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ABSTRACT

The acoustic radiation impedance seen by curved vibrating
caps and rings located on hard baffles of oblate spheroidal shape
has been analyzed using eigenfunction expansion in oblate sphe-
roidal wave functions. With the help of extensive computer pro-
grams the formulas have been numerically evaluated. The results
are presented in families of plotted curves showing the effect of
curvature on the acoustic radiation impedance. Calculations were
made for ranges in acoustic size of 0.1 -- ka < 20.

PROBLEM STATUS

This is an interim report on one phase of a continuing NRL
Problem.

AUTHORIZATION

NRL Problem SO1-29
Project RR 102-08-41-5226
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ACOUSTIC RADIATION IMPEDANCE OF CAPS AND RINGS ON
OBLATE SPHEROIDAL BAFFLES

INTRODUCTION

The radiation of steady-state sound from curved surfaces may be calculated in dif-
ferent ways, depending on the ratio of the effective size of the surface to the wavelength
of radiated sound in the medium. For example, when the effective size (the projection
of the surface's geodesic diameter onto a plane) is large and the wavelength is small, we
may use the methods of geometric acoustics. If however the surface is small and the
wavelength large, we may consider the radiation as due to a collection of multipole
sources. If the surface is everywhere convex but otherwise characterized by coordinates
in which the Helmholtz wave equation is nonseparable, we may calculate the radiation by
the Helmholtz integral method, although other methods (such as the creeping wave tech-
nique) are equally serviceable. Finally, surfaces which are separable for the Helmholtz
wave equation may be calculated by eigenfunction expansions. In the following analyses
we shall consider the radiation from an oblate spheroid whose coordinate description
forms a separable system for the wave equation. We shall therefore use the convenient
method of eigenfunction expansion in a series of oblate spheroidal wave functions.

Let an oblate spheroid be located centrally in a Cartesian system of coordinates
(x, y, z) (Fig. 1). The coordinate transformation from Cartesian to oblate spheroidal
coordinates (', 77, m) is given (1) by

d [(62 + i)(1 _ c772)] s ccs 

d [(&2 + 1)( ,72)]" sin cb,

d (1)
2

with

o < 6 <X

-1 D < 1,

o < X < 27T,

where d is the distance between the foci of the spheroid and7 = cos 0, in which 6 is 1/2
of the apex angle of the asymoptically tangent cone to -7 = 770. The radial parameter
i = const. designates a particular oblate spheroid; the polar angle parameter 77 = const.
designates a particular hyperbolic cylinder; the azimuthal angle parameter X when set
equal to constant q0 is a plane through the z axis forming an angle (P with the x z plane. The
surface t = 0 is a circular disk of radius dy/2 which lies in the xy plane and is centered
at the origin. The z axis is the axis of rotational symmetry. The degenerate surface
7? = 1 is the positive z axis. Considering the intersection of a hyperbolic cylinder with a
particular oblate spheroid, we note in Fig. 1 that there results a central annular zone
(light shading) and two polar caps (dark shading).
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Fig. 1 - Oblate spheroidal coordinate
system ( and the central annular
zone (lightly shaded) andpolarandcaps
(dark) on a spheroidal baffle

This report presents computations of the radiation impedance density for caps(pistons) and zones (rings) of various sizes and curvatures on oblate spheroidal bafflesof various sizes and eccentricities. Results in the literature to date contained in thework of Bouwkamp (2), Silbiger (3), Chertock (4), Nimura and Watanabe (5) and Hanish(6) are extended in this report to cover wider ranges of piston size, curvature, andfrequency.

In Fig. 2 are illustrated some types of vibration of pistons and a ring on an oblatespheroid. The heavily shaded areas are considered to be moving and the lightly shadedas stationary. Figures 2a and 2e illustrate two pistons moving in the direction of thepositive z axis, Figs. 2b and 2f illustrate two pistons in opposite motion along the z axis,and Fig. 2c indicate that the field of a single oscillating piston may be obtained by thesuperposition of the radiation fields of Figs. 2a and 2b. Figures 2d and 2g illustratea radially vibrating ring on an oblate spheroid.

