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ABSTRACT

An improved aerodynamic model is proposed for the exhaust plume issuing

from a low-altitude rocket nozzle exit into quiescent ambient air in which

chemical reactions and compressibility predominate. The model is based on

the presently available knowledge and established aerodynamic principles

for the various flow regimes involved. The major assumptions made are

individually substantiated by related experimental evidence in existing

literature.

A theoretical analysis is carried over the whole flow region based on

the Karman's integral approach to find solutions for the gross aerodynamic

and thermodynamic behavior of the plume. Theory incorporating on empir-

ically derived constants provides the required radial distribution function

for the integration. Solutions are obtained for the velocity, density,

temperature and chemical composition fields for extended regions of the

plume. These results will provide the much needed framework for the

understanding of the elements which contribute to the phenomenon of _radar

attenuation of rocket exhaust plumes.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION
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INTRODUCTION

In some of the aerodynamic models used in the study of rocket exhaust

plumes in the existing literature, the flow field is first artificially

broken down into several pieces which are analyzed independently, and the

results from these uncoupled analyses are then artificially patched to-

gether. The validity of these models extends to a region downstream of

the rocket nozzle only as far as a distance of the order of the diameter

of the nozzle exit at most, which is orders of magnitude smaller than the

total range of the rocket exhaust plume. In some other models, the con-

cept of a fully developed turbulent jet is used. As a consequence, they

can be expected to be valid very far downstream of the plume. The impor-

tant processes of afterburning and air dilution usually become severe at

axial stations throughout the whole downstream region of the rocket exit

plane as was pointed out by Balwanz and Lee (1). For this reason, Lee and

Balwanz (2) took the first step to establish a more realistic and justifi-

able aerodynamic model of rocket exhaust plume for all axial ranges, even

if unavoidably at the sacrifice of detailed accuracy. Their theoretical

analysis based on the Kairma n's integral approach applied to their proposed

simple aerodynamic model has been found to agree closely with related ex-

perimental data existing in the literature. However, their model serves

adequately only for those cases where chemical reactions and compressibility

do not exert a controlling influence and consequently their accompanying

analysis does not yield adequate information on the temperature, density

and composition fields. An improved model required for the modern high-

energy systems in which chemical reactions and compressibility predominate

is thfis in order.
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EXHAUST GAS: CO, H2, C02, H20, N2, HCI
AIR : 02, N2

FLAME

CORE OF UNDISTURBED TURBULENT

LOCUS OF MAX
TEMPERATURE

-c

Fig. 1 - General structure of
flow field
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FORMULATION OF FUNDAMENTAL EQUATIONS

Let us assume the equalization of pressure between the exhaust and

the surroundings and ignore the radiation loss. The supersonic gas stream

leaving the nozzle is assumed to remain undisturbed within a cone of base

diameter 2R and length L, which, from existing experimental results is a

known function of R and the exit Mach number (2). Surrounding the cone is

an increasing annular turbulent mixing region of exhaust gas and air, and

the burning causes the temperature profile to deviate from the decaying

velocity profile and to have its maxima somewhere therein. The locus of

this temperature maxima is a circular ring which shrinks in size due to

decreased supply of original gas beyond x = L and finally to a point along

the axis at x = S, beyond which the plume can be considered fully developed.

The exhaust gas considered consists of CO H2, CO, H20, N2 , and HC4, and the

ambient air 02 and N2 . The predominant chemical reactions considered are:

2C0 + 02 - 2CO 2

2H2 + 02 -H 220

Other components and reactions including ionizing reactions may be in-

corporated, but are ignored here for simplicity in presentation. A sketch

of the general structure of flow field of a rocket exhaust plume is shown

in Fig. 1.

If we let u and v be the components in the x - (axial) and r - (radial)

directions respectively of the time-mean velocity of the gas mixture in the

turbulent mixing region of the exhaust plume, the governing equations for

such a region are then as follows:
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Global Continuity Equation:

-- (pru) + i-r (pry) =0 (1)

which is a statement of the conservation of mass of the reactive gas mixture

as a whole.

Boundary-Layer Equation of Conservation of Species:

p r -u + V r- -I = PryiJr (2)

which states that the local convection transport of species i, as repre-

sented by the left-hand side of the equation, is balanced out by the local

creation of that species and the transverse transport of that species due

to turbulent mass diffusion, as shown by the first and the second terms on

the right-hand side respectively.

Global Boundary-Layer Momentum Equation:

pr ( - = r - - pr yIi(3)

i

which states that the local convection transport of linear momentum for the

mixture, as shown by the left-hand side of the equation, is balanced out by

the action of the turbulent shear stress and the transverse transport of

linear momentum due to turbulent mass diffusions of all the species in the

mixture, as shown by the first and the second terms on the right-hand side

respectively.
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Global Boundary-Layer Energy Equation:

pr _f pr y1 hi J
i

- r WCO+ H 2 WH

which states that the local convection transport of thermal and kinetic

energies for the mixture, as shown by the left-hand side of the equation,

is balanced out by the transverse turbulent eddy heat transfer, the trans-

verse transport of thermal and kinetic energies due to turbulent mass

diffusions of all the species in the mixture, and heat released from

chemical reactions involving CO and H2,as shown by the first, the second

and the third terms on the right-hand side respectively.

