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ABSTRACT

The Jost function for m ul at i on of quantum scattering theory is
applied to classical problems involving the scattering of a scalar plane
wave by a medium in which the velocity is a function only of the spheri-
cal radial coordinate. This technique is used to solve the radial differ-
ential equation for scattering from a constant spherical inhomogeneity
and from two constant concentric spherical inhomogeneous layers and
is compared with the standard method of partial waves for these two
cases. The radial equation can be converted into an integral equation
incorporating the Jost boundary conditions. The I=0 partial wave in-
tegral equation for a constant inhomogeneity is solved using an itera-
tion procedure (the first two iterations are considered). The Jost func-
tion and I =0 cross section a are plotted as a function of kR 1 , where k
is the wave number in the surrounding medium and R 1 is the sphere
radius. The iterative technique is good for long wavelengths (kR.<< 1)
and any ratio of wave numbers in the scattering and surrounding media.
For shorter wavelengths and small ratio of wave numbers (e.g., k, /k=
1.1, where k i is the wave number in the scattering medium), it gives a
good approximation to ao for the entire range of kR 1 considered (0 _kR 1
<2 7). For shorter wavelengths and larger ratio of wave numbers (e.g.,
kI/k = 1.5, 2.0), it gives a good approximation to aooutto approximately
kRl=37/4. More generalproblems usingthis methodare also discussed.
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SCATTERING BY SPHERICALLY SYMMETRIC INHOMOGENEITIES

1. Introduction

This paper is concerned with the scattering of a scalar plane

wave by an inhomogencous medium in which the velocity of propaga-

tion c is a function only of the spherical radial. coordinate r,

i.e., c=c(r). This problem is of interest in various branches of

physics: scattering by inhomogeneous spheres; scattering of

acoustic waves in the ocean, electromagnetic waves in the atmo-

sphere, and seismic waves in the earth. Although quantum-mechanical

problems involving scattering by spherically symmetric potentials

have been extensively investigated, the analogous classical prob--

lems involving scattering by spherically symmetric inhomogeneities

have not been as thoroughly studied. It is the purpose of this

thesis to show how a convenient quantum-mechanical method can be

used to treat the classical problems and to apply this method to

some simple solvable problems.

The theory of scattering of plane acoustic waves by spheres

was first investigated by Rayleigh', who considered the limiting

case of spheres which were small compared with the wavelength.

Solutions for scattering by rigid, immovable spheres, not neces-

sarily small compared with the wavelength, were obtained by Morse .

The scattering by elastic spheres immersed in a fluid has been

considered by Faran 3 , and the scattering by fluid spheres inmersed

in a fluid medium has been investigated by Anderson4 . Frey and

Goodman5 have considered the scattering of acoustic waves and

pulses from a sphere that has acoustic properties very similar to

those of the surrounding medium. Hart and Montroll 6 have developod
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an approximate theory for the scattering of plane waves by

spherical obstacles with the property 1 0 /3<1. 5, where 1 and X0

are, respectively, the wavelengths of a plane wave in the scatter-

ing medium and in the surrounding medium. Montiooll and Greenberg 7

have devised a variational method for scattering by obstacles with

spherical symmetry and have sunuarized their work and that of

van de Hulst, Hart, and Glauber on scattering-by spherical obsta--

cles where the wavelength of the wave inside the scatterer does

not differ much from that of the incident wave8 .

The extensive development in recent years of quantum scatter-

ing theory, which has included a thorough reexamination of

classical methods such as the Watson-Sommerfeld transformation, has

yielded techniques and results which can be of use in the solution

of classical scattering problems. Thus, Uberall9 has applied the

Saxon-Schiff1 0 1 theory of potential scattering to the scattering

of electromagnetic waves by weak scatterers with complex dielectric

constant and permeability, using scattering by a homogeneous cli-

electric sphere as a particular example. Rockmore 2 , who also

treats the homogeneous dielectric sphere, has applied approximations

of high-energy quantum scattering theory to a spinor formulation of

electromagnetic scattering. FlanuLer 1 3 has used various approxima-

tion methods from potential scattering in his investigation of

electromagnetic scattering by inhomogeneous dielectric media and

has presented an exact formal solution for the problem of scatter-

ing by a sphere with dielectric constant E=l+(K/r). He presents a
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compr.hen s.e review of applications of methods from quantum scat--

tering theory to e ].ectromacgne tic scattering problems.

In the case of -scalar plane wave scattering by a spherically

symmetric scatterer, the similarity in form between the inhomogene--

ous Helmholtz equation and the time--independent Schrodinger wave

equation allows us to treat classical and quantum problems by

analogous methods. The general expression for the classical scalar

wave equation for a medium with spherically synmetric inhomogene-

ities is given by:,
.... i , 0 (1.1)

c2 (r) at2

Separating out the time dependence of the wave function and con-

sidering only one frequency component w, we obtain:

i t ,  
(1.2)

where the spatial part f(r) of T(r,t) satisfies the inhomogeneous

Helmholtz equation:

V2W(r)+ [k2-V(r) ] (r)-0 (1.3)

In Eq. (1.3), we have defined:

V(r)=k 2-k2 (r) , (1.4)

where k(r)-:w/c(r) is the wave number in the scattering medium, and

k=w/c is the wave number in the surrounding medium. Equation (1.3)

corresponds to the Schr6dinger equation where k 2 =2mE/hi2 ,

V(r)=2mU(r)/R 2, H=h/2n, h is Planck's constant, and m is the mass

of a particle of total energy E moving in a potential U(r). Thus,

the wave function l( ) can be interpreted either classically, as

the spatial part of the acoustic velocity potential, for example,

or quantum mechanically as the Schr6dinger wave function.
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Nussenzveig has treated the problem of high-frequency scalar plane

wave scattering by an impenetrable sphere 14 (hard-core potential)

and by a penetrable sphere15 (square well potential) using a modi-

fied Watson-Sommerfeld transformation. Using the one-dimensional

analogue of Eq. (1.3) and the method of partial waves, which is

an exact classical technique for solving scattering problems that

was originally used in quantum scattering theory by Faxen and

Holtsmark 16 , Harrison and Plutchok1 7 have investigated one-

dimensional scattering problems in inhomogeneous media, where the

one-dimensional partial waves are "parity" waves. The integral

equation thus obtained is solved using an iteration procedure.

