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ABSTRACT

A new technique, The Method of Imaginary Reactions,
is introduced for determining the static equilibrium con-
figuration of cable arrays. Throughout this technique, a
discrete parameter representation of the system is em-
ployed. However, it should be noted that the analysis method
used depends only on the number of redundant reactions
encountered; thus, the system can be represented with
arbitrary fineness without increasing the complexity of the
problem. An iterative solution is generated for varying the
unknown reactions, and convergence to the correct equilib-
rium configuration of the array is guaranteed. The rapidity
of convergence is shown by several numerical examples.
The solution for the case of position-dependent applied
external forces is indicated.

PROBLEM STATUS

This is an interim report; work is continuing on other
phases of the problem.

AUTHORIZATION

NRL Problems F02-23 and F02-24
Projects RR 009-03-45-5806 and RR 009-03-45-5807

Manuscript submitted October 14, 1968.



THE STATIC EQUILIBRIUM CONFIGURATION OF CABLE ARRAYS
BY USE OF THE METHOD OF IMAGINARY REACTIONS

SYMBOLS

The symbols used in this report are defined as they appear within the context. The
most important ones are listed here for reference.

The Single Cable

(a, b, c)

B(m)

(F,(m), Fy(m) , Fz,(m))

L(m)

Lo(m)

m

M

Qn

(Rx(m), Ry(m), R,(m))

(X(o), y(O),

(x(m), y(m),

T(m)

z(o))

Z(m))

the coordinates of the secondary anchor

the extensional rigidity of the mth segment

the components of the external force acting at the mth
station

the stressed length of the mth segment

the unstressed length of the mth segment

the index of a cable station or cable segment

the total number of stations or segments

a functional expressing the stressed length of the mth
segment in terms of the unstressed length of and ten-
sion in that segment
the components of the resultant force in the mth seg-

ment

the tension in the mth segment

the coordinates of the primary anchor

the coordinates of the mth station

The Method of Imaginary Reactions for the Single Cable

E a positive definite error function

(Fx(M), Fy(M), F(M)) the components of the imaginary reaction applied to
the Mth station

(A.F(M), AFY(M), AF,(M)) the components of the additive force applied to the
Mth station
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( )'

Simple Cable Arrays

(a(n), b(n), c(n))

B(m;n)

(Fx(m;n), Fy(m;n), Fz(m; n))

a positive convergence factor having the dimension of
force

denotes trial iteration values

the coordinates of the secondary anchor of the nth
cable

the extensional rigidity of the (m; n)th segment

the components of the external force acting at the
(m; n)th station

L(m;n) the stressed length of the (m;n)th segment

Lo(m;n) the unstressed length of the (m;n)th segment

L-end the end of the nth cable "closest" to the primary
anchor

m the index of a cable station or cable segment

(i; n) the mth station or segment on the nth cable

M(n) the total number of stations or segments on the nth
cable

n the index of a cable

Q(m;n) a functional expressing the stressed length of the
(m; n)th segment in terms of the unstressed length of
and tension in that segment

R-end the end of the nth cable "furthest" from the primary
anchor

(Rx(m;n), RY(m;n), Rz(m;n)) the components of the resultant force in the (m;n)th
segment

T(m;n) the tension in the (m; n)th segment

(x(O; 1), y(O; 1), z(O; 1)) the coordinates of the primary anchor

(x(o;n), y(O;n), z(o;n)) the coordinates of the L-end of the nth cable

(x(m;n), y(m;n), z(m;n)) the coordinates of the (m;n)th station

nL kR} the set of cables having an L-end which originates at
the R-end of the kth cable

{fnR: a} the set of cables which have an R-end attached to a

secondary anchor

{nR: f} the set of cables which have a free R-end
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The Method of Imaginary Reactions for Simple Cable Arrays

E a positive definite error function

(Fx(M(n);n), Fy(M(n);n), the components of the imaginary reaction applied to
Fz(M(n);n)) the M(n)th station of the nth cable

(AFx(M(n);n), AF (M(n);n), the components of the additive force applied to the
AF (M(n);n)) M(n)th station of the nth cable

( a positive convergence factor having the dimension of
force

( )' denotes trial iteration values

Mathematical Symbols

to be read as "is included in"

to be read as "is identically"

INTRODUCTION

In this report, a new technique for determining the static equilibrium configuration
and tensions in a cable array acted on by arbitrary forces is developed. This method of
solution is called "The Method of Imaginary Reactions."

The need for such a solution has been generated by the greatly accelerated interest
in ocean structural problems. For example, prior to this development no adequate anal-
ysis techniques were available to predict deflections and tensions in a buoy-cable system
subject to drag forces dependent on both the position and the orientation of the system.

The primary reason for the lack of adequate analysis techniques has been that the
differential equations of equilibrium for a cable are inherently nonlinear. Consequently,
though solutions to particular problems are known, no general method of solution, such
as the matrix force-displacement method for linear structures, has previously been
developed.

The problem of a free-ended cable (for example, a towed body or kite) has been
treated from a continuum point of view by Pode (1) and Alekseev (2). Alekseev obtained
the general three-dimensional solution of the equilibrium equations under the combined
action of gravity forces and arbitrary forces that were functions of the orientation of the
cable in space. Pode, in treating a towed body, considered a special case of this general
problem. In both of these papers, an inextensible cable was assumed to allow the exact
integration of the equilibrium equations. Thus, these solutions predicted the position of
a towed vehicle to be the same whether the towing cable was constructed of steel or nylon.

The free-ended cable has also been treated from a lumped parameter point of view
by Walton and Polachek (3) and by Paquette and Henderson (4). Both of these papers al-
lowed for current profiles but were restricted to two-dimensional problems. The paper
by Walton and Polachek was restricted to inextensible cables, and the paper by Paquette
and Henderson placed constraints on the equilibrium positions of the cable stations.
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O'Brien (5) has considered fixed-fixed cables, such as a transmission line. The
elasticity of the cable was included in the formulation, and an exact continuum solution
was obtained. However, the forces applied to the cable were restricted to be piecewise
constant, so that the shapes of the cable segments could be expressed as elastic cate-
naries.

Structural engineers have, for many years, used the classical method of consistent
deformation to calculate redundant reactions in complex structures. This technique is
particularly suited to the modern matrix methods of analyzing structural problems.
However, the formulation of the method requires that the structure under consideration
be linear and that the release of a redundant reaction does not cause gross structural
distortions or instabilities. Neither requirement is satisfied by cable arrays.

The Method of Imaginary Reactions, as developed in this report for the analysis of
cable systems, is a natural extension of consistent deformation theory to a highly non-
linear problem. By prescribing a simple method of varying the redundants, an iteration
technique, guaranteed to converge to the correct reactions and consequently the correct
static equilibrium configuration, is generated.

