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ABSTRACT

A rapid and accurate method is developed for deter-
mining the static configuration of and tensions in a buoy-
cable array that consists of a subsurface float anchored to
the bottom by three cable legs. The array is acted on by
weight and buoyancy forces and by current-induced forces
that depend on the position and orientation of the cables in
thewater. A lumpedparameter representation of the struc-
ture is assumed, and the analysis is performed by using
The Method of Imaginary Reactions to determine the equi-
librium configuration of the array under constant applied
forces and the method of successive approximations to iter-
ate on the position-dependent current forces. Expressions
are derived for the hydrodynamic forces, and both normal
and tangential drags are included. The analysis allows for
the possibility that a variety of discrete-element measuring
and flotation devices are attached to the cable legs. Although
a lumped parameter representation is used, the analytic
method is independent of the number of stations employed,
depending only on the six unknown components of the reac-
tions at two of the anchors. Consequently, arbitrary fine-
ness can be used in modeling the structure without increas-
ing the complexity of the problem. A computer program
for implementing the analysis is included, and a sample
calculation is given to demonstrate the use of the program
and to show the rapid convergence of the analytic method.

PROBLEM STATUS

This is an interim report; work is continuing on other
phases of the problem.
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THE STATIC CONFIGURATION OF A TRI-MOORED, SUBSURFACE,
BUOY-CABLE ARRAY ACTED ON BY CURRENT-INDUCED FORCES

SYMBOLS

The symbols used in this report are defined as they appear in the context. The most

important ones are listed here for reference.

(an, bn , Cn) the coordinates of the nth cable anchor

Akm,n the effective cross-sectional area of the (k,m,n)th
elemental device

Bm, the extensional rigidity of the (m, n)th cable segment

Cm, ncm n m, n the drag constants of the (m,n)th cable segment

ce ; x , C '  the drag constants of the (k,m,n)th elemental device

CD,mn the coefficient of drag of the (k,m,n)th elemental
device

m,n the coefficient of drag of the (m, n)th cable segment

when this segment is normal to the stream

cP' the coefficient of drag of the (in, n)th cable segmentm n
when this segment is parallel to the stream

COMPD a cutoff value that defines the acceptable completion of
the successive approximation iteration

COMPE a cutoff value that defines the acceptable completion of
the Imaginary Reaction iteration

dm,n the diameter of the (m,n)th cable segment

E a positive definite error function

n the component of drag force per unit length in the -m, n
direction

fn the component of drag force per unit length in the rm, n

direction
, F, n) the components of the external force acting at the

(m, n)th cable station

(F(n), F(), Fz(),) the components of the imaginary reactions applied tothe M(n)th stations of cables 2 and 3
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(hc;x hc;m,n' m,

he;x , he;ykMm n' k,m,n,

(Hc;x, ic;nnm ,

(He;

n, h, ) the components of the hydrodynamic force per unit
length acting on the (m, n)th cable segment

h; z,,) the components of the hydrodynamic force acting on
the (k,im, n)th elemental device

Y,, Hc; z) the components of the lumped drag force at the (m, n)thcable station due to the distributed hydrodynamic
forces along the cables

, Ye; ) the components of the lumped drag force at the (m, n)th
cable station due to the hydrodynamic forces on the
elemental devices

i, j, k) unit vectors in the (x, y, z) directions, respectively

k, m, n) the index of the kth elemental device on the inth seg-
ment of the nth cable

k(m,n) the total number of elemental devices attached to the
(i, n)th cable half-segment adjoining the (m-1,n)th
cable station

K(in, n) the total number of elemental devices attached to the
(m, n)th cable segment

Lmn the stressed length of the (m, n)th cable segment

Lm the unstressed length of the (m, n)th cable segment

(r, n) the index of the mth station or segment on the nth
cable

M(n) the total number of stations or segments on the nth
cable

rD the ratio of drag coefficients for the (m,n)th cablesegment = Ce 
IcN

.,n m,n

R z,) the components of the resultant force in the (m,n)th
cable segment

sk,m,n the stressed distance of the (k,im,n)th elemental de-
vice from the (m- 1,n)th cable station

Skmn the unstressed distance of the (k, m, n)th elemental de-

vice from the (m- 1, n)th station

Tmn the tension in the (m, n)th cable segment

V the current vector

V(z) the current magnitude at a height z above the bottom

(RX RYmn', mnn
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the integral of V2
( z) along the (m, n)th cable segment

from -, to -2 equal to

Xm' Ym,n

(amn, fnm,n

(AF(n),n' AFk,(n),n, AFA

(T m,n' I m,n

wm,. n the weight (or buoyancy) per unit length in water of the
(m, n) th cable segment

wk, m,n the weight (or buoyancy) in water of the (k, m, n)th
elemental device

Wm, the lumped weight (or buoyancy) force at the (m, n)th
cable station

(x, y, z) fixed Cartesian coordinates

, %,.) the coordinates of the (m,n)th cable station

(m,n: 6) the parametric representation of z along the (m,n)th
cable segment = zml.n + Ym,-e

Ymn) the direction cosines of the (m,n)th cable segment

5 a positive convergence factor having the dimensions of
force

Amn the sine of the angle between the (;.i, n)th cable seg-
ment and the stream

(n), n) the components of the additive forces applied to the
M(n)th stations of cables 2 and 3

I m, the hydrodynamic constant of the (m,n)th cable seg-
ment = p CN,n dm, n /2

m, the hydrodynamic constant of the (k, n, n)th elemental
device = p C D

mn A / 2
k m,n k,m,n

a parameter defining distance along the (m, n)th cable

segment

P the density of the surrounding fluid

, m,n) respectively, unit vectors along the (m,n)th cable seg-
ment, normal to both the (m, n)th cable segment and
the stream, and normal to the (in, n)th cable segment
but in the plane that includes this segment and the
stream

0 the angular direction of the current with respect to the
x axis

( )' the prime symbol denotes trial iteration values

,(m ,n : I' =-- 2)

V2 [z(m,n:e=)] de=
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INTRODUCTION

This report presents a method for determining the static configuration of a buoy-
cable array, which consists of a subsurface float anchored to the bottom by three cable
legs. The array is acted on by weight and buoyancy forces and by current-induced forces
which are functions of both the orientation and the depth of the cables in the water. The
analysis allows for the possibility that a variety of discrete-element measuring and flo-
tation devices are attached to the legs of the structure.

A lumped parameter representation of the system is used, and the bending stiffness
of the cables is ignored. The analysis is performed using The Method of Imaginary Re-
actions (1) to determine the equilibrium configuration of the array and the method of
successive approximations (2) to iterate on the position-dependent current forces. Con-
vergence to the equilibrium shape of the structure is extremely rapid, as is indicated by
several numerical examples.

Certain assumptions are made in this report. The two most significant are that

1. The current, though depth dependent in magnitude, is unidirectional, and

2. The drag force component which acts in the direction normal to both the stream
and the cable is zero.

It is important to note that neither of these assumptions is necessary because of the
method of analysis. The first is made because most design currents are given as depth
dependent and unidirectional. The second is necessary because of the lack of experi-
mental information available for determining an analytic expression for the side com-
ponent of drag on stranded cables.

An array included in the class of structures considered in this report and of great
interest to both oceanographers and the Navy is Sea Spider. This structure consists of a
tri-moored subsurface float with neutrally buoyant mooring legs. These legs are made
neutrally buoyant by positioning flotation devices along their lengths. The method cur-
rently in use for determining the equilibrium configuration of Sea Spider was developed
by Sniffin and Savage (3). Their basic assumption was that, "If the variation of current
velocity with depth is moderate, the use of the root mean square velocity as a uniform
velocity results in a good approximation." Also, Sniffin and Savage neglected the tangen-
tial component of drag on the cables.

In Appendix C of this report, a particular Sea Spider array is analyzed, and the re-
sults are compared with results obtained by using the Sniff in and Savage assumption.
The essential conclusion of this example is that the use of the root-mean-square velocity
as a uniform velocity does not result in a good approximation to the equilibrium shape of
the array.

To implement the equations developed in this report, a program was written for the
NRL CDC-3800 computer. It appears as Appendix B. The program was written for a
velocity profile consisting of a series of straight-line segments, as discussed in Appen-
dix A. However, if it is desired to use another type of velocity profile, only one subrou-
tine of the program need be changed. Card decks are available on request from the
authors.

GUIDELINES FOR MODELING THE ARRAY

The structure under consideration, Fig. 1, consists of a subsurface buoy anchored to
the bottom by three cables. These cables are referred to by the number n, where
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WATER SURFACE

0 SUB SURFACE BUOY

Fig. 1 - The tri-moored, subsurface,
buoy-cable array

n = 1, 2, or 3. To describe the array by a lumped parameter model (Fig. 2), each cable
is represented by M(n) + 1 stations at which the external forces and anchor reactions
acting on the array are lumped. These stations are referred to by the subscript pair
(m, n), where m : 0, 1, 2, ... , M(n). Note that station (0,1) represents the anchor point
of cable 1, and that stations (M(2),2) and (M(3),3) represent the anchor points of cables
2 and 3, respectively. The stations (M(1), 1), (0,2), and (0,3) all refer to the branch
point (subsurface buoy) of the array. The notation M(n) is used to indicate that each
cable in the array can be described by a different number of stations.

8 ANCHORS

0 STATIONS (M), ), (0,2) and (0,3)

(M()-I, I)
('.3)

(2,3)

CABLE 3

(Mm-1.3) 0

Fig. 2 - Lumped parameter
representation of the structure

(M2)-2)

S(M (2),2)
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These stations divide each cable leg into 31(n) segments, to which the dimensional
and the strength properties of the cable are assigned. The segment between the (n- 1)
and ith stations on the nth cable is denoted by the subscript pair (17, n).

Since the external forces acting on the structure have been lumped at the cable sta-
tions, each cable segment between stations becomes a straight line. Consequently, in

order to obtain a successful lumped parameter representation, a few guidelines for mod-
eling the array are necessary. These are summarized as follows:

1. Each point of discontinuity in a physical property of a cable (such as a change in

cross-sectional area or a change in weight) is represented by a station. Consequently,
each cable segment in the array has constant physical properties.

2. As many additional stations are used as are necessary to obtain a satisfactory
approximation to the continuous equilibrium shape of the array. Thus, for example, a
section of cable which is expected to have a small radius of curvature should be repre-
sented by more stations than a section which is expected to have a large radius of
curvature.

With regard to this second point, it is important to note that the method of analysis
developed in this report does not depend on the number of stations used to describe the
array (see Ref. 1); thus, more stations do not grossly affect the amount of work neces-
sary to determine the equilibrium shape of the structure. It is suggested that each cable
be divided into at least ten segments, with the unstressed length of each segment being
no greater than one-tenth the unstressed length of the entire cable.

Theoretically, an ultrafine representation of the structure could be used. However,
such representations should be applied carefully, due to the errors introduced by com-
puter roundoff and truncation.

DESCRIPTION AND NOTATION OF THE TRI-MOORED,
BUOY-CABLE ARRAY

To describe the configuration of the array in space, a right-handed (x, y, z) Carte-
sian coordinate system is used. The z axis is defined to be parallel to the direction of
gravity, and z = 0 is taken at the location of the deepest anchor; z is considered in-
creasing toward the surface.

Referred to this system (Fig. 3), the location of the nth cable anchor is given by the

coordinate triplet

(an, b n , Cn)

In the terminology of Imaginary Reactions, the anchor associated with n = 1 is called the
primary anchor and the anchors associated with n = 2 and 3 are called the secondary
(redundant) anchors.

As previously stated, each cable in the array is represented by M (n) + 1 stations.

The location of the ith station on the nth cable is denoted by

(Xm, Ym,n' Zmn) I

where m 0, 1, 2, ... , (n). The direction of counting m is from the primary anchor to
the branch point of the array along cable 1, and from the branch point of the array to the
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Fig. 3 - Coordinate system
and anchor terminology

secondary anchors along cables 2 and 3, respectively. Since
primary anchor of the array, the relation

(X 0 , i Y0 1 , z0, 1 ) = (a, b,, cI)

station (0, 1) represents the

(1)

must hold. Further, since stations (M( 1), 1), (0, 2), and (0, 3) all represent the subsur-
face buoy, the branch point constraints are obtained as

x0.2 = X0.3 = XM(1),l

Yo,2 = YO,3 = YM(1),1

Z0,2 z0, 3 = Z (1),l

and

(2a)

(2b)

(2c)

In The Method of Imaginary Reactions, the secondary anchors are released and
forces representing the anchor reactions are applied to the free ends of the released
cables. For an arbitrary set of "guessed" reactions, the locations of the free ends do
not coincide with the true anchor points. However, when the correct reactions are ob-
tained, the equilibrium relations

and

(xM( 2 ),2' YM( 2 ),2, ZM(2 ), 2 ) = (a2' b 2 c 2 )

(XM( 3 ),3' YM( 3 ),3' ZM(3), 3 ) = (a 3, b3' c 3 )

(3a)

(3b)

must be satisfied.

The external force acting at the (in, n)th station is defined by its components along
the x, y, and z axes as
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( Fx  Fy  Fmi m n' m 1" n)

where m 1, 2, ... , M(n). By convention, the force acting at the branch point is indexed
as (M(1),1) rather than as (0,2) or (0,3). The particular forces

(F
x  

F
M(n),n, r](n),n, F z(n), n)

for n = 2 and 3 represent the imaginary reactions which are applied to the M(n) ends of
these cables, respectively, when the secondary anchors are released.

