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ABSTRACT

If the electric field intensity in the Fraunhofer region of a one-
dimensional radiating source can be represented as a finite Fourier
transform of the source current, then the source current can be recon-
structed exactly by using prolate spheroidal wave functions and a seg-
ment of either the far field or the diffraction-limited image for the
noise-free case. An example of the image enhancement of this process
is given for the case of two equal point sources, which are unresolved
in the Rayleigh sense. The point response function of this process
shows that the resolution cell extent can be readily reduced to lessthan
10% of the Rayleigh cell with only 20 degrees of enhancement process-
ing. A method of generating the Legendre polynomial and power series
expansions of the prolate spheroidal angle functions of the first kind
and order zero, S,, (¢, z), has been worked out in detail. The Legendre
polynomial expansion coefficients for degrees n = 0(1)40 and the power
series expansion coefficients for degrees » = 0(1)36 are tabulated for
c =2,

PROBLEM STATUS

This is an interim report; work on the problem is continuing.
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IMAGE ENHANCEMENT WITH PROLATE SPHEROIDAL WAVE FUNCTIONS

INTRODUCTION

The problem of producing an image of a reflecting target or a radiating source of
electromagnetic energy in a noise-free case can be mathematically formulated in either
of two equivalent ways — by two consecutive Fourier integrals or by one convolution inte-
gral. In the first approach a Fourier transform of the target or source current yields
the radiated far field, so that the inverse Fourier transform of the entire far field will
yield the current distribution producing the field. However, in any real situation, only a
segment of the far field is known, so that when the transform of this segment is taken, an
imperfect replica of the object is formed. This replica, due to the finite extent of the
imaging aperture, is called the diffraction-limited image of the object.

In the second formulation, the diffraction-limited image is given by the convolution
of the object function (target or source current) with the point spread function of the im-
aging system. An analogous situation exists in signal theory, where the output of a low-
pass network is the convolution of the impulse response function of the network with the
time signal.

In each of these two formulations the far field or diffraction-limited image, which in
the context of the problem under consideration may be detected by a sensor remote from
the object, is known as a function of the desired quantity — the object function. In other
words the mathematical problem is to determine the target current as an explicit func-
tion of the available information, i.e., a known segment of the far field or the diffraction-
limited image, given the implicit relationship.

A special set of mathematical functions called prolate spheroidal wave functions
have the useful properties of being the eigenvalues of the Fourier transform kernel and
of being orthogonal and complete over a given finite interval as well as over the entire
real I'ne, Application of these properties to the imaging problem formulations mentioned
above allows the object function to be written as an explicit function of either the far field
or the diffraction-limited image, which are the presumed knowns.

In this report these two formulations of the imaging problem will be inverted by
using the prolate spheroidal wave functions, and the special case of image reconstruction
of two point sources which are unresolvable in the classical Rayleigh sense will be ex-
amined. Since there is a significant lack of these functions or their expansion coeffi-
cients in the literature, the procedure for generating the coefficients for two different
expansions will be discussed in detail. Tabulations of these coefficients are given in the
appendixes.

AN OBJECT AND FAR FIELD RELATIONSHIP

The current /(2) in a linear element may be related to the electric field intensity
E(#) in the Fraunhofer or far field region (1) by

al/? jom 2 sin ¢
E(¢) :J 1ye TR dz . (1)
-a/2
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The geometry of this relationship is shown in Fig. 1. There are several assumptions (2)
which are implied in the simple relationship of Eq. (1): scalar field theory is assumed
to apply, the medium between the source point 2 and the field point y is homogeneous,
the current in the radiator is linearly polarized, the object dimension is large compared
with a wavelength, and the range £ from the radiator is large so that the field point is in
the Fraunhofer region. Another condition which is often overlooked is that for Eq. (1) to
apply rigorously, the phase variation across the linear element must be zero. This con-
dition is so restrictive when application is made to practical problems that often it is
ignored as an expediency to the analysis. Of course the specific application must be
considered before the validity of any of the above assumptions can be supported, and the
justification for ignoring the constant phase restriction must be made. Also the specific
application determines the actual physical assignment of the variables in Eq. (1).

E (¢)
1)
- , Fig. 1 - The geometrical relationship between the
i . far field E(¢) and the current /(z) in a linear element
a
I “

Since the purpose of this study is to determine an explicit relationship for the object
current rather than to delve into the applicability of Eq. (1) to all physical situations,
statements of the above assumptions will suffice here as due caution against indiscrimi-
nantly using the far field and current relationship of Eq. (1).

