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ABSTRACT

The Jost function formulationof quantum scattering theory is
applied to classical problems involving the scattering of a scalar plane
wave by a medium in which the velocity is a function only of the spheri-
cal radial coordinate. This technique is used to solve the radial differ-
ential equation for scattering from a constant spherical inhomogeneity
and from two constant concentric spherical inhomogeneous layers and
is compared with the standard method of partial waves for these two
cases, The radial equation can be converted into an integral equation
incorporating the Jost boundary conditions. The £=0 partial wave in-
tegral equation for a constant inhomogeneity is solved using an itera-
tion procedure (the first two iterations are considered). The Jost func-
tion and £=0 cross section o, are plotted as a function of kR, where k
is the wave number in the surrounding medium and R; is the sphere
radius, The iterative technique is good for long wavelengths (kR << 1)
and any ratio of wave numbers in the scattering and surrounding media.
For shorter wavelengths and small ratio of wave numbers (e.g., k; [k=
1.1, where kj is the wave number in the scattering medium), it gives a
good approximation to o _ for the entire range of kR; considered (0<kR
<2n). For shorter wavelengths and larger ratio of wave numbers (e.g.,
k,;/k = 1.5, 2.0), it gives a good approximation to ¢, outto approximately
kR ;=37/4. More general problems usingthis methodare alsodiscussed.
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SCATTERING BY SPHERICALLY SYMMETRIC INHOMOGENEITIES

1. Introduction

This paper is concerned with the scattering of a scalar plane
wave by an inhomoéeneous medium in which the velocity of propaga-
tion ¢ is a function only of the spherical radial coordinate r,
i.e., c=c(xr). This problem is of interest in various branches of
physics: scattering by inhomogeneous spheres; scattering of
acoustic waves in the ocean, electromagnetic waves in the atmo-
sphere, and scismic waves in the earth. Although quantum-mechanical
problems involving scattering by spherically symmetric potentials
have been extensively investigated, the analogous classical prob-
lems involving scattering by spherically symmetric inhomogeneities
have not been as thoroughly studied. It is the purpose of this
thesis to show how a convenient quantum-mechanical method can be
used to treat the classical problems and to apply this method to
some simple solvable problems.

The theory of scattering of plane acoustic waves by spheres
was first investigated by Rayleigh', who considered the limiting
case of spheres which were small compared with the wavelength.
Solutions for scattering by rigid, immovable spheres, not neces-
sarily small compared with the wavelength, were obtained by Morse?.
The scattering by elastic spheres immersed in a fluid has been
considered by Faran®, and the scattering by fluid spheres immersed
in a fluid medium has been investigated by Anderson®. Frey and
Goodman® have considered the scattering of acoustic waves and
pulses from a sphere that has acoustic properties very similar to

those of the surrounding medium. Hart and Montroll® have developed
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an approximate theory for the scattering of plaune waves by
spherical obstacles with the properiy A /X, <1.5, where A; and X,
are, respectively, the wavelenglhs of a plane wave in the scatter-
ing medium and in the surrounding medium. Monti0ll and Greenberg’
have devised a vaviational method for scattering by obstacles with
spherical symmetry and have summarized their work and that of

van de Hulst, Hart, and Glauber on scattering-by spherical obsta-
cles where the wavelength of the wave inside the scattercr does
not differ much from that of the incident wave?®.

The extensive development in recent years of guantum scatter-
ing theory, which has included a thorough reexamination of
classical methods such as the Watson-Sommerfeld transformation, has
yielded techniques and results which can be of use in the solution
of classical scattering problems. Thus, Uberall® has applied the
Saxon-Schiff!®+!! theory of potential scattering to the scattering
of electromagnetic waves by weak scatterers with complex dielectric
constant and permeability, using scattering by a homogeneous di-
electric sphere as a particular example. Rockmore'!?, who also
treats the homogeneous dielectric sphere, has applied approximations
of high-energy quantum scattering theory to a spinor formulation of
electromagnetic scattering. Flammer!® has used various approxima-
tion methods from potential scattering in his investigation of
electromagnetic scattering by inhomogeneous dielectric media and
has presented an exact formal solution for the problem of scattier:

ing by a sphere with dieleclric constant s=1¥(m/r). He presents a



comprechensive review of applications of methods from gquantum scat-
tering theory to electromagnetic scattering problemé.

In the case of-scalarvplane wave scattering by a spherically
symmetric scatterer, the similarity in form between the inhomogene-
ous Helmholtz equation and the time-independent Schrodinger wave
equation allows us to treat classical and quantum problems by
analogous methods. The general expression for the classical scalar
wave equation for a medium with spherically symmetric inhomogene-

ities is given by:-

viy(F, 0y~ 1 3%¥(E,t)-g (1.1)
c?(xr) at2

Separating out the time dependence of the wave function and con-
sidering only one frequency component w, we obtain:

¥ (¥, 6) =0 (B e T, (1.2)
where the spatial part w(;) of ?(;,t) satisfies the inhomogeneous
Helmholtz eqguation:

V2 (X) + k=Y (x) 1 (X) =0 (1.3)
In Eq. (1.3), we have defined:

V(r)=k?-k2(x), (1.4)
where k(r)=w/c(r) is the wave number in the scattering medium, and
k=w/c is the wave number in the surrounding medium. Equation (1.3)
corresponds to the Schrddinger equation where k2=2mE/h?,
V(r)=2mU(r)/R2?, R=h/2m, h is Planck's constant, and m is the mass
of a particle of total energy E moving in a potential U(r). Thus,
the wave function w(§) can be interpreted either classically, as
the spatial part of the acoustic velocity potential, for example,

or quantum mechanically as the Schrodinger wave function.



Nussenzveig has treated the problem of high-frequency scalar plane
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wave scattering by an impenetrable sphere (hard-core potential)

° (square well potential) using a modi-

and by a penetrable sphere!
fied Watson-Sommerfeld transformation. Using the one-dimensional
analogue of Eq. (1.3) and the method of partial waves, which is

an exact classical technique for solving scattering problems that
was originally used in quantum scattering theory by Faxén and
Holtsmark!®, Harrison and Plutchok!’ have investigated one-
dimensional scattering problems in inhomogeneous media, where the
one-dimensional partial waves are "parity" waves. The integral
equation thus obtained is’solved using an‘iteration procedure.

