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EXECUTIVE SUMMARY 
 
  

This report reviews current fusion techniques used for bathymetry or other geospatial data, as 
motivated by the Naval Oceanographic Office’s (NAVOCEANO) need for intelligent fusion − combining 
two or more data sets in a manner that accounts for data uncertainty − of gridded and in situ bathymetric 
data sets. Currently, NAVOCEANO’s bathymetry database, DBDB-V, incorporates the Feathering 
Algorithm to smooth discontinuities that occur between tiles in the database with dissimilar resolutions. 
This technique, however, still leaves artifacts and does not provide uncertainty estimates. NAVOCEANO 
needs intelligent fusion capabilities not only to fuse data sets in a manner that takes the uncertainty of the 
data into account, but also to generate products that meet hydrography standards and to provide the 
capability to use one database for multiple purposes. A review of the technical literature indicates that 
current state-of-the art fusion techniques that have been used on bathymetric data include splines-in-
tension interpolation, locally weighted regression (loess), and kriging. In addition, there are new 
techniques based on Bayesian inference, but these appear to require further development before being 
ready for operational implementation. Based on this review, we recommend an approach for building new 
bathymetry fusion algorithms that was published and validated for bathymetry data recently by Calder*. 
This approach uses both loess interpolation to obtain a trend surface, followed by kriging of residuals to 
recapture finer details lost from smoothing. In addition, if in situ soundings are used, Monte Carlo 
simulations are run to estimate depth error induced by position errors. The technique also provides the 
means to liberally estimate errors for navigation safety. The Naval Research Laboratory (NRL) plans to 
build and validate a fusion algorithm based on this approach. The work leverages other NRL efforts that 
developed data fusion capabilities using loess interpolation and adds in additional required components in 
the build schedule. The algorithm will support the new Bathymetric Attributed Grid (BAG) format of the 
Open Navigation Surface Project. NRL plans to transition the software to the Naval Oceanographic 
Office, Bathymetry Database Division.  
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ALGORITHM DESIGN STUDY FOR BATHYMETRY FUSION – REVIEW OF 
CURRENT STATE-OF-THE-ART AND RECOMMENDED DESIGN APPROACH 

 
 
 
1. INTRODUCTION  
 

The Digital Bathymetry Data Base – Variable Resolution (DBDB-V) is the bathymetric database 
maintained by the Naval Oceanographic Office (NAVOCEANO) for worldwide bathymetry data. The 
latest release, Version 5.2, has global coverage at 2 minutes of resolution, primarily based on satellite 
altimetry data of the ocean surface (which then provides bathymetry from the inferred gravitational 
anomalies) and ship soundings [1]. Higher resolution data in selected areas also are contained in the 
database in resolutions of 1, 0.5, 0.1, and 0.05 [2] arc minutes. DBDB-V stores these data sets in 
rectangular grid tiles.   
 

When the end user extracts data for an area covered by multiple tiles with different resolutions using 
nearest neighbor interpolation or bicubic spline interpolation, there are discontinuity artifacts at tile 
boundaries. These discontinuities may be caused by differences in spatial frequencies or data accuracy 
across tile boundaries or both. As a result, as discussed in Steed and Rankin [3], false cliffs appear in the 
extracted data at tile boundaries (Fig. 1). The artifacts have negative visual impact and cause errors in 
oceanographic and acoustic modeling.  To mitigate these errors, the OAML Feathering Algorithm [3] was 
implemented in DBDB-V Version 5.2 to smooth discontinuities at the boundaries. The algorithm 
produces a minimum-curvature spline grid for the extracted area using the “mb_zgrid” C function of the 
MB-System software suite [4] (open-source software used for processing and visualizing bathymetric and 
acoustic backscatter data). As shown in Steed and Rankin [3], the algorithm smoothes discontinuities 
between dissimilar tiles and should reduce errors for modeling applications. Artifacts, although smoothed, 
remain. For example, some false cliffs become ramps in between transition regions (Fig. 2). The OAML 
Feathering Algorithm, however, was not intended for permanent use; it was a “stop-gap measure” to be 
used until intelligent fusion algorithms could be created. 

  
Intelligent fusion differs fundamentally from feathering in that the uncertainty of the data points is 

taken into account when generating an interpolation surface from different data sets. The inclusion of 
uncertainty (or error) allows for the use of different techniques that weight the data using the errors and 
provides error estimates with the bathymetry. Hence, the products of intelligent fusion are a bathymetry 
layer and an uncertainty layer.   
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Fig. 1 − Artifact discontinuities between DBDB-V Version 3.0 tiles of dissimilar 
resolutions (5.0 minutes in coarse region, 0.5 minutes in finer region) [3]. 

 

Fig. 2 − Example improvement of artifact discontinuities using the OAML 
Feathering Algorithm on tiles from Fig. 1 [3]. 

 
 
 This result is desirable for a number of reasons. First, data points with smaller errors are more 
important to surface generation. In an era where highly accurate multibeam echo sounder systems are 
available, it is desirable to give more credence to these data than to data collected in an era with vertical 
beam echo sounders (or older technology) and higher uncertainty in navigation. Second, specification of 
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uncertainty allows for multiple use of a bathymetry database, so that navigation charts can be generated 
from the same database (by shoaling the data with an appropriate uncertainty level) that would be used by 
modelers. Third, modelers can, in principle, provide error estimates of predictions based on propagation 
of bathymetry errors through the models. Lastly, uncertainty in the interpolated points is required for 
International Hydrography Organization (IHO) standards [5]. Section 5.3 of the fifth edition (draft) 
dictates:  
 

All data should be attributed with a 95% statistical error estimate for position and depth where 
appropriate. For soundings this should preferably be done for each individual sounding; however 
a single error estimate may be recorded for a number of soundings or even for an area, provided 
any difference between the individual error estimates can be safely expected to be negligible. 
  