Nomenclature:

p = local time-mean density

Yi = local time-mean mass fraction of species i

w, = local time-mean mass creation rate of species i

Jr, = local time-mean turbulent diffusion velocity of species i

T = Reynolds turbulent stress

ho = h + t- the local time-mean stagnation enthalpy
2'1

h local time-mean enthalpy

q eddy heat transfer
0
h - local time-mean stagnation enthalpy of species i

AHC0 AHH 2 = molar heats of reaction of CO and H2 respectively

Mi = molecular weight of species i
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Eqa. (1) - (4) are also the governing equations for the inviscid core

flow region of the original exhaust gas mixture, if the previously de-

fined local time-mean quantities are identified just as the corresponding

local quantities and all the terms on the right-hand side of these equations

are put to zero.

Integrating Eq. (1) from 0 to c with respect to r with the condition

v(x,O) = 0 introduced, we have

f(pru)dr = - lim (pry) (5)
r -+ o

.0

which states that the increase of the mass flux in the axial direction is

supplied by the mass entrainment from the ambient air in the radial direction

at the edge of the plume.

Integrating Eq. (2) from 0 to c with respect to r with Eq. (1) and the

conditions v(x,O) = 0 and Jr, (xo) = 0 introduced, we have

d f
dx (pruyi)dr = (rw 1 )dr - lim (prvy l ) (6)

or -

0 0

which states that the increase of the mass flux of species i in the axial

direction is supplied by the mass creation of species i due to chemical

reactions in the plume and by the mass concentration of species i, if any,

of the ambient air entrained in the radial direction at the edge of the

plume.
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Integrating Eq. (3) from 0 to co with respect to r with Eq. (1) and

the conditions v(x,O) 0 O, T(x,co) 0 and Jr(xyco) =0 introduced, we

have

f(pru)dr = 0 (7)

0

which states that the linear momentum in the flow field of the plume is

conserved.

Integrating Eq. (4) from 0 to co with respect to r with Eq. (1) and

the conditions v(x,O) = 0, q(x,,co) 0 and Jrj(xco) = 0 introduced, we have

df Oruho)dr = - [Eco + wH rdr - lim (prvh) (8)dxffC0 MH 2 2 r -- 0

0J 0  M

which states that the increase of the stagnation enthalpy flux in the axial

direction is supplied by the heat release due to chemical reactions in the

plume in which CO and H 2 are consumed and by the enthalpy of the ambient

air entrained in the radial direction at the edge of the plume.

Eqs. (5) - (8) form the fundamental set of integrated governing equations.

The entrainment terms in Eqs. (5), (6) and (8) are not specified. However,

they can be eliminated among those equations to give equations free from

complications due to entrainment. For instance, by combining the equation

formed by multiplying (Y2)o, the value of yo2 in the ambient air, on to

Eq. (5),
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d [ pru(yo )o ] dr rlimr [ prvo 2 ]

and Eq. (6) with the species i identified as 0 , we obtain

d pu (yO) 0 - y 0  rdr = - (wo)rdr

0 f 0

Similarly, we can have

d 'co rU (N Y d
dXJ f u ~ 2 0 y 2 3}rr 0

where (y.) value of yN in the ambient air.

only 0 2 and N,, Eq. (6) gives

d
dx

CO

PUY CO}I rdr = f(w.) rdr

0

Since entrained air contains

(11)
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f PUYH I rdr = (wH) rdr
0U 0

f puyC02 jrdr =f (wc)rdr

(12)

j rdr =
(WH2 O) rdr (lL[)

(15)

fO
dx pUYHc I rdr = 0

By combining the equation formed by multiplying To, the ambient

temperature, on to.Eq. (5)

df
(pruTo)dr - - lim (prv)

r -- w

-9-
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and Eq. (8) with the assumption of an ideal gas for the gas mixture, we

obtain

fd P 0 rd=HCO~ w + LHH2  wh ddo (puAT rdrfX pc f*CII
0

(16)

where

AT0 T - T,

T T + the time-mean stagnation temperature.2 Cp

Cp = average specific heat at constant pressure for the mixture.

Furthermore, the mass creation rates for the various species, the wi's,

are related to one another through the chemical reactions and therefore

Eqs. (9), (11) - (14) and (16) can be used to generate equations which

govern the changes of the fluxes of the related species. For instance, by

using the relation

Wo i WCO 1 WH
2 1 -+ 2

-2 MCO MH
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we can combine Eqs, (9), (ii) and (12) to give

I01MO
(pu[(YO 2)- Y02] + 1 u

+ 1 /u I rdr = 0
2 MH 2 an 2 ) I

In a similar fashion, we can also obtain the following equations:

1 (PuY 0 2 ) + ( puyC)Tij-0-2 MCO
I rdr = 0

f ( PUYH 0) + e PUYH) rdr = 0
dX 0 2 M22

Finally, eliminating ( f WCO rdr) and ( WH2 rdr) among EqS.

