTION
NDIM = 100
NTH = 0
STOREP (K6)
CNFRWD
IDCNT =IDCNT + |
STOREP(K7)
END
BCD 3VARIABLES 1
DIDEGI(TIMEM,A4,Q1) $APPLY HEATING RATE
END
BCD 3VARIABLES 2
RDTNQS(TI10,T5,G12,K4) $OBTAIN HEAT FLOW RATE
QINTEG(K4,DTIMEU,K5) $INTEGRATE SAME
END
BCD 30UTPUT CALLS
TPRINT
PRINTL (A5,K4,K5)
END
BCD 3END OF DATA

163

MARY E. GEALY

This problem will be stored twice on tape 22. The original data will be stored under
the I.D. name, ST@R1, and the number, 0 (IDCNT). The final values will be identified
as STPR2, 1 because IDCNT was incremented. (It actually would not have been neces-
sary to use IDCNT in this case, since neither call to ST@REP was in a loop. The second
call could have been uniquely identified as ST@R2,0.) The binary constructed subrou-
tines (processor) will be stored on tape 40. See Section VII for the proper deck setup
and job request form.

The above problem data deck processed by the CDC-3800 version of CINDA pro-
duces output given in the following pages (original run).

164

991

SEQUENCE 04645 STARTED PRINTING 07/30/73 AT 191547 ON LPO1
DRUM SCOPE 2.1 COMPUTER TW0Oe. MAXe DEMAND IS 570008 VERSION 004
SEQUENCE NUMBER 004645 STARTED AT TIME 191209 DATED 07/30/73
JOB(5) 9460800800+899RCCs10

EQUIP+09= (CINDA MASTER»1919999) 9ROsHIyDA

EQUIPs22=#843W0sHI DA

EQUIP.40za#yRWyHI, DA

*##gINARY DECK###

BANKs (0} e/4/

LOAD09

RUNy1yl000

10/31/72

999. 1Y0ddY TYN

991

PROGRAM NAMES

7672
14272
T1417
T0673
62141
56177
$700%
54544
53562
53407
52342

DOOD s O it ot el

PROGRAM
NONE

LABELED
1 76566
1 75654
1 64137

SEARCH
SKipP
PACK43
WRTSCOPE
PREPRO
I0H,
BFI,
EFT,.
BSP,
REW,
QBQENTRY

EXTENS.

COMMON
CROBLK
QLOGIC
DIMARY

NUMBERED COMMON

0 25555

4

ENTRY POINTS

777117
76214
63176
53275
53565
73077
71760
71345
564573
57020
60643
54625
53307
52764
57473
57537
57073
$3532
62627
52664
52732
52750
52454
52535
52512
52474
52420

COOOCODOO OO I I et OO I O IO O

EXECUTION STARTED AT

SENTRY
GENLNK
BLKCRD
QNSINGL e
8SP,
CODERD
PSUEDO
BIT
QBQIFUNI
BF0,
FINAL
10P,
I0R,
10E,
ALLOC.
ALLOCIN.
Q8NOTRAC
Q8QIFI0C
01003100
Q3Q@01040
03003040
Q3005040
Q1010030
01910200
019010310
Q1010420
03Q103490

00105
00322
00210
00036
00605
022646
00065
00024
00072
00015
00056

01015
00003
00454

17500

OO = O e bt

0 00O OC OO HOOOD OO O O~

1915 =43

77603
12717
71345
65267
60445
57303
56740
54472
53527
52764

76014
75642
62746

00001

77675
52420
53412
T4656
53657
72636
71622
71110
ToT764
62214
57074
53037
56223
53156
57343
60013
57206
52604
52633
52615
52701
52715
52527
52463
52501
52474
52420

STFFB
CODERD
BIT
CINDAS
INITAL
Qa7aLooLe
ENC,
SLI.
QBRIFIOC
10S,.

TAPE
PLOGIC
WJS

SEARCH
Q3010040
REW
SPLIT
158,
DATARD
PACK43
PRESUB
WRTBLK
PREPRO
QBQERROR
QB8GHIST.
I0H,
QB8QCHAIN
RETURN,
ELDe.
QBQERSET
01000100
Q1004100
Q3Q91140
Q3Q03140
Q3005140
01010100
@1Q010210
Q21010320
@1Q10430
Q3010440

00067
01353
00052
03404
10467
00032
00045
00052
00033
00423

00012
00012
00001

17500

[-X-R-Wo RNk o g

-

OO0 OHOOOOH OO~ OO0

76026
71712
71051
62747
57571
54622
56705
56430
S34T1
52604

75775
72573

17501

52342
52655
53430
74275
53671
54500
71632
66371
56710
52346
52343
57303
60320
53300
57447
60277
57010
52604
52637
52723
52741
52506
52501
52463
52522
52420

GENLNK
PSUEDO
PRESUB
BLKCRO
FINAL
10P,
DEC,
Q8INOUTS
STHe

QI QREINT

DATA
LOGIC

Q8QDICT.
03G00040
TSHe
SKIP
STB.
SLO,
ORMIN

Q8QRENTRY
EXIT
Q7QLODLC
+TSERR
QNDOUBL «
BUSY,
oREPCNT.
BF 1,
@01Q01100
Q1005100
23092040
Q3Q04040
01@10010
Q1010120
21010230
21010400
Q3IQA10140

00540
00661
00274
01170
02350
01355
00033
00042
00036
00160

00017
00124

17500

OO0 K v QO bt bt gt

(oY)

OO0 OO OO HDOOOOH OO0 OO

T4614
71627
70731
71134
57335
sTa72
54570
53654
53424
52420

75657
64613

37201

77607
§3303
53475
53536
54446
54472
54547
70701
56743
67407
564430
53004
56177
55644
67456
57072
54012
52623
52607
52673

‘52707

52506
52469
52527
52515
52420

SPLIT
ORMIN
WRTBLK
DATARD
ALLOC,.
QBQERROR
QBQIFUNI

Q1QSTORE

SUBLST
NARRAY

STFFB
THEND.,
STHe
QBOIFEOF
QBQAINPS
SLI.
EFT,
WRTSCOPE
ENC,
INITAL
Q8Q0UT4
10S,
BCDBUF .
ETAB.
IRETURN.
QBERRORN
EL8.
01002100
03000140
03092140
Q3006160
01Q10020
Q10310130
Q1Q10300
Q1010410
03Q10240

01026
00063
00120
06643
00234
00211
00032
00554
00045
00164

00116
00454

17500

ATVED H AUV

L9T

BCD 3THERMAL SPCS

BCD 9SAMPLE PROBLEM 1B

END

BCD 3NODE DATA

CGS 1980e9A3+1,0592980,9A394193980¢9A39,.1
CGS 49B0e9A39,19598049439405

®)09=460e90
END
RELATIVE NODE NUMBE S ACTUAL NODE NUMBERS
1 THRU 6 1 2 3 4 S 10

BCD 3CONDUCTOR DATA

CGS 191929A29109292 39A29109393+490A29109494959A291
C6S =11919109a19w1,90)Ewl3y=12¢5,109al9e1,99lEw13
END