Quantifying uncertainty in sparse geospatial data sets has become a focus of research within the past 

5 to 7 years. Increased computational capabilities have made it possible to collect high density and high 
volume data sets, which allows for error estimation based on statistical techniques. Also, navigational and 
sonar uncertainties have become lower, resulting in higher precision in the data obtained. Both of these 
factors and others are used by a new data processing algorithm, the Combined Uncertainty and 
Bathymetric Estimator (CUBE) for providing robust estimates of bathymetry and uncertainty [6]. With 
regard to product generation, traditional interpolation techniques for sparse data sets have become more 
pragmatic with newer, more efficient algorithms and increased computational speed to allow for the use 
of newer robust estimations with more computationally expensive procedures.  
 
 In response to the IHO requirements and newer error estimation capabilities, a new data format, the 
Bathymetric Attributed Grid (BAG) [7], has been designed by the Open Navigation Surface Working 
Group, a consortium of academic, government and private sector groups. Central to the BAG’s design is 
the requirement that it hold both bathymetry and uncertainty data for rectangular bathymetric tiles. This 
format has now been adopted by two commercial software suites used for bathymetric data processing 
and analysis, and is now being used by NAVOCEANO to store output from new multibeam data sets 
processed by CUBE. Thus, the adoption of intelligent procedures for fusing bathymetry data sets is now 
not only a pragmatic possibility but also a necessity. 
 

The purpose of this report is to provide a starting point for providing NAVOCEANO with intelligent 
fusion availabilities for current and future bathymetry data sets. In Section 2, we first review the current 
state-of-the-art techniques for intelligent fusion of sparse data sets, some of which were developed for 
bathymetry data. This section not only serves as a review but also provides background for describing this 
reports recommended technique, which is a new three-step approach by Calder [8]. Section 3 reviews this 
approach. Section 4 provides discussion of software build design and case studies to use for validation. 
Finally, Section 5 provides summary remarks. 
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2. REVIEW OF CURRENT STATE-OF-THE-ART  
 
 As discussed in Davis [9] and reiterated by Smith and Wessel [10], algorithms that generate gridded 
surfaces from sparse data sets assume the following: 
 

a) Grid points are single-valued. 
b) Continuity exists everywhere on the generated surface. 
c) Autocorrelation of the surface is positive for distance greater than the node spacing. 

 
These assumptions should be maintained by intelligent fusion algorithms. In order to satisfy condition 
one, the point values, which will now be a statistical quantity with an estimated uncertainty, can be a 
mean or median. 
 
 Crain [11] and Franke [12] provide reviews of earlier interpolation techniques. These methods 
include polynomial interpolation, inverse-distance weighting, triangulation, piecewise contour line 
segments, simple finite difference and finite element methods. These techniques are not reviewed again 
here. The newer techniques discussed below have either been applied to bathymetry or have some form of 
robust uncertainty estimation, or both. We first discuss “splines-in-tension,” which is used for the OAML 
Feathering Algorithm and has been applied to bathymetry data since the 1970s; uncertainty estimation 
was added-on in 2002. Next, are reviews of loess interpolation and kriging; both fundamentally provide 
uncertainty estimation. Finally, we briefly preview possible future techniques based on Bayesian 
inference.   
 
2.1 “Splines-in-Tension” Interpolation  
 
 Spline interpolation constructs curves between data points to generate a gridded surface. “Splines-in-
tension” is a specific technique that calculates a global solution by solving a differential equation. 
Constraints often include data points, some desired mathematical property (e.g., continuous first and 
second derivates, minimum curvature, etc.), and boundary conditions at the end points. The gridded 
surface is then calculated by finite differences.  
 
2.1.1 Methodology 
 

The geospatial community uses techniques by Briggs [13] and Smith and Wessel [10] to calculate the 
interpolation surface. The elasticity equation for thin plates derived by Love [14] is the basis for 
generating the interpolation surface, which is modeled as an elastic plate that is constrained at the 
locations of the data points. Under this model, the differential equation to be solved is [10] 
 
  ( ) ( ) ( )ii

i
i yyxxfzTzT −−=∇−∇∇− ∑ ,1 222 δ , (1) 

 
where T is the tension; z is the two-dimensional interpolation surface; fi = z(xi, yi), the ith known value for 
z at coordinate (xi, yi) as (x, y) → (xi, yi); and δ(x - xi, y - yi) is the Dirac delta function. In Briggs’s 
“minimum-curvature” technique, T = 0 so that Eq. (1) becomes  
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The solution to the surface is one where sum of the curvature of the surface is minimized (as the potential 
energy of the plate is minimized in this case), and found by imposing the conditions of continuous first 
and second derivatives, known fixed values at the data points and constraints at the boundaries. Briggs 
provides a finite difference solution to Eq. (2), which was later coded into Fortran-IV by Swain [15]. This 
minimum-curvature method was used for earlier versions of DBDB [16].  
 
 Smith and Wessel [10] recognized that the solution for Eq. (2) can produce false minima and maxima. 
They corrected for this potential for artifacts by adding the tension term back into the equations to be 
solved and provided a solution for Eq. (1) through finite-difference iteration.  
 
2.1.2 Available Software 
 
 Smith and Wessel’s algorithm is coded in the SURFACE function in the Generic Mapping Tools 
(GMT) [17] software suite. A similar splines-in-tension algorithm is in the MB_ZGRID in the MB-
System [5] suite. As both are widely used open-source software packages.  
 
2.1.3 Advantages and Disadvantages 
 
 An advantage to the technique is that it is relatively fast and is exact at the points where there is data. 
Also, a solution is found globally. A disadvantage is that the setting for the tension term is arbitrary. This 
tension may need to be set to different values in different settings. For this reason, the OAML Feathering 
Algorithm sets the tension to the value recommended by the authors of the code. An additional 
disadvantage is that these routines, as noted by Smith and Wessel, do not provide error estimates for the 
interpolated grid points.  
 