THE EQUILIBRIUM CONFIGURATION BY USE OF THE
METHOD OF IMAGINARY REACTIONS

For the present, assume that the external forces applied to the array, including the
imaginary reactions, are constants. The components of the resultant force,

x mn R m
mR~n mn' Rm n),

acting in the (m,n)th cable segment are then given in terms
forces through the expressions

for m= M(n) and n 2, 3,

of the applied external

Rt(n),n = FM(n),n

M(n),n = M(n),n

Rz (n),n = .Fz

and

(4a)

for m = M(1) and n= 1,

Rx +] Rx +RxRM(1),I , 1 l 2 
+ 1,3 '

± + R
y

M(1), : Fk(, ,1 + ±,2 1, 3

and

R( 1 ), F(1 ,1 + + 3

for m 1, 2,...,M(n) - 1 and n = 1, 2, 3,

Rx Fx + Rxm,n m,n m41,n 

Ry = Fy + R
y

mn min m+l,n

Rz = Fz + Rzmn m,n m+l,n

and

(4b)

(4c)
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Note that starting from the guessed imaginary reactions at the ends of cables 2 and 3,
the resultant forces are readily determined by summing the applied external forces to-
ward the primary anchor.

In terms of the resultant forces, the tensions Tm, in the cable array are given by

Tmn - /(Rx,)2 + (RYn) 2 
+ (Rmn) 2  (5)

Assuming that these tensions are of such a magnitude that the cable segments deform
elastically, although this assumption is not necessary (see Ref. 1), the stretched segment
lengths Lmn become

Lm = Lm [1+;-mn (6)

where Lmn is the unstressed length of the (m, n)th segment and Bm, n is its extensional
rigidity.

Finally, the equilibrium configuration of the array is determined from the equations

L
mn Tmn mn m-l,n ' (7a)

L n Ry + Y - (b
Ym,n T m,n i (7b)

m,r'

and
- mnRz + (7)

m,n Tm mn cm-

where the definition of the primary anchor, Eq. 1, is used to start the solution, and where
the branch point constraints, Eqs. 2a, b, and c, are used to extend the solution past the
branch point.

In general, for a guessed set of imaginary reactions, the 41(n) ends of cables 2 and 3
will not be at the true anchor positions. As a measure of the distance of these ends from
the correct anchor positions, let the positive definite error function E be defined as

3

E 3L2 {[an- XM(n),n]2 + [bn- yH(n),ni2 + [Cn- ZM(n),n]} . (8)

Note that £ vanishes uniquely if and only if the secondary anchor equilibrium conditions,
Eqs. 3a and 3b, are identically satisfied.

The Method of Imaginary Reactions defines the following iteration procedure for re-
ducing E and, as a consequence, for obtaining the correct reactions and the actual equi-
librium configuration of the array.

Let the imaginary reactions applied to the ends of cables 2 and 3 be recalculated as

(FZ(n),)' = F;(n),n + AFx(n), , (9a)
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(FM(n),n)' (n),n + \F (n),n (9b)

and

(FM(n),n)' FZ(n), + A FZF(n) (9c)

where primes denote the new imaginary reactions, and the additive forces are defined by

AFM(n),n [ - XM(n),n] (10)

AF n 8-[b - YM ) (l0b)M(n),n n Mn,

and

AFznn [Cn - z .(lc

n n - [ (n),n] (10c)

The quantity 6 is a positive convergence factor, having the dimensions of force chosen
at each iteration so that E' < E. E eventually approaches zero arbitrarily closely, and
the correct equilibrium configuration, under the acting external forces, is obtained. A
simple technique for determining 8 is discussed in Ref. 1.

DISCRETE-ELEMENT NOMENCLATURE

Before deriving the external forces that are to be used in Eqs. 4b and 4c for the
analysis of a tri-moored, subsurface, buoy-cable array, it is necessary to represent the
discrete-element measuring and flotation devices which are attached to the structure.

Those objects which are attached to the (m, n)th cable segment are indexed by
(k,m,n), where k = 1, 2, ... , K(m,n), counting in the direction of increasing m as shown
in Fig. 4. By convention, an elemental device located at the (m,n)th station is consid-
ered as the last device on the (m, n)th segment and is indexed by

(K(m, n), m, n)

Using this convention, the subsurface float becomes the last device on the last segment
of the first cable and is thus indexed by

The unstressed distance of the (k,m,n)th device from the (m- 1,n)th station is given
by

Sk,m,n

In the development of the lumped external forces, it is important to distinguish between
those objects attached to the half-segment adjoining the (m - 1, n)th station and those ob-
jects attached to the half-segment adjoining the (m, n)th station. To indicate this division,
let k(m,n) represent the value of k such that

<L n/2"k ,m,n = m,n
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Fig. 4 - Representation of the
discrete elemental devices

for k= 1, 2,..., k(m,n), and

Sk,m,n > L,,n/2

for k k(m,n) + 1 .... K(m,n).

WEIGHT AND BUOYANCY FORCES

To begin the derivation of the external forces that are applied to the structure, con-
sider the weight and buoyancy forces. These forces are differentiated only by the direc-
tion in which they act: weights act toward the bottom (negative z direction), and buoy-
ancies act toward the surface (positive z direction). In this report, it is convenient to
have both types of force act in the positive z direction; consequently, weights are con-
sidered as having a negative value.

Let the weight (or buoyancy) per unit length in water of the (m, n)th cable segment
be given by

CWm~n

and let the weight (or buoyancy) in water of the (k,m,n)th elemental device be designated
as

e
Wk,m,n

To lump these forces as a weight (or buoyancy) force Wi,n acting at the (m, n)th station,
a half-segment lumping technique is employed. That is, the distributed and discrete
forces acting on the half-segments adjoining the (m, n)th station are integrated and
summed, respectively, to give the lumped force at that station.

Using this technique, the lumped weight forces are readily determined by the ex-
pressions

-.,ELEMENTAL
DEVICES

(K(m,n) 1m,n)

(m,n)

Ck (nmn).4,m,n)

(k(m,n),mn)

(I,m,n)

(m-I, n)
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for m : 1, 2, .11(n) - 1 and n = 1, 2, 3,

K(m,n) k(m+l,n)

Wmn k, m,n + k,m+l,n

k k(m,n)+l k1

1 FC -
+2 Wmn mn m+ln 1m+,n J(1a)

and for m 7 11(1), n- ,

K(M(1).I)

W (1 ) , 1 Tk ,M ( ), 1

k=k(M( 1), 1 )+ 1

k(+,) k(1,3)
+ e + W e

T k,1.2 T k,1,3

k=l k--1

1 k1

+ 2 WM(1)I LM(1),i + w ,2 1 2  w,3 1,3

Note that the weight forces defined by Eqs. lla and 1lb are independent of the location of
the structure in the water. This is because the density of the water has been assumed to
be constant.

HYDRODYNAMIC COORDINATES

To complete the formulation of the problem, the hydrodynamic forces that are acting
on the array must be calculated. For this purpose, it is convenient to introduce a new
set of natural hydrodynamic coordinates, defined with reference to the directions of the
cable and the current.

It is assumed that the current, though depth dependent in magnitude, is unidirectional
and normal to the direction of gravity. Thus, the stream possesses no z component. If
the angular direction with respect to the x axis is denoted by 0, the current in general
can be written as

V = V(z) [i cos 0 + j sin c]

where V(z) is the magnitude of the current profile at a height z above the deepest anchor
(z =0 ), and where i and j are unit vectors in the x and y directions, respectively. The
unit vector in the z direction is designated by k.

The natural hydrodynamic coordinate system is then formed in the following manner:

1. Let rmn be the unit tangent to the (m,n)th cable segment, considered positive in
the direction of increasing m;

2. Then

V x rmn

S, n 
I z 

mIn
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is a unit vector normal to both the (m, n)th cable segment and the current; and,

3. 7 n = rm, n x m,n is a unit vector normal to the cable and lying in the plane that
includes the (m, n)th cable segment and the stream.

The hydrodynamic reference frame is expressed in terms of the basic x, y, z refer-
ence frame through the relations

rm, n am,n 1 + Omn j + Ym, n k , (12a)

n A,: {[ymn sin 0] [ymn COS k] j

m, n Am, n 2, ,-
+ [,8mn Cos am n sin k} (12b)

and

m, n Am, n m,n m,n L- n n - m, n 0m, (1]

mn 2+2 s

,n m,n) in - m
1

m,n

[Ym'n fm,n sin 0 + Ym,n amn C 0] k} (12c)

In these relationsI am, m,nI and Ymn are the direction cosines of the (m n)th cable
segment and are defined by

amn - m,n r n-n (13a)
mn ,

/3 m, n Ym~n L Ym-l,n (13b)
m, n

and

Ym,n Zm,n L m-i,n (13c)
m ,n

The quantity Amn is the sine of the angle between the (in, n) th cable segment and the
stream and is given by

Amn r ~ + (/
3
m'n Cos 0- am,n sinl~) (14)

Note that Am, n is always taken as positive.

For later reference, the current projections on the hydrodynamic axes are readily
calculated from Eqs. 12a, b, and c as

V rm n -V(z) (amn Cos 0+M~ sin q5) ,(15a)

-rmn 0 , (15b)
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and

V • 'm.n : V(z) \m n (15c)

In these expressions, of course, z must be expressed as a function of position along the
cable.

THE DISTRIBUTED HYDRODYNAMIC FORCES

The problems inherent in defining the hydrodynamic forces, especially on stranded
cables, are well known. Little rigorous experimental work has been done in measuring
these forces, the best known results being those described by Pode (4).

If the hydrodynamic forces per unit length are resolved in the r, ,r, and ?I coordi-
nate system, the following expressions for the three components are usually considered
as representative and are used in this report.

1. Side force in 7 direction

Though this force exists for stranded cables (4), no relevant experiments have
been performed to determine its functional form. However, the magnitude of this com-
ponent is small compared to the other two components, and, consequently, the side force
is neglected by setting it equal to zero.

2. Normal drag force in 7 direction

It is well established (4,5) that the normal drag force per unit length which acts
in the ,7 direction has a magnitude given by

fq P CN (16)
mn 2 m n dn (VJ~ )2,(6

where

p = the density of the surrounding fluid,

CN = the coefficient of drag (assumed constant) of the (m, n)th cable segment whenmn this segment is normal to the stream, and

dm, = the diameter of the (m, n)th cable segment.

3. Tangential drag force in r direction

A variety of assumptions have been made concerning the form of the tangential
drag force per unit length. These range from neglecting this component as zero to set-
ting it equal to a constant. The form chosen for the development of this report is the
expression given by

m n 2 m , dn V(z) [V nm (17)

where

C" = the coefficient of drag (assumed constant) of the (m, n)th cable segment
m n

when this segment is parallel to the stream.
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From these considerations of the drag components, the hydrodynamic force per unit
length which is acting on the (m, n)th cable segment can be written as

fm,n =  
,n rn n + rn mn

where, using Eqs. 15, fm,n and frn (defined by Eqs. 16 and 17), respectively, are given
by

and

fr n c D [a m  COS + rn,n sin 95 V 2 (z)m,n Im,n rrnn ,anco +Hrn

(1 8a)

(18b)

The quantity I.'i, n is called the hydrodynamic constant of the (m, n)th cable segment, and
rDn is the ratio of the drag coefficients for this segment. These quantities are defined
by the expressions

and

C P cN d.
2 mn ,n

r D Cm /Cn
m ,n m ,n m~n

(19a)

(1 9b)

Taking the projections of fm, n in the i, j, and k directions by making use of Eqs.
12a, b, and c, the components of the hydrodynamic force per unit length acting on the
(m, n) th cable segment are found as

and

hc; 
x 

= C C;
x

V

-: V 2 (z)

hC;Z = Cc;Z V
2
(z)mn (Z)

(20a)

(20b)

(2 Oc)

where the drag constants of the (m, n)th cable segment are defined by

m A n mn ,n m,n m,n C

-Am,n am,n f0m,n sin 95

rn (amn COS + ifm,n sin q) amn] (21a)

cc;,n C,n[Am,n (Y
2

,. + a 2  
sin

-Amn amn !
3
m,n COS 95

+rDn (am,n COS + fPm,n sin 0) 16m,n] (21b)

and

= Pmc, A2, V2(z)n n m n
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cc; z C , Acs~+1 sin 0) Y ,m,n : Pm mn [ +nm,n Cos m )0,n n

+ rDn (amn O sin ) Ymn] (21

To lump the distributed drag forces as a single force which acts at the (in,n)th
cable station, the half-segment lumping technique is employed. Using this technique, the
lumped hydrodynamic force is given by the equations

for m = 1, 2. M(n) - 1 and n = 1, 2, 3,

lc;O = Cc;O V-(m,n :L /2, L)m,n mn m,n mn

+ CC;j V(m+ 1,n :0, Lm+ n/2) , (22a)

and for m= M(1) and n=1,

c;O ;0  V(M(1) 1 : L ,/2, L )HM(1),I - C (1~),l ' M(1)' M(01)

+ Cc;o V(1,2:0, L 2/2)

+ CC;e (1, 3 : 0, L ,3/2) . (22b)

In these expressions, 0 = x, y, or z. The function V(m,n : 7:1 , 2 ) represents the integral
of V2 (z) along the (m,n)th half-segment and is defined by

(m,n 1 -"2) 
= 
f-2V2[z(m,n : e)] de .(23)

In this integral, the argument z of V 2 (z) is expressed in terms of the integration param-
eter e$ along the (m, n)th cable segment through the relation

z 7 z(m,n:e) : Zm l,n + Ym,n ' (24)

where Ym,n is defined by Eq. 13c.