RELATIVE CONDUCTOR NUMBERS ACTUAL CONDUCTOR NUMBERS

1 THRU 6 1 2 3 4 11 12
BCD 3CONSTANTS DATA
£ TIMEND 9104 9OUTPUT 3 e59CSGFAC2094909500969STOR1+79STOR2
ND
BCD 3ARRAY DATA
19=10000049300090489END SEPSILON VS T
29=10009¢1591000942592004304930003469END $K VS T
392100090¢39100694399200494%99300,9,655END $CP VS T
49009309309ho9Topbesl0e9IesEND $Q VS TIME
«S59QRATE9QTOTALYEND $A LABEL ARRAY
END
OIMENSION X{ 100) F
BCD 3EXECUTION
NDIM = 100 F
NTH = 0 F
STOREP (K6)
CNFRWD
IDCNT = IDCNT ¢ r
STOREP(K7)
END
BCD 3VARIABLES 1
VARCSM(T sC 0‘3'!?5)
VARCSM(T 'C sAdre)
VARCSMI(T K1Y 35A39.1)
VARCSM(T 4eC 69A30e1)
VARCSM (T 5C 5,A3,,05)
VARGSM (G 1,7 1,7 24A2410)
VARGSM(G 27 27 39A29]e)
VARGSM (G 307 3.7 49A2910)
VARGSM(G 4T YA SeA2e1ls!
VARGSM(G 11T 17 104Al9=14991E=13)
VARGSM (G 1297 SeT 109Al9=1¢991E~]13)

ENDV]
D1DEG]1 (TIMEMsA4+Q1) SAPPLY HEATING RATE
END
BCD 3VARIABLES 2
RDTNGS(T10+T59612¢K4) SOBTAIN HEAT FLOW RATE
QINTEG (K49 DTIMEUKS) SINTEGRATE SAME
END

BCD 30UTPUT CALLS

roOneMe

999 LHOJdHY TUN

MARY E. GEALY

SONLQY

193010

WSOUVA

qUNIHd
WSJHVA

INIddL
QMY AND

G3033N

93INID
438018

S3ANILNOYENS 6

aN3
(SHe¥ME¢SY) TLININd

168

NRL REPORT 7656

OymY ¢ sptaloNLY
VONIDT4604AdVNELY

169

oLT

FTNS.4A 07/30/73 PAGE NO,

PROGRAM LINKO
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ [
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A

COMMON /FIXCON/ TIMEN DTIMEU, TIMEND» CSGFACY
INLOOP DTMPCAY OPEITRY DTIMEN, DAMPA ¢
1DAMPD o ATMPCAY BACKUPs TIMEOQ TIMEM »
1DTMPCCy ATMPCCy CSGMIN» OUTPUT, ARLXCAY
1LOOPCT DTIMELY DTIMET CSGMAX e CSGRaAL s
1CSGReLy DRLXCA" DRLXCCY LINECT PAGECT
1ARLXCCY LSPCS » ENGBALY BALENGY NOCOPY»
INCSGM » NDTMPC NARLXCY NATMPC, ITEST »
1JTEST » KTEST » LTEST MTEST o RTEST
1STEST » TTEST » UTEST » VTEST » LAXFAC
ly IDCNT

COMMON /DIMENS/ NNTsNNDsNNCsNRGeNNGsNCONsNARYsLSEQsDUMI s NUM2
DIMENSION KH(20)

COMMON /PRNT/ NT

COMMON /XSPACE/ NDIMs NTHs X

COMMON /L.OGIC/ LNODEe LCONDe LCONSTs LARRAY

LOGIcAL LNODEes LCONDe LCONSTy LARRAY

DIMENSION T 6)eCH 6)9Q¢ 5)96¢ 6)9K(4)eAl(34)

1CSEQ(6)eX(10U)y NT{ 6)
LNODE = «TRUE.
LCOND = oTRUE,
LCONST = (TRUE,

LARRAY = (TRUE,
1 CALL INPUTT

CALL EXECTN

60 To 1

END

ATVED ' AYVIN

LT

54405 LINKQ

PROGRAM LENGTH

ENTRY POINTS LINKO

BLOCK NAMES
TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
LOGIC

EXTERNAL SYMBOLS
QBQENTRY
Q3Q10040
@8GDICT.
INPUTT
EXECTN

00126 SYMBOLS

00033
00003

00024
00006
00006
00005
00006
00006
00004
00042
00062
00012
00006
00146
00004

IDENT

LINKO

07/30/73

ED

PAGE NO,

999L LHYOdHY TYD

GLT

FTINS,.4A

07/30/73
SUBROUTINE EXECTN
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ . C
COMMON /SOURCE/ @
COMMON /COND/ 6
COMMON /PCS/ ¢SEQ
COMMON /KONST/ K
COMMON /ARRAY/ 3
COMMON /FIXCON/ TIMEN o DTIMEU, TIMEND, CSGFACY
INLOOP » DTMPCAY OPEITRY DTIMEH DAMPA »
1DAMPD o ATMPCAY BACKUP TIMEO TIMEM o
1DTMPCC ATMPCCY CSGMINYy OUTPUT, ARLXCA»
1L00PcTy OTIMEL OTIMED CSGMAXY cSGRaLy
1cSGReLY DRLXCA? DRLXCCY LINECT PAGECT
LaARLXCCY LSPeS » ENGBAL® BALENG» NOCOPY
INCSGM » NDTMPCs NARLXC» NATMPCy ITEST »
1OTEST » KTEST » LTEST MTEST » RTEST »
1STEST » TTEST o UTEST » VTEST LAXFAC
1y 1DCNT
COMMON /DIMENS/ NNToNNDsNNCoNRGsNNG9NCONsNARY yLSEQsDUM] y NUM2
DIMENSION H(20)
COMMON /PRNT/ NT

COMMON /XSPACE/ NDIMe NTHs X

EQUIVALENCE (Kt1)exx(i))
ON T(l)e C(L)y Q1Yo G(l)y K(1)e ACDL)

DIMENSI

’
NDIM =
NTH = 0

cseaily ’

Too

CALL STOREP(K(3))

CAaLL ¢

NFRWOD

IDCNT = IOCNT + 1

caLL S
RETURN
END

TOREP (K (4))

NT (1)

s XK1Y eX(1)

PAGE NO,

ATVHED 'H AYVIA

SLT

Se4DS EXECTN

PROGRAM LENGTH

ENTRY POINTS EXECTN

BLOCK NAMES
TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE

EXTERNAL SYMBOLS
QBQADICT.
STOREP
CNFRWOD

00122 SYMBOLS

00027
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

EXECTN

07/30/73

ED

PAGE NO.

969L 1LYOddY TUN

MARY E. GEALY

*ON 39vd

((1)0¢(92)V¢ WIWIL) 193010
(ET=3766° 1= (1IV4(9) 14 (S)1¢(9)D)INSOUVA
(ET=3166°1mé (TIVE(9) 16 (T)1%(SID)NSOUVA
(*14(9)IVE(S)LO(9) L4 (9)O)NSOUVA
(*18(9IVE(9) 18 (E)1%(E)D)WSOUVA
(*T(9IVE(EIL1%(2)1%(2)DINSOYVA
(10 (IV(2) L4 (T)18 (T)ID)WSONHVA
(Go* o (STIVE(G)J4(S)L)WSIUVA
({6 (STIVE(9)D8 (9) LINSIYVA
(Toe(STH Ve (E£)D4(E)LIWSIYVA
(T8 (STIVE(2)D4(2) LINSIUYA
(SQ* ¢ (SIVe ()I8 (1) LIWSIUVA

(1)IN ¢ (1) 0382
(TIXSCEINXS (IV (I $(T)D s()D ¢(7)D ¢ ()L NQI1
. ((pMXe ()XY 30N

X ¢HIN SWION /30VdSX/

IN /1Nud/

(g2)H NOI

ZWNNS TRNC4DISTS AHYNENOINCONNSOUNSINNSONN ¢ LNN \mzmzuwmn
IN

ov4xv ¢ 1SIIA ¢ 1S31N ¢ 1831t ¢

s |S31Y ¢ 1SILNW ¢ 18311 ¢ 1831 s

s 1s311 $JdW1VN $IXEVYN $OdWLaN .

s AdOJON sON3IVE ¢VB9N3 ¢ §2dsT ¢

$1039vd ¢123NIN £29%74Q $¥IX180 ¢

¢ yuosd ¢XYNWOSO s$13nWI140 ¢93W140 s

$VIx YV sindino SNIWDSD $20dWLY .