2.1.4 Error Estimation from Monte Carlo Simulation 
 
 Jakobsson et. al. [18] developed a Monte Carlo technique for error estimation for spline-in-tension 
interpolation. The technique uses positional accuracies of the ships that recorded the soundings to 
estimate a Gaussian probability density function for horizontal positioning error. Using a subset of 
bathymetric data from the International Bathymetric Chart of the Arctic Ocean (IBCAO) [19] for 
validation, the horizontal positions of the soundings are randomly perturbed and new interpolated surfaces 
are generated. Since the constraining positions are different for each iteration of the simulation, the 
calculated solution to Eq. (1) changes at the interpolation points as well. After the simulation is complete, 
an uncertainty layer is then created from the standard deviations of the solutions for each grid point. This 
error estimation technique is discussed in Section 3 for uncertainty estimation induced by horizontal 
positioning error. 
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2.2 Linear Smoothing by Locally Weighted Regression (Loess)  
 
 Linear smoothing techniques construct the interpolated surface, ( )sẑ , ≡s matrix of (x,y) 
coordinates, from a linear weighted average of known data values. Unlike the splines-in-tension technique 
that finds a global solution to the available data, this technique obtains an interpolated value at a grid 
point by using only a subset of neighboring points. Mathematically, 
 
  ( ) ( ) ( )∑ −=

i
ii zz ssss αˆ , (3) 

 
where α(s – si) specifies the smoother coefficients and the index i corresponds to the subset of local 
points, z(si), to be used for the interpolated value at s, ẑ (s). A common technique used to specify these 
coefficients is locally weighted regression (or “loess”), first published in Cleveland [20] and further 
developed in Cleveland and Devlin [21]. A recent textbook by Givens and Hoeting [22] also discusses the 
technique. The methodology determines the smoother coefficients from a weighted least squares 
polynomial (linear or quadratic) fit of windowed data.  
 
2.2.1 Methodology 
 

To summarize Cleveland’s methodology, the two-dimensional case is considered. (We extend these 
equations to the three-dimensional case in Section 3; the methodology remains the same.) Let data points 
xi and yi be related as   
 
  ( ) iii xgy ε+= , (4) 
 
where g(x) is a smooth function and εi is Gaussian noise with mean 0 and variance σ 2.  Thus we can 
define iŷ to be the estimate of g(xi) (i.e., ( )ii xgy ≈ˆ ). Let  
 

• the number n be the predetermined number of data points to be used for estimating iŷ  
• the set xk, k = 1,…,n, be the subset of xj’s (j = 1,…,N; N = total number of data points, n < N) that 

are closest to xi 
• the distance hi be the distance from xi to the furthest xk  
• the windowing weights to be used for the regression, wk(xi) = W([xk – xi]/hi), where W(x) is the 

tricube function, defined as 
 

  ( ) ( )
⎪⎩

⎪
⎨
⎧ <−≡

otherwise  ,            0
1  ,1

33 xxxW  (5) 

 
With these definitions, the loess procedure calculates the set of polynomial coefficients, ( )il xβ̂ , which are 
the values for the lβ ’s that minimize 
 

  ( ) ( )( )∑
=

−−−−=
n

k

d
kdkkiki xxyxwxq

1

2
10 βββ L ,   (6) 

 
where q(xi) is the error function. The interpolated value for g(xi) is then [20] 
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  ( ) ( ) k

n

k
ik

d
i

d

ii yxxxy ∑∑
==

==
10

ˆˆ αβ
l

l , (7) 

 
where the smoothing terms on the right-hand side correspond to the right-hand side of Eq. (3) rewritten to 
the present two-dimensional case.  Some points of interest are as follows. 
 

• The coefficients obtained have a decreasing trend to the edge of the window so that the data 
centered in the window generally have the greatest influence. 

• The size of the polynomial typically used in Eq. (6) is d = 1 or 2. For d = 0, the result is a simple 
moving average. The d = 1 case is called linear loess or “lowess” smoothing, and d= 2 is 
quadratic “loess” smoothing.  

• Cubic and higher fits typically are not used as the fits can become over fitted and numerically 
unstable [23].  

• This technique also has a robustness option, so that the interpolation can be shielded from the 
effects of outliers in the data (details in Cleveland [20]). 

• Cleveland choose the tricube weighting function because it allowed the estimate of the error 
variance to be approximated by a chi-square distribution and usually lowered the variance of the 
estimate surface as the number of points used for the estimate increased.   

 
 Errors propagated into the interpolation by the technique are straight forward to compute. Under the 
assumption the data follow Eq. (4), the estimate of the variance for iŷ , 2ˆ iσ , is [20, 21, 24] 
 

  ( )[ ]∑
=

=
n

k
iki x

1

222ˆ ασσ , (8) 

 
which is derivable from independent error propagation. 
 
2.2.2 Equivalent Kernel Approach 
 
 Figure 3 plots the set of αk’s as determined for a centered impulse response using the linear and 
quadratic loess interpolators [25]. These coefficients are the smoother weights in Eq. (7) and are also 
called the “equivalent kernel.” They depend only on the grid points, and, due to their finite width, act as a 
window or low-pass filter function on the spatial data (i.e., the smoothing weights and the data undergo 
convolution). Hence, one could bypass solving a weighted least square problem and simply compute the 
convolution of the smoothing window with the data, which should be computationally faster. In addition, 
other windowing functions could be used to perform the smoothing. 
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Fig. 3 − Equivalent kernel weights for linear and quadratic loess windows for window size of 0.5 

 The use of other weighting functions would also allow one to interpolate over data points with 
differing accuracy. In this case, Eqs. (7) and (8) become 
 

  ( ) ( ) k

n

k
ikk

n

k

n

k
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where 2
kσ is the variance of yk and ( ) ( ) ⎟

⎠

⎞
⎜
⎝

⎛≡ ∑
=

−−
n

k
kkikik xx

1

22~ σσαα . 