THE DISCRETE-ELEMENT HYDRODYNAMIC FORCES

Assuming only that there is no lift associated with the elemental devices, the direc-
tion of the drag on these devices is parallel to V and of magnitude

P CD A 
2 (z)

2 k,m,n Akm,n

where

CD the coefficient of drag (assumed constant) of the (k, m, n)th elemental de-
vice, and

Akm,n = the effective cross-sectional area of the (k,m, n)th elemental device.
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Resolving this force in the x, y, z coordinate system, the hydrodynamic force due to the
(k,m, n)th elemental device is found as

he;x : C,;x. V 2(z)k,m n kmol

he ;
y = Ce;y V

2
(z)k,m n k,m

and

(25a)

(25b)

(25c)

Here, the drag constants of the (km, n)th elemental device are given by

Ce ; x V e Cos (
rnn k,n o, 

,m ,n ,n,n sin 6

(26a)

(26b)

and /A,m, is the hydrodynamic constant of the (k,im,n)th device and is defined by

e =m PCD Ak
IL 'm'n = 2 k,m,n ,m,n

Applying the half-segment lumping technique, the hydrodynamic force acting at the
(m, n) th station and due to the discrete elemental devices is then calculated through the
relations

for m = 1, 2 .... (n) - 1 and n= 1, 2, 3,

K(m. n)

MOm,n T

k=Z(m, n)+I

i(m+ 1,n

k=1

Ce; ° n V2 [z(m,n:Sk,m,n)]

Ce ;O  V 2 [z(m+ 1,n:sk )]k,m+l,nl k m+l,n) (27a)

for m= I(1) and n= 1,

K(M( 1), )

H e; 0HM(1),1

k= (M(1),l)+l

k (1.2)

+ e;O
Ck,

k-1

kM( 1), V 2 [z(M(1)':SkM(1),l)]

2 V
2
[z(1,2:sk, 1 2 )]

,3 V2 [z(1,3:sk,1, 3 )] "

and

(2 7b)
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In these expressions, 0 = x or y, and the argument z of V 2 (z) is expressed in terms of
the position of the (k. m.n)th device along the (n. n)th segment through the relation in
Eq. 24. That is,

z(i n:Sk,m,n) zm-l,n + 
7
'm,n Sk,m,n

The stressed distance Sk,,n of the (k,in,n)th device from the (in- 1,n)th station is ob-
tained from the elasticity relation

Sk,m,n Sk,m,n + B ]. (28)

GENERALIZED METHOD FOR THE EQUILIBRIUM ANALYSIS

The external force

(Fx  F " F)
m ,n' m, n' m , n)

which is acting at the (mn,n)th cable station (excluding the (,1(2), 2) and (,1(3), 3) stations
at which the imaginary reactions act) can be summarized as

Fx Hc x + He;x (29a)
m,n mn m n

Fy Hc;y + He;y (29b)
mn mn mn

and
Fz W + Hc;z (29c)
m, m,n m,n

where the lumped weight forces W,,, are defined in Eq. 11, the lumped hydrodynamic
forces H ,0 due to the drag forces on the cable segments are defined in Eq. 22, and the
lumped hydrodynamic forces He,; due to the drag forces on the elemental devices are
defined in Eq. 27. It is important to note that the weight forces are constants, but that
the hydrodynamic forces depend on the position of the structure through both the orienta-
tions and the depths of the cable segments and the depths of the elemental devices.

Since The Method of Imaginary Reactions demands that the applied external forces
be constants, it is not entirely applicable to the problem at hand. However, by combining
Imaginary Reactions with the method of successive approximations (2), the equilibrium
configuration for arbitrary current profiles can be generated to any desired degree of
accuracy.

In essence, this combined technique consists of making an initial guess as to the
values of the hydrodynamic forces and then using these values while finding the equilib-
rium position of the structure by Imaginary Reactions. Once this position is found, the
hydrodynamic forces are recalculated, and the position of the array under these new
force values is again found by Imaginary Reactions. The iteration process is continued
until the desired degree of accuracy is obtained. A natural measure of accuracy for the
successive approximation routine is to compare the equilibrium coordinates of the
(m,n)th cable station for two successive iterations. If the coordinates differ by less than
a fixed amount, the iteration is considered satisfied; if any coordinate change is greater
than this fixed amount, the iteration is continued. To express this analytically, let COA1PD
denote the fixed accuracy value. Then the successive approximation routine is consid-
ered satisfied when
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i o -01 < COMPD (30)

for all m and n, where oi  represents the equilibrium coordinates (o = x, y, or z) of
the (m, n)th cable station obtained from the ith successive approximation iteration. If I
represents the value of i such that Eq. 30 is satisfied, and 0", n represents the exact so-
lution to the equilibrium configuration which would be assumed under the current-induced
forces

it may further be shown (2) that

[ - 0 COMPD. (31)OMn -O n,

An important aspect of this analysis is to compare the no-current configuration of
the structure with the configuration assumed under a given current profile. Since the
weight forces are constants, the no-current configuration is determined by Imaginary
Reactions alone, and thus, it also provides a convenient starting position for the method
of successive approximations. The generalized method used to analyze the array is in-
dicated in the block diagram, Fig. 5.

COMMENTS ON THE METHOD

In Fig. 5, it is seen that The Method of Imaginary Reactions is used to determine the
equilibrium shape of the structure within each successive approximation to the hydro-
dynamic forces. Theoretically, the Imaginary Reaction routine, defined by Eqs. 8, 9, and
10, can be continued until the error function E is identically zero; that is, until the equi-
librium configuration (under the constant applied forces) is obtained exactly. This is, of
course, impossible to achieve in practice; therefore, it is necessary to specify some
cutoff value that defines the acceptable completion of the Imaginary Reaction routine.
Let this value be denoted by COMPE. Then, the Imaginary Reaction determination of the
equilibrium shape is considered satisfied when

E < COMPE (32)

that is, when the end coordinates XM(n) , YM(n),nj and ZM(n),n for n = 2 and 3 are all
within vVOMPE from their true anchor values.

The introduction of COMPE as a cutoff value also introduces an error, again within
X/COMPE from the actual equilibrium coordinates, into the coordinates calculated for every
cable station. Consequently, it is important that the cutoff value COMPD for the successive
approximation iteration be chosen outside the value of this inherent error. A safe mini-
mum value for COMPD is

COMPD = 10 COMPE . (33)

It is worthwhile to note that E may never obtain the value of COMPE. This is for one
of two possible reasons.

1. The convergence factor a, Eq. 10, approaches zero as E approaches zero; conse-
quently, for a very small a no changes will occur in the applied imaginary reactions as
a result of the significant figure limitations of the computer. In this case, COMPE is too
small.
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Store the no-current
(gravity) equilibrium
configuration

Evaluate the weight forces W.,m,

I
Calculate the no-current configuration
by Imaginary Reactions with

F~x, n = 0

F, = 0

M,n

Fz' = Wmn

Use the calculated cionbyIain toar
evaluate the hydrodynamic forces

m,n' mn m,n' n m,n rn

Using these values, determine the
equilibrium configuration by Imaginary

Reactions with
Fx = HC;

x 
+ He;x

m n m, n m,n

FY = 1c;y + He;y
mn mn mn

Fz = ffmWn + Hc;z
/n m r/n

I
If the desired accuracy is not obtained

If the desired accuracy is obtained

Fig. 5 - Generalized method for the equilibrium analysis

Compare the no-current
configuration with the
configuration assumed
under the given current
profile

H
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2. A cable segment has gone slack (that is, the segment has zero tension). In this
case, the array is statically unstable. This condition is also manifested by no changes
occurring in the applied imaginary reactions. (For a fuller discussion of this point see
Ref. 1, especially the section Statically Unstable and Divisible Cable Arrays, p. 22).

These sources of error are accounted for in the computer program (Appendix B) and are
signaled to the user by the output statement, "PROBLEM NOT COMPLETED, DELTA
HAS GOTTEN TOO SMALL TO CHANGE THE IMAGINARY REACTIONS. EITHER AC-
CURACY REQUIREMENTS ARE TOO SMALL (COMPE) OR A CABLE HAS GONE SLACK
(CHECK TENSIONS). PRINTOUT IS GIVEN FOR TROUBLE SHOOTING PURPOSES
ONLY."?

The analysis developed thus far for determining the static configuration of a tri-
moored, subsurface, buoy-cable array has been very unrestricted, having been presented
for an arbitrary current profile. However, to write a computer program general enough
for most analyses, yet simple enough for the user to insert data without revising the en-
tire program, it was decided to limit the velocity profiles to those types which can be
represented by a series of straight-line segments. With this limitation, the integral, de-
fined by Eq. 23, that appears in the calculation of the lumped hydrodynamic drag forces,
Eqs. 22, can be evaluated exactly. This evaluation is done in Appendix A, and the com-
puter program for implementing the equilibrium analysis is given in Appendix B.

To demonstrate the use of this program and the rapid convergence of the analytic
method, a particular Sea Spider array is analyzed in Appendix C. The primary purpose
of this example is to test the assumption of Ref. 3 that, "If the variation of current ve-
locity with depth is moderate, the use of the root mean square velocity as a uniform ve-
locity results in a good approximation." Consequently, the structure is analyzed using
both an actual current profile and its root mean square value as a constant profile. As
the results indicate, the deflections of the array from its equilibrium gravity position
obtained using the root mean square profile differ significantly from those obtained using
the actual velocity profile. The important conclusion of this example is that to define a
good approximation to the equilibrium shape of the array, the actual velocity profile
must be employed.

SUMMARY AND CONCLUSIONS

This report has presented a method for determining the static configuration of a tri-
moored, subsurface, buoy-cable array that is loaded by weight and buoyancy forces and
by current-induced drag forces which are dependent on the position of the structure in
the water. Both normal and tangential drags on the cables are included in the formula-
tion of the problem, and the possibility that discrete-element measuring and flotation
devices are attached to the cables is allowed for in the analysis.

The analysis is performed by using The Method of Imaginary Reactions to determine
the equilibrium configuration of the array under constant applied forces and the method
of successive approximations to iterate on the position-dependent hydrodynamic forces.
Convergence to true equilibrium is extremely rapid.

Although a lumped parameter representation of the system is employed, this should
not be a serious drawback. Due to the nature of Imaginary Reactions, arbitrary fineness
(within the limits of computer roundoff and truncation error) can be used in representing
the array without seriously affecting the rate of convergence of the analysis method.

The method developed in this report should be attractive to both the design engineer
and the analyst. A large variety of parametric studies is readily available to the designer,
and, for the analyst, the accuracy and rapidity of the calculation are self-recommending.
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Appendix A

THE VELOCITY PROFILE

To develop a program general enough for most analyses yet simple enough for the
user to insert data without rewriting large parts of the program, it was decided to limit
the velocity profiles to those types which can be represented by a continuous series of
straight-line segments, such as shown in Fig. Al. This limitation is really not too se-
vere, since most of the expected design profiles are given or can be well approximated
in this manner.

Ho N0

Fig. Al - A straight-line-segment
velocity profile

Vz). P0 Qk z

V(Z)- P, + Q, z

--V(7)

If k is the index of a particular straight-line segment, then V(z) is defined by

V(z) = Pk + O (Al)

for the interval
8H_ < z < H/ (2
Hkl <k. (A2)

In Eq. A2, Hk represents the height above z = 0 at which the velocity profile changes
slope. By definition of the coordinate system, H = 0. The constants Pk and Qk appear-
ing in Eq. Al are readily found in terms of Hk and V(Hk) from the expressions

k = V(Hk) - V(Hk _ 1)

Hk -t

and
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Pk = V(Hk1l) - Ok Hk-,

With the velocity profile given as a series of straight-line segments, the function
V(m,n:_.,-- 2 ), defined in Eq. 23 and used in Eqs. 22 for the calculation of the lumped hy-
drodynamic forces, can be evaluated exactly.

Consider first the indefinite integral of V 2 (z) along the (m,n)th cable segment. This
integral is defined by

JV2 [z(m,n:e)J de, (A3)

where the value of z along the cable segment is parametrically expressed in Eq. 24 as

z = z(m,n*. ) = zm-l,n + Ym,n '

For values of z (Eq. A2) corresponding to the kth velocity segment (Eq. Al), or, equiva-
lently, for values of 6 delimited by

k-1 = m-in + Ym,n 6 < Hk (A4)

the line integral, Eq. A3, is found as

VX(m,n:k:e) =fV2[z(m,n:e)] de

= (Pk+Qk z _-i, ) 2

+ (rk +Qk -1,n) Qk YM,

+(Qk Ym )2 (A5)
3

As a result of this calculation, any definite integral obtained from Eq. A3 can be evalu-
ated in terms of the auxiliary indefinite integral Vx(m,n:k: ) simply by determining the
velocity segments associated with the limits of the integration and the values of e asso-
ciated with the velocity slope discontinuities between these limits.

In particular, the function V(m, n:-_,, I E2) is obtained from Eq. A3 by specifying =-, as

the lower limit and -2 as the upper limit of the integral. The velocity segments k1 and
k 2 associated, respectively, with the lower and upper limits of integration are deter-
mined from the inequalities

Y- < - < H (A6a)
1 1 = m,n + ,n 1 i

and

k21 <= m-l,n + Ym,n 2 Hk (A6b)

that are derived from Eq. A4. Further, the values of ,, corresponding to the break-
points in the current profile between k, and k 2, are determined from
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Hj - Zml, n

Ym, n

for

j = kMIN, kMIN + 1 ..... kMIN - 1 + Ik1 - k21,

where kMiN is defined as the smaller of k1 or k2 . The value of V(m,n: 1,E2) can then be
written in terms of the auxiliary indefinite integral Vx(m,n:k:e), Eq. A5, as

P~m= n:VX(m, n: k2 2 -X V(m, n: k : 1

+ sgn(k 2 - k1 )

kMIN-1

+I kl-k 2 I

j=kMIN

(A7)
[Vx(m,n: j: C) - Vx(m,n:j+ 1:*)].

This evaluation of V(m,n: 1 , 2) is used in the computer program to determine the hydro-
dynamic forces given by Eqs. 22.

Note that, if it is desired to employ another type of velocity profile, it is necessary
to change only the subroutine for the calculation of V(m,n:Y-1,-2).