The present work is concerned with the application of the Jost
function formulation of quantum scattering theory as presented by
DeAifaro and Regge!® to the scattering of a scalar plane wave by a
medium with spherically symmetric inhomogeneities. Both the scat-

tering and surrounding media are assumed to have the same constant

density. If we separate Eg. (1.3) in spherical coordinates, we
obtain:
R © +2 )
Y(E)= L T Ay R (r)Y¥g (8,9), (1.5)
2=0 m=-%

where Ry (r)=uy (r)/r and Yzm(€,¢) is a spherical harmonic. Then
ug(r) satisfies the partial wave radial equation:

a2 A 2 (8+1.
174, (x) F_[ z-~-‘—f§ﬂ-v<r)Juz<r)=o (1.6)

The Jost function technique is essentially a sophisticated version
of the standard partial wave analysis and involves a detailed study

of the solutions of the radial equation. The Jost function is



aefined as the Wronskian of two solutions of the radial eqguation,
one satisfying boundary conditions at r=0 (regular solution) and
the other satisfying boundary conditions at r=o (Jost solution).
The differential and total scattering cross sections are obtained
from.the phase shifts 8o which can be calculated easily once the
Jost function is known. The Jost function can be calculated either
from the original radial differential equation with Jost boundary
conditions or from a Volterra integral equation which incorporates
these boundary conditions. Although the former approach is more
straightforward in the case of a constant inhomogeneity for r<R,
(three-dimensional sguare well potential), for example, we feel
that the latter approach may be more useful in situations where

the inhomogeneity (potential) assumes a more complicated functional
form and the radial equation does not have an exact solution. The
solution of the integral equation is then written as a perturbation
expansion, and an iteration procedure yields the solutions to the
desired accuracy. The perturbation expansion for a Volterra in-
tegral equation has the useful property that it converges
everywhere. This procedure is valid for an arbitrary inhomogeneity
(potential) satisfying relatively weak requirements.

In Sect. 2, we review the standard partial wave analysis. 1In
Sect. 3, using the partial wave analysis, we calculate Sg(k), the
scattering matrix (S matrix), for the fth partial wave for scatter-
ing from a constant spherical inhomogeneity [V(r)=~Vl, r<R1;
V(r)=0, r>R,]. We also calculate the 2=0 scattering

amplitude F,, differential scattering cross section dco/dQ, and



total cross section O4e In Sect. 4, we outline how the partial
wave method can be used to solve the problem of scattering from
two constant concentric spherical inhomogeneous layers

[V(r)=~Vl, r<R ; V(r)=~V2, R <r<R i V(x)=0, r>R2]. In Sect. 5, we
present the Jost function formulation of scattering theory. In
Sect. 6, we calculate the Jost function from the radial differential
equation for scattering from a constant spherical inhomogeneity for
arbitrary £ and evaluate it for %&=0. In Sect. 7, we calculate the
Jost function from the radial differential equation for scattering
from two constant concentric spherical inhomogencous layers for
arbitrary £ and evaluate it for £=0. In Sect. 8, we derive the

2=0 Jost integral equation for scattering from an arbitrary
inhomogeneity with a cutoff. We calculate the Jost function for =0
from this integral equation using an iteration procedure (the first
two iterations are considered) for scattering from a constant
spherical inhomogeneity and compare it and the cross scctions
graphically with the exact results. In Sect. 9, we present a
general Jost integral equation formulation for arbitrary 2 for
scattering from an arbitrary inhomogenecity and apply it formally

to scattering from a constant spherical inhomogyeneity and from

two constant spherical inhomogeneous layers. In Appendix A, we
calculate the Jost function for 2=0 directly from the £=0 radial
differential equation for scattering frbm a constant spherical
inhomogeneity. This method is basically the same as that employed
for the case of arbitrary 2 in Sect., 6. However, by considering

only the 2=0 case, we are abhle to sce more clearly how the usual
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classical wave solutions with Jost boundary conditions can be used
to construct the regular and Jost solutions. In Appendix B, we
calculale the Jost function for =0 dirccily from the 2=0

radial diffcrential cquation for scattering from two constant
spherical inrhomogencous layers. In Appendix C, we present a
Laplace transform method for solving cxactly the 2=0 Jost
integral equatidn for scaltering from a constant spherical

inhomogencity.



2. The Method of Partial Waves

The prescntation given here follows the trealments of

Cottfricadl!®, Marion??®

, Merzbacher?!, and Schiff??2, R, (r) in
Eq. (l1.5) satisfies the following equation when V(r)=0:

a’Rp(r) 2 darg(x) [ \ 2 (24+1)
Tdr? tr dr + Lk ~Tr2 Rz(r)=0 (2.1)

Making the substitution Ry (r)=x,(r)/Y/r in Eg. (2.1), we then have:

a*xp(r) 1 dxg(r) [ (2+1/2)2
ar?2 +¥ TTdr -I-_k’—"""fi'_""’_ Xg(r)=0 (2.2)

Changing variables, z=kr, we obtain:

zzd2X2 dXyg
dz?

The solutions of Eg. (2.3) are Bessel and Neumann functions of
half-integral order, a particular solution being:

(z)+B

X (2)=RgTg 1172 2Ner1/2(2)

where Ay and By are arbitrary constants. We define spherical

Bessel, Neumann, and Hankel functions:

jg (kr)= /Eﬁ;Jg+1/z(kr)

T

+z g+ [22- (L+1/2) 21Xg=0 (2.3)

(2.4)

ng(kr)'-: -ZkI:N'Q’-*l/z(kr) (2.5)

h{1) (kr)=j, (kr)+ing (kr)
héz)(kr)=j2(kr)—in£(kr)

The general expression for w(?) can therefore be written as:

V(r)= T [Agyjg (kr) FBgung (kr) 1¥en(0,0), (2.6)

£,m

or as:

P(F)= T [Cophf?) (kr)+Dgphd?) (kr) 1Yy, (0,9) (2.7)

,m
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psing the following properties of the spherical Hankel funclions:

1) (1 _qy 24leiky ) 9
hi') (kr)~ (-1) F 18—, kx>> 041, (2.82)
hél)(kr)=hj§2)*(kr), (2.8D)

we find that the complete wave function has the asymptotic form:

T oy 1 i(kr-wt) ., i(~-kr-wt)
A}{(‘r,t) zzmH[Egme +¥
I

e Yo(0,9), roe (2.9)

2m

We identify the part of ¥(¥,t) dependent on hé‘)(kr) as an oubtgoing
spherical wave [el(k¥=Wt)/r] and the part dependent on héZ)(kr) as
an incoming spherical wave [el(~KX—wt) /1,

We now consider a plane wave of unit amplitude moving in the
positive z~direction incident on a spherically symmetric scatterer.
At large distances, the scattered waves will appear to be outgoing
spherical waves. Since we are dealing with a spherically symmetric
.scatterer, we assume no ¢-dependence in the scattered wave function.
The asymptotic form of the total wave function is therefore:

ikr

w(’r’)~eik2+p(e)93r , (2.10)

where F(0) is the scattering amplitude. The differcntial scattering

cross section is given by:

do (0) _ . 2
9 L0) |x (o) | (2.11)

The total scattering cross section is:

—y 49(0) 40 » 230
o {n o 49 S [F(8)]%an (2.12)

We can write Rg(kr) in complectely gencral form as:
RQ(}{I)=C£[Z\gjz(kl’)*lﬁ‘-gng’(kr)], (2.13)
where we choose Ay and By to be real and Cy to be complex. Defining

cosdlez//XE7Tﬁ£3, sinﬁngz//XE7¥ﬁi7, and D2=C2//Xz7lﬁ£7) we then
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have:

RQ(kr):DQ[cosﬁsz(kr)~uin62n2(kr)], (2.14)
where the phase shift 6, is real and Dy may be complex. Using the
following properties of the spherical Bessel and Neumann functions:

jé(kr)“lmsin(kr—&ﬂ , kr>>2+1,

kr 2
(2.15)

ng (kr)~-1_cos (kr-%"), kr>>941,
kr 2
we find that Ry (kr) has the asymptotic form:

Do . L
R, (kxr)~Z2sg -l 2.1
Q( r) krs:Ln(kr 3 8g) ( 6)

The asymptotic form of Y(¥) is therefore:

V(). 1 Psin(er-2T48,) Py (coso) (2.17)
2=0"*%

But we can expand the incoming plane wave in terms of spherical
waves:

elkz_ ikrcosf_y (22+l)i£jg(kr)Pl(cose), (2.18)
2=0 .

and the asymptotic form of W(;) can therefore also be written as:

> . ik
w(r)~elkZ+F(9)§i;£

. 2 ikr

sin (kr-£T)py (cos8)+F (8) (2.19)

Equating the two asymptotic forms [Egs. (2.17) and (2.19)], we f£ind

that:
Dy=(20+1)i%el®, (2.20)
o 3
F(0)=sto I (2041) (e23% -1)p ) (cos0) (2.21)
=L 5 (2041) (e'%sins )P, (cos0) | (2.22)
2=0.
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We thercefore also have that:
[ee]
. 2
4o(0).1 | v (20+41) (e*0%sinsy) Py (cos0) (2.23)
S ES s

0=4T 5 (2241)sin?s (2.24)
k2g=0 g
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and therefore:

o, JpkaR) - (3.6)

solving Eg. (3.3) and using Eq. (3.6), we obtain:
218
Sy (k)=e“1t%R . » o
ji(kR1)+1ni(le) jﬁ(kRI)—lnz(le)
—— jg(kRz)-ing(ka) 1+k j,Q,(]ch)+in2,(kR1) - jZ(le)—inQ, (le)
3y (KR))+ing (kR ) k,3g(k,R)) _ [ji(kR1)+in§(kR1)]

Jg (k1Ry) Jg (kR1)+ing (kRy)

(3.7)
hy (1) (kry) _ hp %) (kR1)
B [héZ)(kRI{ll+k hél)(kR]) hég)(le)
nf') (kRr,) K,37(k,R.) _knj(1) (kR;)
Jp (kaRy) hél)(le)

3 ‘(2) _ AR (2)
_ kg (kaRy)hy "*T (kR ) -k, 3 (kR Yhg®" (kR ) 58

ki (kR hg OV (kR ) -k 7 (k R ORGH (kR )

In order to calculate ¥ and %% for %2=o0, we use the following
expressions for the spherical Bessel and Neumann functions and

their derivatives??:

. _sin kr
Jo (kE) ="
jZ(kr)=C0S kr _ sin kr
© kr (kx) 2
__ cos kr (3.9)
Po kX == SR
n” (kr)=sin kr , cos kr
o (kx) 2
The various terms in Eg. (3.7) then become:
kljé(klRl) _ klRICOS kIRl"Sin klRl
Jo(k,R)) R,sin k R, (3.10a)
jo(le)”ino(le)_o_zile (3.10b)

Jo (KR J+ing (KR))



JokR1)+ind (kRy) _~1+ikR,
jo(kR1)+inO(kR1) kR,

35 (kR1)~ing (kRy) _-1-ikR,

jo(le)—ino(kRI)

Noting that:

eiéﬁsin62:9-—

we then have:

But:

and:

and:

do

aq

kR,

2162“1

=1

21
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lsin le>

1800 _ ~2ikR, k __ikR
e’ Osindgyze (klcot K,R,-ik ~©
=%e16051n60
_e"2ikR, X _oiKRI o p
k k,cot k,;R,-ik € sin )
O 2
e ,FO I
kl .
l-g—sin 2kR;cot k;R;-2sin? kR, sin? kR,
= kZcot? kR +kZ + kZ !
47990
SLFT

(3.

(3.

(3.

(3.

(3.

(3.

(3.

10¢)

104)

11)

12)

13)

14)

15)



4. Scattering from Two Constant Spherical
Inhomogeneous Layers: The Method of Partial: Waves

We oulline here how the method of partial waves can be used
to solve the problém of scaltering from two constant spherical
inhomogeneous layers (see Fig. 2):

Region 1l: V(xr)=-V,;, k(r)=k;, »<R,

Region 2: V{(x)=~V2, k(r)=ka, R1<r<R,; (4.1)

Region 3: V(r)=o, k(r)=k, r>R,
The solutions in the three regions are:

Rg, 1 (kix)=Agjg (k,xr)

Ry, 5 (k,r)=Bgh{?) (k,r)+Cyhi?) (k,r) (4.2)

Ry, 3 (kr)=Dg[cosdgjg (kxr)-sindgng (kr)]
We can eliminate two of the three constants Ag, By, and Cy by using
continuity boundary conditions at r=R,;:

Rgll(klr)=R2'2(k2r)‘

r=R)
(4.3)

dRg,, (k;r) dRg »(kar)
dr - dr

r=R,
The remainder of the analysis is analogous to that of Sect. 3 with:

1 dRy 2 (k,pr)

Bg=— L _ 1 drg,s(kr)
R.Q,' 2 (kzr) dr

r=R, Ry, (Kr) dr r=R,

We solve this problem in detail using the method of Jost

functions in Sect. 7.
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5. The Jost Function Formulation of Scattering Theory

This treatment follows that of DeAlfaro and Regge?‘. We
choose only those portions of their discussion which are relevant
to our investigation, at times perhaps at the expense of mathe-
matical detail and rigor, but hopefully not at the expense of
clarity. Since we are concerned primarily with the 2=0 partial
wave, we do not discuss analytic properties, which are important
in a discussion of higher order partial waves. Interested readers
are urged to pursue the reference.

We begin by writing down the radial equation again:

2
g~§%é£l+[k2—&i%%él~v(r)]ug(r)=0 (1.6)

For the following analysis to hold, we must impose certain re-
quirements on V(r) in addition to its being a real function
vanishing at r=w:

V(r) must be almost everywhere continuous;

5V ) |dr=M(c) <w,
C
(5.1)

C/
S x|v(r)|dr=N(c”) <=,

O

where ¢ and c¢” are arbitrary constants>o.
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a. Jost Boundary Conditions at r=o

For small r, [=&(&+1)
r?.

