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ABSTRACT

The concept of close packing uniform-size buoyant glass spheres provides an effective
means of attaining maximum buoyancy and strength in foam-type flotation materials. The
use of this densest known form of packing results in a possible 74% volume fraction of
spheres as compared to the 60 to 65% presently attained in syntactic foams. In addition,
the volume fraction can be increased to approximately 90% by infiltration with smaller
spheres, such as a microsphere mix. This technique could result in a buoyancy system
with a density of 30 lb/cu ft or less.

Close packing of uniform-size spheres can be achieved practically by pouring them
into inverted regular square and triangular pyramids, which automatically arrange the
spheres into a close-packed array. A plate of close-packed material can then be fabri-
cated by using the well-known geometric fact that regular square and triangular pyramids
perfectly pack a plate equal in thickness to the height of the square pyramid. The use of
plane-faced pyramids results in a lower volume fraction than the 74% theoretically pos-
sible. However, the excess voids which cause this loss in packing efficiency can be largely
eliminated by contouring the faces of the pyramids to the shape of the spheres.

A variation of the above technique, which also eliminates most of the excess voids,
consists in using avery large truncated pyramid with a properly contoured bottom instead
of the two pyramids. Pouring spheres into this type of form automatically produces a
close-packed plate.

Besides increasing the volume fraction of spheres, a close-packed array should in-
crease the resistance of the spheres to buckling and should provide a homogeneous mate-
rial with more uniform properties.

The concept of modules in a close-packed array has led to the consideration of the
actual role of the resin in a syntactic foam. Itwould appear feasible to fabricate modules
of relatively thick-walled spheres in a close-packed array without a solid resin matrix,
a procedure which would provide much greater buoyancy than is attainable with resinous
systems. Experimental verification of this concept is obviously needed.

PROBLEM STATUS

This is a final report on one phase of the problem; work on this problem is continuing.
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Frontispiece - Historically familiar
examples of close-packed spheres



OPTIMUM PACKING OF HOLLOW SPHERES
IN BUOYANCY MATERIALS

BACKGROUND AND INTRODUCTION

The Navy's interest in operations and research projects to be carried out deep in
the ocean requires the availability of manned vehicles which are not only safe at great
pressures from a structural point of view but also satisfy the requirement of positive
buoyancy. Since it does not appear possible at present to build the pressure hull from
any type of buoyant or even very light material, it has become necessary to develop
highly buoyant, pressure-resistant materials to combine with the hull to provide a net
positive buoyancy for the vehicle.

An additional need for similar, but not necessarily identical, flotation material occurs
in such projects as establishing and maintaining platforms at specified depths in the ocean
for long periods of time, possibly years. This type of application has the added require-
ment of resistance to long-term deterioration.

The syntactic foam now available for such purposes falls far short of meeting the
buoyancy and strength targets of the more advanced projects, such as DSSP, now being
undertaken.

The need for much stronger and lighter flotation materials for such advanced projects
requires the development of the best possible technology, to be followed, if necessary, by
the development of materials to implement this technology.

SCOPE OF THIS INVESTIGATION

As part of a consultative support program for DSSP, the Ocean Materials Criteria
Branch of NR L has been studying methods of improving the strength, reliability, and
buoyancy of flotation materials. This program has primarily taken the form of studies,
from the geometrical point of view, of improved methods of packing spherical buoyant
material to produce a greater net buoyancy.

This report presents these improved methods of packing, coupled with a brief dis-
cussion of the feasibility of nonresinous buoyancy systems.

GEOMETRICAL CONSIDERATIONS

This study of the "geometry" of packing consists of a combined experimental and
theoretical analysis of the effect of various geometric parameters on the efficiency of
arrangement of large numbers of spheres in a container. Particular attention is given
to the effect of these parameters on the strength and density of a foam-type material
which uses these spheres as an aggregate.

The primary parameters of interest are (a) the geometrical arrangement of the
spheres, (b) the shape and size of the packing container, (c) the absolute and relative
sizes of the spheres, and (d) the distance, if any, separating the spheres. It should be
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mentioned that the shape of the container is a doubly important parameter, since it not
only affects the packing of the spheres within but also determines the usefulness of the
resulting module for assembly into larger usable shapes.

