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ABSTRACT

The probability density function of the resultant ampli-
tude of n vectors in two dimensions, added with random
directions, was calculated through an integral transforma-
tionwhich takes aprobability density function for k compo-
nents into a probability density function for k + 1 compo-
nents. Examples were calculated to show the qualitative
aspects of the density functions for 2, 3, and 4 components,
with arbitrarily given magnitudes. For n >_ 5, the prob-
ability distribution rapidly approaches the Rayleigh distribu-
tion. The method also allows the use of a Rayleigh vector
as one of the components.

PROBLEM STATUS

This is an interim report on the problem; work is con-
tinuing.

AUTHORIZATION

NRL Problem SO 1-12 and SO1-40A
Projects RF 101-03-44-4059, RF 05-121-401-4070,

and SF 101-03-15-8181
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PROBABILITY DENSITY FUNCTIONS OF n VECTORS
ADDED WITH RANDOM DIRECTIONS

INTRODUCTION

When n vectors in two dimensions with amplitudes A1 , A2 ... A n are added with

random directions, the probability density of the resultant amplitude is the same as that

for the resultant distance r, when n lengths A 1, A 2, ... A n are joined with the angles

01, 02' . . o n taken from a uniform random distribution on [0,27T] as illustrated in Fig. 1.

This is a problem of the "random-walk" type and is the same as the resultant amplitude

of the superposition of a number of sine waves with random phases. It is the concern of

this report to determine the probability density for arbitrary sets (A 1 ,A 2 ,A 3 1 ... An) and

illustrate the form of the density function.
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Fig. 1 - An example of A 3A

the random phase addi-
tion of five vectors
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HISTORY

The general solution of the
Kluyver (1) as

probabilities associated with this problem was given by

Pn(r,) = rn fo uJ°(urn)f J(uA) du
0 1

where pn(rn) is the probability density function that the resultant of n vectors or compo-

nents A , A2, A3 , ... An has the length rn and J0 is a Bessel function of the first kind.
Equation 1 is readily integrated when n = 1 or n 2. When n approaches infinity, Eq. 1
is the Rayleigh (2) density function; i.e., when n -. ,

2rn -r 2 /A 2  (2)
Pn(rn) - A

2
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where

A
2  A A2

1= 1

Pearson (3) has provided a series expansion of Eq. 1 in terms of powers of 1/n that
requires a large number of terms for small values of n. For n > 6 this expansion gives
a good approximation with a reasonable number of terms. Beckmann (4) has provided a
similar expansion. Bennett (5) solved Kluyver's equation in terms of an infinite series,
which is most applicable in the region of intermediate and large values of n.

Equation 1 can also be expressed in terms of complete elliptical functions for the
case n = 3, when the magnitudes of the vectors are equal. This was reported by Pear-
son (3), who obtained this solution from Geoffery T. Bennett by private communication.
Bennett's equation for three equal components is

P 3 (r3 ) - 2A32 aK(a) 0 < r 3 < A

P3 (r 3) -
2A 3  K A < r 3 < 3AP3 r3 r 2A312 a

and

P3 (r 3 ) 0 , 3 > 3A

where A = magnitude of contributing vectors, a2  16A 3 r 3 /[(r 3 +A) 3 (3A r3 )]3 and K(a),
denotes the complete elliptic integral of the first kind with modulus a.

Using a graphical method Pearson (3)* obtained the density functions for a small
number of vectors, between n = 2 and n -- 7, for the special case where the magnitudes
of the vectors are equal.

This report takes an approach similar to Pearson and extends the treatment to in-
clude arbitrarily given magnitudes of the vectors. It also allows one of the components
to be a Rayleigh vector, i.e., a noise component.

