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ABSTRACT

Several statistical topics were studied concerning detection of tar-
gets on the ocean's surface from a satellite-based radar. First, a de-
sired signal-to-noise ratio was obtained by considering the tradeoff
between false alarms and detected targets. For a 0.99 detection prob-
ability and a 10-10 false alarm probability the S/N ratio would be 16 db
for a nonfluctuating target. Second, the decorrelation times of sea
clutter were calculated and found to be so small that for side-looking
radars sea clutter samples are independent from pulse to pulse but
found to be so large for forward-scanning radars that one finally ob-
tains decorrelation from sea motion instead of from platform motion.
Third, a fluctuating target was considered, and the losses were calcu-
lated and compared with those of a nonfluctuating target. Roughly, one
needs 1 to 4 db more power to detect a fluctuating target as opposed to
a nonfluctuating target. Then, the ionosphere was considered, and the
effects of Faraday rotation and the random phase shift were calculated.
Degradation varies from intolerable below 900 MHz to negligible at
3 GHz. Next, some of the aspects of data processing were studied; the
optimal integration angle was found, the optimal weighting was calcu-
lated, and azimuthal position estimators were considered. Surprisingly,
optimal weighting gives a pattern only 0.3 db better than uniform
weighting. Finally, a way was determined of using an adaptive threshold
and soft limiting to maintain a constant false alarm rate.

PROBLEM STATUS

This is a final report on one phase of the problem; work on other
phases continues.

AUTHORIZATION

NRL Problem R02-46
Project A375-38-006/6521/F019-02-01

Manuscript submitted September 13, 1968.



OCEAN SURVEILLANCE STATISTICAL CONSIDERATIONS

SUMMARY

After the development of ground-based operational naval radars in the 1930's, they
were placed on ships and later in aircraft. Now that the space age is here, a logical
evolution should include placing a naval radar in a satellite. This report discusses some
of the general statistical considerations associated with the detection of targets on the
ocean's surface from a satellite-based radar.

In the first section the probability of false alarm, the probability of detection, and
the required signal-to-noise ratio for ocean surveillance are discussed. From calcula-
tions of the number of false alarms one would obtain per orbit it appears desirable to
have a very low false alarm rate, i.e., 10 - 9 to 10-1 1. Thus, if a probability of detection
of 0.99 is desired, an integrated signal-to-noise ratio of about 16 db is necessary for
nonfluctuating targets.

In the second section the decorrelation times of the sea clutter due to the radar's
platform motion are calculated. The decorrelation times for a side-looking radar are so
small that one has independent sea clutter samples from pulse to pulse. However, for a
forward-scanning system the decorrelation times are so large that one finally obtains
decorrelation from the sea's motion as opposed to the platform's motion.

In the third section a simplified target model consisting of a collection of point scat-
terers is proposed. Employing this model, a Monte Carlo method is used to calculate
the number of independent target returns one receives from this target model as a func-
tion of integration time, frequency, and aspect angle. Then, by using Swerling's curves,
the required signal-to-noise ratios to obtain a probability of false alarm of 10-10 and a
probability of detection of 0.9 for fluctuating targets is found as a function of frequency
and integration time.

In the fourth section the average daily worst case ionosphere is assumed. From
this model, the degradations in the signal-to-noise ratios and degradations in the signal-
to-clutter ratios are calculated. All frequencies below 900 MHz have intolerable degra-
dations and so does 900 Mc above 200 naut mi altitude. The degradation disappears
swiftly as the frequency is increased; so that, there is essentially no loss at 3 GHz.
Also, the ionosphere imparts a random phase shift on the signal which restricts the co-
herent integration time to the time required for the ionosphere to shift the signal 0.8
radian.

In the fifth section the optimal integration angle is found to vary between 0.92 and
0.88 of the 3-db beamwidth, and the associated scanning loss varies between 1.7 and
1.4 db- the variation being a function of the number of pulses integrated. Then, the op-
timal weighting pattern is calculated and the surprising result is found that the optimal
pattern is only 0.3 db better than the uniform weighting. Finally, several methods are
presented for estimating the azimuthal position. These methods give results which are
about 20% larger than the smallest theoretical accuracies obtainable.

In the final section a method of using an adaptive threshold and soft-limiting to ob-
tain a constant false alarm rate is presented. The soft-limiting loss is shown to be very
small if the limiting level is about the 3u point of the noise distribution.
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SIGNAL-TO-NOISE RATIO

Single-Look Radar

Before one can determine the minimum acceptable signal-to-noise ratio, one must
first decide where one should operate on the detection curve for a given S/N ratio; that
is, one must find the probability of false alarm Pf a and the probability of detection Pd.
For example, with a 13-db SIN ratio, one can achieve a Pfa = 10-6 and Pd = 0.9; how-
ever, one could also achieve a Pf = 10-1 and a corresponding Pd = 0.8. To decide
which of these two conditions is better, a Bayesian approach can be adopted; that is, a
cost function can be generated.

A particular cost function can be based on the argument that if one is trying to track
the ships on the ocean, then either missing a target or detecting a false one will cause
equal difficulty with the tracking procedure. The optimal operating point (P a, Pd) can be
considered to be the point that maximizes T( P a, Pd, S/N) for a given S/N ratio, where

7(Pfa, Pd) S/N) No. of targets detected -No. of false alarms

Pd (No. of targets) - Pia (No, of decisions).

This cost function is usually called the Ideal Observer. Middleton (1) discusses this
function further.

To calculate the optimal operating point, particular radar configurations must be
assumed so that the number of targets and number of decisions can be calculated. The
radar configurations assumed are given in Table 1.

Table 1
Radar Configurations Assumed

Swath Resolution (ft)
Configu- Width
ration (naut mi) Range Azimuth

1 800 200 200

2 1000 50 1000

3 1000 50 12,000

For configurations 1 and 2 the number of decisions is 1.5 ×101 ° and the number of
targets is approximately 600 in a 90-minute interval- a typical orbital time. (The num-
ber of decisions is equal to the area put under surveillance per orbit divided by the area
of the resolution cell.) Consequently, to find the optimal operating point for each S/N
ratio, Table 2 was generated. This table was generated for a nonfluctuating target from
curves taken from Ref. 2.

From Table 2, one can easily extract the optimal operating point (the point that
maximizes the cost function) for each SIN ratio. The operating points for each S/N ratio
are presented in Table 3.
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Table 2
Evaluation of the Cost Function (Number of Targets Detected Minus
of False Alarms) for Configurations 1 and 2 of Table 1, for which
of Targets is 600 and the Number of Decisions is 1.5x 1010

the Number
the Number

Signal-to- Probability No. of No. of Cost
Noise Ratio of a False Targets False con

(db) Alarm Detected Alarms Function

10-7

10-8

10 - 9

10-10

10-11

10-7

10-8

10-9

10-10

10-l1

10-7
10-11

10
- 9

10- 10

10-11

10-7

10-8
10 -9

10-10

10-11

10-7

10-8

10-9

10-10
i0-11

480

420

330

240

162

570

540

480

420

330

594

588

570

540

480

600

599

597

594

582

600

600

600

600

599

1500

150

15

2

0

1500

150

15

2

0

1500

150

15

2

0

1500

150

15

2

0

1500

150

15

2

0

-1020

270

315

238

162

-930

390

465

418

330

-906

438

555

538

480

-900

449

582

592

582

-900

450

585

598

599
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Table 3
Optimal Operating Points as Taken from Table 2

S/N No. of No. of
Ratio P/ a False Pd Targets
(db) Alarms Detected

13 10 -9 15 .55 330

14 10-9  15 .8 480

15 10-9  15 .95 570

16 10 -10 2 .99 594

17 10 - 1 1 0 .999 599

Obviously, S/N ratios of 13 and 14 db are not acceptable because of the low proba-
bilities of detection. On the other hand, any SIN ratio above 15 db is acceptable. Since
there is some gain in going from 15 to 16 db but very little gain in going from 16 to 17 db,
it appears that 16 db is a sufficiently large SIN ratio.

To show that this result is insensitive to the particular system considered, let us
consider configuration 3, where the azimuthal resolution is 12,000 ft and the number of
decisions has been reduced to 1.2 x 109. The cost function for this system is given in
Table 4.

Again looking at the optimal operating points, one comes to the previous conclusion;
i.e., any S/N ratio greater than 15 db is acceptable. Thus, as long as one has large
swath widths and small range resolution cells, an S/N ratio of about 16 db will be
required.