The present work is concerned with the application of the Jost

function formulation of quantum scattering theory as presented by

DeAlfaro and Regge18 to the scattering of a scalar plane wave by a

medium with spherically symmetric inhomogeneities. Both the scat-

tering and surrounding media are assumed to have the same constant

density. If we separate Eq. (1.3) in spherical coordinates, we

obtain:

( A9mRQ,(r)Ykm(O,f), (1.5)
k=O m=-k

where R9 (r) =uZ (r) /r and Y9m(Ofl is a spherical harmonic. Then

uk(r) satisfies the partial wave radial equation:

d'uz(r) FQ.-(+1.) 1
dr2  2  (1.6)

The Jost function technique is essentially a sophisticated version

of the standard partial wave analysis and involves a detailed studY

of the solutions of the radial equation. The Jost function is
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defined as the Wronskian of two solutions of the radial equation,

one satisfying boundary conditions at r=O (regular solution) and

the other satisfying boundary conditions at r-.... (Jost solution).

The differential and total scattering cross sections are obtained

from the phase shifts 6k, which can be calculated easily once the

Jost function is known. The Jost function can be calculated either

from the original radial differential equation with Jost boundary

conditions or from a Volterra integral equation which incorporates

these boundary conditions. Although the former approach is more

straightforward in the case of a constant inhomogeneity for r<R 1

(three-dimensional square well potential), for example, we feel

that the latter approach may be more useful in situations where

the inhomogeneity (potential) assumes a more complicated functional

form and the radial equation does not have an exact solution. The

solution of the integral equation is then written as a perturbation

expansion, and an iteration procedure yields the solutions to the

desired accuracy. The perturbation expansion for a Volterra in-

tegral equation has the useful property that it converges

everywhere. This procedure is valid for an arbitrary inhomogeneity

(potential) satisfying relatively weak requirements.

In Sect. 2, we review the standard partial wave analysis. In

Sect. 3, using the partial wave analysis, we calculate Sz.(k), the

scattering matrix (S matrix), for the kth partial wave for scatter-

ing from a constant spherical inhomogeneity [V(r)=--V1 , r<R,;

V(r)=0, r>R 1 ]. We also calculate the Z=O scattering

amplitude Fo, differential scattering cross section du0/dQ, and
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total cross section a 0 . In Sect. 4, we out][ine how the partial

wave method can be used to solve the problem of scattering from

two constant concentric spherical inhomogeneous layers

[V(r)=-V , r<R ; V(r)=-VV, R <r<R ; V(r)=O, r>R ]. In Sect. 5, we1 1 2 1 2 2

present the Jost function formulation of scattering theory. In

Sect. 6, we calculate the Jost function from the radial differential

equation for scattering from a constant spherical inhomogeneity for

arbitrary k .nd evaluate it for £=Q. In Sect. 7, we calculate the

Jost function from the radial differential equation for scattering

from two constant concentric spherical inhomogeneous layers for

arbitrary t and evaluate it for £=O. In Sect. 8, we derive the

£=0 Jost integral equation for scattering from an arbitrary

inhomogeneity with a cutoff. We calculate the Jost function for £=O

from this integral equation using an iteration procedure (the first

two iterations are considered) for scattering from a constant

spherical inhomogeneity and compare it and the cross sections

graphically with the exact results. In Sect. 9, we present a

general Jost integral equation formulation for arbitrary Z for

scattering from an arbitrary inhomogeneity and apply it formally

to scattering from a constant spherical inhomogeneity and from

two constant spherical inhomogeneous layers. In Appendix A, we

calculate the Jost function for Z=O directly from the 9=0 radial.

differential equation for scattering from a constant spherical

inhomogeneity. This method is basically the same as that employed

for the case of arbitrary £ in Sect. 6. However, by considering

only the £Z:O case, we are able to see more clearly how the usual



classi cal wave solutLions with ,lost boundary conditions can be used

to construct the regular and Jost solutions. In Appendix 13, we

calculaLe the Jost function for £=O clirecLly from the Z=0

radial differential equation for scattering from two constanL

spherical ir'homogeneous layers. In Appendix C, we present a

Laplace tran.sform method for solving exactly the £=0 Jost

integral equatidn for scaLtering from a constant spherical

inhonlogenci ty.
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2. The Method of Partial Waves

The presentation given here follows the treatments of

Gottfried' 9 , Marion' 0 , Merzbacher 2 1 , and Schiff 2 2 . R£(r) in

Eq. (1.5) satisfies the following equation when V(r)=O:

d'R(r) 2 dRz(r) i2(+1
dr 2  +r dr + k 2- - r2 R,(r)=0 (2.1)

Making the substitution R2.(r)=x,(r)/V/r in Eq. (2.1), we then have:

d £2X(r) 1 dx£(r)F (k+1/2) 21
dr-2 +r dr r2 X£ (r)=0 (2.2)

Changing variables, z=kr, we obtain:

-d2 X2  dX 2_ 22.
Z 2d +z -- +[z -(k+1/2) X = (2.3)

The solutions of Eq. (2.3) are Bessel and Neumann functions of

half-integral order, a particular solution being:

X£ (z)=AkJZ+1/2 (z)+Bk N£+I/2(z), (2.4)

where A and B2 are arbitrary constants. We define spherical

Bessel, Neumann, and Hankel functions:

j2.(kr)= -JZ-+i/2 (kr)
2kr

- -(k)N (kr) (2.5)
n£(kr)= ,-1£1/2 (r

h ( I ) (kr) =j(kr) +in, (kr)

h ( 2 ) (kr)=j£(kr)-in£(kr)

The general expression for fp() can therefore be written as:

(X)-- I [A 2mJ(kr) F} 2 n 2 .(kr) ]Ykm(O, ) , (2.6)
£,,m

or as:
->'

( [Cimh i l ) (kr)+Dmhj' ) (kr) ]Yg,(Ot) (2.7)
£,m
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using the following properties of the spherical H7ankel funct: on s:

hjI) (kr) (-£+leikr 2.)

h () (kr)=h 2(kr), (2.8)

we find that the complete wave function has the asymptotic form-
£,m (k -t P ei(k -t Ykm(O,f) , r -,co (2.9)

We identify the part of T(.,t) dependent on h(1) (kr) as an out-going
2.

spherical wave [ei (kr--wt) /r] and the part dependent on h ( 2) (kr) as

an incoming spherical wave [ei(- kr-wt)/r].

We now consider a plane wave of unit amplitude moving in the

positive z--direction incident on a spherically symmetric scatterer.

At large distances, the scattered waves will appear to be outgoing

spherical waves. Since we are dealing with a spherically symmetric

scatterer, we assume no @-dependence in the scattered wave function.

