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ABSTRACT

An analysis is presented which predicts the hammer

forces, specimen bending moments, and tear energies

generated during the NRL Dynamic Tear test. The theo-

retical predictions agree quite well with experimental

observations for relatively brittle materials.

The tear energy per unit net area calculated from

this analysis is shown to vary significantly with initial

impact velocity and specimen length for a brittle material.

It is relatively independent of the specimen thickness and

notch depth to width ratio.

PROBLEM STATUS

An interim report on the problem, work is continuing.

AUTHOR I ZAT ION

NRL Problem Number: M01-25

Project Number: RR007-01-46-5432
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NOTATION

a - Notch depth

A - Cross sectional area of gross section

A - Beam cross sectional area

B 1  - Portion of the boundary over which displacements

are prescribed

B2  - Portion of the boundary over which tractions are

prescribed

b - Beam thickness

d - Unbroken ligament depth

E - Young's modulus

F - Hammer force

Fi - Body force vector

fi - [t*Fi] + p[tii(O,x) + ui(O,x)]

G - Shear modulus

- Mode I fracture toughness

h - Beam half height

H - Heaviside unit step function

I - Cross sectional moment of inertia about the c.g.

I - Moment of inertia of the gross sectiong
I" - Moment of inertia of equivalent uniform beam
k 1 1
1 ml m 2

k2  - Constant in the Hertz Theory of Contact Forces

k 4  Constant in the assumed linear contact theory

K - Mode I stress intensity factor

Kt -Elastic stress concentration factor

L - Beam length

M - Bending moment

m - Hammer mass

m2 - Anvil mass
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p - Applied load per unit length on the top surface of

the beam; also the Laplace transform parameter

R - Bounded region of Euclidean 3-space; also notch root

radius
A
T. - Prescribed surface traction on B2
A
u. - Prescribed displacement vector on B 1

u. - Displacement vector

u - Beam deflection referred to the embedded coordinates xy
V - Shear force

V - Hammer velocity referred to the fixed coordinates X.

V2  - Rigid body beam velocity referred to the fixed

coordinates X i

V01,V02 - Initial hammer or rigid body beam velocity

X1  - Hammer displacement referred to the fixed coordinates

X2 - Rigid body beam displacement referred to the fixed

coordinates

XoX 02 - Initial hammer or rigid body beam displacements

x - Point (x,y,z) in Euclidean 3-space

Yi(- Eigenvector of the beam equations

a - Relative approach in Hertz theory

6 -Measure of the influence of the local stress field

of the notch; also Dirac delta function

6 E ij - strain tensor

S T ij - stress tensor

X ijkl - Elastic compliance tensor, i.e., 6ij = "ijkl Tkl

p - Mass density

Wi - Eigenvalues of the beam equations (natural frequencies)



AN ANALYSIS OF THE FORCES AND BENDING MOMENTS
GENERATED DURING THE NRL DYNAMIC TEAR TEST

I NTRODUCT ION

Traditionally, notched beam impact tests have been used

to determine a material's resistance to fracture based on

energy considerations. Until recently, no attempt has been

made to obtain more fundamental information such as the

bending moments and stresses in the beam during impact.

Admittedly, this is a most complex problem. When one con-

siders the scarcity of dynamical solutions in bounded media

with simple boundaries (for example, no exact solution has

been found yet for the flexure of a cylindrical bar of

finite length), the introduction of a notch seems to intro-

duce almost insurmountable difficulties. Be that as it may,

a knowledge of the beam stresses during impact is of con-

siderable interest to those concerned with fracture mechanics

since once these stresses are determined, dynamic stress

intensity factors may be computed.

This report concerns the development of a systematic

method for predicting the impact force and bending moment-

time responses generated during the NRL Dynamic Tear test.

It is presented in two main sections. The first section is

devoted to theoretical considerations. The second section

is concerned with the experimental verification of the analysis

and its applications.



In the first section, the approach used parallels the

standard method for treating transverse impact problems [1];

however there are several important differences. Obviously,

the presence of a notch precludes the direct application of

the one dimensional flexure theories commonly used in uni-

form beam impact problems. The bending moments and deflec-

tions in a notched beam must therefore be found from either

a two dimensional dynamical solution or a refined one dimen-

sional theory which takes into account the effect of the

local stress distribution near the notch. Also, the

previous investigations had as their primary objective the

determination of pulse shapes, dispersion relations, etc.,

and were not concerned with the effect of specimen cracking

on the load-time curve (the loads were kept low enough so

this did not occur).

In this investigation, a refined one dimensional

bending theory is devised using a variational principle

proposed by Gurtin [2]. The details of this calculation

are shown in Appendix I. Using these results, an integral

equation is derived for the hammer force as a function of

time and solved in closed form by Laplace transforms. The

closed form solution, however, requires the assumption of a

single active bending mode. The influence of the higher

modes is evaluated in Appendix II and an iterative procedure

is described with which the hammer force can be obtained to

any degree of precision desired.
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The effects of specimen cracking are accounted for in

a straight forward manner by approximating the crack length-

time relation by a series of steps and solving the integral

equation for the hammer force in each time interval corre-

sponding to a constant crack length. The effects of

localized plasticity at the contact point and gross yielding

of the specimen are neglected. The analysis is thus limited

to relatively brittle materials at this time. Once the

hammer force is known as a function of time, the bending

moment at any point in the specimen may be calculated from

the relation derived in Appendix I.

In the second section of the report, the results of the

theoretical analysis are compared to the experimental re-

sults obtained for two types of Dynamic Tear test specimens.

The first is 5/8 x 1-5/8 x 7 inches and is designed for use

in the 2,000 ft-lb, double pendulum impact machine. The

second measures 6-3/8 x 12 x 58 inches and is used with

the 160,000 ft-lb drop weight machine. A typical Dynamic

Tear test specimen is shown in Fig. 1. The double pendulum

and drop weight impact machines are shown in Figs. 2 and 3.

The experimental results are obtained by the procedure

described in [3].

Finally, in the second section several series of

calculations are performed in which the tear energies (which

may be calculated directly from the force-time response) are
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tabulated for specimens with varying lengths, thicknesses,

notch depths and initial impact velocities. The material is

assumed to be brittle with a Kicd 100 ksiin. It is found

that the tear energy per unit fracture area is relatively

constant when the thickness and notch depth are changed but

varies considerably with the length and initial impact

velocity.

HAMMER FORCES AND SPECIMEN BENDING MOMENTS

Consider the rigid body motion Of the hammer. Applying

Newton's second law and integrating twice gives:

1t
X _--j F(q)(t-_)dn + V 01t+ X01

1 1 0 0 01(1)

Similarly, applying the second law to the beam to account for

the rigid body motion gives:

X2 = + 1 tF(n)(t-7)dn + V 02t + X02 (2)
0 2 0

1t
where V t is assumed >> 12 F2q) )(t-?7)d- during the initial

02 20
stages of impact for the double pendulum machine, For the

drop--weight machine, m2 = m and V02 = 0. The coordinate

system used here is shown in Fig. 4.

Since the beam is also bending elastically, the

total beam displacement at X = L/2 is:

X t = X 2 + u y(L/2,t) (3)



When certain restrictions are imposed on the notch stresses

(see Appendix I), it can be shown that:

Uy L (Aisinwuit + Bicoscit) Yi(t) +
1=1

COY (4)Y (1/2) t
+ - uWWi fF(-q)sinosi ( t - TI) d -q

1 0 (4)

where
1

W1 = pAgs Yi 2 ( )d
0

The eigenvalues uWi and the eigenvectors Yi( ) are presumed

known; the coefficients A i and Bi may be found from the

following relations which are easily derived from the

orthogonality condition on the eigenvectors stated in

Appendix I:

wiAi - PAguy (Q0)Yi(t)dt

B Vp~ Uy u($,0)Yi(p)dt

B 0iy i (5)

When the vibrations of the hammer and anvil are neglected,

the following relation must hold at the contact point due to

displacement continuity conditions:

XI-Xt = a (6)

where a = a(F)

For simplicity, a linear relation between F and a will be

assumed in the form:

a = F/k 4 (7)



where k4 is an experimentally determined constant. In reality,

the F-a relationship is generally non-linear. For purely

elastic deformation at the contact point, the Hertz contact

theory predicts a reationship of the form:

F = k2 a
3 /2  (8)

When plasticity effects are taken into account, a relation-

ship of the form:

F = Na q  (9)

is usually postulated where N and q are constants. For a

full discussion, see Goldsmith [4].