(l), (12) and (16), we have

-11-
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df 0 + HC+ rdr = 0 (20)
dC } co

REGION EXTENDING TO THE DISAPPEARANCE OF

UNDISTURBED CORE OF ORIGINAL EXHAUST GAS (Ox<ZL)

At this point, the radial distributions of the mass fluxes of the

various species across the turbulent mixing layer must be determined. For

turbulent mixing without chemical reaction, the species profiles should

follow the velocity profile closely. However, for the case with chemical

reactions, the former can differ considerably from the latter. Baron (3)

studied the flow field of a fully developed axisymmetrical turbulent

diffusion flame of gas fuel and formulated the radial distributions of

both the fuel gas and the axial velocity which, in terms of the present

notation, read

puyf = Pau(yf)a exp -

= aua exp V -r)

where the subscript "a" refers to the condition along the flame axis,

b = b(x) is a characteristic thickness of the turbulent mixing region, and

the constant X, which reflects the extent of the effect of chemical reaction
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on the distribution of the fuel gas, would have to be supplied from ex-

periment. It should be noted here that in a non-reactive mixture, the

profile of the flux of fuel should coincide with that of the flux of

momentum and X should equal 0.5. In a reactive mixture, % in general

should be slightly below 0.5. The appearance of the density p brings in

the effect due to compressibility. These distributions have been found

to agree closely with experimental results by Hinze and Van Der Hegge

Zignen (4) and the constant % has been found to lie in the neighbor'hood of

0.4.

For the annular turbulent mixing region, r1 r<9 similar profiles for

the fluxes of the fuel gases, CO and H2 , and the axial velocity will be

made

pUYco = plui(yco) exp [ (r - r1)2 )

pIH= plu3(YH) exp (r - r 1 ) 2  (22)

1/2 1/2U( - 1 (23)1/2u = PiI/ul [ r-r) exp -- b - (23)

where

r= (x) = R (1- ) (23)

is the radius of the undisturbed core and the length of the core L is

supplied from comparisons of aerodynamic measurements on air jets and
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rocket exhaust plumes and the corresponding theoretical results based on

this type of flow model. For instance, as a first approximation (2) it

has been established that, for the exit plane Mach number M in the rangee

between 1.4 and 3.6,

L .30 -

R FO (Me- 1).

Substituting Eq. (23) together with the conditions of p = p, and

u = ul in the undisturbed core, 05rsrj, in Eq. (7), we have

r2 + i+ ri b  0 (24)

which with the expreession for rj(x), Eq. (24), and the following series

solution for b(x)

52 )

K 3 + K .++ + K3 - + . ..( )

gives Ki - 242

K2 TT

It should be noted that this series solution converges rather rapidly.

Since IKKl I = 0.137, the first term in the series dominates.
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For similar reasons, in the turbulent mixing layer with chemical

reactions, the profile of the oxygen deficiency can be expected to

differ from that of the axial velocity profile. Let us assume for

Pu [(y 0 2) - yO) = piui(Yo) exp [2(r-,) 2 ] (26)

where y is the constant which characterizes this difference. With Eqs.

(21), (22), (24) and (25) together with the conditions of p = Pj,

u = u 0, Y0O = (YC 0 H = (YH) andYo = 0 for O5r'r, we can obtain

from Eq. (17) after some manipulation

~ ~ (ko +1)-koq~- (27)

where ko (YC0) 1  (YH 2 ) F (y 0 2 )0

[ 2McCO 2MH 2J/ L M~ J

Since neither N2 nor HCA participates in the chemical reactions, the

radial distribution of the N2 deficiency and that of HC) can be expected

to follow closely the radial distribution of the axial velocity. There-

fore, we will assume

-15-



Pu - yN 3 ] P tt [QN) o- (YNI ] exp

(28)

(YHCA~ exp l-2(r-rl,)2
The radial distribution of the combined mass flux of CO2 and H2 0,

pu [YC0
+ YH0 ], can be calculated from those of the other species

since by definition

E Y = 1 (29)

The ratio of' the local mass flux of C02 to that of' H20,(PuYCO)/PuYH)

YC0 2 /YH20 can be estimated by the ratio of the corresponding

integrated mass fluxes across the turbulent mixing layer,

fpuy0 0 rdr rdr. The integrated mass flux of CO2 can be
rir1

readily obtained by integrating Eq. (18) after the substitution of the

expression from Eq. (21) together with the conditions of p = p1 , u = ul,

= an YCO 0 2 = (YC 2) I for the undisturbed core, Or!r i .