RADIATION FROM CAPS

The Helmholtz scalar wave equation (V2+ k2 ) ' = 0 in the velocity potential ' - 4 e7"is separable in oblate spheroidal coordinates. Generally following the notation of Morseand Feshbach (7), we write the eigenfunction series solution (8) for the velocity potentialof rings and caps in the form

(Cos MO-

(2)

2

,t = 0, 1, 2, - I 11 M = t' t+ 1, t+ 2, . "
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Fig. 2 - Vibrating caps or pistons and a ring on an oblate
spheroidal baffle. Figures (e), (f, and (g) are alternate
representations of (a), (b), and (d) respectively.

where q = kd/2, in which k = w/c, where co is the angular frequency and c is the speed of
sound in the medium. R(3 (iq, - ie) is an oblate radial wave function of the third kind.

gi, 77) is an oblate angle function of the first kind. The Bm are expansion constants
(modal amplitudes). The problems considered here are axially symmetric; hence m is
zero.

Consider the piston problems illustrated in Figs. 2a and 2e and Figs. 2b and 2f. The
pistons are rigid and move parallel to the z axis. At the piston face the particle velocity
of the medium in the z direction is given by ID/ = - v(77) and in the direction of the
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normal to the surface is given by -V(@) cos a (Fig. 1). For infinitesimal motion of the
rigid curved pistons this particle velocity is equal to the normal (N) component of piston
velocity. Thus for the surface 9 = eo we write

I-a - Vo (7X) (cos a),=fo,

For the case of Figs. 2a and 2e

Vo (X) = VO, 7o < 7 < 1,

0, o7 < 7 ' 770,

=Vow - 1 < 71 < - 70,

and for the case of Figs. 2b and 2f

Vo ( 7) Vo, 770 < 77 1,

0, -770 < 77 770,

=-Vo, -1 < D7 < 70,

where V0 is the amplitude of the velocity parallel to the z axis and where a is the angle
between the z axis and the outward normal to the surface. From the differential geometry
of the surface it can be shown that

(cos a) /,-2 + 77.
iCSCt{f = 60 2), D.

Also,

D _ 1 t (D

where hi) is the scale factor:

hel) = d (62 + 22)

(1 + 62)

Performing the indicated operations of Eq. (3) we obtain

VO 2 d V Bo[ od " ( i i S0, , (i q, 77) (4)

Ie= 47o

Since, by definition, Sot(71 ) is orthogonal over the interval -1 < - < 1, we multiply both
sides of Eq. (4) by SOq and integrate over the interval.
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Letting

1VO (77)cr *t ( 770 f) | -V0) SO () ) 71 d
and

NoC= '[s 0 t (01)]2 d7 , (5)

we find the expansion coefficients to be

-VO ~o0 dc (170)

B N [-R (R3) (iq, - (6)

Substituting Eq. (6) into Eq. (2), the velocity potential becomes

{s.(,f r1) = d VZ ,o-ot ( 770)Ro ) (i9, -iO Soft(77)
d~r

t Not [Td Rt3) ( i q, -i

The acoustic pressure is defined by

P(6, 17, t) = p -ikpcT

or, omitting time dependence,

p (6, 77) = -kp c (,

where p is the density of the medium. Using Eq. (7), we thus get

.k d 5~0-04 (o7) R() ( i9g -i) sot (77)
p (6, 71) = i k i PC VO E i (8)P~ff r/) 2 P o Not [d Ro,3) (i9, -i 6(8

The mechanical impedance depends on the z component of force Fi of the medium on the
area Ai of the piston i, where

Fi =ffP(. 17) cos a dAi
A.
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in which

dA1 = ho dri fh dqk

- i ) d- d2 + 1) (1 _ 2)3½do (9)

=(Id) ( 2 + 12) (1 + )] d17 dO

and

cos a dAi (d 2 (I + d 71 dk.

The symbols h7, and h. are scale factors as defined in Flammer (1).