Multilook Radars

In the previous paragraphs, the assumption of a single-look radar has been made;
however, in this subsection the consequences of the radar being able to look at each
resolution cell several times will be investigated. For simplicity, we initially consider
a two-look radar, with the time between looks being 90 seconds. (For a target to be de-
tected, it must be detected on both looks.) Now, if targets of interest have a maximum
velocity of 30 knots, they can travel 4560 ft in 90 seconds. Consequently, on the second
look, the target can appear in any of the following number of resolution cells (a cell is
200 ft by 200 ft) which surround the initial observation of the target:

156027
20 0 '7 = 1630 cells.200 x 200

If N is the number of false alarms per look, the probability that a false alarm in the first
look will be matched with any of the 1630 cells surrounding every false alarm for the
second look is approximately

1630 N

1.5 x 1010
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Table 4
Evaluation of the Cost Function for Configuration 3 of Table 1, for which
the Number of Targets is 600 and the Number of Decisions is 1.2 x 109

Signal-to- Probability No. of No. of Cost
Noise Ratio of a False Targets False

(db) Alarm Detected Alarms

13 10 - 7  480 120 360

10 - 8 420 12 408

10-9  330 1 329

10-O 240 0 240

10-11 162 0 162

14 10- 7  570 120 450
10-8 540 12 538

10 - 9  480 1 479
10- 10 420 0 420

I0 - 1 1  330 0 330

15 10 - 7  594 120 474

10-8 588 12 576

10-9  570 1 569

10-10 540 0 540

10"11 480 0 480

16 10- 7  600 120 480

10-8 599 12 587

10-9  597 1 596

10-10 594 0 594

10-11 582 0 582

17 10-7  600 120 480

10-8 600 12 588

10-9  600 1 599

10-10 600 0 600

10-11 599 0 599
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Finally, the total number of false tracks is approximately

1630 N2

1.5 x 1010

If one can tolerate ten false alarms per orbit, the number of false alarms per look,
N, is 9560, and the probability of false alarm per look is

P a = = 0.6 x 10-
6

a 1. 5 x 10 °

If one requires an overall probability of detection of .98, the probability of detection per
look is .99. For P/ a = 0.6x 10-6 and Pd = .99 the S/N ratio required is about 14.2 db.
One can perform a similar analysis allowing one or 100 false alarms instead of ten.
Then, the corresponding S/N ratios are 14.5 and 14.0 db respectively. Thus, by using
two looks instead of one look, one can pick up only about 1.5 db. The gain is smaller than
one would expect because

1. A small change in the S/N ratio causes a large percentage change in PI "

2. The targets are moving; thus, one has a multitude of ways to match up the possi-
ble targets.

By a similar line of reasoning, the number of false tracks NFT (for an M-look radar,
with each look separated by 90 seconds) is approximately

NFT z: N[ 1630 N ] - ...NF [=N 1. 5 x 10 1°

If NFT = 1 and M = 3, N = 43,900 false alarms per look; and the corresponding SIN ratio
for a Pd = 0.993 is 14.3 db. Thus, a three-look radar is only 0.3 db better than a two-
look radar. In fact, the performance will improve very little as the number of looks is
increased; for instance, a ten-look radar is only 0.3 db better than a three-look radar.

SEA CLUTTER DECORRELATION TIME (S)

To determine the gain associated with integrating in the presence of sea clutter, a
correlation criterion is defined as follows: Since the area of the resolution cell is very
large, the returned signal is the resultant of scattering from many scatterers within a
single resolution cell; then, two samples from a given resolution cell will be uncorrelated
if the maximum change in the one-way range separation of several scatterers exceeds
half a wavelength. In the following development, the sea clutter is assumed to be uni-
formly distributed in a range cell and the decorrelation is assumed to be entirely due to
the motion of the radar platform; that is, the sea is assumed to be motionless. At time
t = o (Fig. 1) the ranges to the two scatterers are equal; at time t = Td the ranges are
given by

-2 = R2 + y 2 -21y cos (1)

and

le 2 - 112 +y 2 -21?y cos Y, (2)
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t=0

RANGE CELL

TTERER 2

Fig. I - Squinted radar configuration

where

cos y = (cos D) Cos /3

and (3)

cos -yo=  (cos D) cos (/3 + 0 cos D)

in which - is the angle between the sight vector and the velocity vector of the radar plat-
form, D is the depression angle, /3 is the squint angle, and 20 is the beamwidth. Sub-
tracting Eq. (2) from Eq. (1) yields

R12 - R 2 2R y (coo - co s ye)

(I? + R2) ( 11- R 2)
- 2R(cos y- cos -1d

One can now make the substitutions

and

RI1+ R2 - 2R

R1I - 2 / /2

yielding

2
y:2 (cos y- cos y 0 )"
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Finally, letting y = VTd (where v is the velocity of the radar platform) and solving for Td,
one obtains

Td X/ V (4)
2 (cos y - cos -/)

Note that V and X must have the same distance dimension. Equation (4) was programed
for the CDC 3800 computer at NRL, and Td was calculated as a function of frequency,
beamwidth, squint angle, and depression angle. Since the amount of output data is enor-
mous, only two special cases will be presented: the side-looking radar and the forward-
scanning radar.

Side-Looking Radar (S)

When the radar is a side-looking radar, the squint angle /3 equals 90 degrees. Then
Eq. (3) implies ' = 90 degrees. If one uses the small angle approximation for 0, Eq. (4)
reduces to

2VO

Using V = 25,000 ft/sec, Td was calculated for various beamwidths and frequencies se-
lected from the available radar bands (Table 5). Reviewing the table, one notices that,
except for one or two instances, all the returning pulses can be considered independent.
Consequently, the integration gain for the sea clutter is the same as for the thermal
noise.

Table 5
Decorrelation Time for A Side-Looking Radar

Frequency Td (sec) for Various Beamwidths
(MHz) 0.50 1.0 o, 1.5 °  2.0 °0

140 0.0322 0.0161 0.0107 0.0081

220 0.0205 0.0102 0.0068 0.0051

440 0.0102 0.0051 0.0034 0.0026

900 0.0050 0.0025 0.0017 0.0013

1300 0.0035 0.0017 0.0012 0.0009

2900 0.0016 0.0008 0.0005 0.0004

5250 0.0009 0.0004 0.0003 0.0002

8500 0.0005 0.0003 0.0002 0.0001

Forward-Scanning Radar (S)

When the radar is a forward-scanning radar, the squint angle /3 equals 0 degree.
Then Eq. (3) shows that y - D. If one uses the small angle approximation to 0, Eq. (4)
reduces to
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Xcos D
Td =V62

Using D = 20 degrees and V = 25,000 ft/sec, Td was calculated for the beamwidths and
frequencies of interest (Table 6). The decorrelation times in Table 6 are quite large. In
fact, the decorrelation due to the motion of the sea is less than most of the times in Ta-
ble 6. This decorrelation time is given by

XTd z= 2 r ,v

where VP is the sea particle velocity. Using Table 7 (3), for sea state 4, Eq. (5) reduces
to

Td - 2.4

where X is the wavelength in meters (X = 30/frequency in megahertz). The decorrela-
tions due to the sea motion for the frequencies of interest are almost the same as those
given in Table 6 for a 2-degree beamwidth. Consequently, the 2-degree beamwidth de-
correlations should be used for any beamwidths smaller than 2 degrees.

Table 6
Decorrelation Time for A Forward-Scanning Radar

Frequency Td (sec) for Various Beamwidths

(MHz) 0.50 1.0 o  1.50 2.00

140 13.869 3.467 1.541 0.866

220 8.826 2.206 0.980 0.551

440 4.413 1.103 0.490 0.275

900 2.157 0.539 0.239 0.134

1300 1.493 0.373 0.166 0.093

2900 0.669 0.167 0.074 0.041

5250 0.369 0.092 0.041 0.023

8500 0.228 0.057 0.025 0.014

Since the decorrelation times are still quite large, the integration gain associated
with sea clutter will be less than the integration gain associated with the noise. When
the sea clutter samples are correlated, the integrated signal-to-clutter plus noise ratio
should be calculated as follows: First, the signal/(clutter + noise) ratio for one pulse is
given by s/(C+ N) , and the ratio for A pulses is given approximately by

S
C N'

I(AMI) + I(A)

where I(AV) is the integration gain normally associated with Al pulses and Mc is the effec-
tive number of independent pulses of sea clutter integrated:
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/l,

Al0

if Td prf < 1 ,

Td prf ' if 
7 d prf > I .

The prf is the pulse repetition rate of the radar.

The question remains as to how much one must squint the beam before all the pulses
will decorrelate. Since the unambiguous range of a forward-scanning radar requires a
p r f of about 65, a decorrelation time of about 0.015 second is necessary. Thus, using
Table 8, which gives the decorrelation time at a 4-degree squint angle, one can see that

Table 8
Decorrelation Time for a 4-degree Squint Angle

Frequency Td (sec) for Various Beamwidths

(MHz) 0.50 1.00 1.50 2.00

140 0.446 0.216 0.139 0.101

220 0.284 0.137 0.089 0.064

440 0.142 0.068 0.044 0.032

900 0.069 0.033 0.021 0.015

1300 0.048 0.023 0.015 0.011

2900 0.021 0.014 0.006 0.005

5250 0.011 0.005 0.003 0.002

8500 0.007 0.003 0.002 0.001

one will have complete independence of th
ing antennas and frequency combinations:

e clutter samples if one uses any of the follow-

2.0-degree antenna at 900 MHz

1.5-degree antenna at 1300 MHz

1.0-degree antenna at 2900 MHz

0.5-degree antenna at 5250 MHz and 8500 MHz.

Thus, if one has any of the combinations given above, one will have complete independ-
ence of clutter outside the 4-degree sector and partial dependence of clutter inside the
4-degree sector.

If the power necessary to detect a given size target along the scanned area were cal-
culated, an exorbitant amount of power would be required in the center section due to the
clutter correlation. Thus, to reduce the required power, it seems desirable to slow down
the scan rate in the center section so as to obtain more independent clutter samples. If
one is completely clutter limited (no thermal noise), an estimate of the slow-down rate
can be obtained by dividing the desired decorrelation time (0.015 second) by the decorre-
lation times of the sea clutter. For instance, at 1300 MHz, Table 6 gives a decorrelation
time of 0.093 second. Thus, the slow-down rate should be
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0.015 0. 16 at 1300 MHz

0. 093

0.015 0.37 at 2900 MHz.
0.041

Since one is not really clutter limited, the optimal slow-down rates will be larger
than those given in Eqs. (6) and (7). In fact, a slow-down rate of 0.5 is probably near the
optimum.