The following analysis is designed to provide an estimate of the optimum conditions
which are geometrically possible.

CLOSE PACKING OF UNIFORM-DIAMETER SPHERES IN PYRAMIDS

The densest known packing of uniform-size spheres in space is accomplished with
a close-packed array. The easiest way to visualize, this type of packing is to consider
a plane surface of infinite extent covered with a layer of touching spheres in a square
array. If a second layer of spheres is then laid down, equilibrium requires that they
nest into the first layer and for.m another square array shifted diagonally with respect
to the first array. This process is illustrated in Fig. 1. Successive layering of spheres
in this manner produces close packing, and the resulting volume fraction (VF) of spheres
is 74%. (Appendix A gives the calculation of this value and also the pertinent geometrical
derivations.) A similar process for achieving close packing using layers of spheres in a
hexagonal or triangular array is illustrated in Fig. 2.

Fig. 1 - Close packing based Fig. 2 - Close packing based
on square array on hexagonal array

There are two simple, structurally usable geometric shapes which automatically
stabilize the close-packed array-the regular triangular pyramid (or tetrahedron) and
the regular square pyramid. Illustrations of spheres as they would appear after having
been poured into such open pyramidal forms are shown in Fig. 3. The arrays thus
created are actually the geometrical equivalents of the historically familiar methods of
stacking cannon balls, as is shown in the frontispiece. Although the achievement of close
packing in these two shapes is independent of the diameter of the spheres, so that the
same forms can be used for packing different sizes, the VF of spheres actually achieved
is not. The 74% VF mentioned previously as being characteristic of close packing in
general is only the upper limit for the present packing process, since the finite number
of layers coupled with the excess voids created at the surfaces and edges of the forms
serve to decrease this value. However, for any combination of sphere and pyramid sizes
likely to be used, the VF actually achieved is still higher than for the random packing
methods presently used for buoyant material. The effective VF and methods of im-
proving it will be discussed in detail in the following sections.

The method of pouring the spheres into the square pyramid so that they fall into the
proper positions is relatively noncritical, although it appears that the speed with which
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Fig. 3a - Close-packed spheres in square pyramidal form

Fig. 3b - Close-packed spheres in hexagonal pyramidal form
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Fig. 4 - Tipping of tetrahedron to facilitate packing

they should be poured depends somewhat on the density of the spheres. However, in the
case of the tetrahedron, an excess of equilibrium positions complicates the procedure.
A practical way of overcoming this problem is to tip the form as shown in Fig. 4 and
pour the spheres into the upper solid angle so that they run down over the top surface
and build up from the lower face.

ASSEMBLY OF PYRAMIDS AND EFFECTIVE VOLUME FRACTION

The use of triangular and square pyramids to form a plate equal in thickness to the
height of the square pyramid is illustrated in Fig. 5. As mentioned previously, the use
of plane-faced pyramids provides a VF somewhat lower than the 74% theoretically pos-
sible in close packing. A graphical description of this situation is presented in Fig. 6,
in which the actual effective VF for such a plate is plotted against the number of layers
of spheres and equivalently against the ratio of pyramid size to sphere size. It is seen
from this graph that the effective VF quickly approaches the theoretical limit. A detailed
analysis of the VF for the individual shapes will be found in Appendix A.

CONTOURING OF FORMS TO INCREASE EFFECTIVE VOLUME FRACTION

For those applications in which maximum VF is of paramount importance, it is pos-
sible to eliminate approximately 75% of the excess voids and thereby approach very
closely the 74% VF of close packing by contouring the sides of the pyramidal forms (and
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Fig. 5 - Formation of plate from pyramids
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Fig. 6 - Graph of effective volume fraction (VF)

also, necessarily, the top surface of the tetrahedron). There are several ways in which
this contouring can be accomplished, but the simplest appears to be a stepping of the
sides, as illustrated in Fig. 7, where a sectional view is provided of portions of three
pyramids as they would mesh in this case. Of course, such contoured forms would no
longer retain their usefulness for other sphere sizes. Although this report is written
primarily with the plane-sided forms in mind, the results presented can be easily ex-
tended by the reader to the case of contoured forms.