 
2.2.3 Available Software 
 
 Cleveland et al. [26] have written publicly available Fortran and C code for loess interpolation.  The 
technique is also part of the publicly available LOCFIT software package [27]. The commercially 
available Curve Fitting Toolbox for MATLAB [28] also contains loess interpolation routines. 



Algorithm Design Study for Bathymetry Fusion 9 

  

2.2.4 Advantages and Disadvantages 
 
 An advantage of this procedure is that it does not require an a priori model or other function to be 
specified; thus, it is good for modeling surfaces that have complicated topologies [23]. A disadvantage of 
the loess technique is that it is not exact at the data points and the interpolated bathymetry data can be 
subject to spatial aliasing, particularly when the data is not uniformly sampled or when there are features 
not resolved by the sonar system [24]. As a result, additional variance and bias occurs.  
 
 Schlax and Chelton [29] examined the aliasing issue for equivalent kernels reviewed by Buja et al. 
[30], which included running means, linear interpolation, Gaussian windows and cubic splines in addition 
to linear and quadratic loess kernels. When the data points are evenly sampled, the transmitted errors are 
lowest for the quadratic loess kernel when interpolation occurs far from grid boundaries. Sparse sampling 
induces more errors due to aliasing by a factor of between 4 and 8, regardless of the kernel used, with the 
quadratic loess showing the most increase in error. Nonetheless, in Schlax and Chelton’s examples, the 
quadratic loess kernel still did the best for all but one (linear interpolation) of the kernels. Plant et al. [24] 
point out that the increased sensitivity is due primarily to the negative sidelobes in the weights. 
 
2.3 Kriging  
 
 Kriging is a standard technique for interpolating sparse geospatial data. Geospatial data analysis 
textbooks, such as Davis [9] and O’Sullivan and Unwin [31], and the monograph by Journel [32] present 
the technique. Cressie [33] and Chiles [34] provide advanced mathematical treatments. The method was 
first introduced by Krige [35] and developed by Matheron [36]. Like the linear smoothing technique 
discussed above, it is a linear regression technique where interpolated values are estimated from a 
weighted sum of neighboring data points; however, the methodology for finding the weights relies on 
solving a system of simultaneous linear equations (instead of minimizing an overdetermined system) 
whose terms are the covariances or, alternatively, variograms of the data. Thus, before discussing the 
relevant kriging equations for bathymetry, we first introduce covariance and variograms. 
 
2.3.1 Covariance and Variogram Matrices 
 
 The covariance, in terms of bathymetry measurements at is  and js , )( iz s and )( jz s  respectively, 
is [33] 
   
  { } { } { })()()()(),cov( jijiji zEzEzzE ssssss −=  (11) 
 
where the operator {}⋅E  is the expectation value of the enclosed term. In matrix form  
 

  

( ) ( ) ( )
( ) ( ) ( )
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⎥
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⎢
⎢
⎢

⎣

⎡

=

nnnn

n

n

ssssss

ssssss
ssssss
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,cov,cov,cov

,cov,cov,cov
,cov,cov,cov

21

22212

12111

L

MOMM

L

L

 (12) 

 
Note that for i = j, ),cov( ji ss is the variance of )( iz s , ( ))(var iz s  = 2

)( iz sσ . When z(s) is statistically 
stationary, then the covariance simply depends on the displacement h from s (i.e., the variance is 
independent of position so that ( ){ } ( ){ }shs zEzE =+ ). Thus for stationary conditions [37],  
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  { } { }[ ]2)()()()cov( sshsh zEzzE −+= . (13) 
 
 The variogram, 2γ, is [33] 
 

  
( ) ( )

( ) ( ) ( )jiji

jiji

zz
zz

ssss
ssss

,cov2)(var)(var
)()(var,2

−+=

−≡γ
 (14) 

 
The semivariance is half the variogram, or simply γ. Under stationary conditions, Eq. (14) becomes [37],   
 
  ( ) ( ) ( )hh cov0cov −=γ , (15) 
 
where ( ) ( ){ }szvar0cov = .  
 
 Often, the semivariance is of more practical use than the covariance because an estimate for the 
semivariance is straightforward to compute from observations, particularly along one dimension. 
Consider n such observations made at regular intervals. From Eq. (14), the empirical estimate of the 
semivariance, ( ) ( )jiji ssss ,,ˆ γγ ≈ , for displacement h, ( ) ( )hhii γγ ˆ,ˆ =+ss , is 
 

  ( ) ( )∑
−

+−=
hn

i
hii nzzh 2)()(ˆ 2ssγ . (16) 

 
Qualitatively, the semivariogram (Fig. 4), the plot of the semivariance, generally increases with h from a 
minimum at h = 0, which may or may not be zero ( ( ) 00 ≠γ  is called the “nugget effect”), to a horizontal 
line, the “sill,” which is equal to overall variance of the observations. This qualitative trend holds when 
the data is a regionalized variable. A regionalized variable can be considered as a hybrid between 
deterministic and random variables, where a high amount of correlation exists between two samples that 
are taken close to each other spatially, but this correlation degenerates as the spatial distance increases 
until a distance, the “range,” is reached where further observations appear to be random. Thus, the 
variogram remains at the sill for values of h greater than the range as any correlation between data points 
is lost.   
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Fig. 4 − Example semivariogram with no nugget effect and the range and sill noted. At the sill, the semivariogram equals the 
overall variance of the observations. This semivariogram is a plot of the spherical model, Eq. (44) below, with a0 = 0, a1 = 1.08, 
and a2 = 0.7. Adapted from Davis [9]. 

 This qualitative behavior makes it convenient to fit experimental variograms to modeled ones. We 
will define one such model, called the “spherical” model, in Section 3.2 below. Other models include 
those based on linear, exponential, or Gaussian functions. Cressie [33] and Davis [9] present these and 
other models. Once the variogram is modeled and fitted to the data, the modeled semivariance, or its 
translation to a covariance, is then used to solve the kriging equations, which is the focus of discussion in 
the next few sections. 
 