Letting

T1 <n7o) =ft E(1 7 ) So0 (77) 71 d17 (10)
-I

and c(17) = 1 for values of 77 corresponding to a piston and c(7) = 0 for values of 17 on the
baffle (nonmoving surface of the spheroid), then F1 becomes

F2 = k +)i PCV,) 27,( (i + 2) (11)

The acoustic radiation impedance z is given by the ratio of the z component of force Fi to
the z component of the surface velocity, i. e., Z = Fi/VO. The complex impedance density
-1- is given by

pcA V0 p cAA

where A is the total vibrating area. An explicit formula for the impedance density is

-ikd 2- (I) 2 (-+~2) t (770) 'r (17?) R (3iU'i, -i 0)
2 A ( ( 0E [2 Rd (3 iis (12)

LetD be the semimajor axis 71 = 0 of the generating ellipse 6 = g; then from Eq. (1).
D = (d/2) (6_ + 1) . Also the radius a of the disk obtained by projecting the cap piston,
onto the xy plane (Fig. 3) is

d Fi62 + 2\1
a = 2 

0
0

Therefore, a/D = (1 - 1). We note that a/D is independent of the parameter A, which
controls the baffle size.

6
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Fig. 3 - Oscillating caps with radius a

The area Ai of a cap on an oblate spheroid is given by

Ai = () + ° [ + o) 2 + 2 +
1 + (1 + e2) 1

n + (?+ ) + (149)

Due to the symmetry in these problems about the xy plane we can set

(15)

Then the acoustic radiation impedance density may be written as

= i s 2 ( )2d (I + ) 2) 'e(1 R) (iE, -d
(16)

This is the final formula of the analysis of radiation from caps and the one we will use to
make numerical computations.

RADIATION FROM RINGS

Consider next a zone (ring) on an oblate spheroidal baffle. Referring to Fig. 1, we
describe a zone in functional form as follows:

17o ' X7 ' 770

and

0 < 0 < 2?7.

Assume that each point on the ring vibrates with radial velocity V= V0 and the normal
velocity is given by

V = - = = -V(17) (sin a),=f .
(17)

Let V(77) = V0 for -770 < 7 < 7170 and let V(17 ) = o elsewhere as illustrated in Fig. 2g. Per-
forming the operation indicated in Eq. (17), one gets

* = o

XY PLANE

r(7) 0 ) = 2 f S0ot( 17 ) 77 d 77 = zo' (70).
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VOd {1 -rZ2 "2O i) fo =ZB E Td R Ot (i, -id Sot (71)-
(18)

Multiplying both sides of Eq. (18) bySOq(17) and integrating over -1 -< 7 < 1, we then obtain
(seeing that s0 ,t(7) is orthogonal over the interval)

J V(7) sot ( (1 'A d7

(19)B t= -- do VO

No t (1 + 2) [ d 3 -

Let

t ( 770 ) = | V77) S g (14, ') ( 1 - 712 )% d .

Then

- d

(I + eo No t
U Ulu - '

d R (i, -i,

Equation (2) becomes

(20)

-VO 2 60 u° 0t (%) Sot (77) R (3 (i9, - i D

(1 + , 0) 't N,)t [Yd Ro (3) U -iO]

and the acoustic pressure becomes

P(s', 71) = -ikpc(D

- ipC VO9q 

(I + 6 ) t
(21)

Not ([1) R o3 (i 9, -i6) Sot (7)
No t [_ad R (3 ) (i4 9 -i 0]

where j = kd/2. The projection of the medium reaction force F onto the xy plane is

F = f f(., 71) sin a dA.

Substituting known relations for p, sin a, and dA into this integral, then

8
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2 hot (71 (3) oe(iif S.o, (77) (1772) %r

F= iqpcVo 27rT V Z N70 [ d Rti2 Ei~f (22
~2) 'o t No7e [d (ii , (2 20

Since V(17)/Vo = 1 over the ring, then

I-loot ( 770) So e (iq,, 77) (I _ 772) d77.

Equation (22) allows us to formulate the radiation mechanical impedance density -
of a ring, where F = F/v pcA, in which A is the surface area of the ring, as follows:

iq 27T(d 2 3

A2 Z ote ([10) Ro3.) (iq, -i7)] (2.)