Throughout this report, a lumped parameter representation of the external forces
acting on the cable array is assumed, and the bending stiffness of the cables is ignored.
Consequently, each cable segment between stations becomes a straight line, and the equi-
librium configuration of the system, including the effect of stretching, is uniquely deter-
mined from formulas which are functions of only the applied forces and the imaginary
reactions. As a result, the number of equations to be solved does not depend on the num-
ber of stations used to describe the array but only on the number of external redundant
reactions. Thus, extreme fineness in the representation of the system increases only the
number of necessary arithmetic calculations but does not increase the complexity of the
problem. It is worthwhile to note that these formulas also determine the static equilib-
rium configuration of a free-ended cable array, which is defined as a cable structure
containing no unknown reactions.

The principal restriction on the use of The Method of Imaginary Reactions is that no
internal loops of cable exist in the system.

It is also assumed that the cable array is statically stable; that is, under the action
of the applied forces, no cable segment has zero tension. However, if this situation of
zero tension occurs, the method will still converge to some obviously incorrect equilib-
rium configuration. Thus, preliminary stability investigations are unnecessary.

DESCRIPTION OF THE METHOD

Basic Concepts

To construct a foundation on which the precise mathematical formulation of The
Method of Imaginary Reactions can be understood, the basic physical ideas involved in
the method are presented in this section.

Consider the two-dimensional problem of a single cable acted on by an array of ap-
plied forces as shown in Fig. 1. If the component forces - F1 ×, F1 y, F 2X9 F2 , R, and
RF -are known, then the reaction components Rox and Roy, at the anchor position 0, can
readily be determined by the summation of forces in the x and y directions, respectively.
Knowing these reaction components, the direction of, tension in, and new length of the
segment OA are easily found, and the position of point A (with coordinates Ax and A, ) lo-
cated. Similarly, the positions of points B and C are found by the elementary rules of



NRL REPORT 6819

/ R
/D

0

Fig. 1 - Basic concepts of the single cable

statics which determine the equivalent reactions at points A and B. As a result of these
calculations, the equilibrium configuration of the free-ended cable is uniquely determined
without solving the nonlinear force balance equations of the system.

Imagine for a moment that the point C is actually the position of a second anchor.
Then, under the action of the external forces F1 and F2, the fixed-fixed cable is in equi-
librium in the configuration calculated above, and the reaction at C is given by the com-
ponents Rx and R Y. In this case, the problem is solved.

Now, consider a similar problem where D is the position of the second anchor, and
Rx and RY are the components of a "guessed" (an imaginary) reaction. Since the point C
does not coincide with the point D, the guessed reaction is not the actual reaction. The
question then arises: Can the actual reaction, which places the point C at D, be found, so
that the equilibrium configuration of the cable can be determined without recourse to
solving the nonlinear force balance equations of the system? The Method of Imaginary
Reactions answers this question affirmatively.

Let an additional force AR be applied at C in the direction from c to D.
of the components of this additional force is given by

(AR), ,  (D,, - C ,)
(AR)y (Dy - Cy)

and the magnitudes of the components are defined by

(AR)., =--5 (Dx,- C,)6FE

and

(AR)y Y-(D y-Cy)

In these equations,

The ratio

(la)

(lb)

(lc)
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E = (Dx - C,) 2 + (D Y- Cy) 2  (2)

Note that E is a measure of the error between the equilibrium position calculated using
the guessed reaction and the correct equilibrium position. Since E is positive definite, it
vanishes uniquely only when the correct equilibrium position has been obtained; that is, E
is identically zero only when D, = Cx and Dy =- CY simultaneously. The problem now has
been reduced to finding a technique for making E become vanishingly small.

The symbol 6 denotes a positive number, having the dimension of force, yet to be
determined. In essence, it is a convergence parameter used to choose the magnitude of
the additive force AR in a manner such that the cable array will approach the correct
equilibrium position. It is important to note that since the ratios (D, - C,)/f-K and
(Dy - Cy)/VE are of bounded variation (between - 1 and +1), the convergence parameter a
must approach zero as E becomes vanishingly small.

Iteration Procedure

The concept of the solution can now be laid out:

1. Make a reasonable engineering guess as to the components of the reaction at the
redundant anchor.

2. Release the redundant anchor while maintaining the guessed component reaction
forces. This creates a free-ended cable on which the imaginary reactions are the ap-
plied forces at its end.

3. The structure is now statically determinant. Calculate the equilibrium position
and from this result the quantities (D.- C,), (D y- CY ), and E.

4. Choose an initial value of 6 to find candidates for (AR), and (AR) 3Y. 6 can be
chosen to be large, since it will of necessity become smaller as the solution proceeds
step by step. In fact, at first choose 8 to be the order of magnitude of the guessed
reaction.

5. Calculate the new equilibrium position of the cable when the force R' = R + AR is
applied at the end assumed free.

6. If E', the new measure of error, is less than E, the old measure, then a suc-
cessful step has been made. In this event, begin again from this new position by chang-
ing the retained values of R, (Dx - Cx), (Dr - C3 ), and E to those values calculated from
this new equilibrium position. Retain the same value of 6 and proceed with another
iteration by finding the new AR and the corresponding equilibrium position.

7. Possibly on the first step, but certainly on some subsequent step, the candidate E'
will be found to be greater than or equal to E of the previous step. Then 6 is too large.
The candidate values should be rejected and the previous ones retained by returning to
the former equilibrium position of E < E'.

8. Reduce a. Halving is suggested. Proceed from the last acceptable position until
again a candidate E' is found to succeed.

9. This iteration process continues until E becomes as small as desired. This is a
function of the scaling used.
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Since E vanishes only at the real rather than at an imaginary anchor position, a solu-
tion of the entire problem has been found by considering only statically determinant ar-
rays. There is no need to be particular in the choice of a once the process starts suc-
cessfully. Let it remain constant until the candidate E' : E and then halve it.

It is important to note that The Method of Imaginary Reactions is globally convergent.
That is, the iteration process will converge to E = 0 from any set of initial guessed re-
actions consistent with the static stability of the system. Proofs of the existence of a
positive 6 at each iteration step, the convergence of E to zero, and the uniqueness of the
reactions calculated are given in Appendix A.

Multicable Problems

The method is readily extended to arrays of more than one cable. Consider for ex-
ample the two-dimensional problem of three cables which are acted on by an array of
forces and which are to be anchored at three points as shown in Fig. 2.

(al , bl)

F 3

F3,

F4y

F8, 
-

\

(a
2 , b2 )

Fig. 2 - Basic concepts of multicable arrays

If, at the ends of two cables, imaginary reactions 11 and 12 are assumed, the reac-
tion I0 is easily calculated by summation of forces. By statics, and accounting for the
changes of length in the cable segments, the coordinates of the free ends (x. y) and
(x2 ,y2 ) are found.

Again, the basic problem is to find additive forces (AI), and (AI)2 to be applied at
points 1 and 2, respectively, such that the cable array approaches its true equilibrium
position.