The asymptotic form of the total wave function is therefore:

>W )eikz+F(o) e r_ , (2.10)
r

where F(0) is the scattering amplitude. The differential scattering

cross section is given by:

dq(0L 1 1F(0) 12 (2.]]1)

The total scattering cross section is:

a=f do(O) dQf IFp(a) 2d, (2. 12)4 dQ "

We can write Rz(kr) in completely general form as:

R2. (kr) =Cj [A j (kr) -.Bknk(kr) ], (2. 13)

where we choose AZ and Bk to be real and C2 to be c:cmplex. Defi. ni rg

cos6s :AZ/A2.BZ2 s in, 2 .=B 2 ./VY+2 . 2A, and Dk=CZ//F±-2, we then1
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h ave:

Rk(kr)=Dk[cos6pjk(kr)--sin6kn (kr) ]r (2.14)

where the phase shift 6k is real and Dk may be complex. Using the

following properties of the spherical Bessel and Neumann functions:

jk(kr) -sin (kr--) , kr>>k1l,
(2.15)

nk(kr)--l_cos(kr- L[ ), kr>>-1,,
kr 2

we find that Rk(kr).has the asymptotic form:

R (kr')- ~D--_sin (kr--k -1- 6 P) (2.16)
kr 2

The asymptotic form of 4( ) is therefore:
o

rs E - s n r-- -- + £ P (cos0) ( . 7

z=0 kr 2 )ico0

But we can expand the incoming plane wave in terms of spherical

waves:
oo

eikz=eikrcos=E. ( 2 9,+1)i~j (kr)P (cosO), (2.18)

and the asymptotic form of (r) can therefore also be written as:
-ikz ikr

*(r) + ,( e r

krCO ikr~ .(2k,+1) iP 9,I co )+ 0
Tkr s i n ( k r - Z  p (  s ) F (  e r  (2.19)

Equating the two asymptotic forms [Eqs. (2.17) and (2.19)], we find

that:

D9:(2Z+l) ike i 6 k ,(2.20)
CoE-]: (2k+1) (e 2 i 6Z - l ) P z ( c o s 0 )  (2.21)F()2ik£=0

0 eE (2k4-]) (ei sin k)Po(cos0) (2.22)
k Z =0



We therefore also have that:
dCo()_2

du(0) Z (2k--+1) (ei"sin60)Pt(cos0) (2. 23)
dQ k 2  "

a= .-4- - Y, (2 -t1)siln2 6£ (2.24)k2 k- 0



and therefore:

S jk(k 1 R))it.k (k1il)

Solving Eq. (3.3) and using Eq. (3.6), we obtain:

S (k) =e2i 6

_jZ()kRi) -ink (kRi)]
j k (kR ) +in, (kR )

D-k [

(kRi)

klj-(k R
[t j(k IRI)

j (kR1 )+in, (kR1 )
j£ (k-Rl) +ink (kRj )

k~j (kR)
j (k 1 R1 )

hj2) (kR1 )

h(P) (kR I)

kj (k R h ( 2 ) (R )k j ( R h ( 2 ) (

1 1

In order to calculate F and da for £=o, we use the following
dQ

expressions for the spherical Bessel and Neumann functions and

their derivatives23:

j (kr)_'Sin kr
o kr

jo(kr)=cos kr - sin krkr (kr)2

(3.9)
n (kr)=_ cos kr

kr

n'(kr)=sin kr + cos kr
0 kr (kr) 2

The various terms in Eq. (3.7) then become:

k 1 jo(kR 1 )

jo(kRd)

k1 R1cos k1R 1-sin k1 Rj

R sin k 1 R1

Jio(kRl)-ino(kR1)_L
2 ikR 1

jo (kR1 )+in, (kR)

-13-

(3.6)

(3.7)

(3.8)

(3. l0a)

(3.10b)

j£ (kRj)-in£ (kRj)

_kiJf (kRI) +in' (kR I)L7 k(kR ,) +in k (k'R i
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( 3 .loc)

(3. lOd)

Jo (ki ) +in o (kR i) __-]+ikR 1

jo(kRi)-in o ( k R ) )  -l'-ikiz,

jo(k0 1 ) -in o (]kRI) kR1

Noting that:
2i61ei6 sin - e i -'

(3.11)

we then have:

ei6Osinoze 2ikRiUkc k R -eik Rsin kR) (3.12)

But:

(3.13)
_e-2i-kR ( k -e ikRs

k \k1 cot k 1 R 1 -ik sin

and:

d cIF 0  2
df2

k 1

l-1 --sin 2kR 1cot k1RI-2sin
2 kR1

- k cot2 k R 1 +k 2

(3.14)
sin2 kR1

+ k z

and:

0 d (3.15)
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4. Scattering from Two Constant Spherical

Inhomogeneous Layers: The Method of Partial., Waves

We outline here how the method of partial waves can be used

to solve the problem of scattering from two constant spherical

inhomogeneous layers (see Fig. 2):

Region I: V(r)=--V1 , k(r)=kl, r<R,

Region 2: V(r)=-V2, k(r)=k 2 , Rl<r<R 2  (4.1)

Region 3: V(r)=o, k(r)=k, r>R 2

The solutions in the three regions are:

R , 1 (kIr)=At jk(k 1 r)

Rj, 2 (k 2 r)=Bkh ( ' ) (k 2 r)+C~h ( 2) (k 2 r) (4.2)

Rk, 3(k-r)=Dg,[cos6kjZ(kr)-sin6knk(kr) ]

We can eliminate two of the three constants At, B£, and Ck by using

continuity boundary conditions at r=RI:

R 1 (k1 r)=Rk, 2 (k 2 r) Ir=R

(4.3)
dR£, 1 (kIr) dR£,2 (k 2 r)

dr dr r=R1

The remainder of the analysis is analogous to that of Sect. 3 with:

1 dRg, 2 (k2r) I dRZ, 3(kr) I
Ok=R9, 2 (k 2 r) dr _ I r--R , 3 (kr) dr IrR2

We solve this problem in detail using the method of Jost

functions in Sect. 7.
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5. The Jost Function Formulation of Scattering Theory

This treatment follows that of DeAlfaro and Regge24 . We

choose only those portions of their discussion which are relevant

to our investigation, at times perhaps at the expense of mathe-

matical detail and rigor, but hopefully not at the expense of

clarity. Since we are concerned primarily with the k=0 partial

wave, we do not discuss analytic properties, which are important

in a discussion of higher order partial waves. Interested readers

are urged to pursue the reference.