Similarly, the result for the integrated mass flux can be obtained from

-16-
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Eq. (19). Using these results, we can have the estimated local mass flux

ratio

(PUYH 20)

+oC 0

(YE 20)1 + (YH 2)1

SYCO 

YH 20

r i  py
0 0 2 rdr

r i PuYH
r d r

L(X)
MCO
MCo0

MH 2O

((x)f = 1X)0

K1

K

fL

r( 1 )

( K

C 2

-17-
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It should be noted that in the special case in which

*YO) (YCo), (YH ) (YH 2)
____ _ and

the above expression, Eq. (30), reduces to

-(UY20 H 2 0 (YH 20 1

Since similarity solutions are being sought for the various quantities,

an observation of Eq. (20) with the expressions from Eqs. (21), (22) and

(23) in mind will show that the temperature-dominated function (p1/2 ATO)

is obviously the quantity which characterizes the temperature field of the

plume. At this point, a simple but reasonable radial similarity profile

of this quantity has to be determined. In the study of ordinary turbulent

diffusion flames, it is a generally accepted practice to let the maximum

temperature in the turbulent mixing layer be located at the radial station

where the concentrations of fuel and oxygen are of stoichiometric propor-

tion. In our present problem, complications might arise due to the fact

that there are two different fuel gases, CO and H. and therefore there

might be two points of maxima in the corresponding profile of an appropriate

quantity. Fortunately for a wide range of modern rockets, the molar con-

cntrations of CO and H2 at the exit plane of the rocket nozzle, (Yco), /MCo

and (YH )1 / MH2 respectively, are found to be approximately equal to each other.

In view of Eqs. (21) and (22), it is easy to see that the molar concentrations

-18-



of CO and HW YC0 / M 0 and yH / MH2 respectively, should also be

approximately equal to each other throughout the turbulent mixing layer.

Therefore, it is reasonable to let the radial profile of the quantity

(pl/2AT°) have its maxima in the turbulent mixing layer at a radial station

r where the molar concentrations of CO, H 2 and 02 are of stoichiometric

proportion, i.e.

yC0C0~+ YH) =  02MH2 MO--2 (31)

at r = rm. Introducing Eqs. (21), (22) and (26) in Eq. (31), we have

ko  )E -E + - Op ,
m m 2

where

E : E " (Bm) =

B (rm -r

m b

from which rm can be evaluated. For instance, for most practical rocket

exhaust plumes,% , y r, 0.4 and therefore Eq. (32) will yield

-19-
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E ( B) 0 + ( ko C
12 1

For simplicity, the assumed profile of (p112ATO) will be specified by a

different simple function in each of the two radial regions separated by

r = rm in the turbulent mixing layer, rl~r!rm and rm:r<w respectively. In

the region of rl<r!rm, the quantity (pl/2ATO) is assumed to increase from

its value in the undisturbed core to its maximum value at r = rm in the

following fashion:

I/2To i 1/2ZnTi o  (r - r, )2
P P AT + (rm - r 1 )2 IPMl/2ALTOM - Pl /2AT 1o } (36)

for rl5r5rm, where the subscript "m" refers to condition at r = rm. In

the region of rm:r<co, this quantity (pl/2ATo) is assumed to decrease from

its maximum value at r = rm to zero in the ambient atmosphere following

closely the decaying function (pl/2u)in that same radial region, i.e.

1/2A~ 0 m12 eo [ (r - r 1)2]
P/AT = l/2ATm exp [- b + Bin2  (37)

for rmr<co. Plots of assumed radial profiles for this region are shown

in Fig. 2.

-20-
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UNDISTURBED I ANNULAR TURBULENT
CORE I MIXING LAYER

, AT 0

i~~ 
¢ u PI ( H . ' \ ( yN 2 ) '- ( yN' ) ]

li~~ IIC I ,(H

)( 2 0
N(; )I 2 I

pi, 1 ClP' ) ( N2]

o ',(+) gi t)
NORMALIZED RADIAL DISTANCE, (±.)

Fig. 2. - Assumed Radial Profiles for Region Extending to the

Disappearance of Undisturbed C o r e of Original Exhaust Gas
(O<x<L)
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Integrating Eq. (20) with the use of Eqs. (21), (22), (23), (36) and

(37) together with the conditions that p = pl, u = ul, AT0 = ATI ° ,

YCO = (YCO), and YH= )I for the undisturbed core region, 0gr5r_,,

we have

- 1) (38)

yT =

where

= PMm/2AT 
m 0

YTm p- i I/2, T 1 )

k (yCO) 1zHCO0

kI~ p 0

k 2 = ( 2 )IMH 2

C pMH AT1
2

k3 = exp ( -

-22-
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k - exp ( - z2 ) dz

Bm

/Bmks =# exp ( 2 z ) dz

Ikt -[( -B k3 1

2 2

k k sm

(k - k.3Bm) 7 It - ( It + kt)]
2B 2 2 J

kIo = [ 2
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If we consider the gas mixture as an ideal gas, the equation of state

of which under the constant pressure condition of the present problem

is simply

pT = constant = p1 T1 , (39)

we can obtain the result for the maximum local temperature T., after some

manipulation, from the definition of AT°:

Tm k )2 y 7  + 4ki 2
k ki Y + (k 1 k2 T

where

(4o)

1 +
k

11

I 2

k 2 u,
2

2CpTi

-24-



Similarly, the temperature distribution in the two radial regions

ri-rrm and rm:r<co can be obtained by the use of Eqs. (36) and (37)

respectively.