The Method of Imaginary Reactions defines these forces as
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(Al)1 - 65 (b -y)

(3)(AI) 2 x 6__ (a2 -x2 )

and

(AI )2 Y 6 (b - Y2 )

where the error function E is now defined by the sum of the squares of the coordinate

errors as

E - (a 1 -x 1 ) 2 + (b 1 -y,)
2 + (a 2 -x2) 2 + (b2 -Y 2 )

2  (4)

and 5 is again a positive number, chosen to guarantee convergence to the correct reac-
tions.

Note that, as in the previous problem, the incremental forces (AI) 1 and (AI) 2 are
taken to act from point 1 to (a 1 ,b 1 ) and point 2 to (a 2 ,b 2 ), respectively; also, E van-
ishes uniquely only when the correct equilibrium configuration has been obtained. The
relative magnitudes of these forces have been chosen so that the largest incremental
force is applied at the end farthest away from the desired position at each step.

The iterative procedure to be followed is exactly the same as the procedure devel-
oped for the single-cable problem.

Lumped Parameter Representation

The reason for using a lumped parameter model to represent the cable array is now
apparent. For, starting at the end of the array which is considered anchored, the paths
to the free ends of the system are uniquely determined by elementary statics and formu-
las which express the elongation of the cables under tension. It is worthwhile to remark
that the elongation formulas need not be linear; all that is required is that the cable
lengths increase with increasing tension and be single-valued functions.

To obtain a successful lumped parameter representation, a few guidelines for mod-

eling the array are presented. These are summarized as:

1. Each cable in the array is represented by at least two stations, one at each end.

2. Each point of discontinuity in a physical property of a cable (such as a change in
cross-sectional area) is represented by a station. Consequently, each cable segment in
the array has constant physical properties.

3. As many additional stations as are necessary to obtain a "satisfactory" approxi-
mation to the continuous equilibrium shape of the array are used. Thus, for example, a
section of cable which is expected to have a small radius of curvature should be repre-
sented by more stations than a section which is expected to have a large radius of curva-
ture. Note that the error function, the positive 6, and the various values of AR do not
depend on the number of stations, and the structural analysis is always of a statically
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determinant system. Thus, more stations do not grossly affect the amount of work nec-
essary to find the unknown reactions and the resulting equilibrium position.

4. The method by which the external forces acting on the array are to be lumped at
the cable stations is completely arbitrary. However, it is recommended that a half-
segment technique, such as that used by Paquette and Henderson (4), be employed.

Position-Dependent External Forces

The ability to determine the equilibrium configuration of a cable array by simple
statics depends totally on the lumped external forces being constant. Suppose, however,
that a problem in which these forces are functions of position is encountered.

Under a large class of external forces, the equilibrium shape can still be determined
by combining the static solution with the well-known mathematical technique of succes-
sive approximation (6).

This technique is briefly described. Suppose that in Fig. 1, the forces at A and B
are functions of the locations of A and B. Let an estimate be made of the values of these
forces. The problem is then solved with all forces being held constant. After the equi-
librium position is determined, corrected values of the external forces are calculated,
and the corrected equilibrium shape is found. This process is repeated until the equi-
librium configuration has been obtained to within a specified accuracy and will converge
if the external forces are continuous functions of position.

ELEMENTARY THEORY: THE SINGLE CABLE

Coordinate System and Notation

To describe the configuration of the cable in space, a right-handed Cartesian coordi-
nate system is used, as shown in Fig. 3. The anchor position of the cable is denoted by

(x(0), y(O), z(0))

and the position of the mth station by

(x(m), y(m), z(m))

where m = 1,2,..., M, counting from the anchor position to the end of the cable. The
external force which is acting at the mth station is defined by

(Fj~m), Fy(,m), Fz(m)).

If the Mth station is also to be anchored, the desired point of anchorage is given by

(a, b, c)

In this particular case, the force

(Fx(M), FY(M), F,(M))

represents the imaginary reaction which is applied to the Nth station.
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z

F (M)

L(X(m), y(M), z(M))

Fy (M)

(MM)
(X(M-I),Y (M-I), z(M-1)) T (M) F M

S(o, b, c)

(x(1), y( I()

=y

T(I)

117tX7(x(O), y1(O), z(O))

Fig. 3 - Single-cable nomenclature

The cable segment between the (m- 1) and rth stations is designated as the mth seg-
ment. The unstressed length of this segment is denoted by Lo(m). In the stressed state,
the tension in and length of this segment are denoted by T(m) and L(m), respectively.

Elongation Formulas

In the most general situation, the stressed length of a cable is an experimentally de-
termined function of the unstressed length of the cable and the tension in the cable. For
the mth segment, this relation is written as

L(m) - Om{Lo(m), T(m)} , (5)

where the subscript m indicates that Q is the appropriate functional for the rnth segment.

If all of the cable segments are operating in the elastic range of tension, the elonga-
tion formulas, Eq. 5, reduce to the engineering relation

F T(m)] 16
L(m) = Lo(m) + f j (6)

where B(m) is the extensional rigidity of the rth segment.

Static Equilibrium Configuration

Since the external force acting at any cable station is known, the resultant force in
any segment is readily found by the Method of Sections. Neglecting the bending stiffness
of the cable, the tensions in and orientations of the cable segments are then uniquely de-
termined. The segmental lengths are calculated from the elongation relations, Eq. (5).
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Knowing the length and orientation of every segment and starting from the anchor posi-
tion, the determination of the static equilibrium configuration of the cable becomes a
simple trigonometric problem.

These results are expressed mathematically in the following formulas.

Let the resultant force in the mth segment be denoted as

(R,,m), By(m), R,(m)) .

This resultant is defined by the external forces acting on the cable through the equations

Rx(m) = Fx(m) + Rx(m+ 1) ,

Ry(m) = Fy(m) + RY(m+ 1)

Rz(m) = Fz(m) + Rz(m+ 1)

(7a)

for m = 1, 2, ... ,X- 1;

R,,(M) Fy,(M)

Rz(M) Fz(M)

(7b)

for m = M .

Note that starting
mined.

from the free end of the cable the resultant forces are readily deter-

The tension in the ruth segment is calculated as
T(m) = VRX2 (M) + R 2 

(M) + R 2 
(M)

where T(m) is always positive, and the stretched length of this segment is found from
Eq. (5).