PACKING OF RELATED SIZE-SENSITIVE SHAPES

Besides the two basic pyramids which automatically stabilize close packing of uni-
form spheres regardless of their size, there are related shapes which will close pack
spheres of any particular size. Two such shapes are described on the following page.
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Fig. 7 - Meshing of contoured pyramids

It can be seen from Fig. 5 that when pyramidal forms are arranged to form a plate
this plate has inclined edges and is actually the truncated section of a larger pyramid.
In the case where large solid plates of arbitrary thickness and extent are the desired
end product, they can be quickly close packed by pouring the spheres into a truncated
form with a properly contoured bottom, as shown in Fig. 8a. This contouring of the bot-
tom can consist of the simulation of the top surface of one layer of spheres or of any
contouring which will cause the first layer of poured spheres to form a square array.
The use of this method for packing a plate provides the same increase in effective VF as
does the method described in the preceding section of contouring the smaller individual
pyramids.

Similarly, proper contouring of the bottom of a rectangular parallelepiped (or box)
whose inside dimensions are integral multiples of the sphere diameter also results in a
close-packed array, as illustrated in Fig. 8b.

It should be pointed out, however, that such size-sensitive shapes are limited
in application to relatively large spheres because of the contouring required and that they
also require a considerable amount of care in packing, especially in the case of the rec-
tangular box.

INFILTRATION WITH SMALLER SPHERES

For maximum buoyancy applications a method of increasing the VF is infiltration
with smaller secondary spheres having a radius small enough (one-seventh or less of
that of the primary spheres) to pass through the interstices of the primary array. De-
pending on the infiltrating material, the VF can be raised in this way from 74% to approx-
imately 90%. Since the infiltrating material will not be close packed, it is not necessary
that this material consist of uniform-size spheres.

STRUCTURAL ADVANTAGES OF CLOSE PACKING

A detailed analysis of the stress field around a glass sphere in a resin-bound array,
whether close packed or not, is beyond the scope of this report. However, certain gen-
eral conclusions are made possible by analogy with more easily analyzed systems.
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Fig. 8a - Close packing of truncated pyramidal form

Fig. 8b - Close packing of rectangular box
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Fig. 9 - Arbitrarily Fig. 10 - Ring loaded
loaded ring by other rings

Consider the circular ring in Fig. 9 loaded with a uniform hydrostatic pressure and
with equal arbitrarily spaced concentrated normal loads. An application of any standard
procedure for determining the critical buckling load shows that this critical load is
raised by spacing the forces equally around the circumference and by increasing their
number. This procedure of increasing the strength by increasing the number of loads
obviously cannot be continued indefinitely since eventually other failure mechanisms
(brittle fracture, etc.) become more critical. However, if the system of concentrated
loads is considered to be a first approximation to the contact loadings of surrounding
rings, as in Fig. 10, the number of concentrated loads is limited to six (close packing in
two dimensions).

If this situation is considered to be the two-dimensional analog of the three-dimen-
sional loading of a sphere in a close-packed array, it leads, more or less heuristically,
to the conclusion that close packing of spheres increases their resistance to buckling.

THE EFFECT OF PACKING EFFICIENCY ON BUOYANCY

The effect of increased packing efficiency on the buoyancy of sphere-resin flotation
materials depends, of course, on the density of the glass spheres used. Since the 3/4-in.
primary spheres now available in limited quantities have a specific gravity (SG) of 0.45
(0.35 projected) and the presently available secondary infiltrating material (microsphere
mix) a SG of 0.35 to 0.45, it appears reasonable to look at the buoyancy achieved at the
two extremes. A VF of 73%, the value achievable with 3/4-in. spheres in a 12-in.-thick
plate, is used for the primary close-packed array and a VF of 60% for the infiltrating
material. The resin is assumed to have a SG of 1.2.