2.3.2 General Kriging Equation 
 
 All kriging methodologies used for the interpolation of two-dimensional surfaces have a similar 
general set of linear equations [37]: 
 

  ( ) ( ){ } ( ) ( ){ }[ ]∑
=

−=−
n

i
iii zEzzEz

1

ˆˆ ssss λ . (17) 

The weights, λi, are found by minimizing the square of the difference between the two sides of Eq. (17). 
Depending on assumptions that can be made about the expectation values, different sets of equations for 
solving the weights (or types of kriging) result. We consider three types of kriging below: simple kriging 
(SK), ordinary kriging (OK), and universal kriging (UK). (Other forms of kriging – such as block kriging, 
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cokriging, nonlinear kriging – are outside the scope of this review.) These three types of kriging 
progressively become more complicated (and with larger variance) as fewer assumptions about the 
interpolated surface are applicable. Although SK may not be as applicable to bathymetry estimation as the 
other two, its discussion facilitates the review of OK and UK. The reviews below are adapted primarily 
from Davis [9] but augmented with other material from Cressie [33] and Deutsch and Journel [37]. 
 
2.3.3 Simple Kriging (SK) 
 
 In SK, the mean of the data, m, is known and a constant. Hence, ( ){ } mzE =s for all s in Eq. (17). In 
addition, covariances and variances are assumed to be independent of position. These assumptions imply 
that Eq. (17) reduces to  
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⎠
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iSK zmz

11

1ˆ ss λλ , (18) 

 
where the SK subscript means simple kriging estimate. The optimal set of weights at position s is found 
from the simultaneous solutions to the equations (see Journel [32] for derivation) 
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or in matrix format SKSK BCΛ = , where  
 

  
T
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and T means matrix transposition. 
 Thus, SKSK BCΛ 1−= . Defining ( ) ( )[ ]T

nSK mzmz −−= ssY ,,1 K , Eq. (18) becomes 
 
  ( ) SK

T
SKSK

T
SKSK mmz BCYΛYs 1ˆ −+=+= . (21) 

 
Equation (21) is the solution for the interpolation surface at s. The estimated variance is 
 
  ( ) ( )( ) SK

T
SKoSK z BCBss 1

0
2 var −−=σ . (22) 

2.3.4 Ordinary Kriging (OK) 
 
 In OK, the assumption that ( ){ } mzE =s is maintained, but now m is unknown. Hence, the system of 
simultaneous equations needs an additional constraining condition to obtain a solution. This condition is 
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that the sum of the weights is one: 11 =∑ = i
n
i λ . Then, Eq. (18) becomes (with the SK subscript replaced 

with OK for ordinary kriging estimate) 
 

  ( ) ( )∑
=

=
n

i
iiOK zz

1

ˆ ss λ . (23) 

 
The set of equations now needing to be solved are equivalent if either the covariance or semivariance are 
used (see Journel [32] or Cressie [33] for derivation). 
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where μ0 is a Lagrange multiplier, which is a slack variable used to raise the number of unknowns from n 
to n+1 for the system on n+1 equations. In matrix form, Eq. (24) is OKOK BWΛ = , where   
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Thus, OKOK BWΛ 1−= . Then, defining ( ) ( )[ ]T

nOK zz 0,,,1 ssY K= , Eq. (23) becomes 
 
  ( ) OK

T
OKOK

T
OKOKz BWYΛYs 1ˆ −== . (26) 

 
The variance estimate is  
 
  ( ) ( ) OK

T
OKOK z BWBss 1

00
2 )(var −−=σ  (27) 

 
when the covariance is used or   
 
  ( ) OK

T
OKOK BWBs 1

0
2 −=σ  (28) 

when the semivariance is used. 
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 2.3.5 Universal Kriging (UK)* 
 
 Going one step further in generality from OK is UK. In UK, ( ){ } ( )ss mzE =  is no longer a constant 
mean, but now “drifts”; however, ( ){ }szvar  is still assumed constant. With these properties, UK 
methodology builds upon OK in the following manner. First, note that z(s) can be considered to be 
composed of two components: the drift component, ( )sm , that specifies the slowly varying expectation 
value and a residual component, ( ) ( ) ( )sss mzq −= , that gives the difference between the observations 
and the trend. Since observations and the drift should follow the same trend, the residuals should have a 
constant mean and, given a covariance matrix or semivariance for the residuals, can be found from OK. 
Next, the drift is modeled as a linear or quadratic polynomial so that (after combining the mean of the 
residuals with α0) 
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Then, under the assumption of Eq. (29), the system of equations ( ) ( ) ( )sss mqz +=  is the OK equations 
for the residuals expanded with extra Lagrange multipliers to account for the coefficients of the drift 
model. Note that since the residuals are the terms in the OK equations, the covariance and semivariance 
for the residuals are now ( )jiq ss ,cov  and ( )jiq ss ,γ .  
 
 Thus, for linear drift, the set of equations to solve is (again, ( )jiq ss ,cov  and ( )jiq ss ,γ  are 
interchangeable, but we will only print the semivariance): 
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(The quadratic drift follows the same pattern with the required extra terms.) In matrix form, Eq. (30) 
becomes UKUK BWΛ = , where   
 

                                                 
* Although we do not use UK in Section 3, we describe it here for the sake of completeness. 
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Thus, UKUK BWΛ 1−= . Defining matrix ( ) ( )[ ]T

nUK zz 0,0,0,,,1 ssY K= , the UK solution for  
 

  ( ) ( )∑
=

=
n

i
iiUK zz

1

ˆ ss λ   (32) 

is 
 
  ( ) UK

T
UKUK

T
UKUKz BWYΛYs 1ˆ −== . (33) 

 
The associated variances have the same form as Eq. (27) if covariances are used or Eq. (28) if 
semivariances are used. 
 
2.3.6 Available Software 
 
 Deutsch and Journal [37] developed the open-source geostatistical software suite, GSLib [38], for 
calculating variograms, covariances and interpolated surfaces by a multitude of kriging algorithms, 
including SK, OK, and UK. The software is available in both Fortran 77 and 90. Although the user may 
provide semivariances, GSLib converts semivariances to covariances before solving for the kriging 
equations ( ( )0γ  poses numerical problems). 
 