The positions of the cable stations are then obtained by using

x(m=) )Rx(M) + x(m- 1)

L(m)
y(m) T(m) Ry() y(- 1) ,

and

z(m) = L(m) Rz(m) + z(m- 1)

Method of Imaginary Reactions

If now the Mth station is also to be anchored, the applied force at this station be-
comes the guessed imaginary reaction. Using this guessed imaginary reaction, the static
equilibrium configuration of the cable is found. As a measure of the error of the calcu-
lated end position (x(M), y(H), z(M)) from the desired end position (a,b,c) the positive
definite error function is defined as

and

(9a)

(9b)

(9c)
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E = [a- x(M)]2 + [b- y(M)] 2 + [c- z(M)] 2  
. (10)

The Method of Imaginary Reactions then states that if the iteration procedure deter-
mined by the substitutions

F'(M) Fx(M) + AFx(M)

F,(M) FY(M) + AFY(M) , (11)

Fz(H) F(M) + AFz(M)

is followed, where

AFX(M) = a [a- x(M)]
V/t-

AFY(M) = [b - y(M), (12)

AF (M) = - [c - z(/)l

and where a is a positive number chosen at each iteration so that E' < E; then, after a
large enough number of iterations, E - 0 arbitrarily closely and the static equilibrium
configuration of the cable is obtained.

It is instructive to note that The Method of Imaginary Reactions is readily general-
ized to a cable having an end which is not uniquely anchored. In this case, for the prob-
lem to be properly formulated, information must be given about the force at this end or
the geometrical position constraint. Using the information thus supplied, the equations
of the method are reformulated to conform to the constraints by eliminating the known
forces and free coordinates from Eqs. 10, 11, and 12.

Numerical Example I

To illustrate the rapidity of the convergence of The Method of Imaginary Reactions
and the application of the equilibrium formulas, Eq. 5, 7, 8, and 9, consider the single
cable in two-dimensional space, acted on by the array of forces (in pounds) shown in
Fig. 4.

The cable is taken to be uniform and elastic, with an extensional rigidity of 40
pounds. The initial length of each segment is 10 feet, and the cable is anchored at the
coordinates (0, 0) feet and (24, 0) feet.

The anchor at the origin is taken as the "o" station. Consequently,

X(o) = 0, z(o) = 0

From Eq. 7, the resultant forces are calculated as

Rx(l) - 1.504461 + Fx(4) , R,(1) - 2.673706 + Fz(4)

Rx(2) = 3.287020 + Fx(4), R,(2) = 5.202684 + Fz(4)

Rx(3) = 1.741578 + Fx(4), Rz(3) = -0.883043 + Fz(4) ;
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Fig. 4 - Array of forces

6.085727

.545442

3

1.741578

- F, (4)

(0,0)

R.(4) = F,(4) , R(4) = Fz(4) .

The tensions are defined by Eq. 8, and the stressed lengths are calculated from Eq. 6 as

L(m) = 10 [1 + T(M)]
1 40 J

For any imaginary reaction, (F,(4), F (4)), the static equilibrium coordinates are then
determined from Eq. 9.

The error function, Eq. 10, is defined by

E = [24-x(4)j2 + [_z(4)]2

and the formula for the change in the imaginary reaction is given by Eq. 12 as

AF (4) - - [24- x(4)]

and

AF, (4) .z(4)

This problem was solved using a Wang Model 370 electronic desk calculator. A
high-speed CDC digital computer was used for a three-dimensional, three-cable, 22-
station problem illustrated later.

The convergence of The Method of Imaginary Reactions is illustrated in Table 1 for
a "good" initial guess and in Table 2 for a "bad" initial guess of the actual reaction. In

and

(24,0)
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Table 1
Convergence of the Method of Imaginary Reactions: "Good" Initial Guess

0
• ,."4IIf (4) F, (4) X(4) z(4) E o AFx(4 )  AF (4)

4-
n

0 0.5 -1.0 28.632348 -0.789850 2.208251 1 -0.492887 0.084041
x101

1 0.007113 -0.915959 21.301520 -0.826674 7.965185 2 0.239035 0.073228
x 100

2 0.246148 -0.842731 25.440816 -0.252147 2.139528 3 -0.123129 0.021548
x100

3 0.123019 -0.821183 23.361096 -0.304760 5.010772 4 0.05,6412 0.026908
x10-1

4 0.179431 -0.794275 24.403098 -0.068535 1.671849 5 -0.030808 0.005238
x10-1

5 0.148623 -0.789037 23.859544 -0.084635 2.689096 6 0.013383 0.008064
xlO-2

6 0.162006 -0.780973 24.114002 -0.015213 1.322801 7 -0.007744 0.001033
xlO-2

7 0.154262 -0.779940 23.975217 -0.021060 1.057742 9 0.001488 0.001265
x10-3

8 0.155750 -0.778675 24.004234 -0.011029 1.395627 9 -0.000700 0.001824
X1O- 4

9 0.155050 -0.776851 23.994332 -0.000953 3.30384 11 0.000482 0.000081
x10-5

10 0.155532 -0.776770 24.003230 0.000295 1.05206 12 -0.000243 -0.000022
xl0-S

11 0.155289 -0.776792 23.998767 -0.000221 1.5704 13 0.000120 0.000022
xlO-6

12 0.155409 -0.776770 24.000989 0.000099 9.879 14 -0.000061 -0.000007
X10-1

13 0.155348 -0.776777 23.999873 -0.000033 1.72 17 0.000008 0.000002
x 10-8

14 0.155356 -0.776775 24.000010 -0.000010 2.00
x10-1

0
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Convergence of the Method of
Table 2

Imaginary Reactions: "Bad" Initial Guess

*Clearly, the method is now converging rapidly to the equilibrium
Table 1, Step 9.

solution. To check this, note

both schemes, the initial value of 6 is one. In Table 3 a comparison is made between the
exact equilibrium configuration, from which the problem was derived, and the equilibrium
configuration calculated during the final iteration in Table 1.

GENERAL THEORY: SIMPLE CABLE ARRAYS

Definitions

A simple cable array is defined as a cable system which contains no closed loops.
Physically, this means that a simple cable array possesses no internal redundants.
Thus, for example, the cable-buoy structure depicted in Fig. 5a is a simple cable array,
while the cable-buoy structure depicted in Fig. 5b is not.

0v

°,.. II

Cd Fx(4) F,(4) x(4) z(4) E oo AF (4) AFz(4)

4-j

n

0 -2.0 3.0 -6.445490 42.836365 2.761882 0 0.579323 -0.815098
X103

1 -1.420677 2.184902 -0.223530 41.720098 2.327346 0 0.502119 -0.864798
X10 3

2 -0.918558 1.320104 8.699543 35.260605 1.477414 0 0.398064 -0.917358
X10 3

3 -0.520494 0.402746 9.982054 23.102359 7.302218 0 0.518749 -0.854927
x10 2

4 -0.001745 -0.452181 20.816861 1.715791 1.307631 2 0.220066 -0.118621
x101

5 0.218321 -0.570802 25.827369 1.589184 5.864781 2 -0.188643 -0.164055
X100

6 0.029678 -0.734857 21.615613 0.148800 5.707252 2 0.249515 -0.015571
x10 0

7 0.279193 -0.750428 26.227912 0.476242 5.190397 3 -0.122239 -0.026130
x100

8 0.156954 -0.776558 24.029462 0.003840 8.827771 9 -0.001937 -0.000252
XlO-4

9 0.155017 -0.776810 23.993797 -0.000753 3.90399 *
X10-5
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Table 3
Comparison Between Exact and Calculated Equilibrium Configurations

Exact Calculated

X(m) z(rm) L(m) T(m) x(M) z(m) L(m) T(m)

1 7 8 10.630146 2.520583 7.000005 7.999996 10.630146 2.520583

2 14 17 11.401754 5.607017 14.000007 16.999993 11.401754 5.607015

3 22 10 10.630146 2.520583 22.000004 9.999989 10.630147 2.520586

4 24 0 10.198039 0.792156 24.000010 -0.000010 10.198040 0.792159

Fig. 5a - Simple
cable array

Fig. 5b - Nonsimple
cable array

A branch point of a simple cable array is defined as a point at which a single cable
"splits" into two or more cables. In Fig. 5a, the points A and B are the branch points of
the particular system shown.