>>|k2~V(r)|, and we begin our dis-
cussion of Eg. (1.6) by neglecting the term [k?-V(r)]l. Eq. (1.6)
then becomes:

d%ug (x) _g (2+1)

a2 =7 uy (r) =0, (5.2)
which has a regular point* at r=o (hence the term "regular
solution") and the exact solution:

ug(r)=ar2+l+8r"£ (5.3)

Using Eg. (5.3) as a guide, we define two linearly independent
solutions of Eg. (1.6) with the behavior:
¢ (r)=r**1140(2)) (5.4a)
¢1 (r)=r ¥ [1+0(1) ] (5. 4b)

We also define A=2+1/2, so that Eg. (1.6) becomes even in A:

d®uy_1/2(x) A2-1/4
Adr{ 4+[k2— rfé—-V(r)]ux_l/z(r)=o (5.5)

We now, in a sense, take Eq. (5.5) out of its previous mathematical
context and consider it and its solutions to be a function also

of the parameters A and k, which, in the general case, may be
complex variables. Thus ¢(r)->¢,(r) as A>-A, and we therefore
replace ¢(r) and ¢i1(x) by ¢(A,k,xr) and ¢(~-A,k,r), respectively.

We write uk,l/z(r) instead of uyp(r) in order that our notation

be consistent. We solve Eg. (5.5) exactly by converting it into

*If we write the general linear second order homogeneous differ-—

2
ential equation as g—--g-ig---]'i-)----iq_w(1~)§£~é—11—;~)<~|-c1(r)f(r)zo, then a regular

point r=c is such that, although p(r) and g(r) may not be finite

at ¢, both lim(r-c)p(r) and lim(r-c)?q(r) exist.
roc r-c
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an integral equation using the method of variation of parameters

with the boundary conditions (5.4). We therefore let:

B (0K, ) =a () r L/ 2ag () p~ A HL/2 (5.6)
and impose the standard additional condition:
. “A4+1/2
u’(r)rxrl/2+3’(r)r +1/ =0 (5.7)

Computing ¢”(x,k,r) and ¢~ " (X,k,r) and substituting these values
into Eq. (5.5), we obtain:

(+1/2) 0" ()22 =172y 87 (0 e Y 2= (v (x) -k 210 (A, k, 1),
(5.8)
which, with Eg. (5.7), has the solution:

o’ (r) -[V(1) “k21¢ (A, k,r)r~At1/2
A+1/2 (5.9)

(r)—_«[k -V(r)l¢ (A, k,xr)r
Conditions (5.4) now become:

limo (r)=1
r+o
(5.10)
1imB (r) =0,
r-0

since ¢(X,k,r) has boundary value (5.4a).
From Egs. (5.9) and (5.10) we then have:

r
a(r) =143 V) -k 19 Ok, 0 g7 2ag
e}
(5.11)
r

B)=det V(DK 16 0%, g) gt/

ag

Substituting Egs. (5.11) into Eg. (5.6), we obtain:
Y
) A /AT
¢(A,k,r)=r“1/2+%-xf [(E) —(’g) :!/ré,'[k"~v(€)]q)(A,k,E;)dE, (5.12)

@)

>
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Prom Fg. (5.12) it is clear that we can write the Jost boundary
conditions at r=o as:

lim¢ (A, k,r)=0

2o
(5.13)
1 j_mg.ql,(__):_.ck__lﬂ.).z im(+1/2) 2" 172
r+o oY r+o
Eq. (5.12) is a Volterra integral equation, and we write its
solution as a perturbation expansion:
o>
d(A,k,x)= 2 ¢,(A,k,x), (5.14)
n=o
where:
+1/2
(1)0()\,}(11”):1‘)\ / ¢ (5.15)
and:
1 eV ([ Mo .
¢n+1(>\rkrr):'2'xé /) g /rf;lk --V(E)]tbn(k,k,g)d& (5.16)

The perturbation expansion for ¢(X,k,r) is bounded term by term
and is therefore unrestrictedly convergent.

Since the Wronskian of any two linearly independent solutions
of Eq. (5.5) is non-zero and constant, we can evaluate the
Wronskian of ¢(X,k,r) and ¢(-X,k,r) by replacing ¢ (),k,r) with

£A+1/2:

Wlo(X, k,x) P (-2, k,x) ]=¢(>\lklr)¢’(")\/krr)"¢)’()\,k,r)fb(")\,k,l'):—z)\
(5.17)
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b. Jost Boundary Conditions at r=e
For large r, we can neglect the term [fii:%éﬂ—v(rd in
T2
Egq. (5.5), which therefore becomes:

d®u (r)
A-1/2 .
drz/ +k2u)\"‘l/2(r)=o (5-18)

Eg. (5.18) has the exact solution:

U1/ (x)=ae” HRELgetkr, (5.19)
and we therefore construct a solution f£(X,k,r) (Jost solution) of
Eq. (5.5) with the asymptotic behavior:

lim elkre(a,x,r)=1% (5.20)

r+co
We use the method of variation of parameters in a manner analogous
to that of Sect. 5a and let:

£(1,k,r)=a(r)e Tk g (r) eiKT, (5.21)

so that Eq. (5.5) with the boundary conditions (5.20) becomes:

~ikr

f(),k,r)=e +Ef sinEdr’—rﬂ[V(r’)+li%%é£]f(A,k,r')dr’ (5.22)

r
We write the solution of Eg. (5.22) as a perturbation expansion:

f(X,k,xr)= 1 gn(lrk,r), (5.23)
n=o

*We note that our choice of asymptotic form (5.20) for f(A,k,r)
corresponds to incoming waves, which is contrary to our previous
assumption of outgoing spherical waves. This choice is a matter

of convention, and we could egually well have chosen

lim e-lkrf(x,k,r)zl. In both cases, the S matrix, which is the
Y >0

gquantity of interest in scattering problems, is the same.
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where:
go (X k, ry=e” KT, (5.24)
and:
® . - - )\2—1/4 - ~
gn+l(A,k,r)=%j SlnE((r frﬂ[v(r )+~E77~»]gn(k,k,r )dr (5.25)
r !
The perturbation expansion for f(A,k,r) is bounded for any A
We state the following relation:
WIE(Xx, k,x), £(Xx,-k,r)]=2ik, (5.26)

where we have evaluated the Wronskian by substituting for

. . . +ikr
f(X,*k,r) its asymptotic behavior, e 1k
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c. The Jost Function and the S Matrix
We define the Jost function f(X,k) as the Wronskian (which,
again, is non-zero and constant) of f£(X,k,r) and ¢(A,k,xr):

fF(X,K)=W[f(r,k,T) ,¢()\,k,r)]=f()\,k,r)q)’()\,k,r)—f'()\,k,r)¢(X,k,?)
5.27)

We can write the general solution of Eg. (5.5) as a linear com-—
bination of any two linearly independent solutions, and, in fact,
we have that:
¢(A,k,r)=§%i[f(k,k)f(A,—k,r)—f(k,—k)f(k,k,r)], (5.28)
where we have used Eq. (5.26).
The asymptotic form of ¢(A,k,r) is:
6 (A, k, 1)~ L [£(1,k)elkTo£ (1, -x) e~ 1KT], (5.29)

2ik ,
where we have replaced f(X,tk,r) with e+lkr, respectively.