Table 1 illustrates that it is not possible to achieve high-buoyancy targets (such as
that of DSSP) without infiltration of the stronger primary array with the weaker micro-
sphere mix. Use of 0.45-SG primary spheres and 0.35-SG microsphere mix does produce
a buoyancy which approaches desired goals. However, the best tabulated combination
would probably be that of the 0.35-SG primary spheres and 0.45-SG (generally stronger
than the 0.35 SG) microsphere mix. It appears that in general the greatest overall advan-
tages would be gained by decreasing the density of the primary spheres and possibly in-
creasing the strength of the infiltrating material. The buoyancy values computed above
are based on the material properties at sea level. The effect of hydrostatic pressure
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Table 1
Densities and Buoyancies for

Infiltrated and Uninfiltrated Material

Density Buoyancy
Primary SG Secondary SG (lb/cu ft) (lb/cu ft)

0.45 uninfiltrated 40.7 21.7

0.35 uninfiltrated 35.8 26.6

0.45 0.45 33.2 29.2

0.45 0.35 32.1 30.3

0.35 0.45 28.3 34.1

0.35 0.35 27.2 35.2

will be to increase the buoyancy slightly, since the bulk modulus of a sphere-resin mate-
rial of this type is greater than that of water. Calculations of the magnitude of this in-
crease require actual experimentally determined values of the bulk modulus for the mate-
rials to be used.

SPACING OF SPHERES

Up to this point it has been assumed that the spheres in the primary array touch each
other and that the entire increase in VF due to close packing is available to increase the
buoyancy of the resulting material. However, this touching of the spheres may present
some difficulties, with respect to both contact stresses and sympathetic implosion, espec-
ially for the larger spheres. It may, therefore, prove beneficial to use part of the gain in
packing efficiency to provide a spacing between the close-packed spheres by providing
each sphere with a coating or thin shell of resin prior to packing. The advisability of this
procedure can be established only by testing suitable prototype models.

SOME OBSERVATIONS ON THE FEASIBILITY
OF NONRESINOUS BUOYANCY SYSTEMS

Although the previous sections on packing have been concerned primarily with opti-
mum geometrical arrangement of spheres, the material density and buoyancy calculations
were based on the assumption that the arrays of spheres would be infused with resin. This
resin would then harden to form a buoyant "solid material" with bulk mechanical proper-
ties similar to those of presently used syntactic foams. This type of solid material,
although undeniably easy to handle and form into larger and smaller usable shapes, is
not without its disadvantages in buoyancy and strength.

Buoyancy: The adverse effect on the buoyancy of using any binding material heavier
than water is obvious. In fact, the use of just a primary uninfiltrated array of close-
packed spheres with a matrix, solid or fluid, having the same density as water would
produce a buoyancy approaching the goals of such advanced projects as DSSP; a matrix
with a SG of 0.8 (achievable with some oils) would result in a buoyancy which easily
exceeds these goals.

Static Strength: The fact that resin curing produces a prestressing of the spheres
is well known and easily visualized. However, the influence of the resin on the stress
field around the spheres during hydrostatic loading of the composite material is not as
immediately evident. In spite of the opinion held in some quarters that the presence of
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the resin serves to decrease the effective pressure on the spheres, the calculations of
Appendix B show that for the type of sphere and resin now used, or likely to be used in
the future, the resin actually provides little, if any, reinforcement for the spheres. In
fact for the heavier stronger spheres (SG 2 0.39), the effect of the resin is to increase
the effective pressure on them. This excess pressure could become critical in the case
of the thicker-walled primary spheres for which the mode of failure might very well be
brittle fracture rather than buckling. This situation needs further theoretical and exper-
imental investigation.

If these were the only characteristics of importance, the solid resin matrix could be
replaced by water or some lighter fluid. The difficulty with this idea is that there is
evidence that the resin matrix helps to inhibit the propagation of sympathetic implosion,
especially for larger spheres, and the resulting possible catastrophic failure of the mate-
rial. Therefore, if the resin is to be removed in the interest of improving the density
and static strength, some means must be found to control or prevent the propagation of
sympathetic implosions through the surrounding medium. The most likely methods of
providing this control appear to be:

1. Development of buoyant spheres, from either stronger glasses and ceramics or
light metals, which have a large enough margin in their static strengths to withstand the
dynamic effect of the shock wave.

2. Compartmentizing of spheres, preferably using pyramidal shapes for close pack-
ing, in such a way as to prevent the propagation of the shock wave from one compartment
to the next, thereby preventing the catastrophic failure of the whole buoyancy system.