TARGET FLUCTUATIONS

Point Scatterers as a Target Model

Most targets can be considered to consist of many individual point scatterers. If
one would look at the target from different aspect angles, the target's cross section
would appear to fluctuate because of the cancellations and reinforcements between the
different scatterers.

To determine what the target model should be, an approach similar to one used in
calculating the sea clutter decorrelation time was adopted. First, from the geometry
(Fig. 2) one can write

Ay = I cos a,

Ax = 1 sin a,

1?2 = 2 + X
2

,

(p + AR) 2 = (y+ Ay) 2 + (X+ AX) 2

a

/
/

RADAR

Fig. 2 - Radar geometry for target fluctua-
tions, with the target of length 1 shown at
one extreme of the beamwidth 0

and
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Subtracting Eq. (8) from Eq. (9) one obtains

2RAR + AR2 z 2y/Ay + Ay
2 + 2xAx + AX2

Consequently, the one-way range difference is approximately

AR = (yAy + XAX) R,

and the two-way phase change is

27 (2A ) = 4 r (yAy + xAx)
X XR

where X is the radar wavelength. Usually, the number of independent samples as the
beam sweeps past the target is taken to be equal to the number of 27T phase shifts across
the beam. At one extreme of the beam, y = 0 R1 2 and

4 -1- (ORAy/2 + xAx). (10)

At the other extreme, y =-0R/2 and

/A/ (-RAy/ 2 + xAx). (11)

Subtracting Eq. (11) from Eq. (10), dividing by 27, and adding unity yields the number of
independent samples:

Indep. -
2 Ay + 1 (12)

The returning signal from N equal scatterers is

S = . sin (wt +
i =1

or, equivalently,

N N

S = sin wt cos ( i + cos cot sin (i
i=1 i =l

and the cross section of the target % is proportional to

0 -t c, Cos i )2 + sin ) (13)

While the target passes through the beam, the target will appear to fluctuate because
of the changing phases. Typical fluctuations are shown in Fig. 3 for two target orienta-
tions. For the a = 0.0-radian case, Eq. (12) indicates the presence of only 2.7 independ-
ent samples; and for the a = 1.0 case, Eq. (12) indicates 1.9 independent samples. If one
would use the common method of block correlation with this number of independent sam-
ples, there would exist a probability of obtaining a very low strength signal requiring a
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-0.25 -0.20 -0.15 -0.10 -0.05 0 +0.5 +0.10 +0.15 +0.20 +0.25
NUMBER OF DEGREES OFF BEAM CENTER

Fig. 3 - Returned signal from a fluctuating target
(1 = 100 ft; X = 1.0 ft; N= 8; 0 = 0.5 degree)

very high transmitted power to detect it. However, if one took a very large number of
samples (large in relation to the number of independent samples), one would essentially
obtain the average returning signal over the given aspect angle; and it appears from
Fig. 3 that because of the correlation between samples one will not obtain the small
cross sections possible when using block correlation in connection with Eq. (12). To test
this conjecture, the following experiment was conducted: For each of 100 cases, eight
scatterers were uniformly distributed over a length of 100 feet oriented at an angle of
a = 0.0 radians. For each distribution, the average returning signal Si was found.
Then, the average and standard deviation of the 100 {s i } were calculated:

E{s} = 2.5

and (14)

(var {Si}) 1 2 = 0.65.

Since what one is really trying to do with block correlation and independent samples is to
model the actual situation, what one wants to find is the number of independent samples
necessary to approximate the actual distribution - or equivalently in this case, the stand-
ard deviation. To accomplish this, in the beginning 100 random samples were taken
from the 100 configurations, and 100 averages Xi each consisting of only one point were
found. Then, the standard deviation of the 100 {xd} was calculated:

(var{Xd}) 1 2 1.42 .
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Since 1.42 is greater than the true standard deviation, more than one independent
sample exists. To find the exact number, the above procedure was repeated. However,
this time, each xi consisted of two, three, and four independent samples. The standard
deviations of these cases are as follows:

x i consists of two samples, [var(X i )] 1 2 = 0. 98, (15a)

X i consists of three samples, [var( Xi ) ].12 = 0.78, (15b)

X i consists of four samples, Iva r( Xi ) ] 1 2 = 0.64. (15c)

Thus, comparing Eqs. (15) to Eq. (14) it appears that there are approximately four
independent samples present compared with the 2.7 indicated by Eq. (12). Repeating this
procedure several other times always yielded the same result - the number of independ-
ent samples required to equate the standard deviations was always slightly larger than
the number given by Eq. (12).

In the rest of this section, the number of independent samples will be defined to be
that number for which the standard deviations of x i and si are equal. Before proceeding
to calculate the number of independent samples as a function of aspect angle, the problem
will be reformulated to include ship roll.

Reformulation to Include RADAR

Ship Roll TRACK

The coordinate systems for the radar
platform and for the target are shown in
Fig. 4. The following notation and defini-
tions will be used:

X] axis which is the line on the earth's
surface perpendicular to the radar
track,

X2 axis which is the line on the earth's x,
surface parallel to the radar track,

X3 axis which completes the right- __AR_

handed coordinate system, RADAR CENTERLINE

Y 1 axis which is the line from the Fig. 4 - Radar and target
radar to the target, coordinate systems

Y2 axis which is perpendicular to y1

and lying in the x1X2 plane,

Y3 axis which completes the right-handed coordinate system,

0 squint angle of the radar, i.e., the angle from the radar to the target center
measured with respect to the x1 axis in the xx 2 plane,

a angle the center line of the target makes with the x, axis,

y roll angle of the target,

,3 grazing angle.
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Let us initially assume the target is aligned along the xi axis (a = 0) and the prob-
lem is to find the coordinates of a point in the y system whose coordinates in the x sys-
tem are al, a2 , and a 3 . First, the new coordinates due to a roll angle y are given by

b 1 0 0 a 1

b2 0 cos y -sin / a 2  (16)

b3  0 sin y cos )y a 3

To line up the x 2 and Y 2 axes and to compensate for the fact that the target is not
aligned along the xi axis, it is necessary to rotate about the x3 axis an angle of (0 - a):

e 1  cos (0-a) -sin ( - a) 0 b1

C 2 s in ( - a) cos (0 - a) b 2  (17)

c3  0 0 1 b3

Finally, one needs to rotate through the grazing angle /3:

di cos /3 0 -sin /3 C1

d 2  0 1 0 C 2  (18)

d 3  sin /3 0 cos /3 a 3

Points with the same d, coordinate are at essentially the same range. Hence, the
relative phase change with respect to the center of the target is given by

477 (19)

Substituting Eqs. (16), (17), and (18) into Eq. (19) yields

La1 [cos (0-a) Cos/3

'I - _a2[cos a sin (n -a) cos /3 + si n as I (20)
La3[sin a sin (0-a) Cos ,3- cos a sin

Next, Eqs. (13) and (20) were used in a Monte Carlo investigation to determine the
number of independent samples for side-looking and forward-scanning systems as a
function of the orientation of the target. In lieu of the absence of a standardized ship
model, the following ship parameters, which do not seem unreasonable, were used:

Length of target, 150 feet,

Width of target, 20 feet,

Height of target, 15 feet,
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Roll angle a, amax sin (27t/Tp - k),

amax' 0.2 radian,

TP, 10 seconds.

Also, the following radar parameters were used:

Beamwidth, 0.5 degree,

Grazing angle, 3.5 degrees,

Integration time, 1.5 sec for a forward-scanning system,
3.2 sec for a side-looking system.

For each of the 100 configurations used, 14 scatterers were uniformly distributed in
the rectangular target volume, and the initial phase of the roll was uniformly distrib-
uted on 0 to 27. The number of independent samples for the side-looking radar is
shown in Fig. 5 and the number of independent samples for the forward-scanning radar
is shown in Fig. 6. For the side-looking radar, the number of independent samples in-
creases from one to 24 as the target orientation changes from bow to broadside; and for
the forward-scanning radar the variation is one to 11 from bow to broadside. To see
how much these fluctuations cost with respect to complete independence between pulses,
one can consult Table 9, which was derived from Swerling's report (4) about log-normal
fluctuating targets.

Table 9
Required Increase in the S/N Ratio with Respect to Complete Independence'

Probability S/N Ratio Increase for Decreasing Numbers
of Detection, of Independent Samples (db)

Pd 100 10 4 2 1

.99 0 2 4.75 7.25 11.75

.9 0 1.25 3 4.5 7.5

"These figures are for a mean-to-median ratio of 2. Also, as one can see
from Guarguaglini (5) these numbers can be used for a Rayleigh fluctuating
target.

If one wanted to maintain a probability of detection of .99 for all target orientations,
it would be necessary to increase the S/N ratio by either 7.25 or 11.75 db, depending on
the operating frequency. This seems like an exorbitant waste of power which is not jus-
tified because of the following discussion.