System Diagrams

To index the simple cable array, each cable in the system is denoted by a number n,
where the convention is that no cable extends beyond a branch point. The index n = 1 is
reserved for the cable which is attached to the anchor point of the system. (If more than
one cable is anchored, the choice of cable 1 becomes arbitrary. In this case, the point to
which cable 1 is attached is called the primary anchor; the other anchors are called sec-
ondary anchors.)

Any simple cable array is conveniently represented by a two-dimensional "system
diagram." This diagram illustrates, for ready reference, the cable numbers, the pri-
mary and secondary anchor points, and the general branching network of the system
under consideration. For example, if the cable-buoy structure depicted in Fig. 5a is
numbered as shown in Fig. 6a, then the system diagram would be as illustrated in Fig.
6b. The system diagram for a particular ten-cable array is shown in Fig. 7.

In the expression of the general theory, it is important to distinguish between the
two ends of a cable. The end of a cable "closest" to the primary anchor of the system
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PRIMARY
ANCHOR

SECONDARY
ANCHOR

Fig. 6a- Indexing a
simple cable array

Fig. 7 - System diagram for a
ten-cable array: the L-end
and R-end nomenclature

Fig. 6b - System
diagram for the
simple array

P RIMARY

L ANCHOR

R

L L

/\\5

diagram is denoted as the L-end; the other end is termed the R-end. Note that the R-end
of a cable is either a free end, a secondary anchor, or a branch point of the simple cable
array. The L-end of cable 1 is, by definition, the primary anchor point of the system.

The cables which have a free R-end are designated by the set notation

{fnR:f} ,

and the cables which are attached to a secondary anchor are denoted by the set

{nR:a }

Referring to Fig. 7,

{nR:fl {4,9,10}

SECONDRY
ANCHORS
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and

{nR:a} = {3,6,81 .

To designate the set of
kth cable, the notation

cables having an L-end which originates at the R-end of the

-nL . kR}

is employed. Thus, in Fig. 7, the set

{ !I 1R  = {2,51

and the set

4nL - 7R ) = {8,9, 101

Coordinate System and Notation

To describe the configuration of the cable array in space, a right-handed Cartesian
coordinate system is used. The position of the L-end of each component cable is denoted
by

(x(0;n), y(0;n), z(0;n))

and the position of the rth station on the nth cable by

(x(m;n), y(m;n), z(m;n))

where m = 1,2,..., M(n) counting from the L-end to the R-end of the cable. The notation
M(n) is used to indicate that each cable in the array can be represented by a different
number of stations.

By definition, the location of the primary anchor point of the system is given by

(x(0;1), y(O;1), z(0;1))

Furthermore, the station indices

(M(k);k) and (0;n)

represent the same system branch point for

n {nL 4-, kR} .

The external force which is acting at the (m;n)th station is defined by

(rx(m;n), Fy(m;n), Fz(m;n)) ,

where the convention is that an external force acting at a branch point is indexed by
(M(k);k) rather than (0;n).

If the nth cable in the array is to be attached to a secondary anchor, the desired
point of anchorage is given by
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(a(n), b(n), c(n))

In this particular case, the force

(F,(,W(n);n), 1 (M(n);n), rz-(M(n);n))

represents the imaginary reaction which is applied to the Mth station of this cable.

The segment between the (m- 1) and mth stations on the nth cable is designated as
the (m;n)th cable segment.

The further extension of the single-cable notation to a simple cable array is now
obvious.

Elongation Formulas

The relation expressing the stressed length of a segment as a function of the un-
stressed length of the segment and tension in the segment is written as

L(m;n) - Q(m;n) {Lo(m;n), T(m;n)}

In the elastic range of tension, Eq. 13 reduces to

L(m;n) - Lo(m;n) + B(m;n) (14)

where B(m;n) is the extensional rigidity of the (m;n)th segment.

Static Equilibrium Configuration
The resultant force in the (m; n)th segment is defined by the applied external forces

through the equations

R,(m;n) = F(m;n) + R (m+ 1;n)

RY(m;n) FY(m;n) + Ry(m+ 1;n), (15a)

R,(m;n) Fz (m;n) + Rz(m+ 1;n) , for m - 1,2. M(n)- 1 , all n

and

Rx(M(n);n) - F(M(n);n) ,(15b)

Rz(M(n);n) - .F-(M(n);n), for m - M(n) , nc nR:al or {nR:f

and

kc f kL nR
~(15c)

R(M(n);n) = F(M(n);n) + R,(1;k), (Cont.)
k
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Ry(M(n);n) Fy(M(n);n) +

Rz(M(n);n ) =F,(M(n);n) t

L R

k

kC fkL( --)nRl

T
k

Ry(l;k) ,

(15c)

Rz(1;k) ,

for m =M(n), (M(n);n) a branch point.

Note, that starting from the R-end points of the entire cable array, the resultant forces
are readily determined by summing the applied external forces "toward" the primary
anchor. This "direction of summation" is shown in Fig. 8 for the cable array depicted in
Fig. 7.

PRIMARYI ANCHOR

2 5

3 4 7 6

6 * SECONDARY
ANCHORS

8 9 10

Fig. 8 - The "direction
of summation"

In terms of the resultant force, the tension in the (m;n)th segment is given by

T(m;n) = /Rx2 (m;n) + R 2 (m;n) + Rz2 (m;n) . (16)

Starting from the primary anchor, the static equilibrium configuration is then calcu-
lated from the relations

x(m;n) = L(m;n) Rx(m;n) + x(m- 1;n)
b(m;n)

y(m;n) = L(m;n) Ry(m;n) + y(m- 1;n)

z(m;n) :.L(m;n)

T(m;n) Rz(m;n) + z(m- 1;n)

(17a)

(17b)

(17c)
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where the identities

x(O;n) - x(M(k);k)

y(O;n) - y(M(k);k)

z(O;n) - z(M(k);k)

(18a)

(1 8b)

(18c)

for ne {n , kR}, are used to extend the solution past a branch point.