For the radial region (rirr n):

(41i)
T A + (A2 + 4B)l/2
TI.~

where

A= A (x,r) =

B = B(x, r) =

( 'LT °. 0 1 (r - r, )2 T -- 1
TiI 1 + (L )( b 2  [Y

+ exp 2(r- r1)2

2C pTI b2

2CpTI bx2 -r12

For the radial region (r..5r<co):

T = + C2 + 1

TiL+c+B

-25-
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where

'E3 1 T . exp (r - r,)2

C= (x,r) = 1" 9

+ 2 T 1  exp [ 2(r - r,)2

Using the solution for the temperature field from Eqs. (41) and (42),

we can obtain the solution for the density field from Eq. (39). Using the

solution for the density field, we can obtain the solution for the velocity

field from Eq. (23). And, using the solutions of both the density and

velocity fields, we can obtain the solutions for the concentration fields

of the various species from Eqs. (21), (22), (26), (28) and (30).
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TRANSITION REGION BETWEEN END OF UNDISTURBED

CORE AND BEGINNING OF FULLY-DEVELOPED FLOW (L x S)

For similar reasons as those indicated in the case of the preceeding

region, the radial profile of (pl/2u) in the axial region beyond the

end of the undisturbed core will be assumed to be

1/P = 1/ 2 U e p r 2) (4 3 )

and since N. and HCk, do not participate in either of the two chemical

reactions specified in the present problem and, consequently, the changes

of their concentration are caused by the same turbulent diffusion

mechanism that is responsible for the transfer of momentum, it is reasonable

to assume that

P1/2 [( YN2) - YNJ P a 12[(Y2) 0- (YN)aJ exp ( r2 ) (144)

and

P ~ =P1/ 2  11 r2
P 1/2C Pa (YC exp . 7) (145)

Integrating Eq. (7) with respect to x, from x = L to x = x, with the use

of Eq. (43) and the conditions Pa = Pi, ua = ul at x = L and b = bL = b(L)

from the solution for the precious region, we have

YuYb = 1 1 (46)

-27 -



where

y _ Pa 12Ua (41- 1/2

u Pi u ,

b

Similarly, integrating Eqs. (10) and (15) with the use of Eqs. (44) and

(45)) respectively~together with Eq. (46), we have

Y Y(
YN =  Y (I

YHCffYu

where

Y a1/2

N2 Pi 12[(YN2) - (YN1)}

(48a)

-28-
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Pa 1/2 (YHC. )a (48b)YHC L =
HC 1/2 (YHc

The equation of the conservation of mass flux, Eq. (5), can be approxi-

mated by

f (pru)dr = obvb  (49)

where vb is the entrainment velocity of ambient air at the characteristic

radius b(x). At this stage, further assumption would have to be made on

the nature of the entrainment velocity vb. Use will be made of an asdump-

tion first introduced by Taylor (5) on the lateral entrainment of ambient

fluid to an axisymmetrical turbulent free-convection plume caused by the

buoyancy force due to temperature difference between the plume fluid and

the ambient fluid. His entrainment assumption deals strictly with the

velocity field and, aside from some minor differences due to a different

axial velocity profile that he assumed, it essentially takes the form

Trb=v(x.?b) = cua(x),

where Ce is the entrainment coefficient, whose value depends solely on the

geometry of the problem and the shape of the axial velocity profile assumed.

With a Gaussian velocity profile assumed, a value a = 0.08 for an axisym-

metrical geometry and a value of a = 0.16 for a two-dimensional geometry

-29-



have been firmly established by theoretical and experimental works by

Morton, Taylor, and Turner (6), Morton (7,8), Rouse, Yih, and Humphreys

(9), Lee and Emmons (10), and Lee (11 - 14). The value a = 0.08 for an

axisymmetrical geometry has been confirmed by a comparison of solutions

based on the entrainment assumption and experimental results on axisym-

metrical turbulent incompressible jets by Zimm (15), Ruden (16),

Reichardt (17) and Wuest (18). Based on experimental results on jet

entrainment by Ricon and Spalding (19), Morton (20) extended Taylor's

lateral entrainment assumption to the case of flow with significant

density variation. This extension, in terms of the present notation,

states that

Po 1/2vb 12a , (50)

where U is the came entrainment coefficient for both the compressible

and incompressible cases.