Returning to equation (6) and substituting equations

(1), (2), (3), (4), and (7) we have:

t
F/k 4 = (V 0 1 -V 0 2 )t + (X 0 1 -X 0 2 ) - kly F(q)(t-,q)d7 -

0

- (Aisinw it + B coswit)Y.(1/2) -
i=l 1 1 1 1 1

2
Y2 (1/2) tY F(71)sinw i (t --q)dq

i=l (10)

The solution of (10) should yield the force-time relation

during impact provided the specimen does not crack.

Now let us assume that a crack initiates at the notch

root at time t=tl, and then proceeds to propagate through

the specimen cross section. If the crack length-time

relation can be approximated by a series of discontinuous



jumps with d0 the unbroken ligament depth for t([toytl]1

etc., then Y w., etc., will be step functions in time.

Let k' ik etc., denote the constant value of Y , a

etc., in the interval [tk, tk+l] for k = 0, 1, 2, .... K.

Then equation (10) can be written as a set of K+l

integral equations in Fk r) where Fk(T) = F(t), t [tk2 tk+l]

and T = t-tk* Thus we have:

k1(FkFOk) + aOk = (V01-V0 2 )k + (X0 1 -X0 2 ) k

T

kl Fk('r)(9--)d -q (A ksinulkT + Bikcos~ikT)Yik (1/2) -

0

2
Yik (1/2) J Fk(r)sinw k(T_-)d-

i=l ik ik 0 (11)

for

t([tk,tk+l], k = 0,1,2, .... K

where

(X010X 2 )k kX1k_ 1 (tk) - X2 kl(tk)

d(V 0 V )k X- d X (t) (12)
01- 02) dT Ik-ltk dT 2k-ik

1ApAg(,t)Y d

1k ik - Wk P: 0 Qyk-I(Wt)y d

1Bik --W kl P 0Uyk-l 'k)kd

a 0k ak-l(tk)

Fok F k-i (tk)



and
X lk_ 1 ( t k ) X2k- 1 ( t k ) kls ( t k-tk-1_ -(7)t -tk1 )-7d +Xllt)- X~lt)= - 0 kf lFk- l(7) [tk-tk l)- ]d +

+ (V0l-V02kl)(tktkl I ) + (X0l-X 2 )kl

d_+[X l (t k ) _X k (t)] = klf k -ilFk 1 (r)d + (0 -0) _
0

uyk-l(,tk) = [Aik sinw ik- l ( tk - t k -1) +

+ BikI coswik l(tk=fk l)yik-l() + i=l
Wik-l()Yik- (1/2) x°°ikWik-l

x tk-t k-l (n) sinw ik_ 1  [ (tk- tk~l- ]d
0

Uyk~l(,tk) = : [Aiklcoswikl(t t
-n Ik-tk 1=1 . ik iik 1  k-i-

B k snwik-l (tk-tk-l]Wik-lYik-1 ( ) +

i=I

(13)

Y ik-i ()Yik-i (1/2)
W ik -l

k 0 Fk-1 (n) cosw lk-i [(tk-tk-l)-7]d

(K = 1,2......K)

The values (X0 1-X02 )0, (V01 -V0 2 )0, Uy0 , F00 and a00 are

given as initial conditions.

(X01-X02)0 = uyo = y0-- F00

Tn the problem at hand,

- a0 0 - 0.

We now consider solutions to equation (11). The usual

approach in previous transverse impact investigations has

been the small increment technique developed by Timoshenko [5].



This consists of approximating the integrals by summations

thus reducing the solution of the integral equations to the

solution of a set of linear algebraic equations. This

technique will not be used here; instead, as a first

approximation, we assume that all bending modes higher than

the first are negligible, i.e., Y = 0 (i = 2, 3,...).

Equations (11) now reduce to a fairly simple set of linear

integral equations which may be solved in closed form by

Laplace transforms. Appendix II deals with a technique by

which we can assess the validity of this assumption and

correct for the presence of the higher bending modes if

necessary. Thus the disadvantage of this technique compared

with Timoshenkos' is the linear F-a relation which we must

assume while the advantage is the availability of a closed

form solution as a first approximation of F(t).

Letting Yik(t) = 0(i-=2,3,...), we have from (11):

(Fk-F ) + a= (V 0 1 -V 0 2 )kT + (X01-X0 2 )k -
k Ok ok 010k01 2k

4
T

- k 1S Fk(n)(t-n)dn - (AlksinclkT + Blkcoswik T)Ylk(l/2) -
0

2 (14)

Y1k (1/2)

0-Lklk 0Fk nsnWk(-qd

Taking the Laplace transform of (14) and solving for F k(p)

where Fk (p) =<[F(t)3 and p is the transform parameter, we

have:



2 2
P ±Wjl

F(p) = k 4 (Vol-V 0 2 )k -4 2- - - - k4 (A 1 0Y(l/2)) kX

-P +C~p +'1\klk

2 3

< p4+ p 2+kk k 4 (BI1Y 1 (1/2))k  4+p 2 +
p + ekP + \lk p +' c p +

F k]+ k 4[ (xo01-Xo02)-ok kk4

where

2
=k- l + klk 4 + k3 kk 4,

F~ 2 +20 1
P(P2 +W ( -2)2

"' k k k4 0'lk

2
Y lk (1/2)

k3k -= W k

Equation (15) may be easily inverted by use of the tables

in Roberts and Kaufman [6]. This gives

F k4  {(V0 1-V0 2) k
k (a _ B (a B) k

2 2)[ak(clk -B 1 k )sin~kT +

+ Bk (a 2 k-lk 2 )sinakT] - [A 10cY 1 (1/2)] [aksinak r - BksinBkl] -

- BY( 1/2 -
1  [oa -2 k

kalls [a -B kcs kT] + (16)
Fok 2 2

+ [(XOl-X02 )k - aOk +F [(Wlk -_Bk )cos[3kT +
+R4

2 2+(ak -alk )cosak-]

62k + 2)p
where a 2

2 Gjk - / :2+ 4x k2 2' k -2

and T = t - tk' tE[tk, tk+1]

10

(15)



Note here that since uyk(tT) is taken in the form:

uyk( ,T) = (AlksinwlkT + BlkcoswlkT)Ylk() +

Ylk( )Ylk (1/2) TS(2 
F (77) sinw k (T--q)d?7

LlkWlk 0k-1 (17)

Alk and Blk are now given by:

Ayk_ 1 (j, k )

lk 1k Ylk ( )

Bk - uyk-l(t tk)k Y lk(t) "(18)

rather than (12).

Now that the hammer force-time relation is known, the

calculation of the specimen bending moment and the hammer

energy loss (tear energy) follows directly. For the bending

moments, we have from the results of Appendix I:

-E o u
Y = M(tt)L 1  at2 (19)

substituting equation (4) into (19), we have:

(A sin + BkCOSWLT) d Y Q) +Mk 2 IkSWk I 7

0 d2 11(t)Ylk (1/2) T 7

+Y!s f Fk(Y)sin lk(T_-)d

i=1 d WlkWik 0 F (20)

for
tE[tk, tk+l] ' T = t - tk



The tear energy, AE, is easily found as a function of

F(t) by applying the impulse-momentum relation and the con-

servation of energy. Thus we have:

AE = Q[(V 0 1 -V 0 2 )- Q] for the double pendulum (21a)

= Q[(V 1 V Q ] for the drop weight (21b)AE=Q(01-V02 ) - 6
tI

where Q F(?)d
0

COMPARISON WITH EXPERIMENTAL RESULTS AND CALCULATION OF THE

TEAR ENERGY

In this section, the results of the analysis are compared

to the experimental results for the 5/8 inch DT specimen

(6001 aluminum and J-22 steel at room temperature) and the

6-3/8 in DT specimen (L-14 steel at 70OF and 120 0F). Also,

calculations for the force-time response and tear energies

are presented for the J-22 steel as a function of various

geometrical parameters and the initial impact velocities.