Even though the probability of detection is greatly deteriorated at bow aspects, it is
very little deteriorated at broadside. A natural question to ask is what is the overall
probability of detection assuming that ships will be uniformly distributed in aspect. By
using Swerling's curve (Fig. 7) and Fig. 5, a side-looking radar operating at X = 0.333
feet has the following minimum probabilities of detection:



G. V. TRUNK

0.4 0.6 0.8 1.0 1.2
ORIENTATION OF THE TARGET, a (RADIANS)

Fig. 5 - The number of independent samples
for a side-looking radar (grazing angle = 3.6
degrees; integration time = 3.2 sec)
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ORIENTATION OF THE TARGET, a (RADIANS)

Fig. 6 - The number of independent samples
for a forward-looking radar (grazing angle =

3.6 degrees; integration time = 1.5 sec)

NUMBER OF I

0.991 INDEPENDENT BLOCKS=I

0.98

0.95[

0.90

Fig. 7 - Radar detection probabil-
ity for log-normally distributed
targets (p = 2; N = 100; probability
of a false alarm Pfa = 10-1)
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0.0 < a < 0. 1

0.1 < a < 0.4

0.4 < a < 7T/2

rin{Pd} = 0.64,

min{Pd} = 0.76,

min {Pd} = . 90.

Hence, the overall probability of detection is

P, = 2- [0. 1(0. 64) + 0.3(0. 76) + ( 7/2 - 0. 4) ( 0. 9)] 0. 8567-7

The calculation was performed for various integrated S/N ratios, frequencies, and the
two radar configurations. The results are shown in Table 10.

Table 10
Probability of Detection for Fluctuating Targets'

Integrated 
d

SIN Ratio Side-Looking Radar Forward-Scanning Radar
(db)

=1 ft x=0.33 ft I ft x=0.33 ft j =0.2 ft

16 .72 .86 .62 .73 .76

17 .81 .91 .72 .82 .85

18 .88 .96 .80 .89 .91

19 .92 .98 .86 .93 .95

20 .95 .99 .91 .96 .97

'An integrated SIN ratio of 16db corresponds to probability of false alarm of 10 - 10 and a

probability of detection of .99 for the case where all the samples are independent.

Using linear interpolation on Table 10, the following SIN ratios are required for a
probability of detection of .9 for fluctuating targets and a probability of false alarm of
10-10. For a side-looking radar

S/N = 16.6 db for X = 0.33 ft,

SIN - 18. 5 db for k = 1.0 ft .

For a forward-scanning radar

(21a)

(21b)

(21c)

(21d)

(21e)

S/N = 17.8 db for X =0.2 ft,

SIN= 18.2 db for X - 0.33 ft,

SIN = 19.9 db for K - 1.0 ft .

Thus, with the integrated S/N ratios shown in Eqs. (21), one
tection of over .9 for fluctuating targets and a probability of
nonfluctuating targets.

obtains a probability of de-
detection of over .99 for
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NUMBER OF I

0.99 INDEPENDENT SAMPLES=20 5 2 I

0.98 -

0.95 -

0.90

o8 .80-
z
o 0.70

- 0.60 Fig. 9 - Radar detection probabil-
.ity for log-normally distributed
0.50 -targets (p= 2, N 2 20; probability

o" 0.40- - of a false alarm P = 0)
0 la

>- 0.30-
i-

0.20-
m
0
oC 0.10-

0.05

0.02-

0.01 12520

-10 0 +10 +20
AVERAGE SIGNAL TO NOISE RATIO PER PULSE (db)

Again using linear interpolation on Table 11, the S/N ratios required for a probabil-
ity of detection of .9 and a probability of false alarm of 10-o with a grazing angle of 51
degrees and an integration time of 0.44 sec for a side-looking radar are

S/N = 16.5 db for K 0.33 ft, (22a)

SIN - 17.8 db for K = 1.0 ft. (22b)

As one can see, these values are slightly smaller than those given in Eqs. (21).
Since the values in Eqs. (22) were calculated using Fig. 9, which assumes 20 pulses in-
tegrated whereas really 29 pulses are integrated, the required SIN ratios will be slightly
larger than those given in Eqs. (22). Consequently, the desired SIN ratio can be consid-
ered a constant over all grazing angles.

The required SIN ratios have been calculated for several other integration times.
The results of the various calculatiots are presented in Figs. 10, 11, and 12.

IONOSPHERIC EFFECTS

This section discusses how the ionosphere affects detection of targets at sea. The
two major problems caused by passage of the signal through the ionosphere are the Far-
aday rotation of the signal and the random phase shift associated with the received sig-
nal. The approach consists of postulating a very simplified model of these effects and
then calculating the degradation caused by these effects.
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The S/N ratios in Eqs. (21) are those required when the target is seen at a grazing
angle of 3.5 degrees for 3.2 sec. If the grazing angle is increased, the decorrelation
times due to rolling will change, and new SIN ratios will be required. If the grazing an-
gle is increased to 51 degrees with a corresponding integration time of 0.44 sec, the
number of independent samples for a side-looking radar is shown in Fig. 8. Comparing
Figs. 5 and 8, one sees that one has more independent samples at bow aspect but less
independent samples at broadside for the larger grazing angle. Using the same philos-
ophy as before, the probabilities of detection have been recalculated for the larger graz-
ing angle and are shown in Table 11. The values in Table 11 were calculated using Fig. 9
instead of Fig. 7, because at the large grazing angles (small ranges) one is integrating
only 29 pulses in comparison with over 100 at the large ranges.

13. . . . . . .

Cl,w
_ 10

a-

< C9

z 8W
a
zw 7
a-

a 6
0

in

3
z

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ORIENTATION OF THE TARGET, a (RADIANS)

Fig. 8 - The number of independent samples
for a side-looking radar (grazing angle = 51
degrees; integration time = 0.44 sec)

Table 11
Probability of Detection for Fluctuating Targets (Grazing angle = 51

degrees; Integration Time = 0.4 sec; Side-Looking Radar)

Integrated Integrated
S N Ratio

(db)
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Fig. 11 - Effect of the integration time on the required
S/N ratio for a forward-scanning radar (frequency =
2900 Mc; grazing angle = 2 degrees)
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Fig. 10 - Effect of the integration time on the required S/N ratio
for a side-looking radar (grazing angle = 3.5 degrees)
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Fig. 12 - Effect of the integration time on the re-
quired S/N ratio for a forward-scanning radar (fre-
quency = 1300 Mc; grazing angle = 2 degrees)

Faraday Rotation

Faraday rotation is a complicated function of geographical position, time of day,
time of year, orientation of the radar beam with respect to the earth's magnetic field,
and many other factors. Therefore, instead of forming an extremely complicated model
for Faraday rotation, the postulated model will only reflect some of the worst conditions
to be encountered: upper midlatitudes, noon wintertime, 20-degree depression angle,
and orientation parallel to the earth's magnetic field. For these conditions, by assuming
a Chapman distribution as a model for the ionosphere electron density distribution, the
Faraday rotation can be approximated (6) by the following equation and table:

0 = 2. 22 x 1015 GH CH / [2 (23)
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where 0 is the one-way Faraday rotation in radians, f is the frequency in hertz, Gh1 is
related to the strength of the magnetic field and is a function of the altitude 1I, and C. is
a slab thickness parameter and is a function of the altitude H. Using Eq. (23) and the
table, the one-way Faraday rotations were calculated and are shown in Table 12.

Table 12
One-Way Faraday Rotation of the Signals at Various
Frequencies With the Satellite at Various Heights

Faraday Rotation 0 (radians)
Altitude H

(naut mi) 140 220 440 900 1300 2950 5250 8500
MHz MHz MHz MHz MHz MHz MHz MHz

150 12.3 5.0 1.25 0.30 0.14 0.03 0.01 0.00

200 21.7 8.78 2.20 0.53 0.25 0.05 0.02 0.01

250 29.4 11.9 2.98 0.71 0.34 0.07 0.02 0.01

300 34.4 13.9 3.49 0.83 0.40 0.08 0.02 0.01

400 39.2 15.9 3.96 0.95 0.46 0.09 0.03 0.01

600 42.5 17.2 4.30 1.03 0.49 0.10 0.03 0.01

To calculate the degradation in the signal-to-clutter ratio and SIN ratio, it is neces-
sary to calculate the received signal after it has passed through the ionosphere, been re-
flected at the sea surface, and again passed through the ionosphere. First of all, let us
assume that the transmitted electric field is

- 1E1(I g )/l + g2) 1/2

E 1(II+gV)

where g is the cross-polarization gain of the antenna and H and v are unit vectors in the
horizontal and vertical directions. Then, the electric field reflected by the sea is given
by

E, = El VlH [cos (0+-r) - g sin (0+T)]IJ+ ei¢ 'F/V [sin (0+-) + g cos (0+T)IV , (24)

where o- is the sea clutter cross section for horizontal polarization, ov is the sea clut-
ter cross section for vertical polarization, 0 is the one-way Faraday rotation, € is the
phase shift between the horizontal and vertical components that is caused by the reflec-
tion, and - is the incident angle between the horizontal component of Er and the sea when
there is no Faraday rotation. In reality, -r is a random variable caused by the roughness
of the sea. Since its distribution is unknown and since it is not of prime importance in
this discussion, we will assume T 0. Then Eq. (24) reduces to

- EI [.-'7(o-s 0-g sin 0)11+ e" \1-v-(s in 0 + g cos )Vj

The power received by an antenna is proportional to the square of the absolute value
of the received electric field. That is
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P oo E UrH(cos20 -2 
2 sin