I1f we parametrize the Jost functions in Eg. (5.29) as:
F(A,K)=1 (X, k)exp[id (X, k)=-(1/2)im(A-1/2)]
£ ~K)=1 (A, K)expl-i8 (A, k)+(1/2)in(A-1/2)], (5-30)
where t(),k) is a complex amplitude, then Eq. (5.29) becomes:
¢ Ok, ) ~L O k) sin [kr+s (1K) = (1/2) 1 (A-1/2) 1, (5.31)
which agrees with Eq. (2.16) [we recall that Rz(r)=u2(r)/r].
The S matrix is therefore given by:

S()\,k)-—-eZi‘S“’k)=—§-%‘~’—%-ei“(>‘_l/2) (5.32)

We note that the S matrix is proportional to the ratio of the

coefficients of the outgoing and incoming waves in Eq. (5.29).
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6. Scattering from a Constant Spherical Inhomogeneity:
The Method of Jost Functions (Diffevential Equation Approach)
- We apply the method outlined in Sect. 5 to the problem of
gcattering from the V(r) specified in Eqg. (3.1). The solutions
in the two regions are: |

Region 1: uA_l/2’1(klr):r[AjA_l/z(<1r)+Bnl_l/2(klr{] (
6.1)

Region 3: ux_l/zl3(kr)=r[Ch§ii/2(kr)+Dh§fi/2(krﬂ
Choosing ux_l/zll(klr) to be ¢(X,k,r) and imposing the boundary
conditions (5.13), we find that B=0 and:

¢ Ok, r)=2 41/ 2ym 1/ 2 TAL 200 (001) 551 0 (k1) (6.2)

¢—(A,k'r):2A+l/2ﬂ—l/2kl~k+l/2F(A+l)[jkul/z(klr)+k1rji_l/2(k1r)},
where we have used the following series representation?® for
Ix-1/2(kax)

nl/2 A-1/2+2n

(kyr)= 5 L7 m  (kyr)

n;021+172+2nn!F(A+n+l) ’

j “1/24-1,-2,-
J)\—-l/2 >\ 1/2/ ll 2[ 31 . . . (6.3)

Choosing uk_1/2,3(kr) to be f(X,k,r) and imposing the boundary

conditions (5.20), we find that C=0 and:

£(A,k,r)=ke T M2 pn 2] (kr)

(6.4)

f'(x,k,r)‘—‘ke—".}l()""l/z) h(i) (kr)+krh’£2) (kr)
A=-1/2 A-1/2 ,

where we have used the following asymptotic form?® for h{f}/2(kr):
lim h(?) (kr)zl,e_i[kr"(g)(x+l/2q (6.5)
kr~+.oa A-1/2 kr )

Since the point r=R; is the common domain of ¢ (A,k,r) and £(i,k,x),

we evaluate the Jost function at r=R;, and thus obtain:
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FOLK)=W[E(X, k,x), 0 (A, k,x)]r=R,
- (6.6)

N2>\41/2ﬂ~3/7],]\ ;\,1/2“)\'1)6 im(x+1/2) o
[k J)\ 1/2(}’1R1 h)\ ?[//(}R )=k, 1/7(k1R1)h ( )/2(kR )]

We also have that:

~im -1/2
£(h,—K) =2 L/ 271/ 2 AL/ 20 4y ST (WL/2) i L/2), (6.7)

°[’k1ji_l/2(k1R1)h§li/2(kR1)+ij~1/2(klRI)hi£i>2(le)]

’
where we have used the following identities?”’:

(2) (krei'ﬂ) h(z) ( kr)___(_l))\ l/? (1) (kr) l'ﬂ'()\ 1/2) (]) (kr)

A=1/2 A=1/2 hyZ 1/2 hyZ1/2
' e (e1) ML/ 20 (1) \+1/2
)\(5_}2( kr)=(~-1) hl-l/2(kr) =eim( / )h ( /2(kr) (6.8)
el (A= 1/2)h»(1) (kr), r-1/2=0,1,2,

1/2

The S matrix is then given by:

S(A, k)=—ij l/Z(klR )hx(i/z(ka) “k13j- l/2(klRl)h)\zl/2(le), (6.9)
kir-1/2 (kRO 0510 (kR -k 3521 5 O RO BELY 5 (kR))

which is in agreement with Eg. (3.8).

We can calculate the Jost function for A=1/2 from

Eq. (6.6):
~ikR
f(l/2,k-)=-e-%———l[<l—]5—> ~lk1R1+(1+k ) ik, R:I (6.10)
2 K, X, ,

where we have used Eq. (3.9) and the following relations?®
2 ikR

nd®) (kry)=-e 2t

ikR,

h,(z)(le):ewlle 1+.l
o kR] lle

(6.11)




7. Scattering from Two Constant Spherical Inhomogeneous Layers:
The Method of Jost Functions (Differential Eguation Approach)
We apply the method of Jost functions to the problem of

scattering from the V(r) specified in Eq. (4.1). We let

Region 4=Region 2 4+ Region 3 and let ¢(X,k,r) be the solution in
Region 1 and f(A,k,r) be the solution in Region 4. Using our
results from Sect. 6, we then have that:

- -A+1/2 .
b Ok, ) =221 22 MY 20 Gy g, ) ), 2 <R,

(7.1)
f2(l,k,r):r[éh{ii/z(kzr)+th i/z(er)] R,<r<R,
f(2,k,r)= !
- +1/2
£, 0000y ket (12 hiz) o ke, rox,
We calculate the constants C and D using continuity boundary
conditions at r=Rj:
fz()\,k,r)=f3(>\,k,r)
r=R,
(7.2)
dfa2 (A,k,xr)_dfs (A, k,x)
dr dr
r=R2
We find that:
A+1/2){
ke ‘Z_( X»R
C= , h(2) _(kRr,)+X2REn(2) (¢ R ye (7.3)
RPN L e S V2

(1) (2 - (
[kh 2o, R B B Ry ) <k ,n (2] (kR n | i}z(szZ{l}

inm
~_kk R? -5 (A+1/2) (1) {2)
p=-kkzRze [khA 12 (KeRIR D (kR2) (7. 4)

_kzh{fi/z(kRz)hifi}z(szz)],
where we have used the following relation?®

n() k,r) m(2) kR, =2 ai10= Ce 7.5
[/\—- 1/2 ) s A-1/2 ( 2 2) N )71 1/2=0,1,2, ( )
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Since the point r=R; is the common domain of ¢ (A,k,r) and £(A,k,r),
we evaluate the Jost function at r=R, and thus obtain:

£(A,k)=W[f(X,k,x) rq)()\rkrr)]r:Rl

=[f2 (Alklr)qJ‘()\lklr)“f;(Alklr)q)(’\lklr)]r=R1

=2)\+1/2."."1/2k;)\'|‘l/2Ri.11()\+l)° (7,6)

e{ckl[h{i)l/z (k,R ) j;_l/z(klRl)+11{f)l/2 (k,R,) ji—l/z(klRl)]

_Dkz{hi_‘i}z (k,R;) jx_l/z(k1R1)+h>’\_€i}2(szl) jl_l/z(klRl)]},
where C and D are given in Eqgs. (7.3) and (7.4).