Because of the computational difficulties involved,

some simplifying assumptions were made so that the numerical

could be carried out in a convenient fashion. First of all,

the iteration procedure outlined in Appendix II for including

the effects of the higher order bending modes in the integral

equation for the force-time response is not employed. Second,

the eigenvalues and eigenvectors of the beam field equations

are assumed to be given as:



Yik(t) = sin i1rr

iik 2 \ 2 E
i,1 g (22)

where Ik" is a fictitous moment of inertia and is a function

of a/2h. The eigenvalues and eigenvectors were assumed in

this form because the solution to the beam field equation

outlined in the last part of Appendix I was not yet complete

at the time these calculations were performed. Equation (22)

is just a modified version of the familiar result for a

simply supported, Euler-Bernoulli beam. I is estimated as

follows:

From the compliance- crack length relation [7], we

have:

b 1 = F12 d (ruy(L/2)
dI F (23)

for a beam with a statically applied load F at midspan.

is the mode I fracture toughness and a = 2h-d. But:

KI 2 = EI (24)

where KI is the mode I stress intensity factor and from the

results of [8] for static three point bending, we have:

K 2 X X2F 2 L
2

I 6 (2h)JbZ (25)

where

X2 = 130(a/2h) - 263(a/2h)2 + 820 (a/2h) (26)
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Therefore, upon substituting (24), (25), and (26) into (23) and

integrating, we get:

Uy(L/2) - FL3 [1+ -(65(a/2h)287.3(a/2h) 3+205(a/2h) 4

g (27)

Since the deflection at midspan for a uniform beam with a

moment of inertia I" is given as:

FL
3

Uy(/2) = 4E (28)

we have:

I

i-+ [[65(a/2h) -87.3(a/2h) 3+ 205(a/2h) ] (29)

Curves showing I" as a function of a/2h are displayed for

the two DT specimens in Figs. 5 and 6.

Now that Yik( ) and w ik are determined, the forces and

bending moments may be calculated. From (22) and (16), we

have:
6

(Vk4  ( 0 1 -V02)k 2 2

k (a -2 213 (aB) [ak(c ik - 3k )sinBkT +k k

+ B k(a k 
2 -Uk 2 )sinakT ] - Alkw-ik[aksinakT - BksinBkTI] -
22

-Blk [ak cosakT - Bk2 COSB k T ] + (30)

Fok ] 2 2

+ [(X01-X 0 2 )k - a + -4] [(Uik 2-Bk )cosBkT +
01 02 k Ok 4

+ (ak 
2ik )cosa k T]

for tE[tkltk+l], k = 0,1;2;...,K



The coefficients Alk, Blk are found from expressions (17)

and (18):

(Al1')k = (Alwl)klcoscik-l(tk-tk I ) - (Bl'l)kl

sin ik-l(tk-tkl) + k3 f1  k tk-

0
k-l (77) cosWlk-1 [ (tk-tk ) -1-]d

(31)

Blk =Alklsinlk-l(tk-tk-l) + BlklCosik l(tk-tk_) +
k 3  tk-t ' ' -

1 3  tk1 k-1) Fk-l(p)sinwUlk-l[(tk-tk-l) - ]dl

lkl 0

also, k = l,2,...,K (XOl-XO2)k - aok = uyk..l ( t k) B lk

(32)

and A10 1 B0 = F00
= 0.

The bending moment prior to fracture initiation, i.e.,

t([t 0 , t1 ], is easily found from equations (20) and (22).

M 0 ( t)=
PT) EP'0 (L ) - sin -~sin iTr~t(2 /) 2c- i2 TT

(33)
Sb tt (n) SintO (t-) di (

0

Substituting equation (30) in (33), we have:

(l 2_ 0_62= P0 ,tl B = o o i=1,3,25..
B 0 sinwi 0 t-o 0 sin1ot3(B2-_ i2) o '

)(sin - siniT-r +
2

Xsin i sini r t _

(a 0  C=13,

a 0 i=l23)5

(34)

a 0 sinw i 0 t-Wi 0
s ina 0t

(a 2 - i2) 0

15



where
2k 4 -I 0 L (V01-V 0 2 )0

0 (a -22 )0 2

It should be mentioned at this point that equation (33) has

been found to converge fairly slowly and the integration for

large values of i, if done numerically, presents some dif-

ficulties due to the oscillation of the term sinwi0 (t-n).

One of the primary advantages of the iteration technique

described in this paper for the solution of (11) is that the

integration in (33) may be carried out analytically, thus

avoiding this problem.

Figures 7 and 8 show the theoretical and experimental

force-time and specimen bending moment-time (mid and quarter

span) responses for 5/8 inch J-22 steel specimen. Looking

at the midspan bending moment-time response (Fig. 8), it is

seen that fracture occurred at -704sec. Since this material

is brittle at room temperature (this was seen to be the case

upon examination of the fracture surface), it can be assumed

that once the crack initiated, it propagated very rapidly

without arrest through the entire specimen. For the

theoretical calculation of the impact force-time response, t1

is therefore taken as 704sec and the crack speed is assumed

to be roughly 3000 ft/sec. K is taken as 3 with t2 = 804sec,

t 3 = 904sec, t 4 = 2004sec.



As can be seen in Fig. 7, the agreement between the

theoretical and experimental results is excellent. The

principle feature of these curves is that the peak load

occurs prior to crack initiation. It is caused only by

inertia effects and is unrelated to the fracture process.

Returning to Fig. 8, we note the excellent agreement

for the bending moments at mid and quarter span. The

presence of the compression region for the first 40psec at

quarter span is again an inertia effect.

Finally, Fig. 9 shows the theoretical bending moment at

mid span for the J-22 steel along with a quasistatic midspan

bending moment obtained from the hammer force, i.e.

FL
T -(35)

t is allowed to approach infinity so that the material is now

considered to be infinitely strong. We note here that after

approximately 200lsec, the difference between the static and

dynamic bending moments is relatively minor. (The actual

difference is less than is indicated in the Figure due to

damping effects which are not accounted for in the analysis.)

Thus these curves show rather nicely the time range over which

inertia effects must be considered in the calculation of the

midspan bending moment. Since in the case under consideration,

tI = 704sec, the fracture moment cannot be calculated using

equation (35) but must be obtained from the dynamic analysis

(equation (34)).



Let us now examine the data for the 5/8 inch 6001

aluminum. The experimental and theoretical force-time and

moment-time responses are shown in Figs. 10 and 11. We

first note that the hammer force-time response (Fig. 10) is

characterized by the occurrence of multiple peaks. However,

if we calculate the force-time response from equation (30)

for an infinitely strong specimen (t1 ->-CO), we see that

only a single peak at t = 601sec is predicted (see Fig. 10).

This implies that the subsequent peaks occur during the

crack propagation stage of the impact process but that the

first peak is an inertia effect.