3. The use of a viscous fluid or a nonsolid viscoelastic substance (possibly gelati-
nous and preferably lighter than water) to damp out the shock wave. This approach would
probably also require compartmentizing for ease of handling and fabrication.

It seems possible that an application of one or more of these methods might lead to
the goal of a satisfactory strong and buoyant material using only a close-packed, uninfil-
trated array of spheres imbedded in a light homogeneous medium.

RELATED WORK OF OTHERS

Investigation of pertinent literature sources has not uncovered any evidence of prior
studies involving either the achievement or the technological use of three-dimensional,
close-packed arrays of uniform-size spheres. Those studies which have been made on
the packing of nonrandom-size spheres have been concerned with the experimental deter-
mination of VF for containers, such as cylinders and prisms, which, due to improper
shape, size, or use, cannot induce anything but random orientation. (An example of such
a situation is illustrated in Fig. 11. Here the same form as that used for close packing
in Fig. 8b induces random packing because of the absence of a contoured bottom.) The
most comprehensive study of this type appears to be that of McGeary.*

Prior investigations of packing directly related to flotation materials have been pri-
marily limited to experimental studies of ways to increase the VF of a random micro-
sphere mix by such techniques as vibration during pouring. However, a significant excep-
tion to this procedure exists in the work now being done at the Naval Applied Science Lab-
oratory (NASL), as described by Stechler and Poneros.t At first glance, the NASL ap-
proach of using modules which, when assembled, produce layers of large (3-in.) spheres

*R. K. McGeary, J. Am. Ceram. Soc. 44:513 (1961).

tB. Stechler and G. Poneros, Ocean Eng. l(No. 1):17 (1968).
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Fig. 11 - Random packing of rectangular box

arranged in a plane hexagonal array appears similar to the NRL approach described in
this report. However, since the NRL approach uses a three-dimensional, close-packed
array, which can be achieved by simply pouring the spheres into the proper forms, and
the NASL approach uses close packing in only two dimensions and requires the placing
of the spheres into position individually, it becomes evident that the two approaches are

actually different and distinct.
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Appendix A

GEOMETRICAL PROPERTIES OF ARRAYS OF SPHERES
CLOSE PACKED IN PYRAMIDS*

Since the geometrical expressions of interest for the two pyramids, although different,
are similarly derived, a process of parallel development is used, with quantities and ex-
pressions labeled with the subscripts S for the square pyramid and T for the tetrahedron.
The geometric parameters of interest are the pyramid height (h), the sphere radius (r),
and the number of layers of spheres containable in a pyramid (N). Only two of these
parameters may be chosen independently, with the third being defined by

h S r[(N -1) f + fA +)

hr-[2f - (N- 1)+ 4]

The volumes of the pyramids are given by
VS2 h3

1--r3 [(N - 1) f2+ f3 + 1] 3

3
T h (A2)

8 [N 1) 2 Y2 4]38 1( 3

The volume of spheres containable in these pyramids is

(VSP)S4 rr3 n
2 = 477r3 N(N + 1) (2N + 1)

3' 3 6( MN61 (A3)

(Vsp)T =Tr3 . n(n + 1) 2 raN(N+ 1)(N+ 2).
3 2 9

Therefore, the volume fractions are given by

(VF) (VsP)s _7 N(N + 1)(2N + 1)
g S  3 [(N_- 1) f2-+ fj- + 1]3

(A4)
(VsP)T 16, N(N + 1)(N + 2)(VF)T VT- ~ [Ni )~

vT 9 f3FN-1)__2+ 4]

If we let N - -, we find (VF)s = (VF)T = 0.741, which is the well-known value for close
packing.