We begin by writing down the radial. equation again:

d 2 u(r)- [k2- (k+l) V(r)u (r )= 0  
(1.6)

For the following analysis to hold, we must impose certain re--

quirements on V(r) in addition to its being a real function

vanishing at r=-:

V(r) must be almost everywhere continuous;

f IV(r)Idr=M(c)<-,
c

(5.1)

f rIV(r) Idr=N(c')<-,
0

where c and c' are arbitrary constants>o.
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a. Jost Boundary Conditions at r=o

r I-- 1) (r) 2- , and we begin our dis--

cussion of Eq. (1.6) by neglecting the teim [k 2 --V(r)]. Eq. (1.6)

then becomes:

d 2 U £ ( r ) _ ( k+ i ) u r) -o 5 2
dr 2  r 2

which has a regular point* at r=o (hence the term "regular

solution") and the exact solution:

uz (r) =arR,+l+Or - t (5.3)

Using Eq. (5.3) as a guide, we define two linearly independent

solutions of Eq. (1.6) with the behavior:

(r) =r 1+ l[I1+o (1) ](5.4a)

1(r)=r-£ [1i+o(1) ] (5.4b)

We also define X=£+1/2, so that Eq. (1.6) becomes even in X:

du-i/2(r) 2 X2 -1/4 1
dr 2  + [k 2  r2 -V(r)u.1/2(r)=o (5.5)

We now, in a sense, take Eq. (5.5) out of its previous mathematical

context and consider it and its solutions to be a function also

of the parameters X and k, which, in the general case, may be

complex variables. Thus (r)-+ I(r) as X-+-X, and we therefore

replace f(r) and i(r) by (X,k,r) and q(-X,kr), respectively.

We write UX-_/ 2 (r) instead of u£(r) in order that our notation

be consistent. We solve Eq. (5.5) exactly by converting it into

*If we write the genera]. linear second order homogeneous differ-

d ~ f ~ r ) p ~ r~ d f r ) F
ential equation as -L i- .---- q(r) f(r) =o, then a regular

r 24pr dr
point r=c is such that, although p(r) and q(r) may not be finite

at c, both lim(r--c)p(r) and lim(r--c) 2q(r) exist.
r->.c r-),c
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an integral equation using the method of variation of parameters

with the boundary conditions (5.4). We therefore let:
S(A, k, r) =((r) r +i/2+8 (r)r X-/ (5.6)

and impose the standard additional condition:
o(r)rl+1/2+V'(r)r -1/2 =o (5.7)

Computing f'(X,k,r) and q<(X,k,r) and substituting these values

into Eq. (5.5), we obtain:

(I i 2 r XI- / 2 -_ (X-1/2) '"(r) r-X- I1/ 2= [v (r ) - k 2 ]  (X,k ,r ) ,

(5.8)
which, with Eq. (5.7), has the solution:

a (r)= =-. [V (r) -k 2 (X, k,r)r -  X+ 1/ 2

2+ / (5.9)

V (r)- [k2 -V(r) ] lX,k,r)rX+l/
2

Conditions (5.4) now become:

lima (r) =i
r-*o

(5.10)

limb (r)=o,
r o

since q(X,k,r) has boundary value (5.4a).

From Eqs. (5.9) and (5.10) we then have:

1r
(r) =i+-i--r [V ( )-k 2] X lk -+1/2 dt

ix0
(5.11)

r l'i2d

(r):=- -f r [V() -k 3 ] (1,k, E) X 1d

Substituting Eqs. (5.1].) into Eq. (5.6), we obtain:

2 r + - /r [ - ( ] ( ,k,t)d (5.12)



From Eq. (5.12) it is clear that we can write the Jost boundary

conditions at r=o as:

limq (X rk, r) --:o
r-> o

(5.13)
1 Xmdq , k_ ,k -r )_ 1 i m,. (X +- 1 / 2 ) r - /

r- o d r r-+o

Eq. (5.12) is a Volterra integral equation, and we write its

solution as a perturbation expansion:

4)(X,k,r)= F 4)n(X,k,r), (5.14)
n~o

where:

o(/,k2,r)=r (5.15)

and:

Sn+l ( (, k , r ) -  (1,k, )d (5.16)

0

The perturbation expansion for qlX,k,r) is bounded term by term

and is therefore unrestrictedly convergent.

Since the Wronskian of any two linearly independent solutions

of Eq. (5.5) is non-zero and constant, we can evaluate the

Wronskian of q(X,k,r) and f(-X,k,r) by replacing lX,k,r) with

rX+1/2.

(5.17)



-20-

b. Jost Boundary Conditions at r=-

For large r, we can neglect the term X-2-E1/4-V(rJ in

Eq. (5.5), which therefore becomes:

d 2 uXi/2 (r)

dr 2  +k 2 u 1 / 2 (r)=o (5.18)

Eq. (5.18) has the exact solution:

uXl/ 2 (r)=ae-ikr+eikr, (5.19)

and we therefore construct a solution f(A,k,r) (Jost solution) of

Eq. (5.5) with the asymptotic behavior:

lim eikrf (X,k,r)=l* (5.20)

We use the method of variation of parameters in a manner analogous

to that of Sect. 5a and let:

f(A,k,r)=a(r)e- ikr+(r)e i k r , (5.21)

so that Eq. (5.5) with the boundary conditions (5.20) becomes:
00

f(Xkr)=e kr +fsink(r--r][V(r-)±--4--Jf (X,k,r')dr (5.22)
krr

We write the solution of Eq. (5.22) as a perturbation expansion:

co

f (X,k,r) = F gn (X,k,r), (5.23)

n=o

*We note that our choice of asymptotic form (5.20) for f(X,k,r)

corresponds to incoming waves, which is contrary to our previous

assumption of outgoing spherical waves. This choice is a matter

of convention, and we could equally well have chosen

lim e -ikrf(X,k,r)=1. In both cases, the S matrix, which is the
r-t
quantity of interest in scatteri~ng problems, is the same.
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where."

go(, k, r) =e - i k r  (5.24)

and:

gn+-L ( ,k, r) =Ikr C sin,(r'r]V(r-)( - X2- g k'r)dr (5.25)

The perturbation expansion for f(X,k,r) is bounded for any X.