This inference is substantiated upon examination of the

M(I/2,t) - time responses shown in Fig. 11. Here we see that

that strain gage response increases monotonically until

t = 120Psec where it decreases slightly and then goes off

scale at 140psec. Since the theoretical calculation does not

predict a decrease at 120lsec it may be assumed that it is

due to crack iniation. At t = 140lsec, the crack has pro-

gressed through the strain gage. Going back to the force-

time curve, we note a second peak at 140sec. This peak is

caused by the decrease in specimen rigidity due to the pres-

ence of the crack. Subsequent peaks are caused by both crack

propagation and inertia effects.
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Figure 10 shows the theoretical force-time response

calculated from equation (30) assuming a 50% pop-in at

3000 ft/sec and subsequent slow tearing at 50 ft/sec.

t I is taken as 120lsec. Note that the second peak is now

predicted by the theoretical analysis. The results are not

shown for times greater than 350lsec because the agreement

was quite poor. This is due to the effects of gross specimen

yielding which become important at the later times. The

discrepancy in the theoretical and experimental results for

times less than 350lsec is thought to be due to localized

yielding at the contact point. This introduces a path

dependence on the constant k4 (different for loading and

unloading) and thus shifts the theoretical response along

the time axis after the first peak.

Finally, Fig. 11 shows the bending moments at mid and

quarter span prior to crack initiation. The agreement is

quite good. Inertia effects again show up in the quarter

span response, just as in the steel specimen. Since the

time dependence in the initial portion of the force-time

response is similar to that of the steel, we may infer from the

results shown in Fig. 9 that inertia effects again must be

considered for times less than approximately 200Wsec.

Since t 120Wsec, the bending moment at fracture cannot

be calculated using equation (35).
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The analysis of the data for the 6-3/8 inch L-14 steel

specimens is similar to the smaller specimens just discussed.

Figure 12 shows the theoretical and experimental force-time

response for 70'F. The material was observed to behave in a

brittle manner and t1 was found to be approximately 400.tsec

from strain gage records which are not shown here.

The theoretical curve was calculated assuming a crack

speed of 3000 ft/sec. As can be seen from Fig. 12, the

agreement is quite good. The outstanding feature of these

results is that there exists a delay time of about 300sec

between fracture initiation and the peak in the force-time

response. (This type of behavior was also observed in the

5/8 inch 6061 aluminum specimens, Fig. 9, but was not dis-

cussed explicitly.) The existence of the delay time is

expected physically since the decrease in specimen rigidity

due to crack extension must be quite large before the load

actually starts to drop. The presence of the delay time is

important in that it complicates the determination of tI from

the force-time response.

Figures 13 and 14 show the force-time and bending

moment-time responses for L-14 steel at 1200 F. The fracture

surface was primarily flat but there was evidence of a slight

degree of shear lip formation. The response from gage 3,

shown in Fig. 14, indicates crack initiation at 800 P sec.
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Figure 13 shows the theoretical and experimental force-time

response. For the theoretical calculation, t1 is taken as

800sec and the crack speed is assumed to be 1500 ft/sec.

The agreement is good although a time shift (as in the

6061 aluminum) is present.

Figure 14 shows the experimental bending moments at

three locations on the specimen as indicated in the sketch.

Also presented are the theoretical bending moments at mid

and quarter span. The agreement at quarter span is excellent.

The agreement between the response of gage 3 (three inches

from midspan) and the theoretical bending moment response

at mid span is excellent for times less than 350lsec. For

times greater than this, the experimental results are

significantly higher than the theoretical values. This

disagreement is accounted for by the presence of the brittle

crack starter.

Unlike the 5/8 inch specimen, the 6-3/8 inch specimens

do not have a completely machined notch but rather a machined

notch extending down 1 inch plus a brittle weld to act as a

crack starter extending down 2 inches. Strain gage 3 was

calibrated prior to the introduction of the brittle weld;

hence the calibration is only valid for times less than the

weld fracture time. Since a considerable disturbance was

indicated at 350Jsec on the experimental gage 3 - time

response (not shown in Fig. 14), we can assume that the weld
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fractured at that time. This accounts for the discrepancy

between the theoretical and experimental results for times

greater than 350i. An estimate of the midspan bending

moment can not be made from the other gage responses since

the moment distribution along the beam axis can not be

assumed linear in the time interval of interest.

Finally, Fig. 15 shows the theoretical dynamic and

quasistatic bending moments at midspan for the L-14 steel

assuming the material has infinite fracture strength.

Inertia effects become relatively minor after approximately

2 m.sec. In both tests on the L-14 steel just discussed,

fracture occurs prior to 2 m.sec. and thus inertia effects

must be accounted for in the calculation of the fracture

moment.

The final part of this section is concerned with the

effects of specimen geometry and impact velocity on the

shape of the force-time response and values of the tear

energies. The main purpose of these calculations is to

illustrate the utility of the analysis. No experimental

verification of the results has been carried out to date.

The material selected for this investigation is J-22

steel. A K of 100 ksi/in is assumed on the basis of the

experimental results discussed earlier. The crack speed is

assumed to be -3000 ft/sec. Four series of calculations

have been performed to determine the effects of initial
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impact velocity, specimen thickness, specimen length, and

specimen notch depth to width ratio on the tear energies.

The necessary data is shown in Table I. The tests are

assumed to take place in the double pendulum impact machine.

The force-time responses are generated by first calculating

the midspan bending moment as a function of time (equation

(34)) to establish t1 . The value of t1 thus established

along with a crack speed of 3000 ft/sec is then used to cal-

culate F(t) from equation (30).

We first consider Series A (velocity effect). Figures

16, 17 and 18 show the force-time responses obtained for

four initial velocities (29.4 ft/sec, 20 ft/sec, 10 ft/sec,

5 ft/sec). The curves in Fig. 16 need little explanation

as we have seen this type of behavior before for brittle

materials. The only important point to note is that the

height of the peak is directly proportional to the velocity

while t1 is inversely proportional to the velocity. Inertia

effects still need to be taken into account in the calculation

of the fracture moment when (V0 1 -V0 2 )0 = 20 ft/sec (see

Fig. 9).

When the velocity is decreased to 10 ft/sec, the

force time response is now double peaked as shown in Fig. 17.

This, of course,occurs because the value of t is now large

enough so that the minimum in the force-time response at
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130isec can develop. When the velocity is further decreased

to 5 ft/sec, we see that the magnitude of the first peak

decreases while magnitude of the second peak remains rela-

tively constant at 15,000 lbs. This is to be expected since

t > 200lsec and thus the fracture moment is directly pro-

portional to the hammer force as shown in equation (35). If

we were to decrease the impact velocity even further, the

first peak would become negligible while the magnitude of

the second peak would be constant. The force-time response

would thus become roughly triangular in shape; the base of

the triangle increasing directly as the reciprocal of the

velocity.

The tear energies calculated from equation (21a) are

tabulated in Table I. Note the rapid decrease in AE between

(V01-V02)0 = 29.4 ft/sec and (V0 1 -V 0 2 )0 = 20 ft/sec. For

initial velocities less than 20 ft/sec, AE decreases very

slowly, asymptotically approaching the static value (that

value of AE which would be observed in a static 3 point bend

test).

Unfortunately, this assyptotic value of AE cannot be

calculated using the present analysis. This is because the

assumption of a linear F-a relationship is unwarranted for

low velocities where the deformations at the contact point

are primarily elastic. The static value of AE can be
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estimated by assuming a Hertzian contact law and solving (6)

for the case where the maximum bending moment is just less than

the fracture moment. Since (6) is now a non-linear integral

equation, however, no attempt is made here to obtain

numerical values.

Figure 19 shows the effects of specimen thickness on

the force-time response. We note here that the amplitude

of the force-time response is directly proportional to the

thickness but the time dependence is unchanged. From

equation (18), it is evident the bending moment is also

proportional to the specimen thickness and from equation (25),

we see that the same is true for the fracture moment. There-

fore t is independent of thickness and the tear energy

(from (21a)) per unit area is constant. This is shown in

Table I.

Figures 20 and 21 show the effects of specimen length

and notch depth to width ratio on the force-time response.