2
) + -e

i 
(-sin

2
9 + g72 cos2)

(cos20 - g2 sin 20) + ei¢(_sin20 + g 2 
cos29)

CoL in0
(25)

represents the backscatter from sea clutter. On the basis of work by Macdonald (7,8) a
c-,/oW ratio of 10 db was selected as a good average. Also, it is fairly easy to build a
linearly polarized antenna whose cross-polarization response is down at least 20 db
(g = 0.1). Finally, while ¢ varies over a wide range of values, 4 - 0 was chosen, since
this value yields the worst losses. For these values Eq. (25) gives for the backscatter
power from sea clutter

C - El2 CH[(cos2() - 0.01 sin
2

9) + 3. 16 (-sin
20 + 0.01 cos2)] 2

(26)

A similar approach can be used to find the returning signal power; the only differ-
ence is that the ratio TV/I'TH of the target cross sections for vertical and horizontal
polarizations (again based on Refs. 7 and 8) is -4 db. Thus, the returned signal power is

(27)S - E 2CTTI[( cos 2- 0.01 sin 2 )) + 0.63 (-sin
2
) + 0.01 Cos2()]2

The bracketed term in Eq. (27) represents the degradation of the SIN ratio, and the
ratio of Eq. (27) and Eq. (26) represents the degradation of the signal-to-clutter ratio.
These losses are presented in Table 13.

Table 13
Degradation of the S/N Ratio and Degradation in the
Signal-to-Clutter Ratio Caused by Faraday Rotation

Degradation Factors at Various Frequencies
Altitude 1I

(naut mi) 140 220 440 900 1300 2950 5250 8500
MHz MHz MHz MHz MHz MHz MHz MHz

Signal-to-Noise Power Degradation Factor (Factor in Eq. (27))

150 0.0001 0.0001 0.0001 0.743 0.974 1.0 1.0 1.0
200 0.0001 0.0001 0.0001 0.340 0.810 0.992 0.998 1.0
250 0.0001 0.0001 0.0001 0.094 0.670 0.986 0.998 1.0
300 0.0001 0.0001 0.0001 0.0120 0.566 0.980 0.998 1.0
400 0.0001 0.0001 0.0001 0.0001 0.460 0.973 0.997 1.0
600 0.0001 0.0001 0.0001 0.0001 0.408 0.967 0.997 1.0

Signal-to-Clutter Degradation Factor (Ratio of Eq. (27) and Eq. (26))

150 0.0001 0.0001 0.0001 1.0 1.0 1.0 1.0 1.0
200 0.0001 0.0001 0.0001 1.0 1.0 1.0 1.0 1.0
250 0.0001 0.0001 0.0001 0.1632 1.0 1.0 1.0 1.0
300 0.0001 0.0001 0.0001 0.0077 1.0 1.0 1.0 1.0
400 0.0001 0.0001 0.0001 0.0001 1.0 1.0 1.0 1.0
600 0.0001 0.0001 0.0001 0.0001 1.0 1.0 1.0 1.0
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In deriving Table 13 the following method was used: For a given frequency and alti-
tude, the losses recorded in Table 13 correspond to the maximum losses associated with
any rotation between zero and the maximum Faraday rotation that is given in Table 12.
This is why the maximum loss of 0.0001 is so frequent. Also, for small rotations the
ratio of Eqs. (27) and (26) is greater than 1, since no depolarization has been assumed;
i.e., ¢ = 0. Consequently, a conservative approach was taken by replacing these gains
by l's.

It seems likely that one could reduce the losses for the low frequencies if one would
use circular polarization. This is equivalent to assuming that Y e' 2. Then, Eqs.
(26) and (27) reduce to

C o E20-[ ( -) - 2.34 El2

and

S m El0-TH [ 2 (1 - /3rV/ 2 0.068 El crr .

Thus, the SIN power degradation factor is 0.068 and the signal-to-clutter power degra-
dation factor is 0.0297 for circular polarization, these factors being independent of the
Faraday rotation.

Random Phase Shift (U)

Another effect of the ionosphere is the random phase shift introduced by variations
in the ion density. This phase shift, whose mean is directly proportional to time, limits
the coherent integration time. Consequently, the question arises as to how many pulses
N one should integrate coherently if one receives M pulses in time 7'. Before calculating
the optimal coherent integration gain when the mean phase of the received signal drifts
linearly with time, the total integration gain will be calculated. First, the received en-
ergy for N pulses is given by the correlation

N-i iT +8

E ~ f Cos [Wt +4(t)1 cos (Wt) dt , (28)
i-o iT

where T is the time between pulses = 1/pr f , 6 is the pulse width, and /() is the ran-
dom phase shift, which will be approximated by its mean; that is /3(t) /i,, where q3 is
the phase shift per unit time and therefore is a function of the frequency (,. Integrating
Eq. (28) yields

N-1 iT +

E, ~ sin (3) sin (2ow+/)t 1  P (29)2 = 2 2( 2w + ) i T

which for the J's of interest can be approximated by

N-1
[sin (iTp ) + )0 - sin bi' (30)

2 p
'-0
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Expanding Eq. (30),

21 [sin iT1 cos 4) + cos kiTP

i=0

sin O5 - sin /iT] I

and substituting the small angle approximations

cos - 1

sin =

into Eq. (31), one obtains

N-1

T  cos /iT.
i=0

It can be shown that the summation in Eq. (32) can be rewritten as

2 s o n te( T / 2)j

which if one uses the small angle approximation reduces to

si n (N - e) 1P TPj
+ T j

21 + (N

If N is large, this can simply be approximated by

( N s 0

2 C

where D is the phase shift encountered in time %(N - 1 /2) :

() :/T (N
22

The term in parentheses in Eq. (33) represents the coherent integration gain for N pulses:

N sin (I
Cc

(31)

(32)

(33)

2 2-
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Thus, of the M pulses one receives, N consecutive pulses are coherently integrated; and
then, the results of these coherent integrations are combined by performing a noncoher-
ent integration on K = M/N pulses. The noncoherent integration gain is given by

S(K) = 1 for K= 1,

S(K) = 1.010 KO. 9 4 4 for 1 < K < 4,

S(K) = 1-282 K° ' 7 7 5 for 4 < K < 20,

S(K) = 1.675 K ° ' 6 8 8 for 20 < K < 100,

S(K) = 2.594 KO .
5 9 3 for K > 100 ,

(34a)

(34b)

(34c)

(34d)

(34e)

which are curves that
given in Skolnik (10).
coherently, is

Fox (9) has used to approximate the noncoherent integration gain
Therefore, the gain associated with integrating M pulses, N pulses

G - (N sin (I) ES(M/N)]

where

0 7 9 cT, (N -1

The problem of finding the optimal integration time, or equivalently N, is reduced to
finding the value of N that maximizes the gain given in Eq. (35). Setting the derivative of
Eq. (35) to zero yields a very complicated equation for the optimal value of N. However,
if one makes the approximation

te e tT N,

the equation for the optimal N is quite simple. First, G is then of the form

sin qSTpN ARM R

€7p N R

Thus,

dG cos CTpN

dN N R
sin cITpN

11
ckTp NR+ I

Solving for N,

ckTpN cot c/TpN = R

Consequently, it is the phase shift 'F = cTPN which limits the coherent integration time.
The solutions of Eq. (36) are

(I) = 0.41 , if R = 0.944, (3,

'F: 0.80, if R 0. 775, (3Y

': = 0.92, if 1 = 0. 688, (3Y

36)

Ia)

Ib)

Ic)

(I = 1.06 , if R - 0.593 .

(35)

(3 7d)
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Thus, the limiting phase shift is seen to be a function of the number of noncoherent
pulses that are integrated. To show that these results are valid in spite of the numerous
approximations, the coherent gain equation, Eq. (29), and noncoherent gain equations,
Eqs. (34), were programed on the CDC 3800 computer, and an exhaustive search was
used to find the optimal value of N and 'F for the following parametric ranges:

f = 200 MHz

3 = 4.7122 ,

60 < prf < 240,

1 < T <5.

The results of this investigation are shown in Table 14. One can infer from this
data that when one is integrating a short time (a few noncoherent pulses) the limiting
phase shift is about 0.8 radian; however, when the integration time is longer, the limiting
phase shift is increased to 0.92 radian. These results are compatible with the results in
Eqs. (37). The loss due to the phase shift, in comparison to no phase shift at all, is
given by (sin ()/'F, which is 0.9 or -0.5 db if 'F = 0.8 and is 0.87 or -0.6 db if F = 0.9.

Table 14
Limiting Phase Shift (D

M :prf M- 3 prf M 5 prf

prf~' F'pp r f NN
N (radians) N (radians) N (radians)

60 11 0.78 11 0.78 12 0.86

80 14 0.77 14 0.77 16 0.88

100 18 0.80 18 0.80 20 0.89

120 21 0.79 21 0.79 24 0.90

140 24 0.77 24 0.77 28 0.91

160 28 0.80 28 0.80 32 0.91

180 31 0.79 31 0.79 36 0.92

200 35 0.80 35 0.80 40 0.92

220 38 0.79 38 0.79 44 0.92

240 41 0.79 41 0.79 48 0.92

DATA PROCESSING (S)

Optimal Integration Angle (U)

When a radar scans past a point target, the amplitudes of the returned pulse train
are proportional to the square of the one-way antenna voltage gain pattern. Usually, one
considers integration over the beamwidth 01 (whih is determined by the 3-db power
points) and suffers a 1.6-db "scanning loss," which is based on an optimal integration
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angle of 0.84 0 for a gaussian-shaped beam. However, these figures are based on the
work of Blake 6I1), who assumed a noncoherent gain that obeys the half-power law. To
extend the work to other laws, a slightly different approach than Blake's will be used.