(A6c)



Appendix B

THE COMPUTER PROGRAM DATUBA

DESCRIPTION

The computer program DATUBA (an acronym for Deflection Analysis of a Tri-
Moored, Underwater, Buoy-Cable Array) is written in 3600 FORTRAN. This language
contains the features of FORTRAN-63 and is a dialect that is compatible with the com-
pilers of Control Data Corporation's (CDC) 3600 and 3800 computers. The program, as
listed, should compile on most FORTRAN IV compilers. However, if it does not, the
trouble will probably lie with the form of the READ and/or PRINT statements, since
INPUT/OUTPUT statements are often compiler dependent. In DATUBA, these state-
ments, all of which occur in the subroutines INPUT, OUTPUT, and VPROFILE, have the
form

READ n,L

and

PRINT n, L

where n is the number of the FORMAT statement that controls the transfer of the list of
variables L.

Comment cards at the beginning of the main program describe the important nomen-
clature. The symbols used in the report are duplicated as closely as possible in the
program. If the symbol is a letter of the Greek alphabet, its English spelling is used
(i.e., ALPHA is used to represent a).

The program, as written, is restricted to 20 segments per cable and to 75 elemental
devices per cable segment. These restrictions can be modified simply by changing the
dimensions of the COMMON arrays in the main program and in all of the subroutines and
functions. It is essential, however, that the M dimension for the arrays X(M,N), Y(M,N),
and Z(M,N) exceeds the greatest value of MMAX(N), the number of segments on cable n.
This is to insure that the zero subscript notation will be accommodated on the computer.

Approximate memory requirements for the program are 16,000 words for the arrays
in COMMON and 2,100 words for the main program and subprograms. If the computer
memory is inadequate, then the K and M dimensions for all arrays should be reduced to
the largest values of KMAX(M, N) and MMAX(N) that appear in a particular analysis.
KAX(MHN) is equivalent to K(m,n), the number of elemental devices attached to the
(m,n)th cable segment.

As indicated by the comment cards in subroutine INPUT, the program, as listed, is
not complete and will not run. It is left to the user to provide statements that will read
in or compute the listed required items. Input data cards made necessary by such state-
ments should follow the last input card described in the next section. It should be noted
that KTILDA(M, N), corresponding to k(m, n), the number of discrete objects attached to the
(m, n)th half-segment adjoining the (m - 1, n)th station, is calculated internally and is thus
not a necessary input.
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INPUT DATA CARDS

Cards 1 through 5 are called from subroutine INPUT.

CARD 1.

COLUMNS ITEM NAME FORMAT DESCRIPTION

1-10 COMPE Floating Point (FP) Comparison value for the error
function

11-20 COMPD FP Comparison value for the successive
approximation routine

21-30 STARTPSI FP First current angle to be analyzed,
in degrees

31-40 DELTAPSI FP Change of current angle for each
subsequent analysis, in degrees

41-50 ENDPSI FP Final current angle, in degrees

CARDS 2 (N = 1), 3 (N = 2), and 4 (N = 3).

COLUMNS ITEM NAME FORMAT DESCRIPTION

1-10 A(N) FP x coordinate of nth cable anchor

11-20 B(N) FP y coordinate of nth cable anchor

21-30 C(N) FP z coordinate of nth cable anchor

CARD 5.

COLUMNS ITEM NAME FORMAT DESCRIPTION

1-10 MMAX(1) Integer (I) Number of segments on cable 1

11-20 MMAX(2) I Number of segments on cable 2

21-30 MMAX(3) I Number of segments on cable 3

CARDS 6 and subsequent.

COLUMNS ITEM NAME FORMAT DESCRIPTION

1-10 H(K) FP z coordinate where the velocity pro-
file changes slope. The first card
must have H(0) = 0.0, and the last
card must have a value of H(K) >
40,000.0 feet.

11-20 V(K) FP The magnitude of the current at
z : H(K)

Following this card, more cards can be called from the subroutine INPUT as are
needed to complete the specification of the array.
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PROGRAM DATUBA

C
C DEFLECTION ANALYSIS OF A TRI-MOORED UNDERWATER BUOY-CABLE ARRAY

C
C SOLUTION BY THE METHODS OF IMAGINARY REACTIONS AND SUCCESSIVE APPROXIMATIONS

C
C NOMENCLATURE
C N = CABLE INDEX

C M = STATION INDEX
C K = DISCRETE ELEMENT INDEX

C
C CABLE SEGMENT(M.N)

C LBAR(MN) UNSTRESSED LENGTH

C L(MN) = STRESSED LENGTH
C WC(MN) = WEIGHT/FOOT
C XTEN(MN) = EXTENSIONAL RIGIDITY

C MU(MN) = DRAG CHARACTERISTIC

C RD(M,N) = DRAG COEFFICIENT RATIO
C KMAX(MN) = NOOF DISCRETE ELEMENTS IN SEGMENT(MN)
C KTILDA(MN) = NO* OF DISCRETE ELEMENTS IN FIRST HALF OF SEGMENT(M*N)

C T(MN) = TENSION

C (RX(M.N), RY(MN), RZ(MN)) = RESULTANT FORCES ON SEGMENT(MN)
C (ALPHA(M,N), BETA(MN), GAMMA(MN)) = DIRECTION COSINES
C

C DISCRETE ELEMENT(K,M,N)
C SBAR(KMN) = UNSTRESSED LENGTH FROM STATION(M-l.N) TO ELEMENT(KMN)
C WEtK,M,N) = WEIGHT
C MUE(KM9N) = DRAG CHARACTERISTIC

C
C STATION(MN)

C W(MN) = WEIGHT
C (X(MN), Y(MqN)9 Z(MgN)) = COORDINATES

C (XB(M.N), YB(M*N)o ZB(MN)) = EQUILIBRIUM POSITION-GRAVITY FORCES
C (FX(MqN)% FY(MiN)v FZ(MN)) = EXTERNAL FORCES

C (HX(MN), HY(M*N)o HZ(M.N)) = CABLE DRAG FORCES
C (HXE(MN), HYE(MN), HZE(MN)) = DISCRETE ELEMENT DRAG FORCES

C MMAX(N) = NO.OF STATIONS ON CABLE(N)

C (A(N), B(N). C(N)) = ANCHOR COORDINATES

C HORIZL(MN) = HORIZL DISPLACEMENT FROM EQUILIBRIUM GRAVITY POSITION
C HEIGHT(MN) = VERTICAL DISPLACEMENT FROM EQUILIBRIUM GRAVITY POSITION

C
C E = ERROR FUNCTION
C COMPE = COMPARISON VALUE FOR E
C COMPD = COMPARISON VALUE FOR DISPLACEMENT

C PSI = ANGLE OF CURRENT

C
REAL L, LBAR, LTo MU. MUE
COMMON / Cl / XF. X(21.3), YF, Y(2193), ZF9 Z(21.3)

COMMON / C2 / FX(2093). FY(203), FZ(20*3)
COMMON / C3 / W(2093)9 WC(20O3), WE(75*20,3)
COMMON / C4 / MMAX(3), KMAX(20*3), KTILDA(20,3)
COMMON / C5 / LBAR(20,3),L(20,3),SBAR(75,20,3),T(20,3).LT(20,3)

COMMON / C6 / A(3)9 B(3), C(3)9 E, DELTA. JUMP* LOOPE, LOOPA
COMMON / C7 / HORIZL(20,3), HEIGHT(20,3)

COMMON / C8 / CX(20,3)o CY(20,3), CZ(20*3)

COMMON / C9 / AV(25). BV(25), VF. V(25)9 HF. H(25)
COMMON / CIO / COMPE, COMPD9 PSI. STARTPSI, DELTAPSI ENDPSI
COMMON / C11 / XTEN(2093)9 MU(20,3). MUE(75.20,3). RD(20,3)
COMMON / C12 / ALPHA(2093)9 BETA(203), GAMMA(20,3)
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COMMON / C13 / RX(20,3), RY(2093)9 RZ(2013)
COMMON / C14 / XO(20.3). YO(20,3), ZO(20.3)
COMMON / C15 / XB(20,3), YB(20,3), ZB(2093)
COMMON / C16 / FXP(3). FYP(3)9 FZP(3), XP(3)9 YP(3). ZP(3)

COMMON / C17 / DELTAI

C
C READ AND PRINT INPUT INFORMATION

C
CALL INPUT

CALL CABLE

C
C COMPUTE MIDSEGMENT DISCRETE ELEMENT KTILDA(M*N)

C
DO 2 N = 1. 3
MX = MMAX(N)

DO 2 M = I. MX
KX = KMAX(MN)
DO I K = I* KX

IF ( SBAR(KMN) ,GT, LBAR(M.N) / 2. ) GO TO 2

I CONTINUE
K = KX + I

2 KTILDA(M.N) = K - 1

C
C ZERO SUBSCRIPT

C
X(O l) = A(I)
Y(Ool) = B(1)

Z(O91) = C(U)

C
C INITIAL VALUES

C
LEAP = 1
JUMP = I
PSI = STARTPSI
P1 = 3.14159265

LOOPE = 0

LOOPA = 0

C
C COMPUTE STATION GRAVITY FORCES W(MN) AND INITIAL FORCES FXFYFZ

C
CALL GFORCES

C
C COMPUTE CABLE FORCES RX.RY.RZ--TENSION T(MN)--AND STRESSED LENGTH L(MN)

C
3 DO 7 NN = 1. 3

N = 4 - NN
MX = MMAX(N)

GO TO ( 5. 4 ) N
4 RX(MXN) = FX(MX*N)

RY(MXsN) = FY(MXN)
RZ(MXN) = FZ(MXN)

GO TO 6
5 RX(MX4I) = FX(MXl) + RX(I.2) + RX(1,3)
RY(MX9l) = FY(MXl) + RY(l,2) + RY(1o3)

RZ(MXI) = FZ(MXi) + RZ(1,2) + RZ(1.3)

6 T(MXN) = SURT ( RX(MXN)**2 + RY(MXN)**2 + kZ(MXoN)**2
L(MXN) = LBAR(MXN) * ( 1. + T(MXN) / XTEN(MXtN)
LT(MXN) = L(MXN) / T(MX.N)

MX = MX - 1
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DO 7 MM = I MX
M = MX - MM + I
RX(MN) = FX(M.N) + RX(M+1.N)

RY(MN) = FY(M.N) -+ RY(M+IlN)
RZ(M.N) = FZ(M.N) + RZ(M+I1N)
T(MN) = SORT ( RXI(M*N)**2 + RY(MN)**2 + RZ(MoN)**2

L(M*N) = LBAR(MN) * ( I. + T(MqN) / XTEN(MN)

7 LT(MN) = L(MN) / T(M.N)

C
C COMPUTE X.YZ COORDINATES OF EACH STATION

C
DO 10 N = I 3
MX = MMAX(N)

DO 8 M = It MX
X(M.N) = LT(M.N) * RX(M.N) + X(M-sN)
Y(MN) = LT(M.N) * RY(M.N) + Y(M-14N)

8 Z(M.N) = LT(M.N) * RZ(M.N) + Z(M-1.N)

GO TO ( 9. 10 ) N

9 DO 10 NN = 2. 3
X(0ONN) = X(MX,1)
Y(0ONN) = Y(MXl)
Z(0NN) = Z(MX91)

10 CONTINUE

C
C COMPUTE ERROR FUNCTION

C
LOOPE = LOOPE + I

E 0
DO 11 N = 2. 3
M = MMAX(N)•

11 E = E + (A(N)-X(M.N))**2 + (B(N)-Y(M.N))**2 + (C(N)-Z(MN))**2

IF ( E .GT. COMPE ) GO TO C 19. 504 15 ) LEAP

C
C UPDATED DIRECTION COSINES

C
DO 300 N = It 3
MX = MMAX(N)

DO 300 M = 1. MX
ALPHA(M*N) = (X(M.N)-X(M-IN)) / L(MsN)

BETA(M.N) = (Y(MN)-Y(M-IN)) / L(MN)

300 GAMMA(M*N) = (Z(M.N)-Z(M-I.N)) / L(MN)

C
C ERROR FUNCTION COMPARISON SATISFIED

C
GO TO ( 51. 52 ) JUMP

C
C PRINT AND STORE STATIC EQUILIBRIUM POSITION

C
51 CALL STATPOS

JUMP = 2
LDOOPE = 0
DO 53 N = 1* 3
MX = MMAX(N)

DO 53 M = I* MX
XO(M.N) = X(MN)
YO(M.N) = Y(M.N)

ZO(M.N) = Z(M.N)
XB(M9N) = X(M.N)
YB(M*N) = Y(M.N)
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53 ZBIMsN) = Z(M*N)
GO TO 61

C
C COMPARE ACCURACY OF COORDINATES

C
52 DO 55 N = It 3

MX = MVALUE(N)
DO 55 M = 1 MX
IF ( ABS (X(M.N)-XO(MN)) ,GT, COMPD ,OR,

1 ABS (Y(M.N)-YO(MoN)) .GT9 COMPD ,OR,
2 ABS (Z(M.N)-ZO(M*N)) .GT. COMPD ) GO TO 57

55 CONTINUE

C
C ACCURACY SATISFIED-PRINT EQUILIBRIUM POSITION FOR HYDRODYNAMIC FORCES

C
DO 56 N = 1. 3
MX = MVALUE(N)

DO 56 M = It MX
HORIZL(MN) = SQRT ( (X(MN)-XB(MN))**2 + (Y(M*N)-YB(M,N))**2

56 HEIGHT(MN) = Z(M*N) - ZB(MN)

CALL DYNAMPOS

LOOPE = 0

LOOPA = 0
GO TO 60

C
C ACCURACY NOT ADEQUATE-REITERATE

C
57 DO 59 N = It 3

MX = MVALUE(N)

DO 59 M = 1. MX
XO(M.N) = X(MqN)
Y0(M9N) = Y(M9N)

59 ZO(MN) = Z(MN)
GO TO 62

C
C ERROR FUNCTION COMPARISON NOT SATISFIED

C
50 IF ( E .LT, EP ) GO TO 20

C
C INCREASE IN ERROR FUNCTION

C
DELTA = DELTA / 2&

C
C COMPUTE IMAGINARY REACTIONS

C
12 DE = DELTA / SORT ( EP

DO 13 N = 2. 3
MX = MMAX(N)
FX(MX.N) = FXP(N) + (A(N)-XP(N)) * DE
FY(MX9N) = FYP(N) + (B(N)-YP(N)) * DE

13 FZ(MX.N) = FZP(N) + (C(N)-ZP(N)) * DE

C
C CHECK CHANGES IN IMAGINARY REACTIONS

C
DO 14 N = 2s 3

IF ( FXCMX.N) ,NE, FXP(N) oOR.