The tear energies are again shown in Table I. Here it is seen

that AE increases significantly with specimen length but

remains relatively independent of the notch depth (the

result for a/2h = 0.5 should not be taken too literally since

the approximation of Yi(4) and wi used here is likely to give

misleading results for deep notches).
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To close this section, we have shown that the tear

energies per unit area for a brittle material change signi-

ficantly with specimen length and initial impact velocity

but are relatively independent of the notch depth to width

ratio and the specimen thickness. An important point to

keep in mind, however, is that the dynamic tear energy is

really the sum of the fracture energy plus the residual

kinetic energy in the broken specimen (rotational +

translational + vibrational) plus the plastic energy

dissipated at the impact point. Thus the results obtained

here do not necessarily imply that the fracture energy per

unit area behaves in the same manner. This is an area which

needs to be studied further.

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The analysis presented here predicts impact forces

which are in good agreement with the experimentally deter-

mined values for the J-22 and L-14 steel specimens. For the

ductile 6061 aluminum, the predicted forces agree reasonably

well with the experimental values in the initial portion when

gross specimen yielding is not an important factor. The

theoretical prediction of the bending moment prior to crack

initiation is quite good for the J-22 steel and the 6061

aluminum. The experimental data available for the L-14

steel does not yet allow-usto make a comparison with the
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theoretical midspan bending moments because of the brittle

weld failure prior to fracture initiation in the specimen.

The theoretical and experimental bending moments at quarter

span, however, agree rather well.

There are two primary conclusions which may be drawn

at this stage of the investigation. First, all available

results to date indicate that inertial effects are quite

important in the early stages of the tear test and must be

taken into account when calculating the midspan bending

moment (assumed proportional to K I ) and also when inter-

preting the force-time responses. Second, it appears that

the tear energy is not constant with specimen length and

initial impact velocity. This points out the need for

standardization of the test conditions and specimen

geometries in dynamic tear testing.

As was indicated earlier, much work remains to be done.

Some suggested areas of future work are enumerated below:

1. Inclusion of the results derived in the last part

of Appendix I in the computer program for the impact forces

and bending moments.

2. Consideration of the effects of gross specimen

yielding on the force-time and moment-time responses. This

could be accomplished using the normal mode technique pro-

posed by Salvadori and Bleich [9] and would require only a

slight modification of the elastic analysis.

27



3. Careful evaluation of the residual kinetic energy

of the specimen after fracture. This is especially impor-

tant for brittle materials since this energy may be a

major portion of the tear energy.

NOTE ADDED IN PROOF:

Upon completion of this manuscript, the results

of Venzi, Priest, and May (BISRA Open Report, "Influence

of Inertial Load in Instrumented Impact Tests') havebeen

brought to the author's attention. They reach essentially

the same conclusions as stated here, although they are

primarily concerned with instrumented Charpy tests. In

fact, Fig. 21 on page 28 of their report is remarkably

similar to Figs. 9 and 15 of this report.
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APPENDIX I

DERIVATION OF THE ONE DIMENSIONAL BEAM EQUATIONS AND

AN APPROXIMATE SOLUTION

Theorem: Let K be the set of all admissible states that meet

the strain-displacement equations. Let S = [u, e, af , r ] and fo

each te[O, c) define the following functional StJS ] over K:

,ft(SI [t*T.*eij ]dx - 1 k rt*Tij*T ]dx +etR si [tT j d R 2"Rijk j k k1

(I.1)

p[u*udx - -d f*(uU] )]dx -
R 1 R i 1 B i

- j [t*Ti*ui]dx
B 2  (summation convention)

Then 68t = 0 over K if and only if S is a solution to the

mixed problem, i.e., all the field equations, boundary con-

ditions, and initial conditions are satisfied.

The proof of this theorem may be found in Gurtin's

paper [2]. An admissible state is defined as an ordered

array of tensor valued functions u, e, T; i.e. S = [u, E, T]

such that certain continuity conditions on Rx[O, ) and the

symmetry relations Tij = Tji , lij = ji; are satisfied. The

notation [f*g] is a shorthand for the convolution of f and g:

t t
[f*g] - f(t-T)g(T)dT = f g(t-T)f(T)dT (1.2)

0 0
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5G is used to denote the first variation of G) which is

defined as follows:

66()=-!let (S + xs)1
dX

(1.3)

for S, SeK and every real X.

Let us now consider a uniform rectangular beam loaded

along the top (y = -h) with a load per unit length p(x).

Assume the stresses and displacements in the following form:

T = xy u 0- u Uj 0: 00) yu(J/
O O O (1.4)

where
T = M(x,t)G(y)

xx

Txy = V(x,t)P(y)

ux = Ux(X,y,t)

u = u (x,y,t) (1.5)

and G(y), P(y) are presumed known. If M and V are to be

identified as the bending moment and shear force respectively,

the additional conditions:

jAJyG(y)dA = J j'AP(y)dA = 1
A A (1.6)

must also be imposed. Substituting (1.4) and (1.5) into

(I.1) gives:

32



L
0- f [t*M*
0

a ]dx
L

0
[t*V*a ]dx +

-Odx - ' oL [t

L1D 2 (G!)[t*V*Vdx + p.f
0G f0"'

L
+ R f o [,3*13]dx

204

x=L
+ [t'M-(a-a]x=0

10 P 03 [It *a (0, 

L
- I [S p t 0 (0:,x)

0

where

a - fASG(y)u xdA,

L

-0
uy

B3

*M*M]dx -

[a*a ]dx +

[t*p*B]dx +
= -h

A x=L- [t*v-(s3-f) ]x=O

) + a(o,x)j*a]dx -

+ 0(0,x)1*B]dx

B: : fP (y)u ydA

A - G2 (y)dA 22A

2

dP

and G d y

Also, it should be noted

ux(X,y,t)

u (x,y,t)Y

= U (xt)

= IA JP 2 (y)dA, ux
A a

that ux and uy must be

Q(x,y)

2

dA,

in the form:

= U y(x,t) R(x,y)
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so that "3 and *4 are time independent.

Taking the first variation of ®tIS]

of (1.3) and

gives with the aid

the elementary properties of convolutions.

L
5etS) = L [

t 0
L

+ 5 [[-t*a +
0

L- [(-t* 6M0' -R

E t*M*M]dx +E+

t* a 0 +t*V )*V]dx +

+ * P03a+xJk ~-d

+ P D1 - Uy
y=-h

+ [t*(a-)*M]

Jx - p[tjI(O:,x) +

J p [tAf(,x)

x=L

x=O

a (o0,x) ]

+ B(o,x)]

Setting 66 t = 0, we have with the aid

1) -t*a *M = 0ax i

2) -t*a + t*-k - t*V = 06x

3) -t*6M + t*V - Pi3a + D3Jx

of Gurtin

= 0

(1.12)
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(t*p) - 0jy"

where

*B ]dx +

- [t*(f-3 )*V]I

x=L

x=O (I.10)

(I.11)

[10]:

[-t* a6x



4) - t* aV + P4B Uy (t0p) - 4J = 0
)-- 4) - - ly=- h  YA -

5) a= a or M = 0 and B =B or V = Oon x =0, x = L

From Gurtin [11], it can be shown that when equations 3

and 4 of (1.12) are satisfied, the following equations along
on

with the intial conditions/a(0,x), a(0,x), I(0:,x), B(0,x)

are also satisfied:

1) M V 2a =02) -v _ u
2)~- P a2B+uy P = 0
Ox+ B y=-h (1.13)

Equations (1.13) are the generalized equilibrium equations

Differentiating 1. and 2. of (1.12) twice with respect to

time gives the generalized stress-displacement equations.

1) M E a

2) V = (4- - a) where x = G/D 2  (1.14)

Finally, equations 5. of (1.12) are the boundary conditions.

Either a or M and either B or V must be specified at x=O, x=L.