Two beam shape patterns will be considered: a gaussian beam shape and a (si n x) /x

beam shape; that is,

i( ) e - 0. 3 4 7 (0 / 1 
2

G1 (0) - e

and

sin (1.3916 0/61)G2(0) -

1.3916 6/01

where 0 is the angle measured with respect to the beam center, 0, is the angle of the
half-power point, and the gain is normalized to unity at midbeam.

To find the optimal integration angle, one must formalize the detection problem as a
test of a binary hypothesis. Therefore, consider the problem of testing for a known sig-
nal in white gaussian noise:

2 = x + y i = -N,.. 0, ...
H0: Z2 =iy~,i -N. 0. N..

Hi: - [x i  + G2 (0i)] 2  + y?

where 2N+ 1 is the number of pulses integrated.

The null hypothesis, HO , is the statement that only noise is present; and the alterna-
tive, HI, is the statement that signal plus noise is present. The noise samples {xi } and
{yi } are independent identically distributed gaussian random variables with mean zero
and variance 0,2 . Since we are mostly concerned with the threshold case (small SIN
ratio), the square-law detector will be considered. That is, the test statistic

N

i=-N

will be compared to a threshold T. If SN > T, then H, is accepted (signal is present);
and if SN < T, then H0 is accepted. Since sN is equal to the sum of independent random
variables, SN is essentially gaussian as implied by the central limit theorem. Thus,
only the means and variances of SN under both hypotheses will be important in the de-
tection problem. Consequently, it is necessary to calculate them. In the forthcoming
calculations the following well-known information about the moments of a zero mean
gaussian variable will be used:

E(x i ) - E(y i ) = 0

E(xi
2) - E(y?) = 0

-2
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E(xQ) E(y?) 0,

-X) E(yj) - 30-4

Then, the means of zi2 are

E(Z?1H0 ) E [X? + yi 2]- 2iT 2

and

a(Z IH H E

and the second moments are

+ G2(0i)]2 + yj2} = G 4 (0i) + 20-2

E(ZlHo) - E(x? + Y?) 2 8iT 4

and

E(Z4jH1) - E{[Ex + G2(6 + 2}2+ 1 1 G8
(0) + 8G

4
( ) i0-

2
+ 80

- 4
.

The variances of Z? are

4 o-
4

and

var (Zi.2 1l1) = E(Z4IH1 ) - [E(ZI H)] 2 - 40 2 G4
(0 ) + 40 4

Since the mean of the sum of random variables is equal to the sum of the means of
the random variables, and since the variance of the sum of independent random variables
is equal to the sum of the variances of these random variables, one obtains

N

E(SN]Ho) = r 2T
2

i=-N

N

[G4(0 i) + 2
°

g
2

]

var (SNf HO) =

var (SN HI ) =

2(2N + 1) o 2 ,

(i4(Of) + 2(2N+1)iT
2

+ 1)0 
4

.

var (Zi2H) = E(Z H) - [E(ZIH)]
2

E( sN I I"I) -

and

(38)

(39)

(40)
N

T 4a
4 = 4(2N+ 1)0

-4

i--N

N

L [4 y
2 G4 ( i) + 4c0-]

i=-N

N

4o-
2

Z G4 (0,) + 4( 2N (41)
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From these preliminaries, one can proceed to the heart of the problem. When mak-
ing a test between two gaussian distributions, G(p, c,2) and G (p 2 , iU22), the probability of
detection is a monotonic function of the expression (as proved in Appendix A)

pL 2 ul - c-' I(1- Pf a
)

(42)

where 'D( ) is the cumulative distribution for a normalized gaussian (i.e., G(0, 1)),

X
(D (x) z:: 1 _-x2 /2 x

f. v2 e dx

and consequently 'F1(l -
alarm of Pa. Using the

Pfa) is the threshold corresponding to a probability of false
appropriate equivalences

/-/ = 
E (SN Ho0)'

p12 = E(SN]HI)

0 1 - Evar (SN Ho ) ]/2

T 2
: [var (SN IH )] 1/2

and

substituting Eqs. (38) through (41) into Eq. (42) yields

G 4(i/K) - 20-2 2N + I '-'(1 -P/a)

N

I (N=KO, K,o-, G)
i '

2o- TG4(ii/K) + (2N +

Ii =-N

(43)

1)o_211/2

where one receives K pulses per radian. That is,

N = KO.

For a side-looking radar K can be expressed as

11 (prf)K:-

V

where 11 is the target range and v is the velocity of the radar platform.

The optimal integration angle 02 is the angle that maximizes Eq. (43). It is quite
obvious that the optimal 02 is a function of o- and hence of the SIN ratio. However, it is
surprising to note that the optimal 02 is also a function of the p r f through the variable K.
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Equation (43) was programed on the CDC 3800 computer with F-1 (1 - Pja) = 6.232,':'
varying from 0.4 to 0.9, and K varying from 0.005 to 0.05. The results for a (sin x)/x
beam shape are shown in Table 15.

Table 15
Optimal Integration Angle 02 for a (s in x) /x Beam in 0, Units

02 (radians) for Various S/N Ratios
4.95. 3.01 1.43 0.09 - 1.07 -2.10

0.005 1.145 1.065 1.005 0.955 0.915 0.88

0.010 1.11 1.03 0.96 0.910 0.87 0.84

0.015 1.08 1.005 0.93 0.885 0.84 0.81

0.020 1.06 0.98 0.92 0.86 0.82 0.78

0.025 1.05 0.95 0.90 0.825 0.80 0.75

0.030 1.02 0.93 0.87 0.81 0.78 0.75

0.035 1.015 0.915 0.84 0.805 0.77 0.735

0.040 1.00 0.915 0.84 0.80 0.76 0.72

0.045 0.99 0.91 0.81 0.765 0.72 0.72

0.050 1.00 0.90 0.80 0.75 0.70 0.70

"S N = 10 log (1/2o2)

The question naturally arises: If one integrates over the optimal angles given in
Table 15 what is the scanning loss associated with the fact that the returning signals
have a lower strength off midbeam? To calculate this scanning loss it is necessary to
calculate the value of Eq. (43) for a rectangular beamwidth. Thus, if one lets G(0) = I,
Eq. (43) becomes

I (N, K, o-, 1)
(2N+ 1) 1/ 2 - 2U2 ()- I( 1 - Pfa

2 [ + 0
2 ] 1 2

(44)

The scanning loss for a particular N and p r f will be defined as the change in the SIN
ratio (i.e., the change in o,) required to equate Eq. (43) to Eq. (44).

To illustrate how the scanning loss is calculated, let us consider the case where
N = 61. Equations (34) give an integration gain of 14.47 db for an integration of 61
pulses. Consequently, an SIN ratio of 1.53 db is required to obtain a 16-db integrated
SIN ratio. Then, Eq. (43) was evaluated for o values ranging from 0.8 to 1.0 and S N
ratios ranging from 2.73 to 3.53. The results are presented in Table 16.

" This threshold corresponds to P/a = 10.-0
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Table 16
Evaluation of Eq. (43) for N = 61

Value of I(N, K, -, G)
2.73" f 2.83 2.93 3.03 3.13 3.23 3.33 3.43 3.53

0.80 0.298 0.310 0.323 .0.336 0.349 0.362 0.375 0.388 0.401

0.82 0.290 0.302 0.315 0.328 0.340 0.353 0.366 0.379 0.392

0.84 0.282 0.294 0.307 0.319 0.332 0.345 0.358 0.371 0.384

0.86 0.274 0.286 0.299 0.311 0.324 0.336 0.349 0.362 0.375

0.88 0.266 0.278 0.291 0.303 0.316 0.328 0.341 0.353 0.366

0.90 0.259 0.271 0.283 0.295 0.307 0.320 0.332 0.345 0.357

0.92 0.251 0.262 0.275 0.287 0.299 0.311 0.224 0.336 0.349

0.94 0.243 0.255 0.267 0.279 0.291 0.303 0.315 0.328 0.340

0.96 0.235 0.247 0.259 0.271 0.283 0.295 0.307 0.319 0.331

0.98 0.227 0.239 0.251 0.263 0.275 0.286 0.298 0.211 0.323

1.00 0.220 0.231 0.243 0.255 0.266 0.278 0.290 0.302 0.314

"SIN = 10 log (1/2o -2 ) .

Since the value of Eq. (44) is 0.318 for N = 61, the required SIN ratios (which can be
obtained by using linear interpolation on Table 16) are shown in Table 17.