To concentrate on the central problem of solving Eq. (1) for the current, the notation
can be simplified by making the following substitutions. Let

w = 2—; sin ¢, (2)
which is sometimes termed the spatial frequency, because its dimensions are radians
per unit wavelength. If only small angles of ¢ are of interest, sin ¢ can be approximated
by y/k so that « becomes 27y/AR. Considering wavelength and range as constant param-
eters, » can also be viewed as the distance variable in the far field just as 2 is the dis-
tance variable in the target. Restriction to small angles of ¢, however, is not essential
to the following formulations of the imaging problem, and the large-angle implications
are discussed in another report (3). Also let ¢ =z, so that at the endpoints of the linear
element, 2 = +a/2, ¢ = +7/2, Then the integral of Eq. (1) becomes

T/ 2 _
E(w) = J 1(t) el dt . (3)

-T/2

In the parlance of signal theory the above integral expresses the frequency distribu-
tion of a time-limited signal /(¢). This integral has an inverse which is the Fourier

transform

©

1(4) :2%7 E(w) et duw . 4)

-

Physically, this means that the time-limited signal 7(¢:) may be reproduced exactly, if
its entire frequency spectrum is known.
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In terms of antenna theory the integral in Eq. (4) states that the current /(¢) may be
determined exactly if the entire far field or radiation pattern of the antenna is known. In
real situations, however, only a finite segment of the far field can be experimentally de-
termined. This segment is often the extent that is contained within a finite receiving
aperture, Herein, the problem lies. The target or antenna current must be reconstructed
with a knowledge of the far field, only over a limited extent in space.

DIFFRACTION-LIMITED IMAGING

The integral relation in Eq. (4) will be termed the Fourier imaging integral, since it
expresses the antenna current or object function 7(z) as the Fourier transform of the
electric field intensity E(w) in the Fraunhofer region. In all practical situations the far
field is known only over a finite extent in space so that the reconstruction of the object
function is necessarily imperfect. The reconstructed object function in this case is
termed the diffraction-limited image, and the nature of this phenomenon as related to
resolution can be easily demonstrated by a simple example.

Consider two in-phase, equal-amplitude isotropic point sources separated by a dis-
tance 7. The far field radiated by these sources is simply

T/2 7
. jowt
J [6(t+7>+b<t—2£>:|e dt
..T/,z

= 2 Cosla). (5)

E(w)

Suppose now that an aperture of total extent 2, contains the only knowledge of the far
field. Then by the Fourier imaging integral in Eq. (4), the diffraction-limited image of
these two point sources is

1 (o T ;
1°(¢t) :—J 2 cos Ewe-;wz‘, dw
-w

: e, , o1
@, sin w0T<T + 2> W Sin w0T<T 2>

0
14 1 u 11 1
(A)O T (F + E) (A)O T <7—v it '5)

Hence, the image of two points is simply the sum of two sin z/2 functions, as shown in
Fig. 2, their peaks separated by T and each having a lobe width of 27/w;,. If the first
null of one sin z/2 function corresponds to the peak position of the other sin 2/2 func-
tion, the two points are said to be resolved in the Rayleigh sense. This condition of Ray-
leigh resolution occurs for «,7 = 7 and represents, in a practical sense, the smallest
aperture 2o, which can resolve two points separated by 7 for the case of Fourier
imaging,

(6)

In the above discussion two steps were involved to produce the diffraction-limited
image of the object function —an inverse Fourier transform to obtain the far field and a
Fourier transform of a segment of this far field to obtain the image. Often, especially in
the fields of optics and radio astronomy, the imaging process is represented by a single
step involving convolution. Identical results to those shown above are, of course, ob-
tained when the convolution representation is used.
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——
Fig. 2 - The diffraction-limited (Fourier) image
w . . . .
a of two equal phase and amplitude isotropic point
5 sources (see Eq. (6))
o
z

VTS VAV v

IMAGE PLANE COORDINATE, ¢

Since the far field is known only over a segment of space 2«,, let lI(w/w;) be an
aperture weighting function which is zero for |o| > «,, which is unity for |« < «,. This
function denotes no relative amplitude or phase weighting across the aperture. Now the
imaging integral in Eq. (4) can be written with infinite limits, since the integrand is zero
for lw| > o) as

1'(t) = -]—J I (ﬁ> E(w) e 1%t do (1)
27 . @,

which is the Fourier transform of the product of two functions. By the convolution theo-
rem (4) the above integral is equal to the convolution of the Fourier transforms of each
of the two factors IT and £. The transform of the aperture function Il is

27 %)
-0 ¢

7(t) = 1 I (i’) TR

w. sin .t
-0 9 (8)

7 @, 2

and the transform of £ by Eq. (4) is the object function /(¢). Hence, the diffraction-
limited image of /(¢) is

T/ 2 . '

, Aﬁ sin wo(t"l) , ,

1) =— j ot I(e") ae’. 9)
-T/2

The limits are finite because the object function is known to be zero outside the interval
[¢'| < T/2. The above integral states that the diffraction-limited image /' (¢) of an ob-
ject function /(¢) is the convolution of the object function with a sin 2/z function, which
is the point spread function of a uniform aperture. For the case of the two equal point
sources considered previously, substitution of the object function /(¢) = &(¢ + 1/2) into
the convolution integral in Eq. (9) leads to the identical results of Eq. (6) for the image
produced by the two-step process of finding the far field and then taking a transform.