METHOD

Consider a vector in a plane whose probability density of having length rk is Pk(rk)
and whose direction (

t k has a probability density uniform on [0,2-a], independent of rk.
Then the joint probability density G(rk) that the vector will have a length rk and a direc-
tion qok is obtained from the joint probability function Pk(rk,ok) = Pk (rk)/21, as follows,

1 1 Pk(rk) daG(rk) da pk(rkOk) drkd k = T pk(rk) drkddk 7 2 r dk (3)

*Pearson's results are also presented by Sleck in Ref. 6.
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If one now adds a vector Ak+ 1 to rk (for convenience add them as shown in Fig. 2),
the length of the resultant rk+ , has a probability density calculable from Pk and Ak+ •

1 rk +1 do k+1 drk+1

rk+l/ -- o

r k

k+ I

Ak+I

Fig. 2 - The geometry illustrating the method of vector addition

The probability that rk+ 1 _< c, c being an arbitrary constant, is*

c 271

f fo G(rk) (rk+l dtk+l drk+l)

This equation is an identity from which one obtains

Pk+l(-rk+l) - rk+l

Pk+l (rk+l ) drk+l

21T

I G(rk) d4'k+l

Since G is an even function of o, Eq. 5 becomes

Pk+l(rk+l) = 
2
rk+l JG(rk) d(Dk+l

0

Substituting the value of G from Eq. 3 into Eq. 6 one obtains the recursion formula

rk+i f Pk(rk)
Pk+l(rk+l) = - k  1

0

*It can be shown that Eq. 4 is also equal to

c 27T

G(rk+l )(rk+l d kk+l drk+1 ) ;

however, this does not imply equality of integrands.
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The variable D in Eq. 7 may be expressed in terms of the variable r. By using the law
of cosines, as illustrated in Fig. 2,

A
2 

4)k+l = + (A+ 2 - rk)/
2 Ak+ (8)

CO Ik 1 (kl rk+1 1k k rk+l

and the derivative

rk drk
d Pk+1 = k+ rk+1 sin Ok+1 (9)

the following equation is obtained,

Pk+l(rk+l) - A
+ + 

rk+) P(rk) drk (10)k ') Ak+lf [Ak+,- rk+ 11 sin (k+l '

where

sin - 1 (A2 + - k2) 2 442 r 12]/2 (11)
si k+i k[ A+1 + k+1 -r /4A k+1 k1

by Eq. 8.

NUMERICAL CALCULATION USING A DIGITAL COMPUTER

If one lets Hk(rk) Pk(rk)/rk, Eq. 7 becomes

Hk+l(rk+l) = i_ J Hk(rk) d'Dk+l (12)
f0

an evaluation is obtained by the finite sum

Hk+l(rk+l) =. 1E[Hk (rk)\Ak4h
rk

For example, in this evaluation Hk is tabulated for 100 values and is assumed to be con-
stant over intervals centered on the tabular values. The term A4k+, is found from Eq. 8
with an arc cosine subroutine.

The initial H is a rectangular approximation to a delta function, being zero for all
values but one. Alternately a Gaussian noise component H0 = ce - ar 2 can be used as the
starting distribution.

Using the incrementation of 100 values of Hk with the selected A(D indicated above,
the transformation of a one-component distribution to a two-component distribution in-
troduces an error of approximately 2% in the total probability. Further transformations
to three or more component distributions do not add to this error. Furthermore, the
distribution for two components plus noise has a very small error. This error is at-
tributed to numerical difficulties in computing a function near a singularity. A compari-
son of the calculated density function with the known density function for two components
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shows that points between these singularities (which are poles) have errors on the order
of 0.1%. The above errors can be reduced by using finer incrementation. From the
relation P,, , one gets p,(O) = 0, although p 2 (0) = 0 is an error when A1 = A 2
(Fig. 3a).*

FEATURES OF THE PROBABILITY DENSITY DISTRIBUTIONS

Equation 10 has been evaluated for distinct values of n. The relationships for pn(rn)
are listed below for these values of n and sketched in Figs. 3 through 6.

d

Fig. 3 - Probability density functions with 2, 3,
4, 5, 6, and 10 equal components, respectively

*The individual graphs of Fig. 3 through Fig. 6 are plotted with the probability density p. (r ) as

the ordinate. The abscissa is the amplitude with the maximum value equal to the sum of the ampli-
tude of the components.