If we take the stresses and displacements as:

u x =- UxY

u = u (x,t)
My

Trxx My-X --

T ( 2 2

Xy 21(h -y ) (1.15)
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then:

a = + Ux (x,t)

B = u (x,t) 03= Iy
01 = 1i x = 5/6; GA

44 = A

the field equations now become:
2d

1) -m V + d -

2) V - pA 62 uy + p =02) x at2

3) M = - E --

4) V n ('b y - Ui, )  (1.17)

which are the well known field equations for a Timoshenko

beam.

Now consider the notched beam shown in Fig. 2. Let us

assume that the normal and shear stress distributions can be

approximated in the following manner:

T xx = M(x,t)G1 (y) xE[0, L-6

T xy = V(xt)P1 (y)

Txx = M(xt) G2 (y)

T xy = V(x,t) P2 (y) x 2[Lj6 ' -72]

Txx = M(x,t) G3 (y) L+6 L]

Txy = V(xyt) P3 (y) x , (1.18)



If 'F is ignored as well as the discontinuity in crossYY

sectional area due to the notch, than (1.13) and (1.14) can

be applied in each of the three regions:

1) .- V + P¢3i 0

2) PO 2 uy p 04i at + B x [xi 1 ,X ]
E a

3) M- E 6
3li Mx i = 1,2,3

4) x,66 a)
4) V(=i( - (1.19)

where

01 i 5- fGi 2 (y)dAl 42i - 5P 2 (y)dA

43i5A a 4i A dA (1.20)

Gi G
Pi =;P xr[xi-1 ' X]

a L-6 L+6

and x 0 = 0, x 1 2-- ,x 2 ---- ,x3 =L

Of course, the solutions in each region must satisfy con-

tinuity conditions on M, V, a, B at the interior points x1.

We now consider the solutions to equations (1.19). In

general, 43i and 0 4i are not constant in the interval

[x i1' xi] but are functions of x. We can solve (1.19)

using normal mode theory, but to find the normal modes,

requires one to solve four ordinary differential equations

with variable coefficients. Although this is possible with

the aid of an analog computer (see for example Howe and Howe
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[12]), this technique will not be discussed further in this

paper.

If the displacements ux and uy can be expressed as:

ux = Ux(xt)Qi(y)
x(i = 1,2,3)

U = U (x,t)R(y) (1.21)Uy Y (I.21)

then 43i and 4 4i are constant in the interval [x i=lxi].

The situation now becomes somewhat more simplified and we

can use normal mode theory to solve (1.19) where the normal

modes can be obtained using the solution due to Huang [13].

The computational difficulties are still formidible, however,

primarily due to the two modes of wave transmission per-

mitted in a Timoshenko type beam.

In view of the assumption involving the normal stress

T and the requirement G(y) =- dP, it is the author's opinion
yy dy

that the effort required to obtain the solution to (1.19) is

not justified. Therefore, the following additional assump-

tions will be made. First, assume that the effects of

rotary inertia can be ignored. This implies 413 = 0 which in

turn implies:

6M
6- = V (1.22)

Next, assume that the shear deflection is negligible. This

implies:

a = __

S x (1.23)
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and also, since the shear force V is generally nonzero, n-> o.

Substituting (1.22) and(I.23) into (1.19) gives:

E 240 (u2 Up

Ti x4 + 4 4 4i - t LCy- (1.24)

for x([xil, x i ]

Making a final assumption on u :y

u (x,y,t) = u (x,t) (1.25)Y y

gives:

E 4 uy + 2uy
4DIi + P tZ (1.26)

The effect of the notch is thus reflected solely in the

term li" The validity of all these assumptions can only be

verified by comparison with experimental results although it

is known for uniform beams that when the duration of impact

is on the order of the fundamental period, (as in our case)

the effects of shear and rotary inertia can be neglected.
x

We will now consider the solution to (1.26). Let =

then (1.26) becomes:

E 4uy A 62 u
L 4 n 6 tz (1.27)

Assume that u y(,t) for the homogeneous version of (1.27)

can be expressed as:

uyi(tt) = Yi(,()eJwt (1.28)
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where

uyi( ,t) = uy(,,t) for [- l] (i=1,2,3) and jmJ-l.

Substituting (1.28) into (1.27) and solving the resulting

ordinary differential equation gives.-:

Yi( ) = Cj! cosh Nikt + C2 i sinh Nikt +

+ C3i cos Nik + C4i sin NLkt

where (1.29)

k - pAL 4 W2
k -a---and Ni -- Ig 4 I

ETg g 4li

The twelve constants in (1.29) as well as the frequency

w can be found by applying the boundary conditions at t = 0,

= 1 as well as the continuity conditions on M, V, uy and

6u y/ at t, and t2, This procedure yields a countably

infinite set of eigenvectors Ym(Q) (m = 1,2,...) and eigen-

values uj." The eigenvector Ym(Q) for tC[0,I] is defined as:

3
Ym ( 1 = 3 Ym()[H(-t 1 ) - H(-ti)]m i=l (1.30)

where H denotes the Heaviside unit step function.

Once the eigenvalues and eigenvectors are known, the

solution of the non homogeneous equation (1.27) follows

directly. Assume u yi(,t) in the form (we follow Chen [14]

here):

u yi(,t) = E Yim( )Tm(t)m~l (1.31)
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Substituting (1.31) into (1.27), it is easily shown that:

T t = 1 R (r)sin t-)d + AsinWmt + Bmcos%1 t
(I .32)

where R (t) is unknown at this point. R (t) can be found,m m

however, using the orthogonality condition:

1
PAg- 0 Ym(W)Ym(t)d = 0 (m .,n) (1.33)

Thus, R (t) is given by:m

1m 0 (1.34

W = PAg Y 2 ( )dt
0

For a concentrated load at midspan,

p(tt) = F(t) 6(Q-1/2) (1.35)

and from (1.31), (1.34), and (1.32), we have;

CO
U (tt) = 2 (A sina)t + B,,cosait)Y,(t) +
y f=l

(1.36)

SY()Ym(/ 2 ) inwm(t-t)d

wel W~Wj
di m~ a 0 F()si ° tw

The bending moment M(Q,t) can now be found easily. From

(1.19) (equation 3.) and(I.23) we have:
- E 2u

Y M(tt)
L-2 I i - 2 (1.37)



The problem of determining the bending deflections and

moments for the notched beam is now solved once li and 6 are

known as a function of the beam geometry. To estimate them,

we now assume that T xx can be approximated as follows:

x xf[0 and L]

9C2Y
T l(h-s)

xx [(h- ) a2 11 2 - (1.37)

for - h <y<h-a-A

Txx = nKt E-b(2h)2(1a/2h)2 ]Kt xc[L+51 L-]

for h-a-A <y<h-a

T xx

for h-a<y.h

C1 and C2 are as yet undetermined functions of (a/2h) but must

be linear functions of M. Kt is the elastic stress concen-

tration factor and depends on (a/R); A is an as yet undeter-

mined length depending on (a/R) and (a/2h). Equation (1.37)

should provide a reasonable approximation for relatively

short, sharp notches.