The area A of a ring on an obiate spheroid is

A = 277 (d)2 (1 + 2)[17 ( + 7?2) + 7 'ei 2n I 2 (24)

E6quation (23) is the final equation of the analysis. We will use it for making numerical
computations. We have plotted numerical values in terms of q with 71o as a parameter.
Below are listed some relationships relating ring dimensions to the spheroidal coordi-
nates parameters, where 2D is the maximum diameter of the ring and b is the axial
height of the ring:

b = 2z = d677 and D = d (1 + .2)",

so that

b 2617

(1 + f )

NUMERICAL COMPUTATION

The mechanical radiation impedance of moving caps on oblate spheroidal baffles has
been calculated by the use of Eq. (16). In the first instance the caps are made to have
zero curvature; i. e., they are flat circular disks in flat circular baffles. The important
parameters are the ratio a/D of disk radius to baffle radius and the acoustic size
ka = 27ra/k of the disk. This case has been treated by Nimura and Watanabe (5) for
smaller ranges of the parameters. We have calculated the radiation mechanical imped-
ance density (see Eq. (16)) and have plotted a, vs ka for various values of a/D. Our results
are shown in Fig. 4, where we have plotted the resistance density aR for the following
special cases: infinite baffle (D infinite and a finite), no baffle (D = a), and a/D = 0. 1736,
0. 342, 0. 5000, 0. 6499, and 0. 8660. Figures 4, 5a and 5b show the same case as Fig. 4
except that we have plotted the reactance impedance density XI in lieu Of AR- Figures 4
and 5 stand as models of the type of calculation to be found in the figures to follow for

9
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2.0 -
15 _

1.0 _

0.1 -

yR -

0.01 -

_

0.00[ _
0.1 1.0 10.0

Fig. 4 - Radiation resistance density for a flat circular disk as a function of ka for several
values of the ratio of the piston size to the baffle size (for S odd, except a/D = 0)

100.0
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caps on oblate spheroids, with the addition that the later series of figures (6 through 20)
illustrate the effect of changing the curvature of the radiating surface. Figures 21 through
25 present the mechanical radiation impedance, Eq. (23), for zones of rings on oblate
spheroidal baffles as a function of q = kd/2 with q as a parameter. We list these figures
in Tables 1 and 2, together with pertinent remarks. It is to be noted that the oscillating
caps and rings used in these figures are defined by the intersection of the hyperboloid
I-Yi = 770 of two sheets with the spheroid 6= 60, having the same axis of revolution. The
radius a is the projection of the radius of the curved cap onto the xy plane (Fig. 3).

Table 1
Summary of Figures for Caps, Which are Plots of the Radiation Impedance Density
(Radiation Resistance Density R and Reactance Density HI) vs ka of Two Oscillating
Caps that Extend to 77 = 770 on an Oblate Spheroid with Some or All of the Parameters

0, 0.2, 0.4, 0.6, 0.9, and 2.0

Fig. Motion of Value Fig. Motion of Value
No. the Two Caps of 7?0 No. the Two Caps of n0

6 Opposite directions 0 13 Opposite directions 0. 76

7 Same direction 0 14 Same direction 0. 76

8 Comparison of aR and A vs ka 15 Opposite directions aF3/2
for an oscillating disk in an
infinite baffle and a disk with 16 Same direction a/2
no baffle

17 Opposite directions 0. 9397
9 Opposite directions 0. 5

18 Same direction 0. 9397
10 Same direction 0. 5

19 Opposite directions 0. 9848
11 Opposite directions 0. 6

20 Same direction 0. 9848
12 Same direction 0.6

Table 2
Summary of Figures for Disks, Which are
Plots of the Radiation Resistance Density aR and
Reactance Density XI vs q (= kd/2) of Rings on
an Oblate Spheroid Defined by qo = 0.1736,0.2558,
0.5000, 0.7071, 0.8660, and 1.000

Fig. No. [ Impedance

21a 0.6 kR
21b 0.6
22a 0.75
22b 0.75
23a 0.90 R
23b 0.90 31
24a 1. 0 aR
24b 1. 0
25a 2. 0
25b 2. 0