F,
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A1 =0.5, A2 = 1, A3 =2

A 1 =1, A2 =2,A 3 =2

A I =1, A2 =1.4, A3 = 1.8

A1 =1, A2 1, A 3 = 2

A1  1, A2 =1.1, A3 = 1.2

A1 - 1, A2 1.2, A3 = 1.8

Fig. 4 - Probability density functions
with three components

For n = 1,

p )(r) ,-A,)

For n = 2 (Fig. 3a),

p 2 (r)=1
2

A 2 + r 2

f P1 (rl) dr 1
IA 2_r2 ] sin (

1 _2r 2 -

,2 sinflD 2 71 L( (4+A2)2 -r2

(1,14)
2- (A1 ~A)2j

when IAI - A21 < r 2 < (AI+A2). Otherwise, P 2 (r 2 ) = 0.

If A I 5 A2, there are two poies of p21 each of order 1/2. If AI = A2) there is one
pole and a nonzero probability density at zero amplitude.

(13)
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A I = A2 = A3 = 1, A4 = 2

A 1 = 1,A 2 =1.5, A 3 =2, A 4 =2.5

A1 =A 2 = 1, A3 = A 4 = 2

AI =A 2 =1, A 3 =1.5, A 4 =2

Fig. 5 - Probability density functions
with four components

A1 = 2, A2 = 3; Noise = .05(0) A I = 2, A2 = 3; Noise = .33(s)

Fig. 6 - Probability density functions with
two components plus noise
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For n = 3 (Fig. 3b and Figs. 4a-f),

p
3
(V 3 

=r 3fA si ( + r 3_____)_d (15)1 3-'31 )

One can substitute P2 and sin (F3 in terms of AI, 2 ,  A, r 2 , and r 3 into Eq. 15, but
in general the resulting integral is intractable in closed form, except for the special case
A, = A2 = A3 (see page 2).

Inspection of the numerical results shows that P 3 (r3) has peaks at

R, = Al + A2 - A ,

R 2 = Al + A3 - A2,

and

R 3 = A2 + A3 - Al '

Each of these peaks is a singularity.

If one of the values R, is zero,

P 3 (r 3 ) = v/-r3 for r 3 = 0

If Ri < O,

p 3 (r 3 ) = 0 for 0 < r 3 KRi

P 3 (' 3 ) r 3 for r 3 - 0

In general the magnitudes of the peaks are in the order of
Thus, P 3(R1 ) < P 3 (R 2 ), if R1 < R However, if R 1 R2 < R3,
R1 = R 2 may be larger than the single peak at R3 . 2

For n = 4 (Fig. 3c and Figs. 5a-d), if A, A2 1 A3, and A4
tains discontinuities in the first derivative of p 4 (r4 ) at

r4 A + A2 + A3 A 4 '

r4 A 1 + A2 + A4 A 3 '

r 4 =Al + A4 3 + A4 -A 22

increasing amplitudes.
the coincident peaks at

are all distinct, one ob-

and

r4 = A2 + A 3 A4 - Al ,

provided these four values are positive. Of these points, one, or occasionally two, is a
local maxima of P4.

If all R i > 0,
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WhenA, = A 2 = A3 = A, the behavior of P4 is dominated by the pole in P 3 at A. Be-
tween JA4 - Al and A4 + A, P4 is almost linear. If A4 = A also (Fig. 3c), P4 resembles
a wave about to break, with its peak at 2A.

For n = 5 and 6 (Figs. 3d and 3e), the amount of structure on the curves for p5 and
P6 is very small.

For large values of n

2r 2 2/n (16)lirnc P rn) n e

provided

n

1r 3..2Ai
2 = 11lim A

n.4m 1 = 1

For intermediate values of n, Beckmann (4) obtained

Pn (_rn 2r -2V e- r4 2 2 +

where A1  2 - = 1.

The maximum difference between pn obtained by Beckmann and a Rayleigh distribu-
tion is then

APmax  0.14n-3/2

To distinguish a one-standard deviation difference in the above distribution from a
Rayleigh distribution in a counting experiment with n equal contributing components, one
would need N > 2000n3 counts. Thus, for n _ 6, pn is for practical purposes a Rayleigh
distribution.

For n = 2 + noise (Figs. 6a and 6b), it is noted that the poles of Eq. 14 are eliminated
and that the peaks are broadened with increasing noise.

CONCLUSION

A numerical method is given for obtaining the probability density function of the
resultant of a number of vectors of arbitrary magnitude added with random directions.
The method has potential use in many fields, particularly in a number of acoustic and
electromagnetic problems where the field statistics of a small number of sources is
desired.
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