2.3.7 Advantages and Disadvantages 
 
 As Davis discusses (Ref. [9], p. 418), some strengths of kriging are as follows: 1) the technique 
provides exact interpolation at the data points, 2) error may be estimated for every grid point on the 
interpolated surface, and 3) the error estimates are the lowest of all linear estimation methods.  Pitfalls, as 
discussed by O’Sullivan and Unwin ([31], pp. 280-1) include the following points: 1) the fit of the 
interpolation to the data depends on the validity of the variogram, which is often modeled; 2) kriging is 
computationally intensive, especially the part where the inverse of the C or W matrix is required, and may 
be subject to rounding errors that may or may not be significant.  
 
2.4 Bayesian Approaches  
 
 The approaches discussed above appear to be the main techniques for interpolation, fusion and error 
quantification which have been devised, applied to and validated for bathymetry data. Some newer 
approaches to data interpolation involve the use of Bayesian inference and Monte Carlo calculations to 
obtain estimates and uncertainty of geospatial data on a rectangular grid. Implementation of these 
methods, however, are judged to be immature for operational use as they do not appear to have been 
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validated for bathymetry and/or require research efforts for adaptation to bathymetry fusion, especially if 
the fused product is to be used for a hydrographic chart. They are mentioned to provide possible future 
research directions. 
 
 De Oliveira [39] and Hartman [40] present a Bayesian inference approaches to obtain conditional 
probabilities density functions (cdf) for geospatial variables at regular grid points given measurements 
and the associated errors at random locations. The interpolated values are then the mean or median of the 
conditional cdf and the 95% confidence interval provides the uncertainty. Both approaches model the 
background from which the data is sampled as a stochastic field. (De Oliveira models to background as a 
Gaussian random field, while Hartman uses a Gaussian Markov random field.) Bayesian inference is then 
used to estimate parameters that specify these fields, given the information contained in the observations. 
The Bayesian inference however, requires integration over a highly dimensionalized space, so the 
integration is approximated from Markov chain Monte Carlo calculations. 
 
 Goff et al. [41] use a posteriori resampling to remove noise from geospatial data, including the same 
bathymetry set discussed in Calder [8]. This technique may be adaptable to regridding data at new grid 
points. Developmental work is needed first to adapt the algorithm to providing this capability. Also, the 
authors admit that this approach is computationally expensive to implement because the data surface that 
is generated is dependent on the order that the data is analyzed, so the data needs to be reanalyzed 
multiple times and an average taken.  
 
3. RECOMMENDED APPROACH  
 
 It is recommended that the new fusion algorithm be based on the procedure given by Calder [8], 
which uses a three-step approach to fuse bathymetry data sets into one surface and provide an uncertainty 
layer. For hydrography, the methodology also discusses how to apply the uncertainty to assess the order 
of survey as defined by the International Hydrographic Organization [42]. Figure 5 illustrates the 
adaptation of Calder’s method for the new algorithms. 
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Fig. 5 − New bathymetry fusion algorithm. Data flow is left to right with z's and σ's referring to depths and uncertainties for 
either archived grids (top) or new in situ data (bottom). Other symbols (see text for meaning) and component build schedules are 
in the key. Adapted from Calder [8]. 

 The steps of the methodology are as follows. 
 

1. Following Plant et al. [24], interpolate the data with the quadratic loess interpolation technique of 
Cleveland [20] to provide a trend surface for the bathymetry and uncertainty layer. 

2. Restore finer details smoothed by the interpolation from ordinary kriging of the residuals; add the 
errors associated with kriging to the uncertainty layer from Step 1 assuming statistical 
independence (i.e., the variances add). The surface generated from kriging the residuals is the 
residual surface. 

3. Estimate additional uncertainty caused by positional errors from the Monte Carlo technique of 
Jakobsson et al. [18], but repeat steps 1 and 2 above instead of using the splines-in-tension 
algorithm at each iteration. As before, add the estimated error to the uncertainty layer by 
assuming statistical independence.  

 
In equation form, the final bathymetry surface, Z(s), is the sum of the trend surface, μ(s), and the residual 
surface, R(s). 
  
  Z(s) = μ(s) + R(s) (34) 
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The uncertainty layer, σZ(s), is  
 

  ( ) ( ) ( ) ( )[ ]  21 222 ssss εσσσ μ ++= RZ , (35) 

 
where σμ(s) and σR(s) are the uncertainties for the trend and residual layers, respectively, and 
ε(s) is the uncertainty layer associated with positional errors.  
 
 This approach appears to be the most comprehensive, validated methodology for 
interpolating bathymetry and providing uncertainty estimates. Specifically, it 1) combines 
accepted techniques to attain a fine detailed bathymetry surface with uncertainty estimation. 2) 
was demonstrated and validated in [8] using two sets of data for the New Jersey Atlantic Shelf – 
vertical beam echo-sounder data from the 1970s and multibeam echo-sounder data from the 
1990s. In addition, NRL already has code for loess interpolation of bathymetry data based on the 
work of Plant et al. [24], which has now been augmented with other weighting windows to 
provide other interpolation options and possibly faster computation. In addition, NRL’s code also 
can correct data sets that have different vertical offsets to alleviate interpolation over false cliffs. 
 
3.1 Quadratic Loess Interpolation for Trend Surface   
 
 Extending Eqs. (5) through (8) to two dimensions, the equations for calculating the trend surface, 
μ(s) in Eq. (34) are as follows: 
 
  ( ) ( ) ( )sβsps ˆT=μ , (36) 
 
where ( ) ]1,,,,,[ 22 yxxyyxT ≡sp and vector ( ) ( ) ( ) T]ˆ,,ˆ[ˆ

05 sssβ ββ K≡ being the set of βn(s)’s that 
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using the two-dimensional tri-cube weighting function  
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and the user provided value for d0. Calder’s paper suggests that d0 be ten times the largest sample spacing. 
Information lost by oversmoothing is regained when the residuals are calculated in the kriging portion.  
 