We state the following relation:

W[f ( ,k,r), f ( ,-k,r) ]=2ik, (5.26)

where we have evaluated the Wronskian by substituting for

fikrf(X,±k,r) its asymptotic behavior, e
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c. The Jost Function and the S Matrix

We define the Jost function f(X,k) as the Wronskian (which,

again, is non-zero and constant) of f(X,k,r) and (X,k,r):

f(X,k)--W[f(X,k,r) , (X,k,r) ]:f (X,k,r) 4<(X,k,r)-f (X,k,r) p(X,k,r)

(5.27)

We can write the general solution of Eq. (5.5) as a linear com-

bination of any two linearly independent solutions, and, in fact,

we have that:

r)-1 k) f(X,-k r)-f(X-k) f(Ak r) ](5.28)
2ik

where we have used Eq. (5.26).

The asymptotic form of (X,k,r) is:

f(A k r)~ 1 [f(X,k)eikr-f(X,_k)e-ikr], (5.29)
2ik

where we have replaced f(X,±k,r) with e i k r respectively.

If we parametrize the Jost functions in Eq. (5.29) as:

f(1,k)=T(X,k)exp[i6(1 ,k)-(i/2)i r(X-i/2) ]

(5.30)f (X,-k)=T(X,k) exp[-i6 (X,,k)+(1/2) inr(X-1/2))],

where T(Xk) is a complex amplitude, then Eq. (5.29) becomes:

(X,k,r)~lT(Xk)sin(kr+6(,k)-(i/2)n(X-1/2)], (5.31)

which agrees with Eq. (2.16) [we recall that R£(r)=u£(r)/r].

The S matrix is therefore given by:

S(X,k)-e2i 6 (X,k)=f(Xk)eiT( 1 / 2 ) (5.32)e fX ,--k)

We note that the S matrix is proportional to the ratio of the

coefficients of the outgoing and incoming waves in Eq. (5.29).
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6. Scattering from a Constant Spherical Inhomogeneity:

The Method of Jost FunctCions (Dif ferential1 Equation Approach)

We apply the method outlined in Sect. 5 to the problem of

scattering from the V(r) specified in Eq. (3.1). The solutions

in the two regions are:

Region 1: uXA1/2, (klr)=r[Al/ 2 (]lr)+Bnl/2(]<r)]

Region 3: u 1 1 i 2 ,3 (kr)=r[Ch(i/2(kr)+Dh)/ 2 (kr)1

Choosing ul-i/ 2 ,1 (kir) to be 1(1,k,r) and imposing the boundary

conditions (5.13), we find that B=0 and:

(Xk, r)2--2X+l/2"i-]-/2k X- l/ 2 r (X-ll)jX--.l/ 2 (kir) (6.2)

(Xk,r)=2x+i/21F ]/2k 1_ X+ /2 (X--i) jX -i/2 (klr)+klrJ3X -1/2(k Ir)] ,

where we have used the following series representation 25 for

J -/ (k ,r) :

- n 1/2 , X-i/ 2+2n

-_2 :(-i) nn(kr) , X-1/24-1,-2,-3, . (6.3)JX-112 (k ) n:. 02- --- 2+2-- iF-X]n~ ) , , , . .

Choosing u- 1i/2 ,3 (kr) to be f(X,k,r) and imposing the boundary

conditions (5.20), we find that C=0 and:

f(,k,r) ke - 
2

2  rh (
1
)/2 (kr) (6.4)

-j-E(2 (Xkr) 2
(X,k,r)=ke- 2 + I 2 h 22(k r) Ak rh (i/2

where we have used the following asymptotic form 2 6 for h(2)X-1/2 (kr)

lim h( 2  (kr)=Le-i[kr(--(T)(X+1/2)] (6.5)

kr-*- X-1/2 kr

Since the point r=R 1 is the common domain of (X,k,r) and f(X,k,r),

we evaluate the Jost function at r---Rl and thus obtain:
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_iLi(Xi/2) (6.6)
=2 1 + 1 / 27f-]/ 2 kkX 1 -1 / 2 F (1-l)e 2 ro

*[klj ,,,1 2 (kRl )hX(1/2 (}-R)-kjX-1/2(kR)h Lt> 2 (kR,)]

We also have that:

X+1/2 -/ l/21,( 7T(X1l/2) iT (X-1/2)
f(X,-k)=2 7 /2k ki 2  + l ) e- re (6.7)

where we have used the following identities 2
1

:

h(2) (krei) (2) h (kr)=e hX-1/2(kr)h 1/( 2 - r -)h X (-/2 r)=(-l) -I/2h f (X+(.-]/2)

h (2) (-r =(1)+
1 / 2 h (i) ikr (e7 ~ 1 i/ 2 )h ( 2(kr) (6.8)

1-1/2 -- 1/r X(-I) -/2 (61/2

=-e ir(X-/2nh _I/2 (kr) , X-1/2=0,1, 21 . . .

The S matrix is then given by:

S (k)-kil-i/ 2 (k I Rl )hr h / 2 (kR 1 ) - k
1

jj - I / 2 (klRl)h l- 1/ 2 (kRj) (6.9)

which is in agreement with Eq. (3.8).

We can calculate the Jost function for A=1/2 from

Eq. (6.6):

[- k -iklR 1 + e k 1(6.10)

where we have used Eq. (3.9) and the following relations 28:

h( 2 ) (kRl)= _J ikR,
ikR, 

(6.11)

h (2) 
= ikR I
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7. Scattering from Two Constant Spherical Inhomogeneous Layers:

The Method of Jost Functions (Differential Equation Approach)

We apply the method of Jost functions to the problem of

scattering from the V(r) specified in Eq. (4.1). We let

Region 4=Region 2 + Region 3 and let l,k,r) be the solution in

Region 1 and f(X,k,r) be the solution in Region 4. Using our

results from Sect. 6, we then have that:

lX,k,r)-2+I/2T-1/2 kX+1/2 (+l)rj l/2(klr) , r<R(7.1)

f2 (X,k,r)=rLCh-i)/2 (k2r)+Dh (2)/2 (k2r) , R1 <r<R 2

f(,k,r) -1/2(+1/2) (

f 3 (Xkr)ke - 2T-  rh ( 2)
3 #-/ (k ) r> 2

We calculate the constants C and D using continuity boundary

conditions at r=R 2 :

f 2 (X,k,r)=f 3 (X,k,r)
(7.2)

df2 (A,k,r) df 3 (X,k,r)
dr dr

r=R2

We find that:c~ke-( +1/2) {+
h(I 2 k R21 -1/2 2 2i 1-1/2x -V

h (k R / )h- 2 (kR 2 ) -k h( 2  (kR)h-() (k R2 )

2k 1-/ (7.4)12)(
D-k2_e2kh~l (k2R2)h " ( 2  (kR2) (7.4)
2i X-1/2 X -1/2

-k~(k (2))jj

w e he e h o w ra n

where we have used the following re lation129:

[ (1 (k 2R 2)'h(2) (k2R2) "  - 2 i _1 /  ( 2 1R21 2 01,). . 7 5
W hl..i/2-1/ I (k R2, -/:,,, 75
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Since the point r=R1 is the common domain of (X,k,r) and f(X,k,r),

we evaluate the Jost function at r=R, and thus obtain:

f ( X,k )=W [ f (X,k r ) , (X fk , r) I]r=R l

r rr=R

=2;k+i/2T- i/2ki X1I'/2R2 F (X+1)o (7.6)

-Ck i (kR)_/ (kR,)+h (2)(kR) / 2 (kR)
i~x-i/ )x- -1/ 2k X

where C and D are given in Eqs. (7.3) and (7.4).