1 FY(MX.N) eNE. FYP(N) *OR*
2 FZ(MXN) .NE. FZP(N) ) GO TO 3

14 CONTINUE
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LEAP = 3
GO TO 3

C
C NO CHANGE-TIME TO QUIT
C

15 CALL EXITT

GO TO 100
C

C DECREASE IN ERROR FUNCTION

C
19 LEAP = 2

20 EP = E
DO 21 N = 2s 3
MX = MMAX(NI
XP(N) = X(MX.N)
YP(N) = Y(MX.N)

ZP(N) = Z(MX.N)
FXP(N) = FX(MX.N)
FYP(N) = FY(MX.N)

21 FZPCN) = FZ(MX.N)
GO TO 12

C
C INCREASE CURRENT ANGLE

C
60 PSI = PSI + DELTAPSI

IF C PSI .GT. ENDPSI+IE-6 ) GO TO 100

C
C ADD HYDRODYNAMIC FORCES TO SYSTEM

C
61 COSPSI = COS ( PSI * P1 / 180. )

SINPSI = SIN ( PSI * Pl / 180o )

62 DELTA = DELTAI

LEAP = I
LOOPA = LOOPA + I

C
C DRAG COEFFICIENTS

DO 30 N = 1, 3
MX = MMAX(N)
DO 30 M = I MX
CAPDELTA = SQRT ( (BETA(MN)*COSPSI - ALPHA(MoN)*SINPSI)**2

+ GAMMA(M.N)**2 )
BUFFER ALPHA(MN)*COSPSI + BETA(MN)*SINPSI

CX(M*N) = MU(MN) * ( CAPDELTA *
1 C (GAMMA(MN)**2 + BETA(MN)**2)*COSPSI

2 - ALPHA(MoN) * BETA(M.N) * SINPSI
3 + RD(M.N) * ALPHA(M*N) * BUFFER
.CY(MgN) = MU(MN) * C CAPDELTA *
1 ( (GAMMA(MN)**2 + ALPHA(MN)**2)*SINPSI
2 - ALPHA(MoN) * BETA(MsN) * COSPSI
3 + RD(M.N) * BETA(M.N) * BUFFER )

30 CZ(M.N) = MU(M.N) * GAMMA(MoN) * BUFFER * (RD(MqN)-CAPDELTA)

C
C COMPUTE CABLE DRAG FORCES HX*HY.HZ-AND ELEMENT DRAG FORCES HXEqHYE
C

DO 40 N = I, 3
MX = MVALUE(N)

DO 40 M = I. MX
GO TO ( 23, 24 ) MX - M + N

23 Al = AREAI(MX,.)
A2 = AREA2(1,2)
A3 = AREA2(1.3)
HX = CX(MN) * Al + CX(1.2) * A2 + CX(1.3) * A3
HY = CY(MN) * Al + CY(12) * A2 + CY(1.3) * A3
HZ = CZ(MoN) * Al + CZ(12) * A2 + CZ(l13) * A3
DT = DRAGI(MXI) + DRAG2(192) + DRAG2(1.3)
HXE = DT * COSPSI
HYE = DT * SINPSI
GO TO 26
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24 Al = AREAI(M.N)

A2 = AREA2(M+IN)
HX = CX(M.N) * Al + CX(M+1,N) * A2

HY = CY(MN) * Al + CY(M+IN) * A2

HZ = CZ(M.N) * Al + CZ(M+lN) * A2

DT = DRAGI(M.N) + DRAG2(M+IlN)

HXE = DT * COSPSI
HYE = DT * SINPSI

C
C NEW TOTAL FORCES

C
26 FX(M.N) = HX + HXE

FY(MN) = HY + HYE

FZ(M.N) = HZ + W(M.N)

40 CONTINUE

GO TO 3

100 END

SUBROUTINE INPUT

REAL Lo LBAR, LT. MU. HUE

COMMON / C3 / W(2093). WC(203), WE(7520*3)

COMMON / C4 / MMAX(3), KMAX(20.3), KTILDA(20,3)

COMMON / C5 / LBAR(20,3),L(20,3),SBAR(75.2O3),T(20,3),LT(20,3)

COMMON / C6 / A(3)9 B(3)9 C(3)9 Et DELTA. JUMP. LOOPE, LOOPA

COMMON / C9. / AV(25), BV(25), VF. V(25)9 HF, Ht25)
COMMON / CIO / COMPE. COMPD, PSI. STARTPSI DELTAPSI. ENDPSI

COMMON / C11 / XTEN(203)9 MU(2093)* MUE(75920,3), RD(20.3)

C
C COMPARISON VALUES AND CURRENT ANGLE REQUIREMENTS

C
READ 1. COMPE. COMPD. STARTPSI DELTAPSI. ENDPSI

I FORMAT ( 5FIO
C
C ANCHOR POSITIONS

C
READ 2. C A(N). B(N), C(N), N I 1t 3

2 FORMAT C 3FIO

C
C NO.OF STATIONS PER CABLE

C
READ 39 C MMAX(N)o N = 1. 3

3 FORMAT C 3110

C
C PROVIDE VELOCITY PROFILE IN SUBROUTINE VPROFILE

C

CALL VPROFILE

C

C USER MUST PROVIDE STATEMENTS TO READ IN OR CALCULATE THE FOLLOWING

C OR INITIALIZE WITH THE USE OF DATA STATEMENTS AFTER COMMON / CII /

C

C CABLE PROPERTIES OF SEGMENT(MN)
C LBAR(M.N) = UNSTRESSED LENGTH

C WC(M.N) = WEIGHT/FOOT
C XTEN(MN) = EXTENSIONAL RIGIDITY

C MU(M.N) = WATER DENSITY * NORMAL DRAG COEFF. * CABLE DIAMETER / 2

C RD(MN) = PARALLEL DRAG COEFF. / NORMAL DRAG COEFF.

C KMAX(MN) = NO.OF DISCRETE ELEMENTS IN SEGMENT

C

C PROPERTIES OF DISCRETE ELEMENT(K.MN)

C SBAR(KMN) = UNSTRESSED LENGTH FROM STATION(M-lN) TO ELEMENT(KoMN)

C WE(KMN) = WEIGHT
C MUE(KM.N) = WATER DENSITY * DRAG COEFF. * X-SECTIONAL AREA / 2

C
C INSERT USER-PROVIDED CALCULATIONS OR READ-IN STATEMENTS FOLLOWING THIS CARD

END
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SUBROUTINE GFORCES

REAL Le LBAR. LT
COMMON / C2 / FX(20o3)9 FY(20O3). FZ(203P

COMMON / C3 / W(2093)9 WC(2O03)9 WE(7592093)

COMMON / C4 / MMAX(3). KMAX(20.3). KTILDA(203)

COMMON / C5 / LBAR(20O3).L(203).SBAR(75.20.3).T(203).LT(20O3)

COMMON / C6 / A(3)9 B(3)• C(3)9 E. DELTA* JUMP. LOOPE. LOOPA
COMMON / C17 / DELTAI

C
C COMPUTE STATION GRAVITY FORCES W(M.N)- AND INITIAL FORCES FX.FYOFZ

C

WT = 0
DO 3 N = 1* 3
MX = MMAX(N) - I

DO 3 M = I. MX
WX = 0

FX(M.N) = 0
FY(MoN) = 0

KB = KTILDA(M.N) + 1

KX = KMAX(MoN)

DO 1 K = KB, KX

I WX = WX + WE(K*MvN)

KX = KTILDA(M+I*N)
DO 2 K = to KX

2 WX = WX + WE(KqM+IlN)
W(M4N) = WX + WC(MoN)*LBAR(MN)/2o + WC(M+IlN)*LBAR(M+i*N)/eo
FZ(M*N) = W(MoN)

3 WT = WT + W(M.N)

WX = 0
FX(MMAX(I)]o) = 0

FY(MMAX(I l) = 0

KB = KTILDA(MMAX(I)oI) + I

KX = KMAX(MMAX().l)

DO 4 K = KB. KX

4 WX = WX + WE(K.MMAX(l)ol)

DO 6 N = 2. 3
KX = KTILDA(1,N)

FX(MMAX(N).N) = 0

FY(MMAX(N),N) = 0

DO 5 K = 14 KX
5 WX = WX + WE(Kql*N)
6 WX = WX + WC(IsN) * LBAR(1lN) / 2o

W(MMAX(1).l) WX + WC(MMAX(l).l) *LBAR(MMAX(1)91) /2.
FZ(MMAX(I)ol) =W(MMAX(1),l)
WT = WT + W(MMAX(1)9l)

DO 7 N = 2. 3
7 FZ(MMAXfhL)sN) = -WT / 3.

C
C COMPUTE INITIAL DELTA

C
S02 = SORT ( 2.

DELTAI = ABS ( SQ2 * WT / 3.
DELTA = DELTAI

END

FUNCTION MVALUE(N)
COMMON / C4 / MMAX(3)9 KMAX(20o3). KTILDA(203)

GO TO I 1t 2 ) N

I MVALUE = MMAX(N)
RETURN

2 MVALUE = MMAX(N) -

END
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FUNCTION AREAS ( Me N, K. Xl )

COMMON / CI / XF, X(2l.3). YF. Y(2lo3)9 ZF* Z(2193)
COMMON / C9 / AV(25). BV(25). VF. V(25)9 HF. H(25)

COMMON / C12 / ALPHA(203). BETA(20,3)9 GAMMA(2O,3)

AREAS = (AV(K)+BV(K)*Z(M-1N))**2 * Xl

I + (AV(K)+BV(K)*Z(M-l.N)) * BV(K) * GAMMA(M9N) * Xl**2

2 + (BV(K)*GAMMA(M*N))**2 * Xl**3 / 3.

END

FUNCTION LIMIT ( ZT

COMMON / C9 / AV(25), BV(25)9 VF, V(25)9 HF, H(25)

DO I J = 1o 25

IF ( ZT *GE* H(J) ) 1* 2
I CONTINUE

2 LIMIT = J

END

SUBROUTINE VPROFILE

COMMON / C9 / AV(25)9 BV(25). VF9 V(25)t HF. H(25)
K = 0

1 READ 2. H(K)s V(K)

2 FORMAT ( 2F1O )
IF C H(K) *GE* 40000, ) GO TO 3

K K + I
GO TO I

3 KX = K
DO 4 K = I, KX
BV(K) = (V(K)-V(K-l)) / (H(K)-H(K-l))

4 AV(K) = V(K-I) - BV(K) * H(K-I)

END

FUNCTION SYGN(J)
IF ( J I I, 29 3

I SYGN = -I.
RETURN

2 SYGN = 0
RETURN

3 SYGN = 1.

END

FUNCTION AREA ( MN

REAL LBAR. L. MU. MUE. LT

COMMON / Cl / XF9 X(2193)9 YF9 Y(213)o ZF. Z(21,3)

COMMON / C4 / MMAX(3)o KMAX(203)9 KTILDA(2093)

COMMON / C5 / LBARI20,3).L(20,3).SBAR75,203)T2093)LT(203)
COMMON / C9 / AV(25)9 BV(25)o VF9 V(25). HF. H(25)

COMMON / C1l / XTEN(203). MU(203)9 MUE(75.20.3), RD(203)

COMMON / C12 / ALPHA(20,3), BETA(203). GAMMA(20,3)

C
C LINE INTEGRAL BELOW STATION

C
ENTRY AREA!
KL = LIMIT ( Z(M-IN) + GAMMA(MN) * L(M*N) / 2,

KU = LIMIT ( Z(M.N)

TOP = L(MN)

BOT = L(M.N) / 2.

2 KMIN = MINO ( KU, KL
KTOP = KMIN - I + IABS ( KU-KL I

SUM = 0

DO I K = KMIN. KTOP
XI = (H(K)-Z(M-IN)) / GAMMA(MsN)

1 SUM = SUM + AREAS(MN.K.XI) - AREAS(M*N*K+lXI)

AREA = SYGN( KU-KL ) * SUM + AREAS(MNKU.TOP) - AREAS(MNqKLeBOT)

RETURN
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C
C LINE INTEGRAL ABOVE STATION

C
ENTRY AREA2
KL = LIMIT(Z(M-I*N))

KU= LIMIT(Z(M-lN) + GAMMA(MoN) * L(M.N) / 2.)
TOP = L(MoN) / 2.