Combining Eqs. (49) and (50), we have

(pru)dr = po 1 a ua

which, upon the use of Eqs. (43) and (46), becomes

f ) exp ( d ( 
(51)
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For the-e1luation of the integral in Eq. (51), the following preliminary

approximation for the density field is assumed

1/22

(52)

o (-) for 0r,rr m
PO PO m

where r. as in the previous axial region, is the radial station where the

quantity pl/2,t2o has its maxima. Substituting expressions from Eqs. (52)

in Eq. (51), we have after some manipulation

Yb exp ( - r L f(X) , (53)rm

here

Y rm
rm b

2
f(X) 4ax + exp( -Bm )j

x - L
bL
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Similar to the previous axial region, we will assume the following

radial distributions:

puYc= Paua(Yc0)a exp [ r 2- b--

Pu= Pau(Hexp 
r2

pu [ u(y(0 ) 0  02ua(Y 0 2 exp [ 3

1/2 1/2 ua exp 1/2

Pu =Pa ubxp +J

(56)

(57)

(58)

(59)

where the constants % and y are the same as those for the corresponding

expressions in the previous region.

For this region, it is similarly assumed that the radial profile of

the temperature-dominated quantity (Pl/2AkT0) has its maxima at a radial
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At this point, something must be said about the distribution of

mass concentrations of the various species in the presence of chemical

reactions. For those species which do not participate in the chemical

reactions, the radial distribution of p1/2yi will follow that of p1/2u

closely since both are controlled by the same mechanism of turbulent

diffusion. For those species which participate in the chemical reactions,

the radial distribution of p /2i will deviate from that of pl/2 u since

the mass concentration in this case is also influenced by the chemical

reactions. If the axial decay of p1/2yc and p/yH2 relative to p /2u
in this region is assumed to follow the pattern of the radial decay of

the same quantities in the turbulent mixing annular layer in the previous

region, we have

(1-1) (54)
YC = Yu

YH2 = u (5

where

1/2
YCO Pa ( YCO )a

YH pa:L/2 ( YH2 a
Y a H2

H2 L/2 (y
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Upon the use of Eqs. (54) and (55) and the approximation pm2 1/2

Eq. (60) becomes

2(_ u2t0 exr - 1 = -..Yo exp (I - 1 ) Yr23 + 1,

(61)

which can be further simplified, with Eq. (53) used, to give

Y02 = Yb g(x) (62)

where

g(X) = f(x) - [ f(x)

Now, upon substituting expressions from Eqs. (56), (57) and (58) in

Eq. (17), we have after integration with respect to x, from x = L to x = x,

Mo [__o [1 I

( [YH 2(M 1YH, Yuyb - 1 = 0 (63)
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station rm where the molar concentrations of CO,

stoichiometric proportion, i.e.

( o + a*\

MHJ
O2

H 2 and 02 are of

(31)

at r=r in Substituting Eqs. (56),. (57), (58) and (59) in Eq.

( HYH2)1

(°y 0

CYc Mo
0 CO

No .mY 0 exp -( -1 1 ) 'r

. exp -
1 2(1-)Yr 2

+ Pm

P1
(60)

Pa --- 0 a(y
P1 2)o
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hich, with the use of Eqs. (54) and (55), becomes

YY - + a. YYbs 2 l = 0
YI Yub

(64)

Eliminating YQ and Y among Eqs. (46), (62) and (64), we have
2

1/l2 2Yb g M)- i +-7 Y -0 =b 1
(65)

which gives the solution for Yb" For instance, for most practical rocket

exhaust plumes , y:0. 4 and therefore Eq. (65) will yield

(66)
Yb- F ) + [g))21 + ko(2% - 1) [g(x)]I - ( -

In order to calculate the temperature field of this region of the plume,

some simple but reasonable radial distribution of the temperature-dominated
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quantity pl/2 ATo would have to be assumed. It can be readily reasoned

that p /2 AT will become p ml/2AT at r = r m and Pa A/2ATa at r = 0

and pml/2ATmo will become identical with pal/2 ATao when rm = 0. Further-

more, it can also be reasoned as in the case of the previous region that

the quantity p /2 AT should decay from a value of p.1/2ATMO at r = rm to

zero in the ambient air. Therefore, it will be assumed that for the

radial region 0r rm:

1/2ATIO 1Pal/2 sTao + k 3 p 1 /2AT 0or 2

= m 0 + l Ao ( AT (67)

where

P 1/2 T'IT 0

It1 3 = PK 1/2A ,,1o
l )

r M 2

and the subscript "L" refers to values evaluated from solutions of previous

region at x = L1 and for the radial region rm~r<o:

1/2 1/2 : r _ r.2- P 2ATO exp [b b2

(68)

Plots of assumed radial profiles for this region are shown in Fig. 3.
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( P IAT O\
7P1aT1 )~

=( 'HCI P YN2 YNJ

P (YHCI0 I

NORMALIZED RADIAL DISTANCE, (Lb)