For X=1/2, we have that:
C(k 2 -k)e-i(k +k)R

2 2 (7.7)

D=-i(k 2 +k) ei (k 2-k) R 22

and therefore:
1l k- )ik2Re - i (k2+k)R2 lk2eik Rl+lk il I

4 ( , ) [\ei ,-] (7.8)

+i (l+k -i 2R i( -k) R2 1[-_2 e- ik IR1 + lk2eik IRI]4 L\-~kRe'k [( k\ I +(1t-J e

where we have used Eqs. (2.8b), (3.9) and (6.11). As expected, the

two-layer solution (7.8) reduces to the one-layer solution (6.10)

for k ->k and R -R
2 1 2 1

We note that we could have also found f(X,k) by choosing

Region 4=Region 1 + Region 2 and letting (X,k,r) be the solution

in Region 4 and f(X,k,r) be the solution in Region 3. We would

then write the solutions as:

kr k  2 (,k,r)=rh ./27r 1+/2kXr)+1/ 2 _, (A+l)rj 1 / 2 (k1 r), r<Rl

( 2 IkrrC X_1/ 2 (k 2 r) +Dh. 2 / 2 (k 2 r)J1 1 <r 2
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1 I- (X1/2)
(A,2 r(2 (kr) ,r> (7.9b)f(~~~~eX-1 _/2 "

We would calculate the constants C and D using continuity boundary

conditions at r=:R 1

4 1i(X,k,r)=42 (X,k,r)irR

r=R1
(7.10)

dr dr
r=R1

Since the point r=R 2 is the common domain of lA,k,r) and f(Ak,r),

we would evaluate the Jost function at r=R 2 :

f (Ak)W[f (A,kr) ,( (,k,r) ]R

(7.11)
[f (X,k, r) ' (X,k, r)--f (lk, r) z (X, k, r)]

2 r=R 2

We also remark that the Jost function method involves the use of

continuity boundary conditions at either R, or R 2 , while the

standard partial wave method (see Sect. 4) involves the use of

continuity boundary conditions at both R, and R2 .
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8. The Jost Integral Equation for 1=1/2 and

Some Approximate Solutions

If we assume there is an R such that V(r)=0 for r>R and let

g(l/2,k,r)=eikrf(l/2,k,r), then Eq. (5.22) becomes the Jost

integral equation for X=1/2:

g(]/2,k,r)-l+ 1- f
2ik r

[l-e 2 i-k(r-r)]V(r')g(/2,k,r')dr'

We write the solution of Eq. (8.1) as a perturbation expansion:

g(1/2,k,r)= Z gn(i/ 2 ,k,r), (8.2)
n=o

where:

go (]/2,k,r) =i,

and:

(8.3)

(8.4)gn(]/2 k 2r)- 1 r
T r

If we assume that k is pure real (which is the case in the

problems under consideration), we then have that:

(8.5)

and therefore:

where:

N R (r)= O (R-r)f

0 (R--r)=0, r>R

By recursion, we obtain:

Ign (l/2,k r)l<Nn R(r)/Ikln,

IV(r') l r',

(8.1)

(8.6)

(8.7)

(8.8)

[I e 2 i k ( r - r ' ) V(r)- l (12kr-

lgn-l(/2,k,r') 1d r ' ,

lgl (]/2,k,r)I< R(r)/Ikl,

Ign(i/2,k r) 1<Tk- f "IIV(r ) I
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and therefore:

Sg (i/2,k, r)-iI<e N R ( r ) / k - il (8.9)

From Eq. (5.13), we have:

lim4 (1/2,k, r)=0

(8.10)
limW"(i/2,k,r) =I

r--o

f(1/2,k,0) and f'(i/2,k,0) are finite (e.g., see Appendix A),

and we can evaluate f(i/2,k) at r=0 using Eq. (8.10), thus

obtaining the useful relation:

f(i/2,k)=-f(1/2,k,O)=g(i/2,k,O) (8.11)

In order to illustrate the use and accuracy of this

iteration procedure, we consider the case of scattering from a

constant spherical inhomogeneity, for which we have already cal-

culated f(i/2,k) exactly in Sect. 7. We write down the solution

again in the following form:

f(1/2,k):cos[(kl/k)kR, ] c o s kRI+ k-- k-sin[(k,/k)kP, ) s i n kR
S7 )(8.12)

+i{-cos[ (kI/k)kR1 ]sin kRj + sin [(k/k)kRl1cos kR

The 1=1/2 Jost integral Eq. (8.1) for this case is:

g(1/2,k, r)--l V1 If R [1-e2ik(r-r')]g(1/2,k,r')dr' (8.13)
2ik r

The first iteration gi(i/2,k,0) of Eq. (8.13) is:

gI(i/22,k,0)'g(l/2,k,0)I-gI (i/2,k,0)

= - i[ (kl/k) 2--l) (1-cos 2kR1 ) (8.]4)
4

1
(kl/k) 2-11 (kRj- sin 2kR1 ) }

The second iteration gii(i/2,k,0) is:
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gII (1/2,k,0)=go(/2,k,0)+g, (1/2,k,0)+g 2 (1/2,k,0)

=gI(l/2,k,0)+g 2 (1/2,k,0)

=1--i[ (kj/k) 2 1] (1--cos 2kR1 )
(8.15)

-]-[ (kl/k) 21] 2{kR1 [kR 1+sin 2kR1 ]+ 2 (cos 2kR -.. I
8 12

+i { [(kl/k) 2-1] (kR1--sin 2kR,)
1 21. 3.'n2k

- [(kl/k) -i1] 2 [kR1 (1+ cos 2kR1 )--sin 2kR]
-2 4

In Figs. 3-5, we have plotted f(i/2,k), gI(1/2,k,0), and

g1 1 (1/2,k,0) as a function of kR1 for kl/k=l.l, 1.5, and 2.0,

respectively. We see that the iteration procedure becomes less

accurate with increasing k,/k. The rapid convergence of the

perturbation expansion for small kl/k can be seen from the bound

(8.8), since the n! term in the denominator begins to predominate

over Nn (r)/Ikln for relatively small n. The slow convergence for
R

large k,/k is in agreement with the fact that the n! term does

not begin to predominate until n is much larger.