To determine C and C we use the two available

equilibrium conditions at the beam cross section:

h-a h-a
1. b Txx dy = 0 2. bj_ _ YTxx dy = M (1.38)

xx - I.8
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(A/a) <<<l, it is easily shown that

M
Fxx =Ab(2h )

where A,

L (h-y) - +(h-y) 2-a

are functions of a/2h alone and are given by

following expressions:

A - (a/2h) 2 n
Il+

a/2h

[1-(a/2h)2]
11

+ a/2h
2

(l-a/2h)

(1.40)

2 / 1 - (a/2h)2 ] 1 / 2  31=a/2h - ia/2h) - -

Using the definition of OIi

find 4ll' 012' 2 13"

When (A/a)<<l,

12 - 1 212A 1I

a/2h

1+ [1-(a/2h)
2

3-

]1/2 1 +

(equation

012 is easily shown

[(1/2-a/2h)
3

a/2h

(1.20), we can now

to be given by:

+ 1/8] + (a/2h) 2n

[ctnh - 1 (l+A/a)-ctnh ~l(a/~h)

Also,

0ii = 13
= 1/I

(1.42)

(A/a) may be found as follows: From equation

xxI y=h-a-A

M a/2 1/2
-Ab (2bh)2 26-/2b

But from equation (1.37),
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the

(1.39),

(1.43)

Assuming
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'xx 1 y=h-a-A

6M K
2 2 tb(2h) (l-a/2h) (1.44)

therefore,

K (l-a/2h)2 a/2h 1/2

t 2A/2_
Kt = 62J 26ihJ

But Kt is also given by [15]:

Kt = 2(a/R)1/2

(1.45)

(1.46)

and therefore, setting (1.46) equal to (1.45), we have:

A/a - (l-a/2h) 4 (R/a)
36A \8 / (1.47)

Table II shows A/a and 012 for three values of a/2h (.1, .2,

-2
.3) with R/a = 10-

To estimate 6, we consider now the static deflections of

a simply supported notched beam loaded at midspan with a

concentrated force F. Thus we must solve the time indepen-

dent version of equation (1.27):
4

E d u
Y = F 6(x-L/2) xc[x x.]

1ii dx4 i- 1

i = 1,2,3 (1.48)

The deflection at midspan, u y(L/2), is easily obtained by the

moment-area method [16]. Thus we have:

S(L/2) =FL 3  (1-6/L)3 +3N 6/L + 3N 6/L 2

y 4LEi 2 1-6/L 2(1-6/L +

5N 2  6 /L 3

+ -47 - 6g 1 )

where N 2 = 'g 012

(1.49)



However, the deflection at midspan is also given by (27)

as:

FL 3 b+

Uy (L/2) = 48I [l+ (1.50)
g

where 4 = 65(a/2h)
2 - 87.3(a/2h) 3 + 205(a/2h) 4

Hence, comparing equations (1.49) and (1.50), we see that:

(1 - 3 6\6/L\) 2  5N/ 6/L\ 3  +
1+3N(=k 7) + 3N + --T 7 : h

(1.51)

Once h/L is specified, equation (1.51) can be solved for 6/L

as a function of (a/2h). Table II shows (6/L) for three

values of (a/2h) (.1, .2, .3) with (h/L) = 1/8.

As was stated previously, where 6 and 4 li are known as

functions of (a/2h), equation (1.27) may be solved to obtain

the deflection u y. This approach has some serious limita-

tions, however. First is the complexity of the calculation,

second is that the approximation for T is only good forxx

shallow notches, i.e. (a/2h)<.3. Thus it is desirable to

have an approximate solution of (1.27) which does not

explicitly depend on the assumed form of Txx@

If we examine Table II, we note that (6/L) is very small

for all values of (a/2h) considered. This suggests that we

form an approximate solution by letting (6/L) =:0. However,

in order for the effect of the notch to be felt, (6/L) =>0

implies 012 " We therefore approximate the actual beam
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by a beam with I (x) given by:

4l(x) = + D6 (x-L/2)
g (1.52)

where D = D(a/2h). The coefficient D is determined by the

condition that:

u (L/2) FL 3  h
y I static g (1+48E (1.53)

For a beam with a variable 0l' the deflection equation

(1.27) may be written as:

2  2 2

y + PA =p=F6(x-L/2)]~ ~ g t2'- 6xL2 .4

To find the static deflections, uy, we set the time dependent

term in (1.54) equal to zero and substitute (1.52) to get:

)E_ ___ = F6(x-L/2)

O (1/Ig6 (1.55)

The solution of (1.55) for a simply supported beam may now be

found easily by Laplace transform techniques. (Of course,

(.55) cannot be satisfied in the conventional sense at x = L/2;

however, we assume that (1.55) is satisfied in the conventional

sense at all other values of x and is satisfied from a dis-

tribution theory point of view at x = L/2. For a detailed

discussion see [17].

Taking the Laplace transform of (1.55) twice, employing

the boundary conditions:



2
du

uy (0) -dX y

and inverting gives:

= 0

(I.56)

du
y x YUy dx I

F 2H+ 6E (x-L/2) H(x-L/2)
g

du
The terms

dxjx = 0

d 'u
and y

dx Ix -

(1.57)

may be eliminated by

using the remaining boundary conditions:

2d u

Idx21 x = L

= 0

(1.58)

After the necessary calculations are performed, we get:

23FL2

Uy X g +
PLD N x DLI F

2 9--- (x-L/2"H(x-L/2) 2EI +

_ _ 3
+ 6EI (x-L/2) H(x-L/2)

g (1.59)

Finally, setting x = L/2 gives:

FL 3

u y(L/2) = 48I1
y~ g

3DI)
+ L 9

(1.60)

Equating (1.53) and (1.60) gives the following expression

for D:

DI 1

L 9- (h/L)C1

X, DLIdu(x g (x-L/2)(x-L/2)-3 =
+ + d x x =

(1.61)



and moments.

Let us first consider the homogeneous version of (1.54):

6 2 E

6x 2 (1/Ig + D6(x-L/2)

Assume:

62)+ pAg9 - . =t 0

uy = Y(x) sinwt

and substitute (1.63) into (1.62) to get:

d (
dx\/Ig + D& (x-L/2)

d_) -
2AY = 0

(1.64)

Taking the Laplace transform twice, employing the boundary

conditions (1.56), and inverting gives:

d
dx x=

d Y

xIX=

(sin kx + sinh kx) (1/2k) +

0

(sinh kx - sin kx) (1/2k 3 ) +

DI L 3y
gk 2 dY

2k jx=0

+ k4e)H(x-L/4) [sin k(x-L/2) + sinh k(x-L/2)]
(1.65)

where

d 7

(1.66)

o2

k 4= E WEI1

48
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(1.63)
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As in the analysis of the static deflections, the terms

and dY
d-x= may be eliminated using the boundary

conditions (1.58). The procedure yields:

kL .kLsinkL sinh--ksinh kx + sin -Lsinh kL sin kx
Y(x) = 2Dk 2IgC kL kL 4DIgkL (sinhkL - kL) - -sinkL kL

for xE[0,L/2) (1.67)

Integrating equation (1.67) twice from x = 0 to x = L/2

gives, using the definition of e (equation (1.66)):

0 = 6 l -

(coss- k + -cosh- kLs+ kL

kL kL 8 L COSkL(cosh-- cos--.) DI Lk 2 cosh-2 -
g (1.68)

But e = 0 corresponds to all the antisymmetric modes, therefore

we must have:

r L k Lk kL k(cosh COS- ! + (-cosh sin + cos--ffsinh-
(cskL cosL) : 8 kL KLL(cosh---g -Lcos- DI LK2  cosh--cos--2

g

for .all symmetric modes. Equation (169) is thus the eigen-

value equation for the symmetric modes and reduces to:

kL 2L kL
tan-g = 2L + tanh-ff

DIge (I.7Q)

Substituting ejuation (1.61), we have:

tankL_ 6 L+ tanhkL

2 (bh/L) T(-L) 2
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dY
dxIx=0

= 0

(1.69)

(1.71)



Examining equation (1.71-), we first note that for a

kL
uniform beam, 0 = 0 which implies tan-q = oo. Thus

kL = n-(n = 1,3,5...) which are the eigenvalues for the

symmetric modes of a uniform simply supported, Euler-

Bernoulli beam. Going back to equation (1.67) and letting

kL = ni-(n = 1,3,5...), we have:

Y(x) = 2kE sin kx

IkL = n L (1.72.)

Equation (1.72) states that Y(x), for kL = nrr, is propor-

tional to sin kx which is again equivalent to the result

obtained for the Euler-Bernoulli beam.

We now consider solutions to (1.71) for the case where

4 0. Since 0 is a monotonically increasing function of

(a/2h), we see that kL<nT for all (a/2h) and decreases with

increasing (a/2h). This of course implies that the natural

frequencies Won decrease with increasing crack length. The

first root of (1.72) (corresponding to the fundamental

frequency) is shown in Table II for five values of (a/2h)

(.1 .2 . :5).