BOT = 0
GO TO 2

C
C DRAG OF ELEMENTS BELOW STATION

C
ENTRY DRAG1
KB = KTILDA(M.N) + 1

KX = KMAX(MN)

5 SUM = 0

DO 4 K = KB, KX
ZT = Z(M-IoN) + GAMMA(M9N) * SBAR(KM.N)*(I+T(MN)/XTEN(MN))

J = LIMIT( ZT )
4 SUM = SUM + MUE(KMvN) * (AVCJ) + BV(J) * ZT)**2

AREA = SUM

RETURN

C
C DRAG OF ELEMENTS ABOVE STATION

C
ENTRY DRAG2
KB = I
KX = KTILDA(M*N)

GO TO 5

END

SUBROUTINE OUTPUT

REAL LBAR, L. MU, MUE. LT A

COMMON / Cl / XF. X(2193)9 YF. Y(21.3). ZF. Z(2193)
COMMON / C2 / FX(20,3). FY(20,3), FZ(20,3)

COMMON / C4 / MMAX(3), KMAX(20,3), KTILDA(20,3)
COMMON / C5 / LBAR(20,3)L(203).SBAR(752O03).T(203).LT(2O03)

COMMON / C6 / A(3)9 B(3)9 C(3). E9 DELTA. JUMP, LOOPE. LOOPA
COMMON / C7 / HORIZL(20O3), HEIGHT(20,3)
COMMON / CIO / COMPE. COMPD. PSI* STARTPSI. DELTAPSI. ENDPSI
COMMON / CIl / XTEN(203). MU(20o3)9 MUE(75,20,3), RD{20,3)

C
ENTRY CABLE
PRINT I

1 FORMAT( H1,40H PHYSICAL PROPERTIES OF THE CABLE SYSTEM)
DO 4 N=1.3
PRINT 29N.A(N).B(N).C(N)

2 FORMAT(1H29//3Xl4HCABLE NUMBER =,I I//IOX,15HANCHOR POSITION./15X
I ,2HX=,El6,9,lOX,2HY=,EI6.9.1OX,2HZ=.E16.9)
MX=MMAX(N
DO 4 M=IMX
PRINT 3. M. LBAR(MN), XTEN(M.N)

3 FORMAT(/5X916HSEGMENT NUMBER =.I2,/lOX,11HLBAR(MN)= 9E16.91OX9

llHXTEN(MvN)= .E16o9)
4 CONTINUE

RETURN

C
ENTRY STATPOS
PRINT 13

16 PRINT 5.EDELTALOOPE
5 FORMAT( X941HEQUILIBRIUM POSITION UNDER GRAVITY FORCES9//1OX.

1 2HE=vE16*99IOX9 6HDELTA=9E16o9,IOXl9HNO*OF ERROR LOOPS
=

2 915)
6 DO 10 N=193
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PRINT 7,N
7 FORMAT(//93X913HCABLE NUMBER=12)

MX=MMAX(N)

DO 10 M=I*MX
PRINT 8.MFX(MN),FY(M.N).FZ(MN),X(MN),Y(MN),Z(MN),TCMN),

I L(MN)
8 FORMAT(/5X15HSEGMENT NUMBER= 12./

1 IOX.8HFX(MN)=,EI6.9,1OX.BHFY(MN)=,E16.9,1OX,8HFZ(M.N)=,EI6.9/
2 lOX,8H X(M*N)=,E16o99IOX98H Y(M9N)=,E16*99IOX98H Z(MN)=,EI6,9/

3 IOX,8H T(M9N)=*E16*9*lOX98H L(M9N)=9E16e9)

GO TO(1O9)JUMP
9 PRINT IIHORIZL(M.N),HEIGHT(MN)

11 FORMAT(15X,12HHORIZL(MN)=.E16.9.lOX*l2HHEIGHT(M,N)=,El6e9)

10 CONTINUE
RETURN

C
ENTRY DYNAMPOS

PRINT 13

17 PRINT I2,EDELTA.LOOPELOOPA.PSI

12 FORMAT( X940HEOUILIBRIUM POSITION UNDER ACTING FORCES*//

I IOX,2HE=,EI6.910X 6HDELTA=,EI6*9,/sIOXl9HNOOF ERROR LOOP

2S
=  , 15IOX,21HNOOF ACCURACY LOOPS= 9150//

3 14HCURRENT ANGLE=.F8e3)
GO TO 6

C

ENTRY EXITT.
PRINT 13

PRINT 14

14 FORMAT(X//X.9OHPROBLEM NOT COMPLETED* DELTA HAS GOTTEN TOO SMALL T

10 CHANGE THE IMAGINARY REACTIONS.
2/X9IOOHEITHER ACCURACY REQUIREMENTS ARE TOO SMALL(COMPE) OR A CABL

3E HAS GONE SLACK (CHECK TENSIONS).

4/X,55HPRINTOUT IS GIVEN FOR TROUBLE SHOOTING PURPOSES ONLY.

GO TO C 16. 17 ) JUMP

13 FORMAT C IH)
END

SAMPLE OUTPUT

The following printout shows the output format for this program as given by subrou-
tine OUTPUT. The physical properties section of the printout is included as a check on
the input. It is followed by the no-current equilibrium configuration of the system, and
then by the equilibrium configurations assumed under the various current headings that
are considered in the problem.

The user may make changes in subroutine OUTPUT to fit his needs. All variables
listed in COMMON statements at the beginning of the main program are in core storage
and can be printed if needed.

The particular output given here describes the array considered as an example in
Appendix C. The equilibrium configuration under a 0-degree current heading is that ob-
tained for Case B of Appendix C. The printout is shown only for cable 1, since the print-
outs for cables 2 and 3 have the same format and contain the same information.
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- PHYSICAL PRSPERTIES eF TNE CABLE SYSTEM

____ANCHNCH@ P.SITJ,8N.
X-O.90U000030+004 YZ 0.000000000+000 Zu 0.000000000PO1o

SEGMENT NUMBER a I
__ LBARCMsN)u .. 1.341500000.003 XTENCM,N): 6.170900000.006

SEGMENT NUMBER_* 2
LBAR(MN)s 1.341500000+003 XTEN(MN)c 6.170900000.006

SEGMENT NUMBER. 3
LO R(M.N).z- 1.,341500000.003, XTEN(MN)a 6.170900000#006

SEGMENT NUMIBER_z 4
LBAR(MoN)m 1.341500000.003 XTEN(MN)z 6.170900000.006

SEGMENT NUMBER ; 5

- - - - --__ LBAR(MN) ... 1,34.1-500000.003 . - XTEN(MN)c 6.170900000.006

SEGMENT NUMBER a 6
LBAR(M.N)= 1.341500000.003 XTEN(M.N)u 6.170900000*006

SEGMENT NUMBER .7
_______ L8ARMa NI_. 341500000*003 . ..XTEN(MPN)s 6.170900000*006

SEGMENT NUMBER.__8
LBAR(MN)a 1.341500000.003 XTEN(M,N)a 6.170900000.006

SEGMENT NUMBER a 9
-- __ N..) 2..... 1,341.500000+003 XTEN(MN)a 6,170900000*006

SEGMENT NUMBER -lC
LBAR(MN)v 1.341500000.003 XTEN(MN)z 6.170900000.006

SEGMENT NUMBER all
__-__ LBAR(,M-N)-X- 1,34150000.0.003 XTEN(M,N)a 6,170900000.006

__ SEGMENT NUMBER .12 .
LBAR(MN)a 1,341500000.003 XTEN(M.N)z 6.170900000#006

SEGMENT NUMBER =13
-- 8jBkRjM.N) z -. 1L341500000+003 XTEN(M,N)a 6,170900000.006

- .SEGM ENT NUMBER a 4
LBAR(M,N)c 1,341500000.003 XTEN(M,N)= 6.170900000.006

SEGMENT NUMBER s15
_____ L-AR(MP,4N)- 341500000+003 XTEN(M#N)= 6,170900000.006

UEMENT NUMBER .16
LBAR(M,N)s 1.341500000.003 XTEN(M.N): 6.170900000.006

SEGMENT NUMBkR .17
-,- _LBARM .N). 1,341500000.003 XTEN(M.N)a 6,170900000.006

LBAR(M,N)z 1.341500000+003 .XTEN(M.N)= 6.170900000+006 . . .
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SEGHENT NUMBER .19
LBAR(MN)c 1,341500000003 XTEN(M,N): 6.170900000*006

SEGMENT NUMBER x20
LBAR(M.N): 1-.3415000.003. XTENCMN): 6,17090-0000006

CABLE NUMBER *2

ANCHOR PRSITION
X= 9.500000000#n03 Y=-1.645450000.04 Zz 0.00000000flOO o

SEGMENT NUMBER 
1

LBARCMN): 1,341500000.003 XTENCM.N): 6,170900000.006 __

SEGMENT NUMBER : 2
LBAR(MN)c 1.341500000+003 XTEN(MN): 6,170900000.006

SEGMENT NUMBER : 3
LBAR(M,N): 1,341500000.003 XTEN(M _ N) 6.170900000.006._.

SEGMENT NUMBER = 4

.E G -M-EN T N UM BER -- 5 . ..... . . .. .. . . .. . . . .. . . . . . .. . ... . . .. . .
LBAR(M,N)= ,,341500000.003 XTEN(M,N)= 6.170900000.006

SEGMENT NUMBER 6 5
LBAR(MN): -1-,34150000+0-03 " XTEN(M,N)z 6.1

7
0
9
00000+006

SEGMENT NUMBER 7 6
LBAR(MN)= 1. 341500000.003 XTEN.M,N)_ 6.17090n0000006

SEGMENT NUMBER 7
LBAR(M.N) 1,3 41.500000. 003 XTEN(M,N) 6.1-090-6 0-00 006 .. ... . .. ....

SEGMENT NUMBER c 9
LBAR(M,N)= 1,341500000+003 XTEN(M.N): 6.170900000006

SEGMENT NUMBER 10
LBAR(M,N)c 1,341500000+003 XTEN(M,N): 6,170900000.006

SEGMENT NUMBER =11

LBAR(M,N)= 1. 341500000.003 XTEN(M,N): 6.170900000.006

SEGMENT NUMBER 213
LBAR(M,N)m 1.341500000.003 XTEN.M.,N) 6.170900000.+006 .... . ..

SEGMENT NUMBER =14
LBAR(M,N)z 1 341500000.003 XTEN(M,N)x 6.170900000*006

SEGMENT NUMBER =15
LBAR(MN)_ _ 1.341500000.003 . XTEN(M,N)= 6.170900000+006 .

SEGMENT NUMBER =16
LBAR(M,N)m 1.341500000+003 XTEN(MN): 6.170900000.006

SEGMENT NUMBER =17
LBAR(MN)m 1.341500000n003 XTEN(M,N)= 6.170900000.006
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tGUIL1$RIUM PO3SITION UNDERGRAVITY FOJRCES

Em 8.124466426- 003 DELTA= 3,598772476-002 NO.eF ERROR LOMPS:

GAHLE NUMBER: 1

SEGMENT NUMBER= 1 __ _

FXCM,N): - 0 .U0009O000*00 -FYCMN): 0.0000o000&00 F ZC(M-,N : 1.10499.9930-001_
X(M,N)=-1.8L50C7569+004 YCM,N): 0. 000000000.000 ZCMN): 9.501432081+002
TCM,N-): 9,432919389+003 4(M,N)z 1.343550635,003

SEGMENT NUMBER: 2 ___F XCM ,N) 0 .0 1 00-0 0-+0 000
X M, N :1./10 014353 0 04
TCM,N): 9.432841245+003

SEGMENT NUMBER: 3

X (M N):-1 .615020350+004
TCM, N): 9.432763102.003

-- FY(M#N)a 0,00000000-000 -

YCM,N): 0.000000000.000
LCMN): 1.343550618#003

FZ(M,N): 1.104999930-001
ZCM,N)a 1.900278537.003

YCMrN): 0.0000000004000 ZCM.N)m 2.850405985#003
LCM,N): 1.343550601.003.

SEGMENT NUMBER: 4
FX(M#N)= 0.0U000COOO0+000

________XLN=-l. 520025562+ 004
T(M,N):= 9".43'2-6-4959,+003--

SEGMENT NUMBER:- 5
FXCMpN): 0. 0000?0000,00Q
X(M,N)=-1.425029988*004
T(, C . 326 6817. 003

SEGMENT NUMBER: 6
FXCM,N): G. OCOOOOOOO.000
X(M,N)z-1.330033629+004
TCM,N)= 9.432528676,003

SEGMENT NUMBER= Y
FXCM,N)= 0,0UO0000.000
X(M,N)=-1.235036483+004
TCM,N)= 9, 432450535*003

SEGMENT NUM8BR: 8
FXCM,N)= 0.OU00 0000,000
X(MPN)=-1.14004552,o04
TCM 'N): 9. 432372695.003

SEGMENT NUMBER= 9
______I CM1 U- + 0~ 0 (i02U0

X(M,N):-1.045059835004
T(M,N): 9,432294256,003

SEGMENT NUMBER=10
FX(M,N)= 0.0(000C0000+0n0

X j-CK-J) -= -9_5 L 04_-3 3.2-4 +-003
T(M,N)= 9,43221611.7+003

SEGMENT NUMBERz11
FXC(M1 N)= 0.0tu00C,00n00000
XC M,N)=:-8 *5504C 0438, 003
T CM,N): 9.432137978,003

FY(M,N): 0.000000000.000
-. 000-00 -C,) 0,OOOOOOOOQ.00 ,
L(M,N): 1,34,3550584+003

FZ(M,N)z 1.104999930-001
- _LM_1 Pt)_3 0 5 25 554+PAQ3-

FYCM,N)c 0,0000000004000 -FZCMI-N
YCM,N): 0.000000000.000 ZCM.N

FYCM,N): 0.000000000.000 FZCM,N
YCMN): 0.0000000000fl0 Z(M.N
LCM,N)= 1,343550550,003

FYCM,N)= 0.000000000.000 FZtMN
YCM,N)= 0.000000000.000 ZCM,N
L(M,N)a 1.343550533#003

FY CM *N:
Y M N)z
L M N z

0, 000000000.000
0.000000000.000
1.,343550516+003

FYCM,PN-)- 0O.0-00000000lf -

YCM,N)z 0.000000000,%000
LCM,N): 1,343550499.003

FYCM,N): 0,000O00000,000
- Y.(M,.N)= -0 ..- OOOOQOOQ00

LCM,N)z 1.343550482.003

FY(M,N)z 0.000000000.000
YCM,N): 0.000000000.000
LCM,N): 1,343550465,003

)-a -. 104999930-ODI
)a 4.750637242.003

)m 1.104999930-001
):z 5.700741050.003

): 1,104999930-001
)a 6.650836977+003

FZ(M,N): 1. 104999930-001
ZCM,N): 7.600925023#003

ZCM,N)z 8.551005189.003

FZCM,N): 1.104999930-001

FZtM- N); -u ,1-049999, 004
ZCM,N): 1.045114188.004

SEGMENT NUMBERm12
FX(MN): 0.OOOOC00OO,000 FYCM.N)z 0.000000000.000
XCMN):-7.600389695+003 Y'MN)= 0.000000000.000

C(M,N):= 9-.4320591841+0013 LCM#N)c 1.343550448,003

SEGMENT- NUMBER-1-3
FX(M,N)m 0.000000000.000 FY(M.N:_ 0.000000000.000 _

X(M,N)=-6.650371094,003 -- YCM,N)c 0.000000000.000
-TCM,N)= 9.431981704.003 LCM,N)a 1.343550431.00.3

SEGMENTNUMBER:14
FXCM.N): 0 .Uui00%000000
X(M eN) :-5.70034 4634. 003
TCM,N)z 9.4319'35~68+003

SEGMENT NUMBEP=-1f5--
FXCMN):__OOuOO0)0U00000
X(M,N):-4.750310316,003
TCM,N): 9.431825432,003

FZCM.N)c 1.104999930-001-
Z(MN)c 1.140119840.004

FZ(M,N):_ 1.104999930-001-
Z(M,N)a 1.235124704.004

FY(M,N): 0.000000000.000 FZCM,N)c 1-104999930-001
YCM.N)z 0.000000000.000 - ZCMN)c 1.330128779.004
1LCM-f ,N) 1-.3-4 355-0-4-1-4 ,0 3