For real X and k, we have:

f(X,-k)=f*(1,k) , (8.16)

and therefore:

Go i = I 1e2i6 (1/2,k) 1 2/ (kR ) 2

(8.17)
f 1f/2, k) 2 /(kR)2

Using Eqs. (8.12), (8.14), (8.15), and (8.17), in Figs. 6--8 we have

plotted the exact result, first iteration, and second iteration

for ao /itR for kl/k=l.l, 1.5, and 2.0, respectively. The iteration

procedure is, in general, more accurate for the cross secLion than

for the Jost function itself. For k /k=l.l, it is good for the



--31-

entire range of kR1 considered. For k1/k=]..5 and k1 /k=2.0, it is

good out to approximately kR1 =3-ff/4.

From impact parameter arguments, the largest Z:=-i/2 whih

contributes significantly to the partial wave expansion (2.2.) is

on the order of kRj. We can therefore conclude that, in terms of

solving long-wavelength (kR 1 <<l) scattering problems (with co the

only significant term) completely, this iteration procedure is

good for any kl/k. For shorter wavelengths and small kl/k (e.g.,

kl/kl.l), it gives a good approximation to the k=0 contribution

to the total- cross section for the entire range of kiR1 considered.

For shorter wavelengths and larger kl/k (e.g., kl/k=l.5, 2.0), it

gives a good approximation to u. out to approximately kR1=31r/4.

We point out that, because Figs. 6--8 are an accurate measure of

the total scattered field only for kR<<l, the behavior for larger

kR, (including the seemingly strange behavior between kR 1 =ir and

2R for kl/k=2.0) will be overshadowed by the contributions of the

higher order partial waves and should not be interpreted as an

accurate description of the total scattered field.

We note that our plots of the 9=0 cross secLion differ

from those for the square well potential presented in standard

quantum mechanics texts (e.g., Merzbacher 3 0 ) . The reason for this

difference is the fact that in quantum scattering theory, we are

concerned with the behavior of the cross section as a function

of kR, for a fixed value of VR2 (i.e., we have fixed the parameters

of the potential) , while in classical scattering theory, we are

concerned with the behavior of the cross section as a function of
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kR, for a fixed value of the relative index of refraction kl/k.

Also, in classical scattering theory, the phase shift and cross

section are zero as kRl-*0, while in quantum scattering theory,

the phase shift and therefore the cross section for kR 1 -0 are

dependent on the value of VR2 and can, in fact, be non-zero,

depending on the presence of bound states and the phase shift

normalization at infinite energy.
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9. General Jost Integral E"quation Formulation for

Arbitrary I for Scattering from an Arbitrary Inhomogeni t-y

The general Jost integral equation formulation for arbitrary X

for scattering from an arbitrary inhomogeneity is based on the

integral equations for (X,k,r) and f(A,k,r) presented in Sect. 5:

Xk r +1/2+1  f- ]-  - -[k2-.V ( A,k,F)d,: (5.12)

f(A,k,r)=e-ikr+ f sin (r'-r (r) +------f(,k,r')dr(
k r L JV r

For any V(r) satisfying requirements (5.1), we can solve Eqs. (5..2)

and (5.22) using an iteration procedure (or other applicable

method) analogous to that used in Sect. 8. Knowing q(X,k,r) and

f(X,k,r), we can calculate f'(X,k,r) and f'(X,k,r) and therefore

f(X,k), which can be evaluated at any point in the common domain

of f(X,k,r) and f(X,k,r).

In the case of scattering from a constant spherical inhono--

geneity, we have the following two integral equations:
(l k~ )= l~ /2 R_ X k / -[ 2+V ,] l,k,)dF,

(9-.1)
+-:--I < I r k /9 2 (X , k, I ) d

2XR

-ikr 1 Ri r 1/4
f(X,kr)=e + sinf(r- (Xk,r')drkr L

(9.2)

1C-i { r i1 f(Xkr')dr'+ kf s in 1, (r '-r r. ..

In the case of scattering from two constant spherical inhomo--

gencous layers, we have the following two integral equations:
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(I, kf r) r2l/2 i-l,k,)d

, 1 R21o

f(X~kr)=kr +fS-i -k-(r rFVAk---(f k(A,k,r'drI-

k.iR Li r- -ii r2

rr

R22

kR L (r2 2

+-_f sin -(r'-r )'"1 4 f (0, k Ir ) dr"
kR2 tr

In the case of a cutoff inhomogeneity [V(r)=O for r>R], e.g.,

the examples just considered, we can always write the solution in

the exterior region (r5R) as [see Eqs. (6.4), (7.1), and (7.9)]:
-ir (X+1/2) (2)

f(X,k,r)=ke- - rh (kr) (9.5)

We thus need only solve the integral equation for P(X,k,r). The

Jost function can be evaluated at any point r>R, since we have

restricted f(X,k,r) to the region r>R.
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10. Conclusion

In this thesis we have shown how the Jost function formulation

of quantum scattering theory can be applied to classical problems

involving the scattering of a sca].ar plane wave by a medium with

spherically symunetric inhomogenei ties. We have seen how this

technique can be used to solve the radial differential equation for

scattering from a constant spherical inhomogeneity and from two

constant spherical inhomogeneous layers and have compared it with

the standard method of partial waves for these cases.

In situations w'here the radial equation with Jost boundary

conditions is not exactly solvable, it may be useful to convert

it into an integral equation incorporating these boundary condi-

tions. We have shown that the k=0 Jost integral equation for a

cutoff inhomogeneity can be solved using an iteration procedure and

have used the exactly solvable constant spherical inhomogeneity as

an example to check the usefulness of the iterative procedure.

Although the iterative technique is not the most straightforward

method for the case of a constant spherical inhomogeneity, we feel

that it may be more useful in situations where the inhomogeneity

assumes a more complicated functional form. We have found that the

iteration procedure is good for long--wavelength (kR 1<<l) problems

for any kl/k. For shorter wavelengths and small kl/k (e.g.,

kl/k=l.l), it gives a good approximation to a for the entire range

of kR I considered (0<kRj<2ff). For shorter wavelengths and larger

k /k (e.g., kj/k~l.5, 2.0), it gives a good ap-proxiMaaLion to o
0

out to approximat-ely kR1=3-i/4.