With the eigenvalues and eigenvectors now determined,

equations (1.36) and (1.37) can now be used to supply the

dynamic displacements and bending moments.
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APPENDIX II

ITERATION TECHNIQUE FOR DETERMINATION OF THE HAMMER

FORCE WITH HIGHER BENDING MODES ACCOUNTED FOR

For simplicity, cracking of the specimen will be

neglected. tk (k = 1,2,...)-> and F(t) = F 0 (t) for

t[0, w). Thus the following integral equation must be

considered:

F t
- = (V0 1 -V0 2 )t = k:1 j F(17)(t-?7)d7 -

4 0 (11.1)

- ~I 3i ftF(7)sinwi (t- -7)d
i=l i 0

where 2
Y. (1/2)

W.
1

To solve (II.1), we employ a successive approximation

technique. Let F 0 be the initial approximation where F (t)

is given by:

0  (V0 1 -V 0 2 )k 4  2_62 2  2
F2(t) = 2 [a(w. 1  )sin-t + (a 1 )sinat]aB (a2-B 2 )

(11.2)

and is the solution to (II.1) with a single non zero bending

mode. Using F 0(t), we calculate the elastic beam deflection

uy 0 (1/2, t) where

0(1/2 t) = k3i ItFO( 1 )sinw (t--)dq

y i=l 0 (11.3)

Z1



obtained from the equation:

(V 0 1 -V 0 2 ) - k, tF ()(t- 7 )d 7 -
0

Let F1 F0 +AF1 '0 , then we have from (II.1),

0 (1/2,

(11.3),

- j k AFlO(-q)(t-77 )dl 7 - "Y
0 l=2,3,

k 31t F 0 (7 )i 0

X sinwi(t ... -)d-

Taking the Laplace transform of (11.5), we have:

k3 F0(F

2

p+w
(p 2+k IkM) )(11.6)

Equation (11.6) is easily inverted to give:

k 4 i.=213 3 i 0FO()

sin Vk k
1 4

(t- 17 ) ]dn7

1

(11.7)

2 2Let F2(t) be the next approximation where F(t)

obtained from:

(V0 1-V02 )t

1u (I/2,t)
y

- k F (17)(t- 7 )d 7 - u l(/2,t)
l0 (11.8)

cc k t31 F (77)sin wi (t-77)d?7

i=l i 0 (11.9)
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R-.

4

(I1.4):

(11.4)

and

AF10

i =2

(11.5)

AF
I ,

F
2

E4

and

AF I,10
k 4

[ Loi sinw i (t - n )

/k 4 k



Setting F2 = F1 + AF 2 ), we have from (11.4) and (11.8):

AF 2 1 jt 21F-lAF ' (-)(t-n)d?- 3 1 j AF ' (n)sLnw (t-17)dn

40 i =1 Wi o
(II.10)

Solving (11.9) for AF by Laplace transforms again, we get:

A221 Cc t 1
AFk k3ISrAF'(n) -2_ [uwisinw i(t-1)

41=1 0 (wi -k 1 k 4 )

- ¢kl 4 sin /klk4 (t-17 )]dq (I.11)

If we continue this procedure, we have in general:

Fn=t n(,) n-l
= (V0 1 -V0 2 )t-klj Fn (t-Tj)d77 - uy ( ,/2yt)

40 (11.12)

where

n-l(1/2,t) = CO-K 3 1 stFn-1 ()sinw (t_?)dl
i=l i 0 (11.13)

and

AFn+ln - k4 X AFn' (77) 21 [sincc i ( t -i ) -
4=i 0 (wi -k k 4)

- /Rklk 4 sin 4 t - ) ]d 7

(11.14)

for n = 1,2 .....

The convergence of this procedure can be established

very easily by employing the argument presented in Lovitt

[18]. The details will not be shown here due to length

considerations.
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TABLE I

Series A (Velocity Effect) J-22

(V 0 1 -V 0 2 )

ft/sec

29.4

20.0

10.0

5.0

L

in

6.5

6.5

6.5

6.5

2h a/2h

in

1.625

1.625

1.625

1.625

0.307

0.307

0.307

0.307

Series B (Thickness Effect) J-22

29.4 6.5 1.625 0.307

29.4 6.5 1.625 0.307

29.4 6.5 1.625 0.307

Series C

29.4

29.4

29.4

(Length

7

9

11

Effect)

1.625

1.625

1.625

J-22

0.307

0.307

0.307

Series D (Notch Depth Effect) J-22

29.4 6.5 1.625 0.10

29.4 6.5 1.625 0.30

29.4 6.5 1.625 0.50

b

in

0.625

0.625

0.625

0.625

0.625

1.25

1.75

0.625

0.625

0.625

0.625

0.625

0.625

a

in5/2

0.202

0.202

0.202

0.202

0.202

0.404

0.580

0.202

0.202

0.202

0.373

0.202

0.120

AE/A net
ft-lb
in2

78.5

39.2

34.2

30.6

78.5

78.5

78.5

83.0

104

122

69.6

78.0

104

//=K '(2h)b K aI x I
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TABLE II

a/2h A/a Ig 4 '1 2 6/L kL (1 )  wi/ 0

-4
.1 8.4x10 4  1.95 .025 3.10 .975

.2 7.18x10- 4  4.28 .030 3.00 .912

.3 4.94xi0 - 4  6.95 .040 2.88 .830

.4 - - 2.68 .728

.5 2.48 .623

R/a 102

h/L = 1/8

kL (I ) is the first root of (1.71,)
0.

ul 0is the fundamental frequency of the corresponding

uniform beam
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Fig. 1 - Specimen configuration

Fig. 2 - Double pendulum impact machine
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HAMMER

U,0

SPECIMEN

X-Y COORDINATES FIXED AT POINT OF IMPACT

x'-y' COORDINATES FIXED IN BEAM

Fig. 4 - Coordinate system

0 1 I i 1 I 1I I
0 ,I .2 .3 .4 .5 .6 .7 .8 .9 1.0

a/2h

Fig. 5 - Equivalent moment of inertia vs notch
depth to width ratio for the 5/8-in.DT specimen
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Fig. 6 - Equivalent moment of inertia vs notch depth
to width ratio for the 6-3/8-inch DT specimen
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® CRACK INITIATION FROM
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Fig. 7 - Hammer force vs
time (J-22 steel)
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Fig. 8 - Bending moment vs
time (J-22 steel)
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Fig. 9 - Bending moment vs time (J-2Z steel,

no fracture)
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Fig. 10 - Hammer force vs time (6061 Al)
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Fig. 11 - Bending moment vs
time (6061 Al)
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Fig. 12 - Hammer force vs
time (L-14 steel, 70'F)
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Fig. 13 - Hammer force vs
(L-14 steel, 120 0 F)
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0 .2 .4 .6 .8 1.0 1.2 1.4
TIME (MS)

Fig. 14 - Bending moment vs
time (L-14 steel, 1200F)

0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
TIME (MS)

Fig. 15 - Bending moment vs time
(L-14 steel, no fracture)
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60 80
TIME (/LSEC)

Fig. 16 - Effect of initial impact velocity
on the force-time response (J-22 steel)
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_j 10-
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0Li.
rY,,

• r
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Fig. 17 - Force-time response
for an initial impact velocity
decreased from those of Fig. 16
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0 80 160 240 320 400 480 560
TIME (,LSEC)

Fig. 18 - Force-time response for
an initial impact velocity further
decreased from those of Figs. 16
and 17

TIME (MSEC)

Fig. 19 - Effect of specimen thick-
ness on the force-time response
(J-22 steel)
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Fig. 20 - Effect of specimen length
on the force-time response (J-22
steel)
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Fig. 21 - Effect of specimen notch
depth to width ratio on the force-
time response (J-2Z steel)
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