¢ WINIL ¢ 03NWIL sdnNJVE SVIdWLY ¢

¢ VdWva SH3WIL0 411340 s¥Idnid 0

Y4990 SONINWI) ¢n3ANIL0 ¢ N3INWIL /NOOx14d/

YV /AVyuvY/

M /1SNOM/

p3ISI /Sdd/

9 /QGNOY/

© /323¥n0S/

o] /7dv¥d/

L /dW3l/

H /371IL/

17988vA 3NIL
€L/70€/L0

an3
NYNL3y
A
V)
Tv)
I3vd
1v)
1Y)
v
9v)
Rl k)
1v)
1v)
7v)
‘1
SN3WIQ
vAInD3
NOWWOD
NOWWOD
SNaWIQ
NOWWOJ
‘1
183181
1S31ft
WOSINT
29xuvl
1289891
19400711
204wiat
Qdwvat
d00INT
NOWNWOD
NOWNWOD
NOWWOD
NOWWOD
NOWWOD
NOWWOD
NOWNWOD
NOWNWOD
NOWWOD
noyans

VHeESNLd

174

GLT

5,408

VARBL)

PROGRAM LENGTH
ENTRY POINTS VARBL1
BLOCK NAMES

TITLE

TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
EXTERNAL SYMBOLS
Q8ADICT,
VARCSM
VARGSM
D10DEG1
00124 SYMBOLS

00110
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENTY

VARBL1

07/30/73

EO

PAGE NO,

9694 LHOdHYH TUN

9LT

FTNSe4A

07/30/73

SUBROUTINE VARBL2

COMMON /TITLE/ H

COMMON /TEMP/ T

COMMON /CAP/ c

COMMON /SOURCE/ §

COMMON /COND/ G

COMMON /PCS/ (SEQ

COMMON /KQONST/ K

COMMON /ARRAY/ A

COMMON /FIXCON/ TIMEN » DTIMEUS TIMEND CSGFACY
INLOOP pTMPCAY OPEITRy DTIMEHS DAMPA ¢
1paMPp o ATMPCAS BACKUPy TIMED TIMEM »
1pTMPCCs ATMPCCy CSGMINY QUTPUT ARLXCA
1L00PCT, DTIMEL, DTIMEIL, CSGMAX, CSGRAL Y
1¢SGRCLy DRLXCAY DRLXCCY LINECTS PAGECT»
1ARLXCCy LSPCS ENGBAL» BALENGs NOCOPY
INCSGM » NDTMPCy NARLXCo NATMPC ITEST »
1UTEST o KTEST » LTEST MTEST » RTEST
1STEST » TTEST » UTEST » VTEST » LAXFAC

1, 1DCNT

COMMON /DIMENS/ NNTsNND*NNCsNRGyNNGsNCONSNARY »LSEQ» DUML s NUM2
DIMENSION H(20)

COMMON /PRNT/ NT

COMMON /XSPACE/ NDIMy NTHy X

EQUIVALENCE (K(1)sXK(1))
ON Tty cthy Qtl)y 6(1)y k(1) AC(D)

DIMENS]
1,

CALL ROTNQS(T(6)9T(5)4G(6)9K()))

CSEQ()) N

CALL QINTEG(K(1) +DTIMEUIK(2))

RETURN
END

NT(D)

o XK(1yeX (1Y

PAGE NOe

ATVED 'H AUV

LLT

5+40S

VARBL2

PROGRAM LENGTH

ENTRY POINTS VARBL2

BLOCK NAMES
TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE

EXTERNAL SYMBOLS
Q8QDICT.
RpTNQS
QINTEG

00122 SYMBOLS

00022
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

VARBL2

07/30/73

ED

PAGE NO,

969L LUOJdEY TUN

LT

FINS,.4A

07/30/73
SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ c
COMMON /SOURCE/ Q
COMMON /COND/ 6
COMMON /P¢S/ cSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN » DT IMEUY TIMEND» CSGFACY
INLOOP DTMPCAY OPEITRy DTIMEK DAMPA »
1paMPD ¢ ATMPCAY BACKUP» TIMEO o TIMEM o
1DTMPCCy ATMPCCy CSGMINo OUTPUT ARLXCA
1LOOPCTy DTIMELS DTIMET CSGMAaXs CSGRaALY
1¢SGReLy DRLXCA DRLXCC? LINECT» PAGECT»
LARLXCCy LSPCS ¢ ENGBAL BALENG» NOCOPY»
INCSGM » NDTMPCo NARLXC» NATMPC s I1TEST »
1UTEST KTEST » LTEST MTEST » RTEST
1STEST o TTEST » UTEST » VTEST » LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTyNNDINNCoNRGINNGINCONSNARYsLSEQsDUMLoNUM2
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM» NTH» X

EQUIVALENCE (K(1)exk(1))
ON T(ls ctlde @tl)y 6(1)y K(1)y atD)

DIMENSI
1y

CSEQ(1) .

CALL TPRINT
CALL PRINTL(A(33)sK(1)9K(2))

RETURN
END

NT(1)

o XK (1) ox 1)

PAGE NO,

ATVHED 'H AUVIN

6LT

5,4DS OUTCAL

PROGRAM LENGTH
ENTRY POINTS
BLOCK NAMES

EXTERNAL SYMBOLS

LOADs40
RUNy5,2500

00122 SYMBOLS

ouTcat

TITLE
TEMP
CaP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE

QB8QDICT,
TPRINT
PRINTL

00020
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT

OUTCAL

v7/,30/73

ED

PAGE NO,

989L LHOddY TUN

081

PROGRAM
177464
77140
76527
73562
73131
T2446
71412
67021
66277
62622

PROGRAM
NONE

Yt Dt et gt et pt Bt et et

LABELED
1 77720
1 77671
1 77533
1 77341

NAMES
LINKO
ouTCAL
BIT
ALLOC.
Q8QAXMODF
St.1.
Q1QREINT
TPRINT
VARGSM
INPUTT

EXTENS»

COMMON
TITLE
COND
FIXCON
LOGIC

NUMBERED COMMON

NONE

ENTRY POINTS

77777
62360
65115
66431
77143
71042
71575
71300
T2454
73215
73579
T4227
70767
76614
77077
74016
‘73134
71431
71415
71501
71515
T0434
62472
62553
62530
62512
626436

Pt ok ot it Gt fd Pt Pt Bt ot $d b Pt Bt Bt B Gt Pk Bt et Pt s Bt Bt et D

EXECUTION STARTED AT

SENTRY
Q8QDICT,
CNFRWD
D10EG}
OUTCAL
QBQHIST.
TSBe
QNSINGL
SLOe«
TOPLIN
RETURN,
Q7QLo0LC
I0E,
LAGRAN
QB8QLODA
QB8ERRORN
Q@8QXMODF
Q1002100
Q3000140
Q3Q02140
Q3Q04140
ETABe.
Q1Q10030
Q1Q10200
Q1Q1031¢0
Q1Q10420
Q3Q10340