 Estimates for the variances follow Eq. (8) for like variances in all the data or 

( ) ( )[ ]∑= =
n
k kk1

22ˆ σασ ss for differing variances. The αk(s)’s now have azimuthal symmetry and the 
same radial dependence as the 1-D case.  
  



Algorithm Design Study for Bathymetry Fusion 19 

  

 In addition, the estimate is made more robust (i.e., eliminates outliers) by flagging estimates greater 
than three Mahalanobis units as “no data.” The Mahalanobis distance [43], M(p,m,C), is  
 
  ( ) ( ) ( )mμCmμCmμM −−≡ −1T,,  (39) 
 
where μ(s) is the vector of all estimated depths and m(s) and C(s) are the corresponding mean depth 
measurements and covariances for the windowed (c.f. Eq. (38)) data sets. To intuitively explain Eq. (39), 
suppose that the data points are all independent and have mean m and variance σ2. The C matrix is all 
zeros except for the diagonal elements, which are all σ2. Then, if an estimate differs from its 
corresponding windowed mean by more than three variances (i.e., ( ) 322 >− σμ m ) , that estimate 
receives the “no data” mark. Equation (39) generalizes this simpler scenario to account for covariance 
between the data.  
 
3.2 Kriging the Residuals  
 
 Since loess interpolation is not exact at the data points, residuals, ( )iR s , exists between actual 
measurements, ( )iz s , and the corresponding estimated depths along trend surface, ( )isμ , such 
that ( ) ( ) ( )iii zR sss μ−= . The residual surface in Eq. (34) is found from interpolation of 
the ( )iR s set using ordinary kriging, as an overall but constant unknown bias may exist in the 
residuals. The variogram will likely have directional anisotropy, so that ( ) ),(2 =  , θγγ hji ss2 , 
where h is the separation distance between the two points and θ is the heading angle (clockwise 
from the north).  
 
 To account for this anisotropy, the following semivariance, ( )jiD ss ,γ , is used and constructed 
(unconditionally valid for two-dimensions [44]) in the following manner: 1) obtain an empirical estimate 
of the variogram, 2) compute the average azimuthal variogram from the empirical estimate to detect the 
directions of minimum and maximum variation, 3) fit the variograms along these two axes to the 
spherical model for variograms, and 4) using parameters from the fits to the spherical model and the 
direction for minimum variance, construct ( )jiD ss ,γ  from Eqs. (45) – (48) below. These steps are now 
discussed in more detail.   
 
 Step 1: Following Cressie ([33], p.69), the variogram for the residuals is approximated using the 
methods-of-moments (or classical) estimator, in blocks sizes = 2d0 (c.f. Eq. (38)), so that 
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(Note that Eq. (40) is a more general form of Eq. (16).) The sets ( )ihN  and ( )iN θ  contain binned 
separation distances and heading angles as defined by the equations 
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  ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ Δ

+≤∠≤
Δ

−≡
2

,
2

:, θθθθθ jbajj baN ss , (42) 

 
where ( )bad ss ,  and ( )ba ss ,∠  are the Euclidian distance and heading angle between sa and sb 

and ( )ihN  and ( )iN θ are the number of bins in these sets. For the data set analyzed in [8], 

m250=Δ ih , o45=Δ iθ , 2/hhihi Δ+Δ= and θθ Δ= jj . 
 
 Step 2: The average azimuthal variogram, ( ) ( ) ( )∑−≡

i jiij hhN θγθγ ,ˆ22 1  is then calculated. In [8],  

( )jθγ2  had two sets of maximum and minima (caused by trending ridges), so it could be modeled by the 
function   
 
  ( ) ( )220 4cos5.02 φπθθγ ++≈ jj gg , (43)  
 
which is the second Fourier eigenfunction,  Equation (43) is fitted to the data by evaluating the second 
discrete Fourier transform coefficient. The phase constant, φ2, is the radian angle (which goes 
counterclockwise from the east) where the first minimum is found. It is changed to a heading angle 
(again, clockwise from the north), mθ , from the transformation 222 πφθ +−≡m . This angle is 

obtained for each 2d0  block, then loess interpolated to get ( )im sθ  for Step 4 below. 
 
  Step 3: Two finer-scaled directional variograms were then calculated; one in the mθ  direction, the 

other in the perpendicular direction, ⊥
mθ ; using the methods-of-moments estimator with angle bins of 

2π± about each direction. In this case, m100=Δh and the data were truncated to those within 95% of 
the mean to reduce outliers. These empirical variograms are fitted to the standard spherical variogram 
model (Cressie [33], Eq. 2.3.8; Davis [9], Eq. 4.98) 
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using the Levenberg-Marquardt algorithm [45, 46] for fitting (i.e., solving for a0, a1, and a2).  Let the 
modeled variogram along the mθ  direction be ( )h02γ  and the fitting constants be a0, a1, and a2. Similarly, 

let the modeled variogram along the ⊥
mθ  direction be ( )h⊥

02γ , and the fitting constants be ⊥
0a , ⊥

1a , and 
⊥
2a . When solving for both sets of constants, the variograms are constrained to equal the same sill at large 

distances so that 00 aa =⊥  and 11 aa =⊥ , but 22 aa ≠⊥ in general. 
  
 Step 4: Define the anisotropy parameter, ⊥≡ 22 aaanisoα . Then, ( )jiD ss ,γ , is evaluated in the 
following manner. 
   