To find the effective overall VF for a plate formed from these two pyramids, it is
instructive to look at Fig. 5. Figure 5 illustrates that hT is determined by a choice of hs

"'In the following discussion, those expressions which follow directly from an examination
of geometrical figures are presented without proof.
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and also that the number of square and triangular pyramids is equal. Using the easily
derivable relation hT = 2/ 13hs we find that Vs = 2 VT and that therefore, the effective VF
of a plate as in Fig. 5 is

VF = 2 (VF)s + I (VF)T

27r N(N + 1)(2N + 1) 16f N(N + 1)(N + 2) (A5)

9 [(N- 1) f2 + f 1] 3 27VJ3 (N f)2 + 4]

A final quantity of interest is the percentage of pyramid surface area which is interior
to the plate, since this provides a measure of the improvement in VF to be obtained by con-
touring all triangular surfaces as suggested in the text. Since, as is mentioned previously,
there is an equal number of square and triangular pyramids, a representative area con-
sists of eight interior equilateral triangles, each with area AT, and one exterior square
with area As. The percentage of interior area is then

8AT 8 x 0.433t 2  0.775 (M)
8 AT+ As (8 x 0.433+ 1)t2

Therefore, by contouring the triangular sides of the pyramidal forms, the effective VF
can be raised to the value VF given by

VF" = VF + 0.775(0.741 -- VF) . (A 7)



Appendix B

THE PRESSURE ON A HOLLOW SPHERE
IN A UNIFORM STRESS FIELD

The qualitative effect of a solid inclusion on the otherwise uniform hydrostatic stress
field in an elastic medium can be determined by comparing the effective bulk modulus of
the inclusion with that of the surrounding medium. If the inclusion has the larger bulk
modulus, the pressure around it is raised; if the inclusion has the smaller modulus, the
local pressure is lowered.

In the case of an inclusion consisting of a hollow spherical shell the effective bulk
modulus K. can be easily evaluated by using the definition

where

P = hydrostatic pressure

V = volume of sphere

AV = change in volume of sphere due to P.

Letting

V = 4/3,R
3

AV= 4ffR 2 AR

AR- --- (R 2 /t) (1-

2Es

where

R = radius of sphere (D = diameter)

t = thickness of sphere

ES, VS = elastic constants of sphere material (in this case, glass)

we obtain

K= 4 (t)Es

For the surrounding homogeneous medium (in this case, resin), the bulk modulus is
defined in terms of its corresponding elastic constants as

KR ER/ 3 (l - 2 "R)

Therefore,

KS/KR 4 (ES/ER) [(1 - 2 v)/(l- v")] (t/D) . (Bi)
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If we choose ES = 10 x 106, vs = 0.22, ER= 0.4 x 106, and vR = 0.35 as being representative
of glass and resin, we find

Ks/K R = 38.5(t/D) . (B2)

Therefore, if P, is the actual pressure acting on the sphere, the relations resulting are

for D/t > 38.5, Ps < P
(B3)

for D/t < 38.5, Ps > P

For a thin-walled sphere, the relation between the geometry and density of the sphere
is

(SG), = 6/(t/D) (SG)g (B4)

where

(SG), = specific gravity of the sphere

(SG)g = specific gravity of the component glass.

If we choose (SG), = 2.5 as being representative of glass, then

D/t = 15/(SG), . (B5)

Substituting Eq. B5 in Eq. B2 we find that

if (SG) s < 0.39, Ps < P

(B6)
if (SG)s > 0.39, P, > P "

Since a value of 0.39 lies approximately midway in the range of SG values for presently
available and projected buoyant glass spheres, the conclusion to be drawn is that the resin
reinforces the lighter, weaker spheres but produces an excess loading on the heavier,
stronger ones.
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tion than the 74% theoretically possible. However, the excess voids which cause
this loss in packing efficiency can be largely eliminated by contouring the faces of
the pyramids to the shape of the spheres.

A variation of the above technique, which also eliminates most of the excess
voids, consists in using a very large truncated pyramid with a properly contoured
bottom instead of the two pyramids. Pouring spheres into this type of form auto-
matically produces a close-packed plate.
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Besides increasing the volume fraction of spheres, a close-packed array should
increase the resistance of the spheres to buckling and should provide a homogeneous
material with more uniform properties.

The concept of modules in a close-packed array has led to the consideration of
the actual role of the resin in a syntactic foam. It would appear feasible to fabricate
modules of relatively thick-walled spheres in a close-packed array without a solid
resin matrix, a procedure which would provide much greater buoyancy than is attain-
able with resinous systems. Experimental verification of this concept is obviously
needed.
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