Method of Imaginary Reactions

The Method of Imaginary Reactions is readily generalized to arbitrary simple cable
arrays. The error function E is defined by

n{( R" a

ELT {[a(n) - x(M(n);n)]
2

+ [b(n) - y(M(n);n)j 2

(19)

+ Ec(n) - z(M(n);n)] 2 )  
.

The theory then states that if the iteration procedure determined by the substitutions

F,(M(n);n) = F (M(n);n) + Af (M(n);n)

F'(M(n);n) = F(M(n);n) + AF (M(n);n)

F'(i(n);n) = Fz(M(n);n) + AFz(M(n);n)

for nc {fnR: a}, is followed, where

AF(M(n);n) - [a(n)

AF JH(n);n) :- [b(n)

- x(M(n);n)]

- y(M(n);n)]

(21a)

(21b)

(21c)AF, (N(n); n) a c(n) - z(M(n);n)]A~z(M~n)n) =--

and where 8 is a positive number chosen at each iteration so that E' < E; then, after a
large enough number of iterations, E - 0 arbitrarily closely, and the static equilibrium
configuration of the cable array is obtained.

Numerical Example II

To demonstrate the ability of The Method of Imaginary Reactions to handle three-
dimensional arrays, including cables which are skewed in the equilibrium configuration,
two problems are considered for a three-cable arrangement. The system diagram for
the array is illustrated in Fig. 9.

(20a)

(2 Ob)

(20c)
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PRIMARY
ANCHOR.=.Z (0,0,0) FT

CABLE I

Fig. 9 - System diagram
3for example II

SECONDARY
ANCHORS

(3.5,0,0)- 10' FT (I.75,3.0311,0) 0 FT

In the first problem, a net buoyancy force of 40,000 pounds (in the positive z direc-
tion) is applied to the branch point of the array, and all other external forces are taken
as zero. In the second problem, a set of random drag forces are generated in addition to
the acting buoyancy force. The cables comprising the system are taken to be elastic but
with segmentally variable extensional rigidities.

The lumped parameter breakdown of the array and the random drag forces applied
to the array stations are given in Table 4. All forces are nondimensionalized by dividing
by 104 pounds and all lengths by dividing by 104 feet.

Both problems were done in one program on the NRL/CDC 3800 computer. The run
time for the program, including compile, was 30 seconds. The nondimensional cutoff
value of the error function was taken as E !- 2.5 X 10-11; thus, all nondimensional sec-
ondary anchor positions are accurate to at least five decimal places.

The calculated equilibrium configurations are shown in Figs. 10 and 11.

STATICALLY UNSTABLE AND DIVISIBLE CABLE ARRAYS

Throughout this report, the assumption that the cable array is statically stable - that
is, under the action of the applied external forces no cable segment has zero tension -
has been tacitly made. It is of practical interest to note what happens to the technique
when this assumption is not true for the system under investigation.

Consider a free-ended cable array in which the tension in a segment is zero. Math-
ematically, the equilibrium configuration of the array, given by Eq. 17, becomes indeter-
minate. Physically, what has occurred is that the external forces acting on the system
are self-balanced; consequently, the position of the array is not unique. In this case, an
examination of the computer printout would reveal which segment has gone into zero
tension.

Suppose now that secondary anchors are present and that the tension in some seg-
ment approaches zero. Referring to the Appendix, the change dE in E then approaches
negative infinity. As a result, it becomes impossible to find a 8 such that E' < E, and

im E = K = 0
5-*0
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Table 4
Lumped Parameter Breakdown

Cable Properties Drag Forces

Segment
or Lo(m;n) B(m;n) Fx(m;n) Fy(m;n) F7 (m;n)

Station in 104  in 104  in 104  in 10 4  in 104

Number, feet pounds pounds pounds pounds

m

Cable 1

1 0.10 784 -0.005 0.005 -0.003

2 0.70 784 -0.031 0.029 -0.020

3 0.70 784 -0.032 0.028 -0.020

4 0.70 784 -0.033 0.027 -0.020

5 0.51 784 -0.050 0.040 -0.015

6 0.05 784 -0.005 0.003 -0.010

7 0.05 784 -0.030 0.070 -0.005

Cable 2

1 0.05 784 -0.003 0.005 -0.010

2 0.05 784 -0.040 0.050 -0.015

3 0.51 784 -0.027 0.033 -0.020

4 0.70 784 -0.028 0.032 -0.020

5 0.70 784 -0.029 0.031 -0.020

6 0.70 784 -0.005 0.005 -0.003

7 0.10 784 Imaginary Reaction

Cable 3

1 0.05 280 -0.004 0.006 0.020

2 0.05 280 -0.041 0.061 0.015

3 0.32 280 -0.028 0.027 0.010

4 0.50 840 -0.034 0.032 0.010

5 0.60 840 -0.033 0.031 0.010

6 0.60 840 -0.032 0.030 0.010

7 0.60 840 -0.006 0.006 0.001

8 0.10 840 Imaginary Reaction
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Y x 10
4

ft

2.5 POSITIONS OF CABLE STATIONS

* WITHOUT DRAG FORCES
* WITH DRAG FORCES
- CABLE ANCHORS

1.10

1.05

CABLE 3

100

Q95

Q90 I I
1.65 1.70 1.75 1.80 1.85

- 2 SEE INSERT

CABLE 2

-~~~Ar X X 1i ft , , , ,
00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Xx1

4
f

Fig. 10 - Equilibrium configurations of the three-cable array: top view

Two situations can occur. In the first case, an imaginary reaction approaches zero, so
that the tension in an end segment becomes zero. The equilibrium position of the array
would not be affected by this, and a solution would be found which stated that the particu-
lar secondary anchor is not necessary for the structural integrity of the system.

In the second case, when an internal segment approaches zero tension, an examina-
tion of the printout would show which segment is not acting. To proceed, it is possible
now to divide up the array into two independent arrays and solve for the equilibrium con-
figuration of each one.

SUMMARY AND CONCLUSIONS

The method presented in this report is applicable to a wide range of structural ca-
bling problems. It will be particularly attractive to the practicing engineer who would
otherwise be faced with the simultaneous solution of large interdependent sets of strength,
geometrical, and force-balance equations, which are grossly nonlinear.
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Zx 104 ft

POSITIONS OF CABLE STATIONS 200

2.0 * WITHOUT DRAG FORCES SEE IERT
A WITH DRAG FORCES
- CABLE ANCHORS 1.95

1 2 3
S190

1.5

1.65 1.70 1.75 1.80 1.85

1.0

CABLE I CABLE 3 CABLE 2

0.5

0.0

0.0 Q5 1.0 1.5 2.0 2.5 3.0 3.5 X x 104ft

Fig. 11 - Equilibrium configurations of the three-cable array: side view

Although the formulation is of a discrete variable type, this should not be a serious
drawback to its use. The fact that the technique is independent of the number of stations
employed means that a fine distribution of stations can be made to approximate curvature
and variations of external forces, without seriously affecting the rate of convergence.