  ( ) ( )( )jijiD d ssss ,, 0 ′= γγ , (45)  
where 
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 ( ) ( )( )( )jianisoimjid sssAss −≡′ αθ ,, , (46) 

       
  ( )( ) ( )( ) ( ) ( )( )imanisoimanisoim diag sRsRsA θαθαθ ,1, −=  ,   (47) 
 
and ( )( )im sR θ  is the standard two-dimensional rotational matrix [47] 
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 For applications where only the bathymetry is needed, ( )jiD ss ,γ , may be sufficient for use. In 
hydrographic situations, however, where extra caution is required for navigation safety, an additional 
“hydrographic uncertainty” variogram is added to increase the total uncertainty for safety (see Calder [8] 
for details). This variogram is defined to be 
 
  ( ) hbbhH 102 +≡γ . (49) 
 
The choice of the coefficients is arbitrary, but Calder uses 00 ≡b and m1051.6 4

1
−×≡b so that the 95% 

confidence interval of the uncertainty increases by 0.05 m for every meter of horizontal separation in 
soundings. Thus, for hydrography, the final variogram to use is  
 
  ( ) ( ) ( )ijHjiDjitotal ssssss −+= γγγ 2,2,2  (50) 

 
3.3 Monte Carlo Estimation of Depth Error Due to Positional Stability Errors  
 
 This last part is of use for fusion with soundings data, either with other soundings data or a historical 
grid, as the position of the soundings contains errors (this part is not applied when fusing historical 
gridded data sets). As before (c.f. Section 2.1), positioning errors result in errors of depth estimates on the 
interpolation surface as the position of the soundings affect the interpolated solution; the Monte Carlo 
technique of Jakobsson et al. [18] is used to estimate this error. At the beginning of each iteration, the 
locations of the soundings are perturbed according to a probability density function appropriate for the 
sounding, often assumed to be Gaussian unless otherwise known (c.f. Fig. 5 in Calder [8] for a non-
Gaussian example). Loess interpolation and kriging, using the variogram from the unperturbed set, are 
repeated at each iteration. The standard deviation of the solutions at each interpolation point 
provides ( )sε  in Eq. (35).  
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4. ALGORITHM DEVELOPMENT, REQUIREMENTS, AND TEST CASES  
 
 NRL plans to develop a prototype build in FY07, followed by two builds in FY08 and FY09, and to 
deliver these builds to the Bathymetry Database Division of NAVOCEANO. In addition to illustrating 
data flow, Fig. 5 shows that required components for implementing the procedure discussed in Section 3 
and color codes them by build schedule. The prototype build, Build 0, will consist of NRL’s 
“mergeBathy” utility (translated to the C++ programming language) with its capability to loess interpolate 
in situ collected data to one interpolation surface with uncertainty. In addition, Build 0 will include 
support for exporting grid data to the Open Navigation Surface BAG file format. Build 1 is focused on 
fusion of gridded historic data. In Build 1, Build 0 will be coupled with variogram and kriging routines to 
provide the historic bathymetry fusion capability. Build 2 adds the capability to estimate depth errors 
induced by positional errors from in situ data. 
 
 As the fusion algorithm develops, NRL can perform validation using the following data.  
 

1. DBDB-V grids of varying resolutions used in the OAML Feathering Algorithm report [3]. 
Uncertainties can be provided from soundings collected in these areas via CUBE.  

2. Data collected as a part of the FY04-FY06 AN/AQS-20A RTP effort [48]. These data were 
collected off Panama City, FL. They include five sets of multibeam data from AN/AQS-20A 
flights, high-density multibeam data from dedicated NAVOCEANO bathymetry surveys in 2002 
and 2006, historic NGDC single beam soundings, and NOAA gridded data that is now in DBDB-
V. Uncertainties have been calculated for these data. Estimates of uncertainty for the historic data 
will be needed.  

3. Scripps Canyon data provided by Plant for validation of his interpolation technique [24]. These 
data have uncertainty estimates. 

4. A NAVOCEANO data set or collection of data sets where we would test the algorithms using all 
of the lines and then every other line to see how the results differ, particular after applying the 
interpolation and then kriging as described by Calder’s 2006 paper. Error estimates can be 
provided via CUBE processing. 

 
5. SUMMARY  
 
 This report reviews the current state-of-the-art for fusion algorithms applicable to bathymetry data 
and motivated by NAVOCEANO’s need for intelligent fusion algorithms. Currently, NAVOCEANO’s 
DBDB-V incorporates the OAML Feathering Algorithm to smooth discontinuities that occur between 
tiles in the database with dissimilar resolutions. This solution still leaves artifacts and does not provide 
estimates of uncertainty. NAVOCEANO needs a better interpolation technique that also provides 
uncertainty estimates for robust interpolation and to use one database for multiple proposes, including 
navigation.   
 
 State-of-the-art interpolation techniques include splines-in-tension, loess interpolation, and kriging. 
Splines-in-tension solves a differential equation numerically to obtain an interpolated surface. This 
technique is the basis of the OAML Feathering Algorithm. It does not provide error estimation readily, 
although a Monte Carlo technique can be used to provide estimates. Loess interpolation is a localized 
weighted regression technique to fit data to a low-order polynomial. It provides quantified uncertainty 
estimates. The technique is not exact and acts as a low-pass spatial filter, so bias in the interpolated 
surface occurs and finer details are smoothed. Kriging is a methodology for providing interpolation by 
solving a system of simultaneous equations. It also provides quantified uncertainty estimates and is exact 
at the observation points. The technique depends on the model or the choice of variogram to be reliable 
and the matrix inversion is computationally intensive. This report also briefly reviews Bayesian 
approaches that are being developed in the academic community. These approaches may provide future 
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fusion methodologies, but need to be demonstrated with bathymetry data first at the research and 
development level. 
 
 The recommended approach for intelligent data fusion was published and validated for bathymetry 
data recently by Calder [8]. His approach uses both loess interpolation to obtain a trend surface, followed 
by kriging of residuals to recapture finer details lost by smoothing. In addition, if in situ soundings are 
used, Monte Carlo simulations are run to estimate depth error induced by position errors. The technique 
provides the means to also liberally estimate errors for navigation safety through the use of a 
hydrographic comfort variogram.  
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