For A=1/2, we have that:

i N o—i(k_+k)IR
==(k,~k
2( 2mk)e z 2 (7.7)

D=—_§.(k2+k) ei (kz“k) R2 p

and therefore:

£(1/2,Kk) =% (l-_i}z_)eiszle—i (k,+k) Rz[(l_,_%:_z)eqkl}zu (lm}fg-)eiklRl]
(7

2 1

. 8)
+l(?+5;)e_ik2R'ei(kz_k)Rz[(l—EL)e_lklRl+(}+Eﬁ)elklR{l
4 k
14

2 k,y
where we have used Egs. (2.8b), (3.9) and (6.11). As expected, the
two-layer solution (7.8) reduces to the one-layer solution (6.10)
for k2—>k1 and R2+R1.

We note that we could have also found f(A,k) by choosing
Region 4=Ragion 1 + Region 2 and letting ¢(A,k,r) be the solution
in Region 4 aud f(i,k,r) be the solution in Region 3. We would
then write the solutions as:

¢l(A,k,r)=2A+l/2n“l/2k;A+l/2F(A+l)rjl_l/2(k1r), r<R,

¢(x,k,r)= (7.9a)

¢2(X,k,r)=r[Ch§f}/2(kzr)+thfi/z(kzr)], R;<r<R,
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TN 1/2) ()
F(A Kk, r)=ke rhk31/2(kr)’ >R, (7.9b)
We would calculate the constants C and D using continuity boundary

conditions at r=R,:

¢, (Arkrr)‘:d’z (X, k,x)

r=R,
(7.10)
aéar (A, k,x) _dg2 (A, k,x)
dr dr

r=R,

Since the point r=R, is the common domain of ¢(A,k,r) and £(X,k,r),

we would evaluate the Jost function at r=R,:
f(A,k)zw[f(A,k,r),¢(A,k,r)]r2R

2

(7.11)
=[f(>\l](lr)d);_()\rklr)»f/(xl};lr)(bz (Alklr) ]r=R
2

We also remark that the Jost function method involves the use of
continuity boundary conditions at either R; or R,, while the
standard partial wave method (see Sect. 4) involves the use of

continuity boundary conditions at both R, and R,.



~28-

8. fThe Jost Integral Equation for A=1/2 and
Some Approximate Solutions
If we assume there is an R such that V(r)=0 for r>R and let
g(l/2,k,r)=eikrf(l/2,k,r), then Eq. (5.22) becomes the Jost

integral equation for A=1/2:

R
g(1/2,k,r)=1+_L_ 5 [1-e2ik(x-r7)]v(xr~)g(1l/2,k,r")dr” (8.1)
2ik
We write the solution of Eg. (8.1) as a perturbation expansion:
g(l/zlk,r)z z gn(l/zlklr)l (8.2)
n=o
where:
go(l/zlk/r):lr (8-3)
and:

R
~ 1 2ik(xr~-r~ - - -
gn (1/2/k,0) =52 [ e ikr-r ) yy(r g, (1/2,k,x7)ar”  (8.4)

If we assume that k is pure real (which is the case in the
probleng under consideration), we then have that:

) R
lgn<1/2,k,r)lgT}i—r Vi) | lager (1/72,%,x07) lax”, (8.5)
Y

and therefore:

lg, (1/2,%, 1) [<Np () /| %], (8.6)
where:
R

Np (x)=0 (R-1) f [v(r7)|dr”, (8.7)

r

1, r<R

6 (R-x)=
0, r>R

By recursion, we obtain:

|gn(1/2,k,r)|5N§(r)/]k[“nz, (8.8)
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and therefore:

lg(1/2,k,r)~1|<eNR(X) /K3 (8.9)
From Eg. (5.13), we have:

lim¢ (1/2,k,r)=0

r->0o

(8.10)

lim¢ " (1/2,k,x)=1

r->o
£(1/2,k,0) and £7(1/2,k,0) arc finite (e.g., see Appendix A),
and we can evaluate £(1/2,k) at r=0 using Eg. (8.10), thus
obtaining the useful relation:

£(1/2,k)=£(1/2,k,0)=g(1/2,k,0) (8.11)

In order to illustrate the use and accuracy of this

iteration procedure, we consider the case of scattering from a
constant spherical inhomogeneity, for which we have already cal-
culated f(1/2,k) exactly in Sect. 7. We write down the solution

again in the following form:

- ) ! : -
£(1/2,k)=cos[(k,/k)kR,]cos lePTFT7E781n[(k1/k)kR1181n kR (6.12)

+i{-cos[(k,/k)kR,]sin kR1+T£l7ETsin[(kl/k)le]cos kR, }
1
The A=1/2 Jost integral FE¢. (8.1) for this case is:
v, M 2ik (x-r7)
g(l/2,k,r)=1~§4E [1-e4iR X" ))g(1/2,k,r")dr” (8.13)
1K r

The first iteration gy (1/2,k,0) of Eq. (8.13) is:
gI(1/2;](’0)‘:90(1/2:}(:0)"'9-1 (l/zlklo)

=1—%[(k,/k)2~l](l—cos 2kR;) (8.14)

+%{[(k1/k)2—l](le~%sin 2le)}

The second iteration gII(l/Z,k,O) is:
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gII(l/zlkl 0)5’90(1/2,1{,0)4'91 (1/2/]*10)’*‘92 (1/2,%,0)
=gy (1/2,k,0)+g, (1/2,1k,0)

=1-2[ (k,/k) =11 (1-cos 2KR,)
(8.15)

~2 106, /5) P=1) 7 (KR, [KR, +sin 2kR, 1+2 (cos 2kR,~1) ]
+%{[(k1/k)2—l](kR1—%sin 2kR, )
“1 006, /K) 2-11 7 (KR, (Lidcos 2kR, ) =3sin 2k, 1)

In Figs. 3-5, we have plotted £(1/2,k), g1(1/2,k,0), and
gII(l/Z,k,O) as a function of kR, for k,/k=1.1, 1.5, and 2.0,
respectively. We see that the iteration procedure becomes less
accurate with increasing k,/k. The rapid convergence of the
perturbation expansion for small k,/k can be seen from the bound
(8.8), since the n! term in the denominator begins to predominate
over N;(r)/[kln for relatively small n. The slow convergence for
large k,/k is in agreement with the fact that the n! term does
not begin to predominate until n is much larger.

For real X and k, we have:

£, -k)=£* (A, k), (8.16)
and therefore:

0o/1R=|1-e216 (1/2:K) 42 /(xR ) 2
(8.17)

=\ 1-£5 (175 %y 2/(}(}»11)2
Using Egs. (8.12), (8.14), (8.15), and (8.17), in Figs. 6-8 we have
plotted the exact result, first iteration, and second iteration
for Go/uRf for k]/k:l.l, 1.5, and 2.0, respectively. The iteration
procedure jsg, in general, more accurate for the cross section than

for the Jost function jtself. For kl/k=l.l, it is good for the
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entire range of kR, considered. For kl/k=1.5 and kl/k=2.0, it is
good out to approximately kR, =371/4.