Fig. 3 - Assumed Radial Profiles for
the Transition Region Between End of
Undisturbed C o r e and Beginning of
Fully-Developed Flow (L<x<S)

-38-



Integrating Eq. (20) with the use of Eqs. (56), (57) and (59), and

the expressions from Eqs. (67) and (68), we have

1 y2

SY2 exp ( - rm . sYYj

2 2 )+ YuYTYb. 1- exp ( - ) Yjyu - ( )+ Yr ( - y 'mr ~u 1 1 rmex

+ {YuYb2 CkIYcO + k2YH = Ci (69)

where

Pal/12ATa
°

Pl /2AT o

AHCO

kI =

AT1 oMC C P

as defined previously

(YH 2) 1'nF[H 2
k 2 = 2 1 H 2  as defined previously)

AT o MH CP

and C1 is the integration constant
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Eq. (69) can be simplified by the use of Eqs. (46), (53), (54) and (55)

and the integration constant C1 can be evaluated by the conditions at

x = L. The resulting equation gives

1

T k1 4 (Yb i Yrm +kTl)f(X) - B2 + 1) exp B m 2 ks

+ ks(Yb - 1) + exp ( - B - 1 ] (x) (70)

where

1 [(YCO . ACO + Hj)
kI 4 

= kl + k2  C oI "

With the solution for Yb obtained in Eq. (66), the solution for Yrm can

be obtained from Eq. (53). With these solutions established, Eq. (70)

then gives the solution for the axial distribution of the temperature-

dominated function Y The assumed radial profile for the temperature-

dominated quantity pl/2AT°, Eq. (67), gives the solution for the change

of the quantity YT which essentially represents the cross-sectional
m

maximum temperature in the plume:

YT = k13yr2 + YT (71)
mm
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The cross-sectional maximum temperature can then be computed from Eqs.

(70) and (71) and the definitions YT and AT0 . The resulting solution

reads:

[D+ (D2 + 4E)1/2] P
(72)

-where

D = D(X) =

YTMYTm

T2 + 2+ X y)

A T 10 2C pAZT 1 Yb4

EE(X)= 
I. + U,1 ,. .(x)
To 2CPT0 ybI

With these solutions obtained, the solutions for the temperature,

density, velocity and concentration. fields for this region of the plume

can be obtained in exactly the same way they have been obtained for the

preceding region of the plume.
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FULLY-DEVELOPED FLOW REGION (x S)

For this region, the radial profile of (pl/2u) will be similarly

assumed to be

p 1/2 P a u ex1 /223
p a ua exp-- (73)

pl/2y) and (p1/2y,and those of (P )2nd( YHC )

pl/2[(y) -2 N) ] = pal/2[(yN) - (YN 2 ) a] exp ( - -- )

p 1/2 12(YHc ,, ) e x p  
- r2

b
2

(74)

(75)

respectively.

Integrating Eq. (7) with respect to x, from x = S to x = x, with

the use of Eq. (73) and the condition that YuYb = 1 at x = S, we have

again

Yuyb
= 1 (76)

P a ua
u 1/2P1 u 1

(76a)
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b (76b)Yb- b L

as before. Similarly, integrating Eqs. (10) and (15) with the use of

Eqs. (74) and (75) respectively together with Eq. (76), we have again

YN2 = Yu P (77)

YHC = 'u (78)

where YN2 and YHC' are defined as in Eqs. (48a) and (48b).

The equation of the conservation of mass flux Eq. (5), for this

region can be similarly integrated to give

CO 1/2

d exp r d r (79)PO po 2 b b"

In order to carry out the integral in Eq. (79), some preliminary approx-

imation for the density distribution would have to be assumed. In con-

sistance with the radial distribution of (p/po) 1 /2 assumed in the first

equation of Eqs.(52) for the previous region, we will assume the following

radial distribution
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1/2 1/2

(_- _ (P - (8o)

An observation of Eqs. (73) and (80) reveals that both the quantity (pl/2)

r - 1/2
and the quantity Ll ( will decay in the same fashion in the

radial direction from their maximum values at the axis. It will there-

fore be assumed that these quantities along the axis will also decay in a

similar fashion in the axial direction from their respective maximum values

at the axial station of x = S:

PO ( ) )1 L (Pa) )

where the subscript "s" refers to quantities evaluated at x = S from the

solution of the previous region and p5 ;zpj << Po as previously assumed.

Combining Eqs. (80) and (81), we have

1/2 1/2 /1/2

POP 0 P'!12 ub
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Substituting Eq. (82) in Eq. (80) with Eq. (76) used, we have after some

manipulation

Yb = Z + (Yb) (83)

where

b
Yb - b L

SbsLy)

x - S
bL

Using Eq. (83), we have from Eq.