00033
00020
00052
00234
00025
00052
00160
00155
00116
00551

00024
00006
00062
00004

Tt Pt et Gt et Pt Pt ot Gt Gt

St et Pt ot Bt Gt et Gt Pkt Pt Bt fod ot et Gt Pt Gt o Bl Gt Gt Gt Bt Bt md et

1919 =55

77312
77103
74261
73365
73043
12404
70767
66741
66221
62436

11712
77663
77521

77747
62637
77205
77163
67042
71306
72352
72523
712542
73325
73674
71303
74305
77061
76075
74017
71730
71435
71472
71540
71556
67306
62545
62501
62517
625312
62436

EXECTN
SKPLIN
10MH,
WRTLOSB
D1D1wM
QBINOUTS
10S.
QINTEG
VARCSM
G1Q0STORE

TEMP
PCS
DIMENS

LINKQ
INPUTT
VARBL1
VARBL2
TPRINT
THFND
STHe
REW.
UNPAK
STNDRD
BUSY.
QNDOUBL.»
I0H,.
Q8QLOADA
ELD,
QgNOTRAC
ELB.
Q1Q003100
Q3Q01040
Q3003040
Q3005040
PRINT
Q1Q10100
Q1Q10210
Q1Q10320
Q1Q10430
Q3Q10440

00027
00035
02246
00175
00066
00042
00423
00060
00056
00164

00006
00006
00012

ot Dt gt st Gt et et et et

—

Bt it b Bt e B Gt et G et Bl Pt Pt Gt Pt ot Gnet el Bt Pt Gt et Pt et et et

77202
77061
14227
73244
72535
72346
67412
66643
65061
62360

TT1706
77657
77513

62364
77315
66224
66646
67315
71463
72422
71607
73046

- 73411

73703
71007
74261
77112
76361
74132
71412
T144]
71423
71507
71523
62524
62517
62501
62540
62436

VARBL1
QBQLOADA
Q7QLODLC
STNDRD
UNPAK
STH.,
10P,
RDTNGS
CNFRWD
QBQENTRY

Cap
KONST
PRNT

QBQENTRY
EXECTN
VARCSM
RDTNGQS
PRINTL
03000040
QBQINP4
STBe
D1D1WM
WRTLOS
IRETURN.
10S.
BCDBUF,
SKPLIN
oREPCNT,
QgQERSET
Q1Q00100
Q1Q04100
Q3G01140
Q3003140
Q3Q05140
Q1010010
Q1Q10120
21010230
Q1Q10400
Q3Q10140

00110
00022
00032
oo0l21
00306
00036
013SS
00076
01140
00056

00006
00004
00006

P Gt Gt fush b Jd put Gud Pt

s s

Pt gt et Gt Gt ot P Pk G D (P Pt Pt Gt G Gt Gt P Pd G et Gt b Pt Pt

77160
76601
T4016
73156
72520
71572
67176
66415
63373

17677
77615
77345

62436
64216
66302
66744
67415
62361
T2446
72404
73140
73720
74020
71312
76527
77102
76402
73764
T1412
T1445
71531
71547
71161
62524
62476
62545
62533
62436

VARBL2
LAGRAN
QBQERROR
TOPLIN
REW,
108,
PRINT
D1DEG]
STOREP

SOURCE
ARRAY
XSPACE

Q3010040
STOREP
VARGSM
QINTEG
10P,
EXIT
SLI.
QBQOUT4
XMODF
ALLOC,
QBQERROR
10R,

BIT
08QLDCON
.TSERR.
ALLOCIN,
Q1Q01100
01005100
03002040
03Q04040
Q8QCHAIN
01010020
Q1010130
01Q10300
01010410
03010240

00022
00260
00211
00066
00015
00554
00214
00226
01466

00005
00042
00146

ATIVED 'H AUV

NRL REPORT 7656

378vIIVAY SNOILVYI0T S6

181

281

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER = C00045

SAMPLE PROBLEM 18

“« ® * @
TIME 004000004000 DTIMEU 00,000004000 CSGMIN(

T 1= 804000004000 T 2= B0,00000+000 T

QRATE 00000004000 QTOTAL 00.000004000

“« * ® »
TIME 50,00000-002 DTIMEY 25,27368=003 CSGMIN(

T 1= 10.,504464001 T 28 94,49641+000 T

QRATE 10,05630=003 QTOTAL 49,40046-004

. * %
TIME 10,00000-001 DTIMEU 29,28453=003 CSGMIN(

T 1% 11675569001 T 2% 10459682+001 T

QRATE 1089220=003 QTOTAL 10.17759-003

®«
TIME 15400000-001 DTIMEU 17,76855#003 CSGMIN{(

T 1= 12.75381+001 T 2= 11.68016+001 T

QRATE 11495506=003 QTOTAL 15.89831-003

“« * ®
TIME 20,00000=001 DTIMEU 25,13348=003 CSGMIN(

T 1= 13.83390+001 T 2% 12.76921+001 T

QRATE 13.15377~003 QTOTAL 22,18786=003

. * *
TIME 25,00000~001 DTIMEU 31,77283=003 CSGMIN(

T 1= 140931334901 7 2= 13.87631+001 T

QRATE 14¢47555=003 QTOTAL 29.1108%9=003

1)
3=

2)
3=

2)
3=

2)

3=

2)
3=

2)

79436899=003

8000000000

78,26181=003

87,61895+000

76430274=003
974992934000

73.72196=003
10,87716+001

71.49668«003

11,97355+001

69,46924«003

13090024001

DTMPCC(
T 4=

DTMPCC(
T 4s

DTMPCC !
T 4=

DTMPCC(

T o=

DTMPCC(

T 4

DTMPCC(
T (3]

1)

80000004000 T

1

83,877744000 T

1

93420244000 T

&)

10.37800¢001 T

5)

114478874001 T

5)

12602084001 T

(NRL EDITED)

00000004000 ARLXCC(

68,11626~002 ARLXCC(

64,18434-002 ARLXCC!

38.60775-002 ARLXCC(

56,04585=002 ARLXCC(

72,101392002 ARLXCC{

0)

S= 80,00000+000

0)

5= 82,686244000

0)

5= 91.586364000

0)

5= 10,205704001

0)

5= 11,30795+001

0)

Sz 12463351¢001

PAGE 1

00,00000+000

T 10==46,00000+001

00,00000+000

T 102=46,000004001

00,00000¢000

T 10%=46,000004001

004000004000

T 102=46,000004001

00,000004000

T 102%46,000004001

00,00000+000

T 10%=46,000004001

999. LHOddY TUN

€8T

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER « €00045

SAMPLE PROBLEM 1B

. n *
TIME 30,00000=001 DTIMEU 21,70966=003 CSGMIN(

T 1= 16404687+001 7 2% 15.00197+001 T

QRATE 15¢93544=003 QTOTAL 3672968003

. ® o »
TIME 35,00000-001 DTIMEY 27,620552003 CSGMIN(

T 1= 17.11316¢001 T 2= 16,11112¢001 T

QRATE 17.51821=003 QYOTAL 45,11098=003

*® & & @
TIME 40,00000~001 DTIMEU 17,45065=003 CSGMIN{

T 1= 18,14217+001 T 2= 17,18384+001 T

QRATE 19.20685-003 QTOTAL S54,31173=003

. & o »
TIME 45.00000-001 DTIMEU 22.37952~003 CSGMIN(

T 18 19415048001 T 28 18,2317S+001 T

QRATE 2096310~003 QTOTAL 6437390-003

“ @ * @
TIME 50,00000-001 OTIMEU 26,79780-003 CSGMIN(

T 1= 20.139954001 T 2= 19,25710+001 7

QRATE 22.79516=003 QTOTAL 75.33565=003

. % o @
TIME 55.00000=001 DTIMEU 16,49958=003 CSGMIN(

T 1s 21.10438+001 T 2= 20426093¢001 T

QRATE 24471381=003 QTOTAL 87.23433=003

2}
3=

2)
3=

2)
3=

2)
3=

2)
3=

2)
3=

67¢55799«003
14,22506+001

65.91918~003
15,361484001

64,42989=003
16,46896+001

63.13855=003
1754867001

61,97342-003
18,60253+001

60+81596=003
19.63220+001

DTMPCC(
T (1]