Table 17

Required S/N Ratio for Eq. (43) to Equal 0.318 for N = 61

0 (radians) S/N Ratio Scanning Loss (db) 1/K

0.80 2.89 1.36 0.027

0.82 2.95 1.42 0.027

0.84 3.02 1.49 0.028

0.86 3.08 1.55 0.029

0.88 3.15 1.62 0.030

0.90 3.21 1.68 0.031

0.92 3.28 1.75 0.031

0.94 3.35 1.82 0.031

0.96 3.42 1.89 0.032

0.98 3.48 1.95 0.033

1.00 3.55 2.02 0.033
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Since one should be integrating for the optimal time, the 0 one should'choose should
correspond to an optimal 0 for the particular 1/K used. Referring to Table 15, such a
matching pair is I/K = 0.031 and 0 = 0.92. Consequently, the scanning loss for 61 pulses
is about 1.75 db. This procedure was repeated for various N, and the results are shown
in Table 18. Hence, both the optimal integration angle and scanning loss are a function
of the number of pulses integrated.

Table 18
Scanning Loss and Optimal Integration Angle for Various N

Number Scanning Optimal Number Scanning Optimal
of Pulses Loss Integration of Pulses Loss Integration
Integrated (db) (db) Angle 02

N (radians) N (radians)

61 1.75 0.92 201 1.55 0.91

101 1.63 0.92 401 1.42 0.88

Optimal Weighting (U)

In the previous subsection, the optimal integration angle for a uniform weighting was
found for the case of a radar scanning past a point target; i.e., the amplitudes of the re-
turning pulse train are proportional to the square of the one-way antenna voltage gain
pattern. In this section, the optimal weighting function is numerically calculated.

To find the optimal weighting, let us consider the following binary hypothesis:

H0: the Z i consist of noise along, s= 0,

H,: the z i consist of signal plus noise, S *0,

where {zj } are samples from the output of an envelope detector and S is the amplitude of
a sinusoidal signal. Rice (12) calculated the probability densities to be

p(Z i l s = o ) = -e

and

Z 2 8+s2 )/2,
Z i  -( i  0  1(ziS/ o)

The Neyman-Pearson Lemma states that the optimal decision rule should be based
on the likelihood ratio LM(Zi) given by

M K _-(Z +s2) / , 2 o

7 Z e ,2 o0 ( Z  / 0 0 ) / oL( i) 1 H. Zi e-Z' i/20 0/ °

which reduces to
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M

LN(Zi) = J eS 2/2o 1o (ZiS/¢o).

i=I

Since the exponential term is a constant, the likelihood ratio is a monotonic function
of the product of the Bessel functions:

M
LM(Zi) 1 0 l (ZiS/q¢o)' (45)

and this product is the optimal detector. However, this optimal detector is never imple-
mented because of its cumbersome form. Rather, the usual approach is to expand the
Bessel function in an infinite series:

(46)X
2  x 

4

0 (X )  + + +- +..
4 64

Substituting Eq. (46) into Eq. (45) yields

M /
LM(ZI) J7 (1 64¢0

which can be rewritten as

M

LM(ZI) 1c + I 2L Z S I 
~M .

12 8,p4 L.
02 i =I

M

(ZS2) (Z2S2) +
i*j

The usual small-signal argument is now employed; that is, if the
i.e., if (Zi Si/ 0 o) 2 is of the order of E, the higher order terms of Eq.
glected and only the single summation need be considered:

M

LM(Zi) mE 2S2
I i

(47)

signals are small,
(47) can be ne-

(48)

Equation (48) represents a fourth-power voltage-antenna-pattern weighting, since s i
is the square of voltage antenna pattern. This is in contrast to the usual weighting that
is used - the squared weighting. Fortunately, much of the difficulty can be removed if
one realizes that Eq. (48) is not a very good approximation to Eq. (47) unless the signals
are extremely small. This is because even though the fourth-power terms are of the
order c 2 , there are M2 of these terms in comparison to the M terms of order c. Thus,
the optimal weighting {wj } for a square law,

M

i= Z
(49)

is not S, 2 since the fourth power terms which cannot be neglected depend on the squared
terms. Consequently, it will be necessary to calculate {w1 }.



38 G. V. TRUNK

The method of calculation is as follows: First, if expression (49) is used as our test
statistic and if the calculations in the previous section are repeated, the probability of
detection can be shown to be a monotonic increasing function of the quantity

-Ntt wG 4 i/1k) - 2cr-2 'F( q) I a) Y
i =-N i=-Nf( 01--N(50)

i N 1 /2

2cr WG4ik +c72  2
Li--N ]

The optimal weighting pattern consists of the set of {wj} which maximizes Eq. (50). The
optimal weighting was found by numerical methods, and the results are shown in Fig. 13.
As one can readily see, the optimal weighting is neither the square-law or fourth-law but
rather something in between. Also, the weighting is a function of the SIN ratio per pulse.

The question naturally arises as to how much improvement one obtains by using the
optimal weighting instead of a ( s i n x) Ix weighting or a uniform weighting. As summa-
rized in Table 19 the results indicate that if one integrates over an interval 02 the opti-
mal weighting is only 0.1 db better than the uniform weighting. Also, if one doubles the

1.0

0.9-

0.8-

N
- 0.7

0.6 -A \-
+D ':

0.5-

X . ANTENNA PATTERN WEIGHTING

0 OPTIMAL WEIGHTING

0.3-

0.3 0.4 0.5 0.6 0.7
ANGULAR POSITION (3-db UNITS)

Fig. 13 - Weighting functions
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integration interval (doubles the storage re-
quirements), the optimal weighting is only 0.3
db better than the uniform weighting. Thus,
the uniform weighting over the angle 02 is
very close to the optimal condition.

Azimuthal Position Estimates

The question considered in this subsection
is the following: After a target has been de-
tected, how close can its position be estimated
in azimuth? The two estimators of position
which are considered are shown in Fig. 14.
The first estimator is

x - JMAX,

where JMAX is that j such that

and the second estimator is

Table 19
Output S/N Ratio for Different

Weighting Patterns

S/N (db) for
Two Lengths of

Weighting Integration
Pattern Interval'

02 2602

Uniform 15.7 14.6
(sin x)/x 15.77 15.9
Optimal 15.8 16.0

"'The input
pulse, and
tion angle

SIN ratio was 1.4 db per
0,2 is the optimal integra-
for a uniform weighting.

SN(JMAX) > max SN( ) ,

, = (JLAST + JFIRST)/2,

where J FIRST is the smallest j
SN(j) > T.

T

N

W

such that sN(j) > T and JLAST is the largest j such that

J MAX

FIRST

-10 -8 -6 -4 -2 0 +2
VALUE OF j

J LAST

ITHRESHOLDI-

+4 +6 +8 +10

Fig. 14 - Azimuthal position estimates:
JMAX and ( JLAST + JFI RST) /2

While it is quite difficult to calculate the distributions of ; and , a Monte Carlo
study consisting of 1000 cases shows that ; and . are both gaussian unbiased estimators.
This inference can be arrived at from Figs. 15 and 16, in which a straight line indicates
a gaussian distribution. Hence the variances of the estimators indicate the relative
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0.995-

0.99-

0.98-

0.95-

0.90-

0.80-

0.70-

0.60-

0.50-

0.40-

0.30-

0.20-

0.10 -

0.05-

0.01 -

0.01-

0.005

0.001 r
-4 -"3 -2 -I 0 +1

Xo (STANDARD DEVIATIONS)

+2 +3

Fig. 15 - Distribution of . = JMAX

goodness of the estimators. The standard deviations for a 1000-case Monte Carlo study
are shown in Table 20. All the estimators are quite compatible in performance except
for with a uniform weighting. One can make the following statement about azimuthal
position: The interval

2 [var(£)]' 
1

2 to + 2 [var(£)]
1  

2

or the interval

-2[var(Y )
1 / 

2 to .+2[var( )]
1  

2

Table 20
Standard Deviations of the Estimators . and T

for a 1000-Case Monte Carlo Study

0.20 01 0.15 01

0.15 01 0.13 01

_01 is the angle to the half-power point.

I I I I I I

I I ~ I I

Standard Deviation for Different
Weighting Patterns*:

Estimator

QQQ ...

Uniform I (in V) IX] 
2
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0.999

0.995

0.99

0.98

0.95[

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10 -

0.05

0.02-

0.01 -

0.005

0.1011
-4 -5 -2 -I 0 +1 +2

yo MEASURED IN STANDARD DEVIATIONS

Fig. 16-Distribution of = (JLAST + JFIRST)/2

covers the true target azimuthal position 95 percent of the time. This means that with a
beamwidth of 0.4 degree (201 = 0.4 degree) and at a range of 2000 naut mi, 95 percent of
the time the target can be located within the accuracies given in Table 21. The general
formula for accuracy is

2R( 0),

where I is the range in nautical miles and cr(0) is the standard deviation of the estima-
tor (given in Table 20) in terms of 61 in radians, with 2 01 being the beamwidth.

Table 21
Azimuthal Position Accuracy With Which a Target

Can be Located 95 Percent of the Time

Azimuthal Position Accuracy (naut mi)

Estimators for Different Weighting Patterns

Uniform [(sin X)/x] 2 Optimal

2.79 2.09 2.09

2.09 1.81 1.81

I I I I I I

I I I I Iup- - -



G. V. TRUNK

All of the previous statements on azimuthal accuracy have been based on the as-
sumption of an integrated SIN ratio of about 16 db. Obviously, larger targets will have a
much larger integrated SIN ratio, and then better azimuthal accuracies result. For in-
stance, for an output S/N ratio of 26 db with a uniform weighting the standard deviations
of £ and are

[var(;)] 1/2 = 0. 07301 (51a)

and

Ivar()] 1/2 = 0.04901. (51b)

Using Eqs. (51), the resulting azimuthal accuracies are 1.02 naut mi for £ and 0.68 naut
mi for 9 for an 0.4-degree beamwidth and a 2000-naut mi range.