The method aside from the mathematical proofs of the Appendix involves no more
than elementary statics and strength of materials, once the external force distribution
has been defined. Reduced to a simplistic view the method merely states that if you have
a free-ended cable in a static equilibrium position with the end at the point C in Fig. 1
and wish to have this end to be located at point D, always pull toward point D, regardless
of the path that C follows as it approaches D.

It is suggested to those who may have reservations on the efficiency of this method
that they write the complete set of force-balance, elastic, and geometrical constraint
equations for the simple numerical example I and attempt a simultaneous solution.
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Appendix A

PROOF OF THE CONVERGENCE OF THE METHOD
OF IMAGINARY REACTIONS

In this appendix the proof that The Method of Imaginary Reactions insures conver-
gence to the correct redundant reactions (and, consequently, to the equilibrium configur-
ation of an arbitrary simple cable array) is given.

To facilitate this proof, a matrix notation is introduced. If the set of cables attached
to secondary anchor positions is given by

{nR:a} = {n 1 ,n 2.  n:)

the error function, defined by Eq. 19, can be written in matrix form as

E = {D T{D} , (Al)

where the column matrix {D} is defined by

a(n,) - x(M(n,);n 1 )

a(nK) - x(M(nK);nK)

b(n1 ) - y(,(nl);n,)

b(nK) - y(M(nK);nK)

c(nl) - z(M(n,);nl)

c(nK) - z(M(nK);nK)

Consider now the total derivative of E. Since, through the equilibrium equations, the

calculated end positions are functions of only the imaginary reactions, this derivative is

dE = -2{D}TFj1{dF} (A2)

where
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dF,(H( n, ) ; n 1 )

dFX (M(n K ); n K )

dFY(M(nK);nK)

dF,(M(n 1);n1 )

dF, (M(nK);nK)

dx(M(n1 );n1 )

.o9 (M(nK);nK)

az(M(nK); nK)

dF2 (M(nK); nK)

The determinant of [J] is, of course, the Jacobian of the transformation from "end posi-
tion" space to "imaginary reaction" space.

Substituting in Eq. A2 the expressions for the changes in the imaginary reactions,
Eqs. 21, the total derivative of E becomes

dE - -2p (A4)

where P is the quadratic form

P { D}l[J] {D} . (A5)

Note that since P is on the order of E, dE vanishes identically at E : o; consequently,
those sets of reactions for which E = 0 are points of absolute minimum of the error
function in reaction space.

If it can now be shown that P is positive definite (vanishing only at E = o), the con-
vergence of The Method of Imaginary Reactions to an equilibrium set of reactions, and
the uniqueness of this set of reactions, follows from the argument given below.

Suppose P is positive definite. Then dE, defined by Eq. A4, is negative (positive)
definite for 5 greater than (less than) zero. Since the error function is at least positive
semidefinite in reaction space, the existence of a positive 5 which makes E' < E follows
from the Mean Value Theorem. Since dE is then negative definite, the limit of the itera-
tion process is necessarily E -= 0 ; consequently, convergence to an equilibrium set of
reactions is guaranteed. Further, this set of reactions is unique; for, if P is positive

{dF} =

and where

[J] =

7ax(N(n,);n,)

az(M(nK);nK)

aF(K(n1);n,)

(A3)
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definite, the Jacobian IJ] of the transformation from end space to reaction space is
positive.* Thus, the transform is one-to-one;t that is, a unique set of anchor points
determines a unique set of reactions.

Therefore, it remains only to show that P is indeed positive definite.

To this end, consider the resultant forces. Using the summation rule, Eq. 7, these
forces can be expressed in terms of the imaginary reactions applied to the system as

nee~ ffIR~ a} -+ n}

Rx(m;n) : Cx(m;n) + I F (M(nf);nf) (A6)

where the Cx's are constants, independent of the applied imaginary reactions and where
the set {{nR: a} - n} represents the subset of cables attached to secondary anchors and
simultaneously directly "descended" from the nth cable on the system diagram.

For example, referring to Fig. 8,

{{nR:a} -4 5} {6,8}

and

{{nR:a} , 6} = {6}

By definition of cable 1,

{{nR:a} - 0} = {nR:a} .

Similar results are obtained when expressing the y and z components of the result-
ant forces in terms of a constant plus the y and z components of the imaginary reactions,
respectively.

Using the above expressions for the resultant forces and Eq. 16 for the tensions and
noting that L(m;n) is a function of only T(m;n) and Lo(m;n), the following partial deriva-
tives with respect to the imaginary reactions are obtained:

a L(m;n) x(m;n) L(m;n) Rx2 ( e ;n)
IT(m;n) Rm) T(m;n) T(m;n)A(m;n)

nee {{nR:a} . n}

np ,{nR:a -4 n}

(A7)
a L(m;n) )xm ARxmm) yn)n (Cont.)

[T(m;n) n T(m;n)

aFy(M(nF).nF) 0

ngc{{nR:a} -
n

}

nfl{{nR:a} nI}

*R.A. Frazer, W.J. Duncan, and A.R. Collar, "Elementary Matrices," New York:MacMillan, 1947.

tA. E. Taylor, "Advanced Calculus," Boston:Ginn, 1955.
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[L(m;n) )1 Rx(m;n)'Rz(m;n) A(m;n)
T(m;n)Rx(mn- 0 T(m;n)

aF2 (M(ng);nV) 0

+f -4-nR:a * -, n1

i ~f fg. nR: a} ,- n}

(A7)

with similar results for the permutations of x, y, and z. In these expressions

d [L(m;n)] 
(A8)

A(m;n) dT(m;n)(
d T (m; n)

Consider now the three-cable array, for which the system diagram is illustrated in
Fig. 9. Using the equilibrium equations 17 and 18, the positions of the end points, to
which imaginary reactions are applied, can be written as

M(1)
X(;1 L(m; 1 Rx(m; 1

x(0;L) + T(m; 1

M(1)
-- ) L(m; 1) Rx(M; 1)

x(0;L) + T x;m)
M=1

M( 2)

+ L(m;2) Rx(m;2)+ T(m; 2)

M=1

M( 3)

+ L(m; 3) Rx(m ; 3 )
+M= T(m; 3)

m 1

with similar expressions for the y and z coordinates. For this particular system

{{nR:a} -, 1} = {2,31

{{nR:a} - 2= {2}

and

{{nR:a} -, 31 = {3}

Using the above expressions for the end coordinates and the sets {{nR: a} -, n}, the
expression in Eq. A6 for the resultant forces, and the partial derivatives defined in Eq.
A7, the function P defined by Eq. A5 can be written as the sum

m 1
D'BXYM

Bxz(m;)) Byz((C;) Byz(m;) Bzz(m;1) Bzz(m;1)

x(M(2); 2) =

x(M(3); 3) =

BXX(m;1) Bxx(m;1) Bxy(m;1) Bxy(m;1) Bxz(m;1) Bxz(m;1)