11
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2.0 I 111111

1.50

1.0

-<1

0. I

0.01 ~~~~~~~~~~a/D

---- 0.5000
___ - 0.8660

1.0000

0.001 I I I III! I I 1 11 I I I1111
0.1 1.0 10.0 100.0

Fig. 5a - Radiation reactance density for a flat circular disk as a function of ka for several
values of the ratio of the piston size to the baffle size (for t odd, except a/D = 0). (Additional
curves are given in Fig. 5b.)
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100.01.0 10.0

ha;

Fig. 5b - Additional curves for Fig. 5a

2.0 -
1.5 -

1.0 -

0.1 ,

0.01 -

0.001 -

0.1
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In those formulas derived above where the spheroidal wave functions R t, dRo,/de,
and SO t occur, their numerical computation is effected by use of the NRL-developed
computer programs called OBRAD (9) and ANGLFN (10). Without these programs the
calculations of radiation impedance over the extended ranges displayed in the following
families of figures would have been extremely difficult.

CONCLUSIONS

The effect of baffle curvature on radiation impedance has been illustrated by families
of curves involving thousands of computed points. Figures 4 and 5 demonstrate that the
radiation impedance density is strongly dependent on the baffle size for flat circular
disks (ka < 1) and is largely independent of the baffle size when ka > 2. Figures 6 through
20, showing piston radiation impedances, indicate that for large ka the oscillating (odd t)
and the pulsating (even t) spheroids with the same eccentricity and baffle have nearly
the same impedance density; in fact asymptotically (that is, f-a) they approach the same
limit.

Figures 21 through 25 illustrate that for large values of the parameter s the radia-
tion resistance density diminishes as 7½, varies from zero to unity (as the axial height of
the rings varies from small to large). The reason for this behavior can be understood by
considering the curved nature of the radiating surface and the definition of impedance
density. The impedance density as defined here is the ratio of the medium reaction force
projected onto the xy plane '(Fig. 1) to the product of velocity V0 (constant) of the ring and
the total vibrating area of the ring. Since the projected reaction force diminishes as the
ring height increases, and since further the ring area increases as the ring height in-
creases, it is seen that the ratio diminishes. The diminution of the reaction force as the
ring height increases is due to the ring surface becoming more curved as the ring encom-
passes more of the total spheroid. For small q (wavelength large compared to vibrating
ring) the reaction force is essentially independent of the geometry; hence the impedance
density simply follows the radiation impedance density of simple sources.

Not presented here, but now well within our computation capability, is the computa-
tion of near-field and far-field pressure patterns which involve the use of angle spheroidal
wave functions. An effective Fortran IV subroutine for obtaining these functions is also
available (9).
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2.0 1 I I I 1 11 . I III 11 lr

1.5

1.0 0.2

0.4
0.6
0.9
2.0

0.I

0.01~~~~~~~~~~~~.

2.0~~~~~.

0.1 1.0 10.0 1010.0

Fig. 6 - Radiation impedance density (resistance density '&R and reactance density 4) as a
function of ka, where a is the radius of the resulting disk obtained by projecting the piston
(770 = 0) onto the xy plane for a series of rigid oblate spheroids vibrating along the z axis
(even values of t)
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0.1

17

0.01

OL~~~~~~~~~~~~j

0.001 I I I IXl I I II|L
0.1 I 10 100

Fig. 8 - Radiation impedance density for a rigid circular disk without a baffle and in a rigid
infinite plane baffle as a function of ka
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0.001 I I I I I I II I I I I I I I I I I I I I I I
0. o 10 100

4a
Fig. 9 - Radiation impedance density as a function of ka, where a is the radius of the resulting

disk obtained by projecting the piston (77 = 0.5) onto the xy plane for even values of I
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0.001 II I II I I II II I I I I I I I I I I I I I I I I 1 I

0.1 I 10 100

4a~

Fig. 10 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (770 = 0.5) onto the xy plane for odd values of C
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0.01 11

0.0 IIII i IIII I I111 I I I111 I I I l I1

0.1 10 100

4a~~~~~~~.