FYCM,N): 0.000000000.000 FZ(M,N)z 1.104999930-001
YCM,N)a 0.000000000.000 ZCM,N)z 1.425132067.004
LCM,N)x 1.343550397*003
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SEGMENT NUMHERc16
FXCM,N): 0. 000000000.000-

XC M,N) :-3.*800268140.003
T(M,N)z 9,431.747298.003

SEGMENT NUMBER=17
FXCM,N): 0.0000003000.000
X (M, N b -.5-0 1810-5-+00 

3

T CMN)= 9.431669164,003

SEGMENT NUMBER=18
FXCM,N)= 0.00000O000000
X(M,N)=-l,900160212+003
TCM,N)= 9.431591-030+003

SEGMENT NUMBER:19
FXCM,N)z 0.000000000#000
X(M,N)=-9.500944605*002
T__ TM,-N-)-- -9.431512897+003

SEGMENT NUMBER= 20
FXCMaN): 0.0000C0000.000
XCM, N)Z-2_,kb5O420of-002
TCM,N): 9.4-3143476.0-03-

CABLE NUMBER: 2-

SEGMENT NUMBER= 1
FXCM,N)z 0. 0L000000+000
XCM,N)= 4. 750167551+002

TMaN:9.431379 078,003

SEGMENT NUBER: 2
FX(M,N): 0, 0u000000000____
XCm,N)= 9.5L.0544314+002

-TC(M-,-N-) 9.431.4572 11.003

-SE-GMENT NU-MBER:= 3
FXCM,N)z 0. OuOOOO0flO.000
X(MN)z 1.425086178,003

bGUILIURIUM POSITION UND)ERACTINGFEBRCES

FYCMN)m 0,000000000.000
YCM,N)m U,0000000004000
LCM,N)s 1,343550380.003

FYCM,N)c 0.000000000,000
YCM,N): 0. 000000000.000
0.M,N)z 1,343550363*003

FYCM. NI: 0.000000000*000
YCM,N): 0.000000000+000
LCM,N): 1. 343550346,003

-.FYC(M .N ),:= 0. 000-000000,090
YCMaN)= 0.000000000*000
LCM.N)z 1.343550329*003

FYCM, N): 0.000000000,000
- YC!, N)=-0 ,00 000000+0_00

LCMPN)m 1.343550312+003

FYCM,N)z 0.000000000+000
SCM, N) :-8.227867463,002
LCM,N): 1.343550300*003

F-Y-(MkNJ -+ 0000 OOOOOQ *0 00
Y(M.N)z-1.645566687+003
L CM *N): 1,343550317.003

FYCM.N): 0.000000000.000
Y(MN)2. 468339822,003

FZ(M,N)a 1.104999930-001
Z(MN): 1.5,20134566+004

FZ(M,N)u 1.104999930-001
ZCM,N)a 1.615136277.004

FZ(MN)a 1. 104999930-001
Z(M,N): t. 710137200,004

FZCM,N): 1.104999930-001
--Z (MfN ):z 1.80513-7334.- 004

FZCM,N)c 2.000616575+004
Z(_M 1 N): l.I,90-0-13668-0*004

FZCM,N): 1.104999930-001
ZCM,N)s t.805137378*004

FZCM,N)m 1..104999930-001
ZCM.N): 1.710137287.004

FZCM,N): 1.104999930-001
ZCM,N)z 1.61 5136407*004

-Em 4 .338176168- 004
NO,0F ERROR LOOFS=

LRkHENT ANGLE:- 0.000

CAUL.. NUMBER: -1

SEGMENT NUMBER= 1
FX CM,N): 2.543530098,001
X(M,N)z-1.8L2

3
18956+004

TCM,N)z 1.110274405,.0064
N-OR IZI. MN): 2,688616323.001

__SEGMENT NUMBER: 2
FXCM,N): 2.558872715.001
X(M,N z-1.7-048-94148+004
TCM,N): 1.109684900,004

_HORIZCM,N)s 5,120204687+001

DELTA: 3.598772476-002
N9.@F ACCURACY LOOPS=

FYCM,N): 0.0000000004000 FZCM,N)=-1.8?7?60124+001
YCM.N): 0,000000000*000 -ZCM,N)a 9.230087617*002
LCM.N): 1.343913640,003

HEIGHT(M,N) .-2, 713444641+001

FYCMaN)z 0.000000000*000 FZCM,N,:-1.833164028+001
-YC(M, N) z 0,000000000.000 - Z(MN)-- 1,848719929.003
LCM,N): 1.343912358,001

HEIGHTCM, N)s-5, 1558J60776.001

SEGMENTNUMBER: 3
FXCM,N)= 2.574358164.001 FY(MN):
XC7 82 i 4727

4
9 + 0 04.- -- __ M CM N):z

TCM,N): 1.109096911.004 L(MN):
IRIZL-(M ,N ) = -7-129 2 5 016 4 0*+0 01

0.000000000.000
0,00,00000.00*000 -

1.343911080,003
HEIGHT(M,N):-7. 326372802.

FZCM,N)x-1 .839035012.001
ZIMN)z 2,777142257.003

SEUMENT NUMBER: 4
FXCMN)z 2.589986979.001 FY(M, N): 0.000000000*000 FZCM,N):-1. 844871320*001
X(M,N)=-1.5108 22 339+ 004 _--- N-M,N)z:0.-00&0

0
9.PD0,0

0  
--- -ZCM,-N)- 3.708284455.003

TCMN)= 1.108510450,004 LCMN): 1.343909905.003
J{~L2 C ,):9.203222775+001 HEIGHT(M,N)x.9.224109e58+001

SEGMiNTNUMBER:-5 S
FX(M,NI: 2.605759672+00!1YM,~
X(M,N)=:14,1A4T2926+004 -- Y( N
TCMN): 1.107925529+004 LCM,N)s

HMORL-ZL(M 1jNI: 1,085006270#002

0. 000000000*Oflo
0 , O -000 00 00 !.QOO
1.343908534.003
HEIGHT(M,N)x-1. 084820608

FZCM,N)-1.850671172+001
--ZCM,N): 4.642155181.003
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-SEGMENT NUMBERs 6
FX(MN)z 2.621676729*001
X(M. x- 1. 3l2_tL2jA_4t.Qq4
T(M.N)c 1.107342162#004

HSRIZL(MN)a 1.223069491#002

SEGMENT NUMHERs 7
FX(M.N)z 2.637738615*001

X (M - LL=-!LZliVLk2+ 0 04
T(MN)z l.lC6760360*004

HeRIZL(MN)m 1.334277165*rJO2

SEGMENT NVMBbRx 8
FX(M.N)a 2.653945767#001

I (M. 4O.?O*..g 04
T(MN)x 1.106180138+004

-HORIZL(MsN)m 1.4j03q23jj6*nO2

bEQMENT__hWMRkRx_.9___.._____ -
FX(MN)z 2,670298598#001
X(MN)z-1.030288074#004

FY(MN)x O.U00000000*000 FZCM.N)z-1.856432755#001
-ZIM.N)a 5.578763041#003

L(MN)a 1.343907266*003
HEIGHT(MN)a.$.2197B0086*002

FYIMN)a 0.000000000*onn FZ(MN)v-1.862154227+Onl
A(MAN).2-0.000000000*90.0 Z(MN)x 6.5181165060003
L(M.N)z 1,343906001#003

HEIGHT(MN)z-1,327203914+002

FY(MN)m 0.000000000*000 FZ(MN)x-j.867833716+UOI
-YUMN)FO.00.00.00000+000 Z(M.N)c 7.460224307#003
L(MN)x 1.343904739+003

HEIGHT(MN)zwi.407007165+00?

FY(MN)a 0.000000000*000 FZ(MN)z-1.873469319*Uol
Y(MN)c 0.000000000*000 Z(MpN)m 8.405094636+003

T(M , N I. L567 1 01)9*004
H(-)RIZL(M#N)= 1.475176113#002

SEGMENT NUMHEP=IU
FX(MN)= 2.6667C,7492*UO1
X(MN)=-9.J499t4bO9+UO3
T(MN)z 1.1,50j44137*004

HORIZL(14,N)z 1.50438/15p#nD2

SF6MENT NUMBER=ll
FX(MN)z 2.7 34426()9+001

X(MN)=-8.6998222 )3+00S
T(MN)= I.lJ4449086*004

HA,R.I.ZL (M-,-N I . SU5792158# 002

SLGMENT NUMStR=12
F'X(MN)= 2.7202J4678+001
X(MN)=-/.4524/8136.&003
T(MN)= 1.1 -.38?5.320+004

H()RIZL(M,-q)= 1.479115620+;102

SEGMENT NUMHi:Rz1.5
rX(MN)= 2./3717,5999+001
X(MN)z-6.5.,7Y571(19*OnJ

T(MN)= 1.1AS''3204*004
HORIZL(MNj= 1.424139849+002

SEGMENT NUMR _P=14
FX(M.N)z ?./54260446+onj
X(MpN)=-5.5662b4j,46+0n3
T M . N ) = I . 1,. 27-12 /t),s+ o n4

HORIZL(MN)= 1.34nO4984+002

SEGMENT NUMHLR=15
FX(MN)z 2./71494447+001

X(MN)=-4.627484419+006
T(MN)= 1.1.216.-5983+0(14

H@RIZL(HN)= l.?2R25b973*qO2

SEUMENT NUMHLR=16
FX(M,1,4)= 2.7148876221*onl

X(MN)=-S.691'3b3,)i42+006
T(MN)= 1.1' 15,,691.19*004

HORIZL(I,,N)z j.n86a4l576+f)02

SEUMENT NUMdbR=I/
FX(MN)= 2.8.64:5968*001
X(mN)=-2./!7 86-6670+00S
T(M.N)= 1.1L1061547+004

HORIZL(M.N)= 9.161146523+nol

L(MN)z 1.343QO3482+003
HEIGHT(MPN)=-1.459-10552.7+.002-

FY(MN)z 0.000000000+OnO FZ(M

Y(M.N)z 0 . 0 () 0 0 0 () 0 0 0 + () 0 0 Z(M

L(MN)z 1.343902227+Un3
HEIGHT(MN)=-1.483415320+002

FY(MN)c O.OnOOOOOnO*OnO FZCM

Y(MN)z 0.000000000*OOU Z(M

L(MN)= 1.343900976*003
HEIGHT(MN)2-1.479853539+002

FY(M.N)z o.ocooooooo*onn FZ(M

Y(MN)= O.Ooooooooo+ono Z(M
L(MN)m 1.343899729*on3

HEIGHT(MN)=-1.448337879+002

FY(MN)= 0.000000000+000 FZ(M

Y(MN)z 0.000000000*000 Z(M

L(M-N)z 1.643s98485*003
HEIGHT(M#N)=-1.388786757+002

FY(MN)z 0.000000000+000 FZ(M

Y(M-N)z 0.000000000#000 Z(M
L(MN)= 1.343897245+003

HEI(;HT(mN)zi,3Otll9354+009

FY(MN)z O.OOOPOOOOO*OnO FZ(M

Y(MN)= 0.000000000+000 Z(M

L(MN)m 1.343896OO9+On3
HEIGHT(MoN)x-t.185255647+002

FY(MN)c O.OnOOD0000+OnO FZ(M
Y(MN)= 0.00000000n.6000 Z(M
L(MN)z 1.343894776+003

.- - HEIGHT(MN)=-i.041116433*0.0.2_

FY(MN)z 0.000000000+OnO FZ(M

Y(M.N)= 0.000000000+000 Z(M
L(MN)= 1.343893547+003

HEIGHT(MN)z-8.686233711+001

.N)x-1.879059iO4+POl
,N)a 9.352735941#003

.N)z-1.884601109*001
,N)v 1.030315652+004

,N)z-1.890093342+001
,N)s t.125636461*004

,N)s-1.895533781+001
,N)x -1-.221236836*(jM4

,N)z-1.900920373+001
,N)z 1..317117586+004

,N)S-1.906251037*001
,N)z 1.413279510+004

,N)=-1.9115236614001
,N)s 1.509723402+004

,N)=-1.916736104#001
,N)x 1.6n6450043+(104
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SEGMENT NUMBER=i8
FX(MN)= 2.82403740+001
X(M,N):-1.82858014b 003
T(M,N)= 1.100467915.004