DTMPCC(
T 4=

DTYMPCCH(
T 4=

DTMPCCH
T 4=

DTMPCCH
T 4=

DTMPCC(
T (%]

{NRL EDITED)

5) 50,03609=002 ARLXCC(]

134743814001 7 Sa 13,57756+001

5) 63,63066=002 ARLXCC(0)

144895204001 T Sm 14,733604001

5) 39.18180=002 ARLXCC(0)

16025044001 T 5= 15,87101¢001

5) 48.92322=002 ARLXCC(. 0)

17+12540%001 T 5 16.978414001

5) 57,10075«002 ARLXCC! 0)

18,19766+001 T Sa 18,05691+001

5) 34429108002 ARLXCC{ 0)

19.,24379¢001 T 5= 19,10855+001

00,

1

00,

T

00,

T

00,

T

00,

T

00,

T

PAGE 2

000004000

10m=46,000004001

000004000
103=46,0000004001

000004000

10==46,00000+001

000004000

10%=46,000004001

000004000

10==46,000004001

000004000
10==46,000004001

999L LHO4HY TUN

781

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER e C00045

SAMPLE PROBLEM 1B

. &
TIME 60,00000-001 pTIMEU 20,30452~003 CSGMIN(

T 12 224041674001 T 2= 21.23607¢001 T

QRATE 26469869~003 QTOTAL 10,01085-002

. * & »
TIME 65,00000-001 DTIMEU 23,71529=003 CSGMIN(

T 1% 22.,95402¢001 T 2% 22,18220+001 T

QRATE 28¢74491-003 QTOTAL 11.39935«002

® & * @
TIME 70,00000=001 DTIMEU 26,76422=003 CSGMIN(

T 1= 23,84313+4001 T 2= 23,10159+001 T

QRATE 30.84195=003 QTOTAL 12.89163«002

“« & » @
TIME 75.00000=001 DTIMEU 15,76236~-003 CSGMIN(

T 1% 264658684001 T 2= 23.969034001 T

QRATE 32099067=003 QTOTAL 14.49003=002

. & o @
TIME 80,00000-001 DTIMEU 18,23648+003 CSGMIN(

T 1= 25,41073¢001 T 2= 24,77189+001 T

QRATE 35.10650=003 QTOTAL 16,19507=002

. & % @
TIME 85,00000=001 DTIMEU 20,38997-003 CSGMIN(

T 1= 26,11252+001 T 2= 25,52037+001 T

QRATE 37417370+003 QTOTAL 18,00475=002

2)
3=

2)
3=

2)
3=

2)
I=

2)
3=

2)
3=

59,90380-003

204637044001

59406441003
214610044001

58,31336003
22,55327+001

57¢64421=003
23,45586+00)

57.08125=003
26,297224001

56458755=003
25,08111+001

DTMPCC(
T 4=

DTMPCC(
T [3]

OTMPCC(
T on

DTMPCC
T (X}

DTMPCCH
T bn

DTMPCC(
T (1]

(NRL EDITED)

5) 41,19123«002 aRLXCCH 0

204265614001 T 5= 20,135424001

S) 46,48373=002 ARLXCC(0)

214255784001 T 5= 21.13170+001

S5) 50,80665«002 ARLXCC(0)

224214264001 T Sz 22,095344001

§) 28450700-002 ARLXCC! 0)

230137144001 T 5% 23,02475+001

5) 30+76391=002 ARLXCC(0

24,00252+001 T 5= 23,898184001

5) 32.02967=002 ARLXCC!{ 0

24,808524+001 T Ss 24,711604001

00,

T

0o,

T

00,

7

00,

T

00,

T

00,

T

PAGE 3

000004000

102~46,00000+001

000004000

10==46.,000004001

00000+000

102=46,000004001

ATVHED 'H AUV

000004000

10==46,00000+001

000004000
102=46,00000¢001

00000+000
100=46,000004001

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER = C00045

SAMPLE PROBLEM 18
« ® ® &
TIME 90,00000«001 DTIMEU 22,28256=003 CSGMIN(
T 1= 26767154001 T 2= 26,21810400) T

QRATE 39.18459-003 QTOTAL 19.91642-002

* * * @
TIME 95,00000-001 DTIMEU 23,95381=003 CSGMIN(

T 1= 27.,37685+4001 T 2= 26,86785+4001 T
QRATE 41,13322«003 QTOTAL 21.92709«002

. & @
TIME 10.000004000 DTIMEU 25,43501=003 CSGMIN(

T 1% 27.94358¢400) T 2% 27.47203001 T

-
gg QRATE 434013972003 QTOTAL 24,03348=002

END OF DATA

2)
3=

2)
3

2)
3=

(NRL. EDITED)

56.15228=003 DTMPCCI(5) 32.586152002 ARLXCC{ 0y

25,81131+001

T

4= 25,55891+001

T

Sm 25,46874+001

55.766962003 DTMPCCH §) 32,59281«002 ARLXCC{ 0)

26,491064001

T

b= 26,257224001

T

Sm 26,173244001

$5.42483=003 DTMPCCH 5) 32+16639-002 ARLXCC(0)

27.12314+00)

T

b= 264906504001

T

S= 26,82824+001

PAGE

00,000004000

T

10=e46,00000¢001

00,000004000

T

10%=46,00000+001

00,000004000

T

10m=46,00000+001

XIVED ' AYVIA

981

JOB MESSAGES
JOB+ 004645y 600+899RCC
e NEED 09 = MT B{CINDA MASTER) +£D=01,RLu014DATE=
MT1
NEED 09 = MT s (CINDA MASTER) ¢ED®0)l¢RL®Q1+sDATE™
NEED 09 = MT s(CINDA MASTER) +ED=014RL®w01+DATES
NEED 09 = M7 a(CINDA MASTER) +ED=014RLu019DATES=
WHICH MT HAS LeUe 40
BLYMT14
MT1lé
WHICH MT HAS LeUe 22
BLoMT12
MT12
RELEASED 6=MT13s(CINDA MASTER) ¢ED®Q19sRL®019DATE=052373+RC2999
RELEASED 22mMT12s (UNLABELED’
RELEASED 40=MTl4=(UNLABELED)

ATVED 'H AUV

MMMMMMM,

SEQUENCE NUMBER 004645 TERMINATED AT

HRSe 04 MINe 31 SECs OR 271632 MILLISECONDS

“MMMMNMMMMMMMMN

MM

MMMMMMMMMMMMHMMMMMMMMMHMM“

THE TOTAL NUMBER OF LINES PRINTED FOR THIS JOB WAS

L8T

MMMMMMMMMMMMMMMMMMM

999. 1Y04dHY TUN

MARY E. GEALY
The stored original problem of sample 1B is used to illustrate the RECALL option.
The initial data will be taken and given a new TIMEND of 5.0 min, as well as a negative

heating rate.