Fig. 11 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (%1 = 0.6) onto the xy plane for even values of t
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0.001 I I II n II I I III , .,,,,I I . .. I I, ,, , I

0. II 10 100

ha;

Fig. 12 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (-q = 0.6) onto the xy plane except for odd values of t
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2.0 I I liii iI
I .5

I .0 --- 2.0

0.1

0.9

-0.4

0.01

0 .0 0 1 I I I I I I I I I I I I I I I I I I I I I I I
0.1 I 10 100

ha
Fig. 13 - Radiation impedance density as a function of ka where a is the radius of the result-
ing disk obtained by projecting the piston (mr0 = 0.76) onto the xy plane for even values of t
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0.1 I 10 100

Fig. 14 - Radiation impedance density as a function of ka when a is the radius of the result-
ing disk obtained by projecting the piston (770 = 0.76) onto the xy plane for odd values of t
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0.001 I I I I,, II , , I,,,,,,_II , .5

0.1 I 10 100

ha;

Fig. 15 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (m10 = f-/2 onto the xy plane for even values of t
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0.01 i~

0.001 I II IIhl 
0.1 I 10 100

Fig. 16 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (770 = F/ 2) onto the xy plane for odd values of t
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2.

0.1

0.001

4a;

Fig. 17 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (770 = 0.9397) onto the xy plane for even values of -t

100
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0.01

; .ooIII I I I I LulI I I II I).001 1
0.1 I 10

Fig. 18 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (7?, = 0.9397) onto the xy plane for odd values of C
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2.0

1.5

0.001 l I I lI I I I I I I I I I I I I I I I 

0.1 10 100

4a;

Fig. 19 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (770 = 0.9848) onto the xy plane for even values of t
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2.0

I.5

1.0

0.1 /

0 0.0
0.4

0.01 0 
2.0

1211 1 ~

0.001 I 1 1 1 1 1 1 I I i I I I I I I I I I I I L
0.1 I 10 100

Fig. 20 - Radiation impedance density as a function of ka, where a is the radius of the result-
ing disk obtained by projecting the piston (710 = 0.9848) onto the xy plane for odd values of t
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2.0 1 II 1 11 1 I II111I I

1.o5 l l l l l l l l l l l l l l l l l l l lllll77=01736

1.0 _to50.6 -0 0.588
V, ~ - .7071

.==_, 1~.0000

0.I

0.01 W

0.001 ,I I ,,I IlIl I I IIIII I I I 1111!

0.1 1.0 10.0 100.0

Fig. 21a - Radiation resistance density for rings on oblate spheroids as a function of
X = kd/2 for the spheroid ( = 0.6
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2.0 | X -1-- 1 1 1 1 1 zj F~
1.5 _

1.0

~=0. 6

_ Xt/.,S~~\ ' '\ \\ \?/77=0,1736-

o as// \\ . \ " ~0.2588
0.1 N~~~~ ~~... ~~0.5000

0.707 I

0.8660
1.0000

0.01

0.001 I I I I I I L
0.1 1.0 10.0 100l 0

Fig. 21b - Radiation reactance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid e = 0.6
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0.001 I I I I I I I I, , i i I , , . III. I . I I

0.1 I 10 100

Fig. 22a - Radiation resistance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid 6 = 0.75
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0.1 I 10 100

Fig. 22b - Radiation reactance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid e = 0.75
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Fig. 23a - Radiation reactance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid 4 = 0.9
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Fig. 23b - Radiation reactance density for rings on oblate spheroids as a function of
g = kd/2 for the spheroid d = 0.9
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Fig. 24a - Radiation resistance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid 6 = 1.0
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Fig. 24b - Radiation reactance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid A= 1.0
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Fig. 25a - Radiation resistance density for rings on oblate spheroids as a function of
,q = kd/2 for the spheroid s = 2.0
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Fig. 25b - Radiation reactance density for rings on oblate spheroids as a function of
q = kd/2 for the spheroid 6 = 2.0
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