From impact parameter arguments, the largest 2=X-1/2 which
contributes significantly to the partial wave expansion (2.21) is
on the order of kR;. We can therefore cénclude that, in terms of
solving long-wavelength (kR1<<l) scattering problems (with o, the
only significant term) completely, this iteration procedure is
good for any k,/k. For shorter wavelengths and small k;/k (e.g.,
k,/k=1.1), it gives a good approximation to the =0 contribution
to the total cross section for the entire range of kR, considered.
For shorter wavelengths and larger k,/k (e.g., k,/k=1.5, 2.0), it
gives a good approximation to o, out to approximately kR;=3u/4.

We point out that, because Ficgs. 6-8 are an accurate measure of
the total scattered field only for kR,<<l, the behavior for larger
kR, (including the seemingly strange behavior between kR,=m and

2t for k,/k=2.0) will be overshadowed by the contributions of the
higher order partial waves and should not be interpreted as an
accurate description of the total scattered field.

We note that our plots of the 2=0 cross section differ
from those for the square well potential presented in standaxrd

30y .  The reason for this

quantum mechanics texts (e.g., Merzbacher
difference is the fact that in guantum scattering theory, we are
concerned with the behavior of the cross section as a function

of kR, for a fixed value of V,R} (i.e., we have fixed the parameters

of the potential), while in classical scattering theory, we are

concerned with the bechavior of the cross section as a function of



kR, for a fixed value of the relative index of refraction k,/k.
Also, in classical scattering theory, the phase shift and cross
section are zero as kR 20, while in quantum scattering theory,
the phase shift and therefore the cross sectioh for kR,»0 are
dependent on the value of V,R} and can, in fact, be non-zero,
depending on the presence of bound states and the phase shift

normalization at infinite energy.
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9. General Jost Integral Equation Formulation forx
Arbitrary XA for Scattering from an Arbitrary Inhomogeneity
The general Jost integral equation formulation for arbitrary A
for scattering from an arbitrary inhomogeneity is based on the
integral equations for ¢(i,k,r) and £(X,k,r) presented in Sect. 5:

r
¢ (0 k, ) =r /24y [<ﬁ>k-<£)xl/ffik2~vta>J¢(A,k,a)da (5.12)
O r g -

A?-1/4 (5.22)

f(A,k,r)=e’ikr+% J sinE&r’—rﬂ[v(r’)+~zji~m]f(l,k,r’)dr’
r

For any V(r) satisfying requirements (5.1), we can solve Egs. (5.12)
and (5.22) using an iteration procedure (or other applicablc

method) analogous to that used in Sect. 8. Knowing ¢(X,k,x) and
f(A,k,r), we can calculate ¢“ (), k,r) and £7 (X ,k,r) and therefore
f(),k), which can be evaluated at any point in the common domain

of ¢(A,k,r) and f(Ar,k,r).

In the case of scattering from a constant spherical inhomo--

geneity, we have the following two integral equations:

R,
6Ok, x) =1/ 242 s [(-g)x"(-r—y]/f_é[k%v,]c,h(?\,k,&)di
(o]

r £
(9.1)
TTI/e\ A AT
+']2:71fn KE> (?‘) J/'rfk2¢(x,k.a)d£
. Rl 2

‘ -ik N Ac-1/4 . -

fF(\,k,r)=e ¥ r+%i 51nEJr ~rﬂ[—v1+~fjﬁl_]f(x,k,r ydr
(9.2)

® 2
+1s sin[xr’urﬂ[£~§%éﬁ]f(A,k,r’)dr’
kR1 .

In the case of scattering from two constant spherical inhomo--

gencous layers, we have the following two integral equations:
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$(h, K, r)=r AL/ 2] ] f [()A <.ﬂ..>k]/“s [k24+V,1¢ (X, k,E)ag

R A A
*%xé 2[(?) <lg ]/“Slk +V,10 (X, k,E)dE (9.3)
, L
r A A
+—§7f [() —(’;f J/rék o (A, k,E)dE
R2 g
f(x,k,r)=e’ikr+%- 51uEdr —r)[ V1+A;§%lﬂ]f(X,k,r’)dr’
. S o X
1 Ry A2~1/4
+=f sinEdr’~rﬂ[—V2+ ~~~~~~~ f(x,k,r")dar” (9.4)
kR i - r-2
1
+1s sinEdr’~r][ ]f(k k,r")dr”
kR2

In the case of a cutoff inhomogeneity [V(r)=0 for r>R]l, e.g.,
the examples just considered, we can always write the solution in

the exterior region (r>R) as [see Egs. (6.4), (7.1), and (7.9)]:

:;1(x+1/2) (2)

f(r,k =ke h kxr 9.5
( /T) r }‘_1/2( ) ( )
We thus need only solve the integral equation for ¢(A,k,r). The

Jost function can be evaluated at any point r>R, since we have

restricted f£(A,k,r) to the region r>R.
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10. Conclusion

In this thesis we have shown how the Jost function formulation
of guantum scattering theory can be applied to classical problems
involving the scattering of a scalar plane wave by a medium with
spherically symmetric inhomogceneities. We have seen how this
technigue can be used to solve the radial differential equation for
scattering from a constant spherical inhomogeneity and from two
constant spherical inhomogeneous layers and have compared it with
the standard method of partial waves for these cases.

In situations where the radial equation with Jost boundary
conditions is not exactly solvable, it may be useful to convert
it into an integral cquation incorporating these boundary condi-
tions. We have shown that the g2=0 Jost integral eguation for a
cutoff inhomogeneity can be solved using an iteration procedure and
have used the exactly solvable constant spherical inhomogeneity as
an example to check the usefulness of the iterative procedure.
Although the iterative technique is not the most straightforward
method for the case of a constant spherical inhomogeneity, we feel
that it may be more useful in situations where the inhomogeneity
assumes a more complicated functional form. We have found that the
iteration procedure is good for long-wavelength (kR,<<1) problems
for any k,/k. For shorter wavelengths and small k,/k (e.g.,
k,/k=1.1), it gives a good approximation to o, for the entire range
of kR; considered (0<kR,<2m). For shorter wavelengths and larger
ki/k (e.g., ki;/k=1.5, 2.0), it gives a good approximation to ¢

o]

out to approximately kR, =3w/4.
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As an indication of further work that can be done in this
field, we have written down the Jost integral equations for
arbitrary & for scattering from an arbitrary inhomogeneity with
and without a cutoff. A complete solution of problems for
arbitrary wavelength would involve solving these integral
equations and summing the entire partial wave series using

methods such as the Watson-Sommerfeld transformation.
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Appendix A
Scattering from a Constant Spherical Inhomogeneity:
The Jost Function for A=1/2 (Differential Equation Approach)
We can find f(1/2,k) for scattering from a constant spherical
inhomogeneity by letting A=1/2 in Eqg. (5.5), which then becomes:

2
d ggir)+[k2—v(r)]uo(r):0 (A.1)

The solutions in the two regions are:

Region 1: ¢(1/2,k,r)=neik1Type~ikar

. . (A.2)
Region 3: £(1/2,k,r)=Celkripe~1kr
Imposing the boundary conditions (5.13), we find that:
A=-B=1/2ik, (A.3)

Imposing the boundary conditions (5.20), we find that C=0 and D=1l.
Since the point r=R; is the common domain of ¢(1/2,k,r) and

£f(1/2,k,r), we evaluate the Jost function at r=R; and thus obtain:

f(l/2,k)=le_ikR1 l_E_ e“ik1R1+ 1+E_ eiklRl (A.4)
2 ki k1 .

which agrees with Egq. (6.10).
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Appendix B
Scatlering from Two Constant Spherical Inhomogeneoué Layers;
The Jost Function for A=1/2 (Differential Equation Approach)

We can find £(1/2,k) for scattering from two constant spherical
inhomogeneous layers by using Eqg. (A.1l) and our resullts from
Appendix A. We thus write the solutions in the three regions as:

¢(1/2,k,r)=§%ffeik1r—e_ikir), r<R,
fé(1/2,k,r)=Ceik2r+De_ikzr, R, <r<R, (1)

£(1/2,k r)={ .
g, (1/2,%, vy =R, poR

_ 2
We calculate the constants C and D using continuity boundary con-
ditions at r=R,:

£,(1/2,%,x)=£,(1/2,%,) |p=R,

(B.2)
df2(l/2,k,r)=df3(l/2,k,r)
dr dr r=R2
We find that:
-1{7..k -i(k,+k)R
c=1(1~-X _le 2 2 B.3)
() ‘

-1 k i(k,-k)R B.4
2(l+k2)e 2 2 (B.4)

Since the point r=R, is the common domain of $(1/2,k,r) and

f(1/2,k,r), we evaluate the Jost function at r=R, and thus obtain:

£(1/2,k)=1(1-k JeikzRig=i(ka+k)Ra | (11k2 )o-ik1R1y (7 k2)eik R,
I\ k: k1 K i

(B.5)

+1(12k_\omik Ry ol (k,~K) R, l"5£>e—iklR1+ LKz eiklRl]
4 k, kl kl ' 1

which agrees with Eq. (7.8).
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Appendix C
Scattering from a Constant Spherical Inhomogeneity:
A Laplace Transform Method for Solving
the Jost Integral Equation for A=1/2

We can solve exactly the A=1/2 Jost integral equation (8.13)
for scattering from a constant spherical inhomogeneity using
Laplace transforms®!. We state the convolution theorem for
Laplace transforms:

L[frw(r—r’)g(r’)dr’]zw(p)G(p), : (Cc.1)
where W(p) and G(p) are the Laplace transforms of w(r) and g(r),
respectively, and apply it to the following Volterra integral
eguation:
r
g{ry=h(r)+/ w(r-r“)g(r”)dr”, r>o (c.2)
o

We take the Laplace transform of both sides of Eq. (C.2) and assume
that H(p) [the transform of h(r)] is analytic for Re p>t, and that
the region of analyticity of W(p) has at least a strip, parallel
to the imaginary axis of p, in common with the band for H(p). Then,
in that strip, we have that:

G(p)=H(p)+W(p)G(p) ., (C.3)

and therefore:

G (p)=—H(p) (c.4)
-W(p)
Inverting the Laplace transform, we obtain a solution of Eq. (C.2):
= 1 i=tt, H(p) | .pr
q(r)-—-iﬁ-{_wﬂ [-jjw——(—p)]e dp, Re r>o (C.5)v
)

We change variables, r”’sr’-R,, dr”“=dr”, in Fg. (8.13), which then

becomes:
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TR 2ik (xmr T R,)
g(l/z,k,r)=1+~ylf [l--e'l‘(r T 1/ 1g(1/2,k,x”"+Ry)dr "~ (C.6)
77k o . :
1f we let r”““=r-R, and G(1/2,k,r”’)=g(l/2,k,r”’+R1), then
Eq. (C.6) becomes:
v r”’ , L .. .
G(1/2,k,r° "7 )=1+21_ [1-e2ik(x™""-r"")ye(1/2,k,x")dx"", (C.7)
21ko
which is in the form of Eg. (€.2). We thus have that:
h(r’;;)___l
H(p)=1/p

w(r"’):%%E(l—e2ikr ) (C.8)

If we use Egs. (C.8) and change variables back, Eg. (C.5) then

becomes:
jootT .
- °l_p-2ik | _p(r-R;)
o

We can evaluate the latter integral by using the. calculus of
residues, where, adding on an infinite semicircle, we have the
contour of integration shown in Fig. 9. The integrand I(p) has
simple poles at p,=i(k+k,) and p,=i(k-k,;), so that:
g(1/2,k,r)=Res[I(p),p,}+Res[I(p),p,] (C.10)

Evaluating the residues, we obtain:

Res [1 (p) 1P1]=%‘<1"-§—>ei(k+kl) (x-R,)
1

i (k- - (C.11)
Res[I(p),p, =%<1+§_>e1(k k) (x-R;)
1

and we therefore have that:

f(1/2,k)=g(1/2,k,o)=%e“lkR1[(1—§q)e‘lk1R‘+(1+§T)elk1Rl] (C.12)
’

which agrees with Egs. (6.10) and (A.4).
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Region 1:
V(r)=-v,
k(r) =k1

R

Region 3:
V(r)=0
k(r)=k

1

Fig. 1 - Constant spherical inhomogeneity

Region 1: Region 2: Region 3:
V(r)=-v, V(r)=-v, V(r)=0
k(r)=k, k(r)=k, k(r)=k

Rl

Fig. 2 - Two constant spherical inhomogeneous layers
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Oo 100"
ki/k=1o1
— EXACT RESULT
+ 1ST ITERATION
0. 075+ o 2ND ITERATION

2
1
+

0o /TR
+

0. 050+

0. 025-

0. 000 + f t
LA kR, 21

Fig. 6 - oo/an VS. kR, for scattering from a constant spherical
inhomogeneity, k; /k=1.1




=47~

2:: 01'
ln 5"'
+ +
ﬁg ky/k=1a5
S — EXACT RESULT
5 * 1ST ITERATION

@ 2ND ITERATION

Fig. 7 - . [z Rf VS. kR, for scattering from a constant spherical
inhomogeneity, k1/k=1.5
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qﬁn 0 [
ki/k=2.0
— EXRCT RESULT
+ 1ST ITERATION
3.0l o 2ND ITERATION

1.0+

0.0

2
Fig. 8 - o, /aR; VS. kR, for scattering from a constant spherical
inhomogeneity, k, /k=2.0
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p-plane

py=3 (kik )¢

p,=i(k-k;)y

Fig. 9 - Contour of integration for Laplace transform method
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