__ 1

u *= + (b)

(76)

(84)
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Again at this point, something must be said about the distribution

of mass concentrations of the various species in the presence of chemical

reactions. For those species which do not participate in the chemical

reactions, the quantity (pl/2yi) will follow (pl/2u) closely since both

are controlled by the same mechanism of turbulent diffusion. The axial

decay of (p/2 yc) and (pl/2 2 ) relative to (pl/2u) in this region will

be similarly assumed, as is in the previous region, to follow the pattern

of the radial decay of the same quantities. Therefore, we have, after

using Eq. (84)

YCO Y (-l)

YH2 Yu

= [axr+ ~ ~(1-

2a (Yb)j

(85)

(86)

where YCO and YH2 are defined as in the previous region.

Similar to the previous region, we will assume for this region the

following radial distributions:

CO = pu(yCO) exp 2 (87)
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PUYH2 = Paua(YH2)a exp -Ti 2b2

PU[ (y 02) 0- y02 ]=Paua(y0,) 0exp F b 2

(88)

(89)

where the constants X and y are the same as those for the corresponding

expressions in the previous regions.

Upon substituting expressions from Eqs. (87), (88) and (89) in Eq. (17),

we have after integration with respect to x. from x = S to x = x, with

Eqs. (85) and (86) used

1
O 0 Yb -(Yo02) s (Y )s + Lo ( -_1:- + 2)] = 0

(Yb) s . =o

(90)

which yields the solution for Yo2:

( _-:+ 2)

-Yb
( -+2)]

Y 0 = 1- j(Y0)s(yb)s +' [Ybs

(91)
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where the expression for Yb is supplied from Eq. (83) and the subscript
"si as before refers to quantities evaluated at x = S from the solutions

for the previous region.

For most practical rocket exhaust plumes X 0.4 and therefore Eq.

(91) will give

=- b { + o &(l - 2\) (Yb)s + - ( ) ]Y2 Yb 2Y sY~ Y sYb

(92)

Since in this region, the cross-sectional maximum value of the

temperature-dominated quantity p1/2T will be located on the axis and

the same turbulent mechanism controls both the momentum and energy

transfers in the radial direction, it is reasonable to assume the following

distribution

P1/2AT° = Pa1/2ATaO exp(- - )2 (93)

which is consistant with the distribution assumed for the previous region

as shown in Eq. (68) in which rm = 0 and (Pml/2ATmO) becomes (Pa1/2ATa )

at x = s. Plots of assumed radial profiles for this region are shown

in Fig. 4.

-48-



NORMALIZED RADIAL DISTANCE, ()

Fig. 4 - Assumbed Radial Pro-
files f o r the Fully-Developed
Flow Region (x<S)
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Integrating Eq. (20) with the use of Eqs. (73), (87), (88) and (93)

together with Eqs. (76), (85) and (86) and the conditions of Yb =(Yb)s

and YT = (YT)s at x = S, we have

[YT~~b - 1 14L + 2) - ~+ 2) j
[Yb - (Y T)s (yt )s +2 for 4 Yb (Yb) s

which yields the solution for Y T

(94)

y L 12 Xk I (Y)( - 1 +2)T- I Ts (Yb) s 14 I bs (95)

where Yb is given by Eq. (83).

For most practical rocket exhaust plumes ? :k 0.4 and therefore Eq. (95)

will give

1
T Yb { y ) (Ts~bs + 2kt+ (1 - 2) ( - + 2) [1- (Yb)s] }T sYs +2i ( -2)(Yb)s %M Yb

(96)

With these solutions obtained, the solutions for the temperature,

density, velocity and concentration fields for this region of the plume

can be obtained from the preceding regions of the plume.
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CONCLUSIONS:

The conclusions of this study can be summarized as follows:

1. The theoretical analysis based on the proposed aerodynamic model is

developed from a rigorous set of governing aerodynamic equations and

appropriate boundary conditions and therefore is valid throughout the

total flow field of the plume. Emphasis of the adopted integral approach

is on the gross aerodynamic behavior rather than the minute details of

the flow. Solutions have been obtained for such important aerodynamic

quantities as velocity, density, temperature and chemical composition

fields for the whole plume. For visualization, it is possible to con-

struct a reference flame contour, such as is shown in Fig. 1, based on

the solution of the composition field.

2. The formulation of the present analysis depends on a few coefficients

to be supplied from the related preliminary experiments. It would be

highly desirable to have these experiments conducted for the various

typical rocket exhaust gas systems. Furthermore, the present analysis

has produced far more information about the flow field than has been

brought to light from experimental investigations in the existing litera-

ture. The analysis should provide a guide to future experimental investi-

gations and a tool for correlation of results of such investigations.

3. The model for the present analysis should serve adequately for those

relatively large number of cases where the pressure variation does not

exert a controlling influence. Improved models for the study of after-

burning in a high-altitude rocket exhaust plume would still have to be

developed. Furthermore, the more realistic models would also have to

include any possible interaction between the plume flow field and the

ambient flow field around the rocket and a region of ignition delay ex-

tending down-stream from the rocket exit plane in which the detailed

chemical kinetics will be expected to play a significant role.
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