The first card in the problem data deck is

1 13 22
\ \ \
RECALL STOR1 0

The title block is changed to

8

¥

BCD 3INTIAL PARAMETERS

BCD 3SAMPLE PROBLEM 1B-~-RECALL
END

Since there are no temperature or conductor data changes, the nodal and conductor
blocks are blank.

8

\

BCD 3NODE DATA

END

BCD 3CONDUCTOR DATA
END

The change in TIMEND produces the following constants block:

8

+

BCD 3CONSTANTS DATA
TIMEND,5.0

END

Array 4 is changed to induce a negative heating rate.

8
\

BCD 3ARRAY DATA

4.0-,"3.,3. "'4¢ .7-'-40’100'-3¢.END S—Q VS TIME
END

Since no operations block changes are allowed in parameter runs, the data deck is ter-
minated by

8
¥
BCD 3END OF DATA

188

NRL REPORT 7656

The binary program tape (processor) was stored during the original run, so recom-
pilation of the constructed subroutines is not necessary. Since the STOREP calls are still
in the processor, the original and final data of this RECALL problem are stored on drum
unit 22. The unit was not equipped in this example, however. See Section VII for the
correct deck setup.

The processed problem printouts of the second run follow.

189

SEQUENCE 04060 STARTED PRINTING 08/08/73 AT 192112 ON LPOl

DRUM SCOPE 2.1 COMPUTER TWD, MAXey UEMAND IS 570008
SEQUENCE NUMBER (04060 STARTED AT TIME 191527 OATED
JOB(5)+408008004898RCCr10

EQUIP¢09= (CINDA MASTERs1+414+999) yROsHIWDA

EQUIPy2lee® ROIHIIDA

EQUIPs403#%R0OyHIVDA

#%#BINARY DECKW##

BANKy (D) 9/4/

LOADy 09

061

VERSION 004
08/08/73

10/31/72

AIVED 'H AUV

161

PROGRAM
17672
74272
71417
70673
62141
56177
57005
54544
53562
53407
52342

PROGRAM
NONE

LABELED
1 76566
1 75654
1 64137

[-X-N-N-F N3 N X

NAMES
SEARCH
SKIP
PACK43
WRTSCOPE
PREPRO
JO0M,
BFIe
EFT,
BSPe
REW
QB8QENTRY

EXTENS,

COMMON
CRDBLK
QLOGIC
DIMARY

NUMBERED COMMON

0 24550

&

ENTRY POINTS

77777
76214
63176
83275
53565
73077
71760
71345
54573
57020
60643
54625
53307
52764
57473
57537
57073
53532
52627
52664
52732
52750
52454
52535
52512
52474
52420

OO0 OC OO ONMHHOOO M OMMMRO ON KO

EXECUTION STARTED AT

SENTRY
GENLNK
BLKCRD
QNSINGL o
BSPo
CODERD
PSUEDO
BIT
Q8QIFUNI
BF O,
FINAL
I0P,
I0R,
IOE.
ALLOC,
ALLOCIN,
QB8NOTRAC
Q8QIFIO0C
Q1Q03100
Q3Q01040
Q3003040
Q3Q05040
Q1Q10030
01Q10200
Q1@10310
Q1Q10420
Q3610340

00105
00322
00210
00036
00605
02246
00065
00024
00072
00015
00056

01015
00003
00454

17500

[-N-N-YO Ny -N NN R]

—

DO OOOCQLOOr-OrNOOCONMMIMMNOO MO O M

1916 =34

77603
Fa11
71345
65267
80645
57803
56740
54472
53827
52964

76014
75642
82746

00001

77875
52620
53612
74856
53657
72636
71622
71310
70964
62214
57974
53037
56223
53156
57843
60013
STR06
52604
52633
52615
82901
52715
52527
52663
52301
S24Té
52420

STFFB
CODERD
BIT
CINDA4
INITAL
Q7QLOGLC
ENCe
SLI.
asaif1oC
10S,

TAPE
PLOGIC
WJS

SEARCH
Q3Q10040
REW,
$PLIT
TSBe
DATARD
PACK#3
PRESUB
WRTBLK
PREPRO
QBQERROR
QBQAHIST,
10H.
QBQCHAIN
RETURN,
ELDe
Q8QERSET
Q1000100
Q1Q04100
Q3@0i140
Q30031460
Q3Q05140
Q1010100
Q1@10210
Q1Q10320
Q1Q10430
Q2010440

00067
01353
00052
034064
10667
00032
00045
00052
00033
00423

00012
00012
00001

17500

OO Ot OFt s st s Pt

000 0O COOOOMOOMHMOOD IHFOO OO O

76026
71712
71051
62747
57571
54622
56705
54430
53471
52604

757715
72573

17501

52342
52655
53430
74275
53671
54500
71632
66371
56710
52346
52343
57303
60320
53300
ST447
60277
57010
52604
52637
52723
52741
52506
52501
52463
2522
52420

GENLNK
PSUEDO
PRESUB
BLKCRD
FINAL
1o,
DEC,
Q8ENOUT4
ST,
Q1RREINT

DATA
LOSIC

QBADICT.
Q3800040
TSH.
SKiP
STBe
SLo.
ORMIN
CINDA4
DEG.
Q8RENTRY
EXLT
Q78LODLC
+TBERR,
UNDOUBL »
BUSY,.
+sREPCNT,
BFte
Q1R01100
Q1805100
Q3002040
Q3804040
Q108310010
Q1810120
Q1@10230
Q108310400
Q3810140

00540
00661
00274
01170
02350
01355
00033
00042
00036
00160

00017
00124

17500

QOO0 e rs Ottt Just bt

-

OO0 OO0V OOrrHOOOOO MIHNFDOO OO0

T4614
71627
70731
71134
57335
sT072
54570
53654
53424
52420

756S7
64613

37201

77607
53303
53475
53536
544646
54472
54547
70701
56743
67407
54430
53004
56177
55644
574508
57072
54018
52623
52697
52673
52707
52506
52460
52527
52515
52420

SPLIT
ORMIN
WRTBLK
DATARD
ALLOCe.
QBQERROR
Q8QIFUNI
10B,
TSH,
Q1QSTORE

SUBLST
NARRAY

STFFB
THEND o
STH,
QBQIFEOF
QBQINP4
SLI.
EFTe
WRTSCOPE
ENC,
INITAL
Q8QOUT
10S,
BCDBUF o
ETAB,
IRETURN,
QBERRORN
ELB,.
21Q02100
Q3Q00140
Q3Q02140
Q3006140
Q@1@10020
Q1Q30130
Q1Q30300
Q1Q10410
Q3Q10240

01026
00063
00120
06643
00234
00211
00032
00554
00045
00164

00116
00454

17500

999L LYOdHY TIN

MARY E. GEALY

0

¢ 1H0LS

W31808d VO3

192

861

BCD
BCD
END
BCD
END
8CD
END
BCD

END
8CD

END
LIBRARY»09
LOADy40
RUN95+2500

3INITIAL PARAMETERS
3SAMPLE 18~~=RECALL

3NODE DATA
3CONDUCTOR DATA

3CONSTANTS DATA
TIMEND S

3ARRAY DATA
490093093 09%409Te9"4~210e9=349END $ =Q VS TIME

+LCINDA

9694 LY0ddY TUN

761

PROGRAM
17744
77140
76527
73562
73131
T2446
71412
67021
66277
62622

P Y el o] ol ol

PROGRAM
NONE

LABELED
1 77720
1 77671
1 77533
1 77341

NAMES
LINKO
OUTCAL
BIT
ALLOC,
GB8QAXMODF
SL1.
QLQREINT
TPRINT
VARGSM
INPUTY

EXTENS.