The question arises: What is the maximum accuracy obtainable for the previous set
of conditions? Fortunately, this question can be answered by making use of some previ-
ous work of Swerling (13). He showed (by using the Cramer Rea inequality) that the
standard deviations of the optimal estimator were opt = 0.116 for the 16-db case and
Crop t =0.031for the 26-db case. These accuracies correspond to position errors of 1.53
naut mi for 16 db and 0.43 naut mi for 26 db. Thus, the two simple estimators are not
too far off from the optimal estimator.

METHOD OF MAINTAINING A CONSTANT FALSE ALARM RATE (U)

Consideration of Different Methods (U)

It is usually assumed that the noise has a Rayleigh distribution. Unfortunately, in
the surveillance problem, the radar will be limited by sea clutter at the large grazing
angles as opposed to receiver noise (Rayleigh) limited at the shallow grazing angles.
While one usually assumes a Rayleigh distribution for the sea clutter, it appears very
unlikely that the noise has a Rayleigh distribution out to 6c. (This corresponds roughly
to a threshold for a P1 a = 10-10.) Consequently, to maintain a P1 0 = 10- 10 when one is
clutter limited, one usually either uses adaptive schemes or else hard limits the data.
Usually adaptive methods are used when the form of the noise distribution is known but
certain of its parameters are unknown. For instance, if the noise is gaussian with a
nonstationary unknown variance (noise power), the adaptive procedure is nothing more
than a variable threshold which is proportional to the estimated noise power. Since the
distribution of sea clutter is not only non-Rayleigh but also unknown, before conventional
adaptive methods could be used, one would have to estimate the functional form of the
density of sea clutter. Estimating this density out to 6o or 7 seems impossible. Hence,
adaptive methods of this nature do not seem very promising.

On the other hand, hard limiting seems quite practical if one is integrating for a
long time, i.e., accumulating 25 or more pulses. While hard limiting yields a constant
false alarm rate, it results in a loss of about 2 db. (Further discussion of the hard limit-
ing loss is given in Ref. 14.) Unfortunately, for certain types of processing, hard limiting
also causes strong targets to interfere with the detection of weaker targets (15).

Thus, both adaptive and hard limiting methods have undesirable features. However,
a method combining soft limiting and an adaptive threshold seems quite promising. This
method is based on the fact that even though the density of sea clutter is nongaussian in
the 6o- or 7o- region, it is almost gaussian below 2.5o- or 3cr. Hence, if one limits the data
at 3cr (for instance), one now knows the density of sea clutter except for the noise power
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cr
2 . Thus, one can estimate c and use this estimated value to control the value of the

soft limiter and the decision threshold. An alternate way of accomplishing the same
thing is to have a fixed value for the soft limiter and to have a fixed threshold. The es-
timated cr is used to control an agc so that the noise is always limited at its 3cr point. An
added advantage of a soft limiter is that it reduces the dynamic range required by the
data processor.

Soft Limiting Loss

While the hard limiting loss is fairly easy to calculate, the soft limiting loss is
much more difficult to calculate. Marcum (16) defines the soft limiting ratio as the
ratio of the limit level to the rms noise level. He concludes that if the number of pulses
integrated is large, the limiting loss is only a fraction of a db if the limiting ratio is as
large as 2 or 3, but that if only one or two pulses are integrated, the limiting ratio must
be in the neighborhood of 10 to prevent a serious loss. Thus, while Marcum makes the
qualitative statement that in certain cases the loss is small, he makes no quantitative
statement about the loss, the limiting value, or the number of pulses integrated. Conse-
quently, it was decided to investigate this problem further.

In attacking this problem, one could use the standard approach that employs the
Gram-Charlier series; however, Marcum said the calculations were quite tedious. Al-
ternately, one could calculate the probability distribution of the limited noise by the
characteristic function method. Unfortunately, this results in a triple integral for which
there exists no known closed form solution. A numerical integration of this triple inte-
gral to the desired accuracy would require an exorbitant amount of time on a digital
computer; consequently, this method seems impractical also. Therefore, it was decided
to use a Monte Carlo method to calculate the loss rather than use either of the two pre-
vious methods.

The system to be investigated by the Monte Carlo procedure is shown in Fig. 17. It
consists of a soft limiter, followed by a dechirping device, followed by an envelope de-
tector, followed by a M-pulse accumulator whose output is compared to a threshold T.
The Monte Carlo procedure just consists in performing the operations shown in Fig. 18
which is the mathematical model of the system shown in Fig. 17. The main part of the
simulation is the generation of the signal plus noise components x' and y '. The
gaussian noise n is generated by the equation

n = u sin (0),

where u is Rayleigh distributed and 0 is uniformly distributed on (0, 277). Since a uniform
random number generator is available on the computer which generates a random num-
ber r uniformly distributed on (0, 1), generation of 0 simply involves the multiplication
of r by 277. The generation of u is accomplished by the uniform random number gener-
ator in the following way:

DECHIRPER
SOFT PULSE ENVELOPE M-PULSE

LIMITER COMPRESSION DETECTOR ACCUMULATER
RATIO OF N

Fig. 17 - Detection system



G. V. TRUNK

INPHASE CHANNEL

2 L M z
x. F+ z.

QUADRATURE CHANNEL

Fig. 18 - Mathematical model of the detection system in Fig. 17

P(v<) =f ve - v2 2 dv.

Integrating, one obtains

P(v .u) 1 -e' 2

e-U /2 -P(v<U). (52)

The quantity I - P(v5 u) is uniformly distributed between 0 and 1 and consequently can
be replaced by a random number r. Hence, if one solves Eq. (52) for u, one obtains

u = (-2 In r) 1/2

which shows that u has a Rayleigh distribution. Thus, one can generate
xij and y'j by generating two random numbers rij, and rj i.e.,

i i~j 2 ;

and

the components

xij S-S+uij sin ij

Yij U u i cos 0 i

where

0.. 2T7r.
and

uij - (-2 In r ij 2 ) /2

To find the limited components x and y, j, one first calculates the envelope ej

SIGNAL
PLUS -
NOISE
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X? + y ? ) /ei j = ( i +

If ei j < SL (soft limiting value), then xi j  x i j and Yi -- y. On the other hand, if
e ij > SL, then xij = SL(x'j)/eij and yj j SL(yij)/ej.

After the soft limiter, the simulation process is straightforward. One generates N
pairs of pulses in a similar manner, sums up these N pulses, squares the two sums, adds
the two squares, and takes the square root- this represents the output of an envelope
detector of a dechirped pulse. Finally, one sums M of the dechirped pulses and compares
the sum to a threshold T.

Finally, the system was simulated on the CDC 3800 with the following input parame-
ters: N = 63, M = 128, S = 0.13515, cr = 1, and T = 1620. The threshold was set to yield a
probability of false alarm of 10-8 and a probability of detection of 0.5. The results of
the Monte Carlo procedure are shown in Table 22.

Table 22
Results of the Monte Carlo Procedure Shown in Fig. 18

No. ofI
Limit No. of Correct Probability Estimated Loss
Value Cases Decisions of Detection S/N Ratio (db)

0o 107 57 0.532 -2.3 -

3.0 107 49 0.458 -2.5 0.2

2.5 107 27 0.252 -3.0 0.7

2.0 59 2 0.018 -4.0 1.7

The 100 cases or so that were run provide a good estimate of the probability of cor-
rect decision. However, one billion cases would have to be run if one wanted to calculate
the probability of false alarm. But, since the inequality Pf a _ 10- 8 is true, one can
bound the soft limiter loss by setting P1 a = 10-8 for all limit values. The estimated S/N
ratios are found by finding the S/N ratios that yield the Pd values in Table 22 when one
integrates 128 pulses. The S/N ratios were found using Robertson's curves (17). Con-
sequently, the losses for limiting values of 3cr, 2.5, and 2c are bounded by 0.2, 0.7, and
1.7 db respectively. Thus, as long as one is limiting above 2.5, the loss is lower than
0.7 db; and it is this author's opinion that the actual loss is about 0.2 db.
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Appendix A

DERIVATION OF EQ. (42)

Given two gaussian distributions, G( I, o1 
2 ) and G( /J'2 , 0-2) , representing the null

hypothesis and the alternative, the probability of false alarm is

/a j G(i1, 0-) dx, (Al)

and the probability of detection is

Pd f G(pc 2 , -22) dx, (A2)

where T is the threshold. Equations (Al) and (A2) can be rewritten as

a ( T-Al ) /o" 1
1 f a = O

G( 0,1)dx - (D[(T-/ul)/ o 1 ]

and

(A4)Pd f= C G(O, 1) dx.

(T- 42) /0-2

One may imply from Eq. (A4) that Pd is a monotonic increasing function of the quantity
(42'- T) /- 2 :

(A5)Pd =
F [(9 2 - T)/0-2]1 Ft.

Solving Eq. (A3) for T, one obtains

(A6)

Substituting Eq. (A6) into Eq. (A5) yields

Pd = F{[ I2-l-clP - 'l 1 -Pa) ]/ 0- 2} (A7)

where F is a monotonic increasing function.

(A3)

T = jul +o-1 4)- l 1 - Pia) "
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