.BRIZL(MaN)= 7.158006585*001

SEGMENT NUM8ER=19
FX(M,N)= 2.8419:9734+001
X(M,N)=-9.015299966+002
T(M,N)= 1.U999-6'28*004

HORIZL(MN)= 4.656456399+001

FY(M,N): 0.000000000*000 FZ(M,N
Y(M,N): O.O00000000OOn Z(M,N)
L(M,N): 1.343892322.003

HEIGHT(MN)=-6,676990080*001

FY(M,N): 0.000000000+OO FZ(M,N)
Y(MN)= 0.000000000.000 Z(M,N)

L(M,N): 1,343891100+003
HEIGHT(MN)=-4,382668161+001

}a-1.921886197+001
)a 1.703460210*004

a-l..926971739*001
z. 1.800754666*004

SEGMENT NUMBER=20
FX(M,N)= 4.632173700.002 FY(M,N)z
X(M.N)= 2.251777269+001 Y(M.N)=
T(MN)= 1.099345904*004 L(M,N):

H@RIZ_4CMaN)z_2,253862311*001

CABLE NUMBER= 2

SEGMENT NUMBER:

-FXC(MN-)=: 4.8V5-215682.001I
X(MN)= 5.69465392v 002

HO IZL(MN)= 9,634596386+001

0 .000000000'000 FZCM ,N)x 2.001019587*004
0,000000000-000. Z(M@N).- 1.898334168*004
1.343889882.003
HEIGHT(M,N)-.1,802512264*001

FY(M,N): 1.185663022.001 . .FZ(MN) x1.378709929001
Y(M,N)x-8.037505343*002 Z(MN)x 1.805622686*004

HEIGHT(MN)a 4,853085995+000

SEGMENT NUMBER= 2
.....F X(M,N): _4.9276351/9*001 FY(M,N)= 1.175718962.001 FZ(M,N). 1.367264254*001

X(M,N)= 1.109062248*003 Y(M,N)=-1.609621247*003 Z(M,N)a 1.712664939*004
TCM,N)z 8,7 1O8104O*003 z__4 M ) 1,34339309+003 _ ___

HORIZL(M,N)= 1.630201226+002 HEIGHT(M,N)a 2,527651930*001

SEGMENT NUMBER: z3
_z FX(M 4.4.95995041 +001 FY(M,N)= 1.165439583*001 .. ... FZCM,N)u 1.355431306+001.

X(M,N)= 1.641250279*003 Y(M,N):-2.417594227.003 ZCM,N): 1.619462986*004
L~j1,N:_870 -k951 *0 0 3 ____LJ.1N) 1439030.003 ____ ____

HGRIZL(M.N)= 2,220406131+002 HEIGHTCM,N): 4,32A578665+00i

-SEG MET N UMBER:= 4
FX(MN)z 4.992147389+001 FY(M,N): 1.154822871*001 FZ(MLN)_= 1.343208744*00
X(M,N)= 2.165971622*003 Y(M,N)x-3.227650966*003 Z(M,N)z 1.526018958*004
T____TMN) = 0486.2920 0 0 3 3LC_, N =_1,343392362+003

H kIZL(M,N)= 2.73325-157002 H EIGHT(MN)- 5.884218717+001

SEGMENT NLJMBER= 5
FX(M,N)= 5.024211902+001
X(H,N): 2,683168628(03
TM__ ,_$, 7 0_18.3152.003

HORIZL(M,N)= 3.168166012*002

SEGMENT NUMBER= 6
FX(M,N) 5,056129550*001
X(M,N)= 3.192783894+003

HORIZL(MN)= 3,524606996*002

SEGMENT NUMBER= 7
FX(M,N)= 5,087885744+001
X(M,N)= 3.694760283+003
T ( M N ) ;t95-35-ta. 3 -- -

HRIZL(M,N): 3.802064467 002

SEGMENT NUMBER= 8
FX(M,N)= 5,119465715+001
X(M,N)= 4.169040952+003

T N,) ,9 30C1375 1+003
NSRIZL(M,N)= 4.000034061+002

SEGMENT NUMBER= 9
FX(M,N)= 5,150854533*001
X(M,N)= 4.675569378003
T(M,N)= 8.690159971+003

FY(M,N)= 1,143867018.001 FZCM,N)x 1.330594465*001
Y(M,N)=-4.039772356*003 Z(M,N)a 1.432335055*004

.. L(MaNi) 1.343391.702_.003 .... ........ ..............

HEIGHT(M,N): 7.202771425+001

FY(M,N)= 1,132570431*001 FZ(M,N): 1.317586609*001
Y(M.N)=-4.853938683+003 Z(M,N). 1.338413546*004

-.. LCMN) .=_3__43391O5O* ....

HEIGHT(M,N)c 8,284505987+001

FY(MN)= 1.120931733*001 FZCM,N)U 1.304183570*001
Y(M,N)=-5.670129624*003 Z(M,N)a 1.244256769+004

...LIJ aN ):.=_ .34.3 3904 40 l 3 ........ .. ......... .. .... ... .... .... .....

HEIGHT(M,N): 9,131761837*001

FY(M,N)= 1.i08949776+001 FZ(MN): 1.290384002*001
Y(M,N)=-6.488324249,003 Z(M,N): J.149867136+004
L(M.,N): 1.,._343389785 * 03 .- -. .

NEIGHT(M,N): 9,746948957+001

FY(MN)= 1.096623642+001 FZ(M,N)x _1.276186827*001
Y(M,N)=-7.308501010.O03 Z(MN)a 1.055247126+004
L(M,N)z 1.343389165+003



Appendix C

SAMPLE CALCULATION

PURPOSE

To demonstrate the use of the computer program given in Appendix B and to show
the rapid convergence of the analytic method presented in this report, a particular Sea
Spider design is analyzed in this appendix. This Sea Spider was previously considered in
Ref. 3 as an example for the method of analysis developed there.

The primary purpose of this example is to test the assumption of Ref. 3 that the
root-mean-square (rms) velocity can be used instead of the actual velocity profile to
predict the motions of the structure. Consequently, the structure is analyzed using both
the design velocity profile and its rms value as a constant profile.

To compare the results obtained here with those obtained in Ref. 3, it is necessary
to neglect the tangential drags acting on the cables. This is accomplished by setting the
ratio of parallel to normal drag coefficients rD  (Eq. 19b) equal to zero for every cable
segment. Then, to study the effect of tangential drags on the deflections of the structure,
this coefficient is set equal to 0.025 for the entire cable array.

COMPUTER INPUT DATA

The Sea Spider studied in Ref. 3 consists of three identical legs, each 26,830 ft long
in the unstressed state. These legs have a diameter of 0.94 in. and a weight in water of
-0.313 lb/ft. The extensional rigidity of each cable is given as 6,170,900 lb, and the co-
efficient of normal drag is assumed to be 1.2 for the entire range of current velocities.

The cables are anchored in the shape of an equilateral triangle in the z = 0 base
plane with a distance between anchors of 32,909 ft. The x, y, z coordinate system (Fig.
Cl) is chosen so that the gravity position of the subsurface float will have coordinates
x = 0 ft and y = 0 ft. Note that a 60-degree symmetry exists for the system.

The legs of this Sea Spider are made neutrally buoyant through the use of 10-in.-
diameter glass balls that have a net buoyancy of 12.0 lb. These balls are spaced every
38.3 ft along the legs and have an assumed drag coefficient of 1.0. The subsurface float
has a net buoyancy of 20,000 lb and a hydrodynamic constant given by 35.1 lb-sec 2/ft 2 .
The system is designed so that the no-current height above bottom of this float will be
19,000 ft.

The design velocity profile is given as 0.0 knots at the bottom (z = 0 ft), increasing
linearly to 0.3 knots at z = 17,500 ft, and then increasing linearly to 2.0 knots at 19,000
ft. Above 19,000 ft, the current remains constant at 2.0 knots. Based on the no-current
height of the subsurface float (19,000 ft), the appropriate rms velocity to be used as a
constant velocity profile is calculated as 0.39 knots.
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ANCHOR I

Fig. Cl - View of the anchor plane

y
Current

/ CurrentgleSx Ane

To cast this system in a form proper
cable is represented by 20 equally spaced
segments are, consequently, 1341.5 ft.

ANCHOR 3

(9500,16 454.5)ft

/x

32909'

4 (9500, -16 454.5)f t

ANCHOR 2

for the analysis developed in this report, each
stations. The unstressed lengths of the cable

The data given above is tabulated and summarized in Tables Cl through C4.

Table C1
The Design Velocity Profile

Current Hk V(Hk)
Breakpoint, (ft) (ft/sec)

k

0 0.0 0.0

1 17500.0 0.50634

2 19000.0 3.3756

3 oc 3.3756

Note: Based on a no-current height
of 19,000 ft, the appropriate
ft/sec.

of the subsurface float
rms velocity is 0.658

Table C2
The Sea Spider Array
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Table C3
Lumped Parameter Representation of the Sea Spider Array

*Based on a density of sea water p = 1.94 lb-sec 2 /ft 4 .

Table C4
Properties of the Discrete Elemental Devices

Segment Element e e * e
Nk, m,n Wkmn CD Ak mn Jk,m,nNumber, K(m,n) Index, (ft) (lb) kPmn (ft 2 ) (lb-sec 2/ft 2)m k

CABLE 1

1 - 19 35 1 -35 19.65 + 38.3 (k - 1) 12.0 1.0 7T(5/12) 2 0.529

20 36 1 -. 35 19.65+38.3 (k- I) 12.0 1.0 1(5/12) 2  0.529

36 1341.5 20,000.0 - - 35.100f

CABLES 2 and 3

1 -- 20 35 1 --,35 19.65 +38.3(k - 1) 12.0 1.0 i (5/12)2 0.529

*Based on a density of sea water p = 1.94 lb-sec 2/ft 4 .
tWhen the rms velocity of 0.658 ft/sec is used, an equivalent 1 of 924.0 is assumed forthe subsur-
face float to insure that the drag force on this object is the same as when the actual profile is used.
That is fequivalent (0.658)2 = (35.1) (3.3756)2.

RESULTS

Three possible combinations of current profiles and tangential drags were studied.
They are denoted by Cases B, C, and D and are defined by

Case B -the rms velocity profile (V(z) = 0.39 knots) with no tangential drags
mr, = 0.0),

Case C- the actual design velocity profile (V(z) as given in Table C1) with no tan-
gential drags (r D, = 0.0), and
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Case D - the actual design velocity profile with tangential drags included in the
analysis (r D  = 0.025).

For each case, the equilibrium shapes of the array were calculated for current angles
between 0 and 60 degrees at every 5-degree interval.

The acceptable completion of the Imaginary Reaction iteration was defined by setting

COPE = 0.01 ft
2

and the acceptable completion of the successive approximation routine by setting

COJPD = 1.0 ft.

Consequently, the calculated equilibrium coordinates of the cable stations were all within
±1 ft of their true values, and the end coordinates of cables 2 and 3 were within ±0.1 ft of
the actual anchor locations.

In each case studied, the total run time, including compiling, for the fourteen sets of
results (no-current equilibrium configuration plus the equilibrium configurations for
thirteen current headings), was approximately 2 minutes on the NRL CDC-3800 computer.

Of particular interest for comparison purposes are the current-induced deflections

of the subsurface float from its no-current position, which is given by

x- 0.0 ft,

y- 0.0 ft,

and

z 19001.4 ft.

The horizontal excursion of the buoy from this position is plotted in Fig. C2 as a function
of the current angle (p, and its downward movement is plotted in Fig. C3 as a function of
this same angle. In both figures, four curves are shown. Curves B, C, and D correspond,
respectively, to the deflections obtained in Cases B, C, and D. Curve A shows the re-
sults obtained in Ref. 3 and corresponds in its current profile and drag force assump-
tions to Curve B.

DISCUSSION

As is seen by referring to Curves B and C in Figs. C2 and C3, large discrepancies
exist between the deflections predicted using the constant-velocity profile and those pre-
dicted using the actual-velocity profile. Significant differences are also obtained for the
tensions in the cables and the deflections of the entire array. The obvious conclusion of
this calculation is that to obtain a good approximation for the deflection analysis of a
tri-moored, buoy-cable array, the actual current profile should be used.

Although, for this problem, the largest deflections are obtained at a current heading
of 0 degrees using the rms profile, this is not true in general. Other examples have
shown that the deflections induced by the actual profile can lie entirely above those in-
duced by the rms profile, and that the deflection curves are not necessarily monotoni-
cally decreasing as would seem to be indicated in Figs. C2 and C3. Thus, each particu-
lar array must be analyzed independently, and no general conclusions can be reached
concerning the pattern of the current-induced deflections.
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Hor(ft) e AREF. 3
D0A B ,RMS PROFILE (r ', n.O.O) A B, RMS PROFILE (r..-o.0)

- C ACTUAL PROFILE (rD,, lO.O) C C ACTUAL PROFILE(r.',n. 0.0)
32- 1 D -ACTUAL PROFILE (rD -0.025) 32 - D, ACTUAL PROFILE(r.. -0.025)
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28 28

24 - B24

20 D20
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12 12
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10 20 30 40 50 60 0 10 20 30 40 50 60

Fig. C2 - Horizontal deflections of the Fig. C3 - Vertical deflections of the
subsurface buoy subsurface buoy

Since the analytic methods of this report and Ref. 3 are not the same, numerical dif-
ferences between Curves A and B are to be expected. In essence, Ref. 3 assumes a sim-
plified continuum model of the array by averaging the elemental devices along the cable
legs. Consequently, the similarity in shape and the closeness of Curves A and B (a dif-
ference in the predicted buoy displacements of less than 10 ft over a typical cable length
of approximately 5 mi) tend to validate the lumped parameter representation employed
in this report.

The inclusion of tangential drags in the analysis, Curve D, is seen to have little
effect on the buoy displacements. However, the inclusion of this drag increases slightly
the tensions in the cables that act to resist the current; for this reason, it is recom-
mended that tangential drags be used in future analyses.
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