-36--

As an indication of further work that can be done in this

field, we have written down the Jost integral equations for

arbitrary k for scattering from an arbitrary inhomogeneity with

and without a cutoff. A complete solution of problems for

arbitrary wavelength would involve solving these integral

equations and summing the entire partial wave series using

methods such as the Watson-Sommerfeld transformation.
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Appendix A

Scattering from a Constant Spherical Inhomogeneity:

The Jost Function for X=1/2 (Differential Equation Approach)

We can find f(i/2,k) for scattering from a constant spherical

inhomogeneity by letting X=1/2 in Eq. (5.5), which then becomes:

d 2uo(r) 2
dr2  [k -V(r)]uO (r)=0 (A.1)

The solutions in the two regions are:

Region 1: f(/2,k,r)=Aeiklr+B
e -iklr

(A. 2)

Region 3: f(/2,k,r)=Ceikr+De-ikr

Imposing the boundary conditions (5.13), we find that:

A=-B=i/2ik i  (A.3)

Imposing the boundary conditions (5.20), we find that C=0 and D1l.

Since the point r=R, is the common domain of (i/2,k,r) and

f(1/2,k,r), we evaluate the Jost function at r=R, and thus obtain:

f(i/2,k) - ekikR [(l - )e ikiRe(l+k )eli (A.4)

which agrees with Eq. (6.10).
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Appendix B

Scattering from Two Constant Spherical Inhomogeneous Layers:

The Jost Function for X=1/2 (Differential Equation Approach)

We can find f(i/2,k) for scattering from two constant spherical

inhomogeneous layers by using Eq. (A.1) and our results from

Appendix A. We thus write the solutions in the three regions as:

(i/2 ,k r)=__l__(eiklr-e-ikcir), r<R,
2ik1

k f2 (/2,k,r)=Ce
i 2 r+De - i k 2r, R<r<R2  

(B.)

f, (i/2,k,r)=e - i kr, r>R2

We calculate the constants C and D using continuity boundary con-

ditions at r=R 2 :

f 2 (i/2,k,r)=f 3 (i/2,k,r) Ir=R2
(B.2)

df 2 ( I /2,kr) =df 3 ( I /2,k,r)

dr dr Ir=R 2

We find that:
C )e-i (k 2 +k)R 2  (B.3)

D-- 1+1 e 2  k 2  (B. 4)

Since the point r=R, is the common domain of (i/2,k,r) and

f(1/2,k,r), we evaluate the Jost function at r=R, and. thus obtain:

fi/2,k)=( _- ik2RtE -i (k278 k).R2l+h2e-ikiRl+/1-k eikIR .1
(B.5)

+_(].+kt.)e-ik2Rle i(k2-k)R2 Il-2e-iklRl+ l+k eik IRI]

which agrees with Eq. (7.8).
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Appendix C

Scattering from a Constant Spherical Inhomogeneity:

A Laplace Transform Method for Solving

the Jost Integral Equation for A=1/2

We can solve exactly the X=1/2 Jost integral equation (8.13)

for scattering from a constant spherical inhomogeneity using

Laplace transforms 3 1. We state the convolution theorem for

Laplace transforms:

L [f w (r-r) g (r') drj=W (p) G (p) (C.1)

where W(p) and G(p) are the Laplace transforms of w(r) and g(r),

respectively, and apply it to the following Volterra integral

equation:
r

g(r)=h(r) +f w(r-r')g(r")dr', r>o (C.2)
0

We take the Laplace transform of both sides of Eq. (C.2) and assume

that H(p) [the transform of h(r)] is analytic for Re p>T 0 and that

the region of analyticity of W(p) has at least a strip, parallel

to the imaginary axis of p, in common with the band for 11(p). Then,

in that strip, we have that:

G (p) =H (p) +W (p) G (p) , (C.3)

and therefore:

G (p) : _H(P) (C. 4)
l-W (p)

Inverting the Laplace transform, we obtain a solution of Eq. (C.2):

g(r)= -- if -+° ()ePrdp, Re r>o (C.5)g~~j00 2 -C i+0 1- 1p

We change variables, rA =r -Ri, dr'=dr', in Eq. (8.13), which then

becomes:
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g(1/2,k,r)=i+ Vf [l--e2ik (rr

21k o

If we let r A"=r-Ri and G(l/2,k,r'

Eq. (C.6) becomes:
r-

G(1rr.V 1 +Dfr 1e 2 i k (r'2iko

which is in the form of Eq. (C.2).

h (r " ) =1

H(p)-l/p

2ik

(C.6)-R1) ] g(i/2,k, r R t)drhe

=)g (1/2, k .r '+R1, then

(C.7)

We thus have that:

(C. 8)

_ p)= -ViW~)p (p-2ik)

If we use Eqs. (C.8) and change variables back, Eq. (C.5) then

becomes:

g(l/2,k,r)1 2 p-2ik p(rR) dp, Re r>o (C.9)2 7ri -i +T oP 2 2ikP±V J

We can evaluate the latter integral by using the calculus of

residues, where, adding on an infinite semicircle, we have the

contour- of integration shown in Fig. 9. The integrand I(p) has

simple poles at p 1 =i(k+k,) and p 2=i(k-kl), so that:

g(1/2,k,r)=Res [I (p) ,p, +Res[I (p) ,p 2] (C

Evaluating the residues, we obtain:

1( ,)ei(k+k)((r-RC)

1 k i (k-ki) (r-Rj) (C
Res [I (p) ,P2] I= 11

and we therefore have that:

f(i/2,k)=g( /2 ith ikR1 q k se (6.1 n + i4+

which agrees with Ers. (6.1-0) and (A.4) .

.10)

.11)

(C. 12)

' r ) ]G(I/2,k,r ")dr" ,
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( Region 1: Region 3:
V (r) =-V i  V(r) =0
k (r) =k k (r)=k

Fig. 1 - Constant spherical inhomogeneity

Region 1 Region 2: Region 3:
V~r) =V V (r) =-V 2 V(r)=0
k(r)=k, k (r) =k 0 k(r)=k

Fig. 2 - Two constant spherical inhomogeneous layers
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Im p

p1 ~ i (k+k 1 )

p-plane

Re p

Fig. 9 - Contour of integration for Laplace transform method

P 2=i (k-k I)
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