Bxx(m;1) Bxx(m;1) Bxy(m;1) Bxy(m;1) Bxz(m;1) Bxz(m;1)

Bxy(m; 1) Byy(m; 1) Byy(m; 1) Byz(m; 1) Byz(m; 1)

Bxy(m; 1) Bxy(m; 1) Byy(m; 1) Byy(m; 1) Byz(m; 1) Byz(m; 1)

Bxz(m; 1) Bxz(m; 1) Byz(m; 1) Byz(m; 1) Bzz(m; 1) Bzz(m; 1)

(Cont.)Bxz(M; 1 )
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Bxx(m; 2)

0

Bxy(m; 2)

0

Bxz(m; 2)

0

0

Bxx(m; 3)

0

BXY(m; 3)

0

Bxz(m; 3)

Bxy(m; 2)

0

Byy(m; 2)

0

By z (m; 2)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bxy(m; 3)

0

Byy(m; 3)

0

By z(m; 3)

Bxz(m; 2)

0

Byz(m; 2)

0

Bzz(m; 2)

0

0

Bxz(m; 3)

0

Byz(m; 3)

0

Bzz(m; 3)

Baw(m"n) Ra(m;n)Rb(m;n) L(m;n)
Ba --) T(m;n) A(m;n) + T(;n)ab

and where the Kronecker delta

(ab{

From this expression for P, the follc

Theorem: If P*, defined by

Bxx ( 1 ; 1 ) Bxx ( 1 ; 1 )

Bxx ( 1 ; 1 )  Bxx ( 1 ; 1 )

P* = D T BXY( 1; 1) Bxy ( 1 ; 1 )

Bxy ( 1 ; 1 )  Bxy ( 1 ; 1 )

Bxz (1;1) Bx,(j; 1)

Bxz(1; 1) Bxz(1; 1)

is positive definite, vanishing only at
only at {D} = 0.

)wing

if a b

if a b

theorem can be proven:

Bxy(1;1) Bxy(1;1) Bxz-(1;1) Bxz,(1;1 )

Bxy(1;1) Bxy(1;1) Bx,(1;1) Bxz(1;1)

Byy(1;1) Byy(1;1) Byz(1;1 )  Byz(1;1 )  D
{D}

Byy(1;1) Byy(1;1) By(1;1) By(1;1)

Byz(1;1) Byz(1;1) Bzz(1;1) Bzz(1;1)

Byz(1;1) Byz(1;1) Bzz(1;1) Bzz_(1;1)

fD1 = o, then P itself is positive definite, vanishing

{D}T

M=2

+ Tj {D}T

m 3

where
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Proof: If P* is positive definite, then each term in the summation over cable 1 is
also positive definite by similarity. Thus, the summation over cable 1 is positive defi-
nite, vanishing only at {D} 0. Furthermore, the reduced forms of P* appearing in the
summations over cables 2 and 3 are positive definite, vanishing only at {D) = o. Thus,
the summations over cables 2 and 3 are also positive definite. Consequently, P is posi-
tive definite, vanishing only at {D} = o, and the theorem is proved.

Obviously now, any simple cable array can be dissected in the same manner as the
three-cable array and the function P reduced to a series of summations over the compo-
nent cables. The most general summation, that is the summation in which no rows and
columns of [J] are zero, is that over cable 1, since only for this cable does {{nR:al-) n=

{nR: a} .

The extension of the theorem proven above is then straightforward, the result being
that P is positive definite for
where

and where [J*] is defined by

an arbitrary simple cable array if P* is positive definite,

(A9)

L(1;1) + Rx 2 (11) A(1;1)
T(1; 1) T(1; 1)

Rx( 1; 1)R y(1; 1) A 1; )
T (1;1)

Rx(1; 1)R, (1; 1)-T 1;1) A(1;1)

Rx(1;1)Ry(l;1) A(1;1)

T(1; 1)

L(1;)+ RY(1;1)A(1;1)
T(1;1) T(1;1)

I Rx(l;1)R(l;1) A(1; 1)

I T(1; 1)

tRy(1;1)R(1;1)A

T(1; 1) A 11

Ry(1; 1)R 2 (1;1) A(1;1) L( ;)( R 2(1;1) 1)T( 1) 1 T(1;1) T( 1)

Each partitioned element of [J*] represents a K x K matrix of identical terms, K being
the total number of secondary anchors.

Consider now [J*]. Multiplying the terms in this matrix containing L(1; 1) by unity,
given in the form

R2(l) + RT2 ( 1; 1) + Rz2

T2( 1;

and expanding A(1; 1), defined by Eq. A8, as

= 1 d[L(l;1)] _ L(1;1)A(;)=T(1; 1) d [T(1; 1) ] T2( 1; 1)

[J*] can be written as

RY 2 (1;1) + Rz 2 ( 1 -R (1; 1)Ry(1;1) I -Rx(1;1)Rz(1;1 )

( ;1) -Rx(1; 1)Ry(1; 1)  R 2 (1; 1) +R 2(1; 1) 1R I[ * -T3( 1;1 X -ZRY(1; 1)Z(1; 1

-Rx(1; 1)R_,(1; 1) -RY(1; 1)Rz(1; 1) R R2 (1; 1) + R 2 (1; 1)

*R.A. Frazer, W.J. Duncan, and A.R. Collar, "Elementary Matrices," New York:MacMillan, 1947.

[J*] =
(A10)

(All)
(Cont.)

P* = {D }T[J * ] D
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I Rx(1; 1)Ry(1; 1)

R 2 (1; 1)

R Rx(1;1)Rz(1;1 )

-R,(1; 1)Rz( 1; 1)

Defining the square matrix

IS] -

0

R2 (1; 1)
K

Ry(1; 1)

K

and the row matrix

[R] - [Rx(1;1 )

R_(1;1) RY(1; 1)

K K

Rx(1; 1)
0 K

Rx(1; 1)

K

Ry(l; 1) Rz(1; 1) ],

the expression in Eq. All for [J*] can then be written as

[ L(;1) [S]T[S] + 1 d[L(l;1)] [R]T[R]
T 3(1;1) T 2 (1;1) d[T(1;1)]

(A12)

But the forms D}T S] T [S] {D} and {D}T [RI T [R] {D} are necessarily positive definite,
and since the coefficients L(1; 1)/T 3

(1; 1) and [l/T 2 (1; 1)] {d[L(1; 1)]!d[T(1; 1)] } are both

positive, P* becomes the sum of two positive definite forms and thus is itself positive
definite. Therefore, P is positive definite for an arbitrary simple cable array; conse-
quently, The Method of Imaginary Reactions guarantees convergence to a unique set of
equilibrium reactions.

Rx2 (1 1)

Rx(1; 1)Ry(1; 1)

Rx(1; 1)R_,(1; 1)

+ 1 d[L(1; 1)]
T 2 (1;1) d[T(l; 1)]

I Ry(1;1)R (l;1)

(All)

Rz2 (1; 1)
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