COMMON
TITLE
COND
FIXCON
LOGIC

NUMBERED COMMON

NONE

ENTRY POINTS

77777
62360
65115
66431
77143
71042
71575
71300
72454
73215
73570
T4227
70767
76614
77077
74016
73134
71431
71415
71501
71515
T0434
62472
62553
62530
62512
62436

o Dt Pt Bt Bt Pt Pt pd Pt pd ot Gt Gd Pt Brod Gt et Bt Bt ot Bt Ot s Pt B O

EXECUTION STARTED AT

SENTRY
@BQDICT.
CNFRWOD
D1DEG]
OUTCAL
GBQHIST.
TSB.
GNSINGL
SLO.
TOPLIN
RETURN,
Q7QLoDLC
I0E.
LAGRAN
Q8QLODA
QBERRORN
Q8QAXMODF
Q1Q02100
@3Q00140
Q3002140
Q3Q04140
ETAB.
Q1Q10030
Q1Q10200
Q1010310
QlQ10620
Q3010340

00033
00020
00052
00234
00025
00052
00160
00155
00116
00551

00024
00006
00662
00004

Bt ot Gt Gt et et (o s Pt

gt

Wt et Bt Bat et (ot b B et Bt Bt b et =t Gt e et Bt et Bt B et ot et Bt s

1921 =20

77812
77103
76261
73865
73043
T2604
70967
66741
66221
62436

7702
77663
77521

77747
62637
17205
77363
67842
71806
72852
72923
72542
73925
73674
71803
74905
77061
76975
74017
71730
71635
71672
713490
71356
67306
62945
62501
62517
62512
62636

EXECTN
SKPLIN
10K,
WRTLOS
D1D1wM
QBINOUTS
108,
QINTEG
VARCSM
Q10STORE

TEMP
pcs
DIMENS

LINKO
INPUTT
VARBL1
VARBL2
TPRINT
THEND »
STHe
REW
UNPAK
STNDRD
BUSY.
QNDOUBL »
I0H.
Q8QLOADA
ELDe
QBNOTRAC
ELBe
@1Q03100
Q@3Q01040
Q3003040
Q3005040
PRINT
QlQlolo0
Q1Ql0210
01010320
Q1010430
Q3010440

00027
00035
02246
60175
00066
00042
00423
00060
00056
00164

00006
00006
ooo0l2

$nl et s et e Bt Gt Bt oot Ot

Dt s ot

ot et gt gt gt G g? et G et Bt Bt Rt G Bt Bt et Dt et G et Gt Bt Gt Bt Gt

77202
77061
16227
73244
72535
72346
67412
66643
65061
62360

17704
77657
77513

62364
77315
66224
66646
67315
71463
72422
71607
73046
73411
73703
71007
T4261
77112
76361
764132
71412
T1441
71423
71507
71523
62524
62517
62501
62540
62436

VARBL]
Q88L0ADA
Q7TRLODLC
STNDRD
UNRAK
STh.
108,
RDYNGS
CNZRWD
QBRENTRY

CAR
KONST
PRNT

QB8RENTRY
EXECTN
VARCSM
RDYNQ@S
PRENTL
Q3000040
Q8QINP4
STBe
D1D1wM
WRYLO8B
IRETURN,
108,
BCOBUF
SKRLIN
+REPCNT,
QBRERSET
Q1200100
Q1804100
Q3001140
Q3803140
03205140
Q1810010
Q1e10120
Q1810230
Q1010400
Q3810140

00110
00022
00032
00121
00306
00036
01355
00076
01140
00056

00006
00004
00006

[P W]

0 b Pt

77160
76601
74016
73158
72520
71572
67176
66415
63373

77677
77615
77348

62436
64216
66302
66744
67415
62361
T2448
72404
73140
73720
74020
71312
76527
77102
76402
73764
71412
71445
71531
71547
71161
62524
62476
62545
62533
62436

VARBL2
LAGRAN
QBAERROR
TOPLIN
REW,
108,
PRINT
D1DEG)
STOREP

SOURCE
ARRAY
XSPACE

Q3Q10040
STOREP
VARGSM
QINTEG
10P,
EXIT
SLI,.
QBQOUTH
XMODF
ALLOC,
QB8QERROR
I0R,

BIT
Q8QLDCON
+ TSERR
ALLOCIN.
QlQo1100
81005100
Q3002040
03004040
GBQCHAIN
@1Q10020
01010130
Q1G10300
Q1010410
Q3010240

00022
00260
00211
00066
00015
00554
00214
00226
014666

00005
00042
00146

AIVED 'H AGVIN

NRL REPORT 7656

319vVIVAY SNOILYIO0T S6

195

961

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER = 600045

SAMPLE 1B~==RECALL

“« # » »
TIME 00,000004000 DTIMEU 00,00000+000 CSGMIN(

T 1= 804000004000 T 2= 80400000%000 7T

QRATE 000000004000 QTOTAL 004000004000

. ® » @
TIME 50,00000~002 DTIMEU 23,69129~003 CSGMIN(

T 1= 53.68598+4000 T 2= 65.16701%000 T

QRATE 95.7406B=004 QTOTAL 4#8.74938=004

« * &
TIME 10,00000~001 DTIMEVU 22,30141+~003 CSGMIN(

T 1= 40076904000 T 2% 524924494000 T

GRATE 88411568=004 QTOTAL 94,67770=004

. * ® »
TIME 15,00000~001 DTIMEU 20,12225~003 CSGMIN({(

T 1= 26,75812000 T 2% 40,70173¢000 T

QRATE 79.65650~004 QTOTAL 13.64045=003

. ® & a
TIME 20,00000»001 OTIMEVU 37,05690»003 CSGMIN(

T 1= 12,72987+000 T 2= 274814404000 T

QRATE T1+33532=004 QTOTAL 17.40886«003

. ® =
TIME 25,00000»001 DTIMEU 34,47240%»003 CSGMIN(

T 12=21,91916-001 T 2% 14,1275644000 T

QRATE 63+20805=004 QTOTAL 20475598~003

1)
3:

S)
3=

5)
3=

5)
3=

5)
3=

S)

79436899=003
804000004000

79463843003

724303024000

8033910~003
614597244000

81.18391+003
504190814000

82,09882%003
38,06279+000

83,16484~003

25+18076+000

DTMPCE (
T =

DTMPCC(
T b=

DTMPCE(
T [T

DTMPCCH{
T (2]

DTMPCC(

T =

DTMPCR (

T ks

(NRL EDITED)

1) 00000004000 ARLXCCH 0}

80.00000+000 T S= 80,000004000

1) 7043746002 ARLXCC(0)

76405114000 T 52 77,17596+000

1) 58+36632-002 ARLXCC(0)

664583314000 7 6= 68,18559+000

1) 544534564-002 ARLXCC(0)

554695744000 T 5= 67,47918¢000

1) 10687122001 ARLXCC{ 0)

44,008204000 T S= 45,93819+000

1) 10458945001 ARLXCC(0)

314583644000 T 58 33,6639%9+000

PAGE 1

00,00000¢000
T 10%=46,000004001

00,000004000

T 10==46,00000+001

00,00000¢000
T 103=46,000004001

00,00000¢000

T 102%46,00000+4001

00,00000¢000

T 10=e46,000004001

00,00000¢000

T 108246,000004001

ATVED 'H AYVIN

L6T

CHRYSLER IMPROVGD NUMERICAL DIFFERENCING ANALYZER « €00045

SAMPLE 1B===RECALL

[T I
TIME 30,00000=001 DTIMEU 31,58878~003 CSGMIN(

T 1==18010093+000 T 2m=4]1.82387-002 T

QRATE 55+41477=004 QTOTAL 23,70379=003

. * o @
TIME 35,00000=001 DTIMEU BB,27367=003 CSGMIN(

T 12233,98462+000 T 22w]15,48183+4000 T

QRATE 48,03297=004 QTOTAL 26,27684=003

. & " @
TIME 40,00000=001 DTIMEVU R4,59518~003 CSGMIN(

T 12249,93476+000 T 2®=30457536¢000 T

QRATE 41:24798-004 QTOTAL £8,49637~003

« ® & @
TIME 45,00000-001 OTIMEU 4]1,56360»003 CSGMIN(

T 1%=66,25569+000 T 2m=46,03367+000 T

QRATE 35,18335-004 QTOTAL 30.39069=003

» » * []
TIME 50,02000«001 DTIMEU 37,54882=003 CSGMIN(

T 1==83,02761+000 T 28=61+79634¢000 T

QRATE 29,72409-004 QTOTAL 31,99957«003

END OF DATA

(NRL EDITED)

S5) 84,36528+003 DTMPCE(1) 10.33833-001 ARLXCC(0)

3= 11.510664000 T bu 18406114000 T 5= 20.64749+000

S5) 85,71831-003 DTMPCE(1) B89,41939-002 ARLXCC!(0)

3=e28,20476=-001 T #m 45,06702«001 T

Sz 88,93648=001

5) 87.21536=003 DTMPCE(1) 79.26287=002 ARLXCC{ 0)

3a=]17,441094000 T ¥==98,14308=001 T 52=73,24506=001

5) 88,78902~003 DTMPCG(1) 13.73111=001 ARLXCC(0)

3m=32,33825+000 T #m=24,414240000 T S5=e2]1,82787+000

5) 90,594142003 DTMPCC(1) 12,76585-001 ARLXCC(0)

3==47,52776+000 T $2=39,28323+000 T Sa»36,59381+000

PAGE 2

00,00000¢4000
T 10246,000004001

00,00000+4000
T 102=46,000004001

00,00000¢000
T 10==46,000004001

00,00000¢000
T 102=246,000004001

00,000004000

T 10m=46,000004001

969L LHOdHY TUN

861

JOB MESSAGES

BLIMT16
MT14 GO
MT14

BLyMT}6
BLeMT1l6E
BL#MT16

MT1S

JOBs004060r 6009898RCC
NEED 05 = MY = (CINUA MASTER) 9ED=019RL=01+DATE=
WHICH MT HAS LeUe 21

WHICH MT HAS LeUs 40

RELEASED 9wMT12=(CINDA MASTER)+ED=014RL=01+DATES052373+RC=999
RELEASED 21=MTlés (UNLABELED)

RELEASED 40=MT15= (UNLABELED)

XTVED H AUV

NRL REPORT 7656
199

842 SYM 90f SIML HOW 03ININd S3INIT 40 Y3IBWNN WVLOL 3IHL

WRWNNWANWAN HIWWIWWWNWWW WIS WA W W W / W]

HIRHHWNHNWH RN AR NN AW AR WHNWWWWRKW W W [
WHK i WA

N NWHWKR WK WWWH R W WHNRNHKKN

L4 Al ¥ w Aadadalal,)
SONOJ3SITTIW 092€92 ¥O °23S €2 *NIW 0 *SuH 00 =3NIL 03S4VYII SET1261

zzzzxzz:zzzzzzzz&zz:..:.. |

MARY E. GEALY

SAMPLE NO. 1B (Continued)

TSAVE AND PLOT RUN

This run and the plots are similar to the TSAVE run of sample 1A. The following
data were used.

1 5 12 22 32 42
\ \ \ \ ¥ \
CINDA SAMPLE PROBLEM (B

0.00 10.00 80.00 280.00
* 0%
CINDA SAME PROBLEM 1B

0.00 10.00 -470,00 ~-450. 00
+ (0%
EQF

The printed output from the plot run are as follows.

CINDA SAMPLE PROBLEM 18
X=AXIS LIMITS = 0,00+40009 1e00¢001s Y=AXIS LIMITS == B8,004001y 23804002

ALL NODES BUT THE FOLLOWING WILL BE PLOTTED ===
10#

CINDA SAMPLE PROBLEM 1B
X=AXIS LIMITS == 0,004000s 1,00400Q1)s Y=AXIS LIMITS == =4,704002y~43504002

THE FOLLOWING NODES WILL BE PLOTTED ===
10%

The plots are given in Fig. B2.

200

1038

CINDR SRMPLE PROBLEM 1B NODE CINDR SRMPLE PROBLEM 18 NODE

1 2
2 2
. R
& ~N
2 2
3] 2
%]
2 2
2 2
2] A
I e
= &
a9 a
=" =
Wt)
- —
e 2
BJ [
2 3]
2 2
& A-
2 2
ER S
2 2
1 7 T 7 T T 1 T T 1 8- [U U T T 7 T 1 T 1
el 100 2,00 300 4,00 G.00 [X:) 7,00 8.0 .00 10,00 .00 .08 2,00 300 408 S0 £ 00 %0 3,08 R 10,00
TIME - MIN TIME - MIN
(a) (b)

Fig. B2—Time vs temperature plots for CINDA Sample Problem 1B. Plots are shown in the order in which they are plotted. Time and
temperature values will be in the E format, rather than in the F format as shown.

999. LYOdIY TUN

MARY E. GEALY

UMOYS Se JeuLIO] f 9} Ul UBYyj} Joyjel ‘JeWiIo] § 9y} Ul 9] [[IM son[ea ainjeisdwsd) pur
aury, -pejjold a1e Aoy} UYSIYM ul I9PIO SY3 Ul UMOYS oI8 S}0jd ‘gl We[qoig o[dwes VANID 403 sjoid ainjeroduis) sa aw],—(p,Juo)) zg ‘Sid

(p))
NIK - 3WIL NIW - 3WlL
Wl el e 0oL wy 0w 8% [U4 ol 83°0 ceroL we e oo°L o0y 80°% W il V14 i e
L | | ! t ! | ! ¢ [i L ! 1 i A 1 ! ! i ! @
g £
e E
fmb &
e @
-5 lyw
= 1
_Z | %
19 P
8 2
-5 -2
g &
— -
jas -
-4 . Z
_w O |- O
¥, ¥
N EN
\ R
/ i m
/
V' N ks
/ 1 ¢
/ . 3
v
e ~ ~
/ =z 2
s o E]
\ |
|
o i 3
e —¢ e
yd 2 8
e
1
i
4 ! _%&
s | e
= _ z
h ; ¢
!

J00N 81 W3180Hd 31dWES BANI3 ﬂ 340N 81 W3180Hd I1dWHS BONID

202

NRL REPORT 7656

‘UMOUS Se Jeurioy g a3
u1 uey) Foyjes ‘Jewiaoy oYl Ul 9q [{im sanfes danjeraduta pue swiLj,
‘pa1no(d 2ae A8y} YOTYM Ul I9PI0 SY3 Ul UMOYS dXe §30]J g W[qoig
oidwegs VQNID 10F sjoid aanjerodws) sa awr—(p.auo)) gd “f1a

(@)
NIW - 3WlL
Ju i 0% Uil) Uiy ey futhy Uil y Uil WL R PR
1 1] 1 i 1 i] i |
¢
=
B
g
e
=4
¢
&
&
.
™
5%
CE
n
B
o
g
v
B3
&
%
e
&

T
0 0E2

300N g1 W3180dd 37dWHS HONID

203