The convolution integral above gives the image /'(¢) as a function of the object /(7)
and the sin 2/2 point spread function. The central problem considered in this investiga-
tion is how to determine the object function given information measurable by a remote
sensor. Hence, it is required that the above integral be solved explicitly for the object
function 7(¢) in terms of the remotely sensed image function 7'(¢).
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To solve Eq. (9) explicitly for the object function /(z), the convolution theorem pre-
viously stated is applied with the results of Eq. (7). Taking the inverse of both sides of
Eq. (7) yields

@ T/2
J ') @t qr =1 (f) J 1) It aqr . (10)

0 T/2

If both sides of Eq. (10) could be divided by I («w/w,) and the Fourier transform over

|o] < o taken again of both sides, the object function /(¢) would indeed be given explicitly
as a function of the image 7'(¢). However, this division is invalid since Il (w/w) is zero
outside the interval [»| < «,. Taking finite limits for the transformation on both sides
results in the identity of the diffraction-limited images 7'(¢). However, it will be shown
in the next section that both Eq. (3) for the far field and Eq. (9) for the image, each of
which involve the object function implicitly, can be solved for the object function explic-
itly by the use of prolate spheroidal wave functions,

EXACT IMAGE RECONSTRUCTION
The Prolate Spheroidal Wave Functions
One of the eleven coordinate systems in which the scalar wave equation
(V24224 = 0 (11)

is separable is the prolate spheroidal system. This system can be formed by rotating
the two-dimensional elliptic coordinate system consisting of confocal ellipses and hyper-
bolas about the major axis of the ellipses. By separation of variables the solution of

Eq. (11) in this system is

on = Spal €7 By (0.6) 7% mab, (12)

sin

where 5 and R are the prolate angular and radial wave functions, respectively, of
the first kind, order =, and degree » (5). The coordinates are (7.£.¢) and ¢ = kd’/2,
where k is the constant in the wave equation and d is the interfocal distance. Although
the geometry of the prolate spheroidal coordinate system is not of particular interest

here, the above discussion explains the nomenclature for these functions.

The properties of these prolate spheroidal wave functions are discussed in detail by
Slepian and Pollak (6), and those properties which are of particular application here are
summarized in the equations below. Note that only order zero (»=0) wave functions are
used, the angle function contains the independent variable, and the radial function is
evaluated at unity:

“o w 'jwt . 2¢
J Son (:, w—()) do=2j" o R, (c,1) S, (C, 7) s (13)
-,
T/2 '
"% osin wy(e’ = ¢) 2¢ _ 2¢"
JT o= Son lo ) = TR Sop (e S ) a4
=1/2

Z S,le,x) 8, (C,. T) ] 3( _ﬁ) ' (15)
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In the completeness relation in Eq. (15) the normalization factor is

1
N, = J [S(m( c,m)]z dx (16)
1

and $§ is the Dirac delta function. Two other properties of the angle functions S,,(¢, z)
which are of interest here are that S,, is an even or odd function of z as the degree » is
even or odd and that S, has exactly » zeroes in the interval [z| < 1. Most importantly,
these functions are orthogonal and complete over both |z <1 and |z| < ®. These prop-
erties will now be used to solve for the object /(¢) as an explicit function of either the
far field £(») or the diffraction-limited image 7'(¢),

Reconstruction Using the Far Field

The relationship between the far field and object function is

772 )
E(w) = J 1) e’*" ae, ®3)
-7/2
where the object function is known to be zero outside |¢| = 7/2, This is to say that the

object is known to be entirely included within the |z| < 7/2 extent.

Multiplying by §,, (¢, w/w,) and integrating over the finite range |w| < w,, in which
the far field is known, gives

@, " @, w T/2 )
J E(w) S, (c, ;> dw = J Son < . Z)—) J 1(¢) e’ dt | do . (1)
w 0 -@y 0 -T2

Consider now only the right-hand side of the above equation. Since the integrands
are analytic, the orders of integration may be interchanged to give

T/2 @4 )
J 10¢) J Son (c, %) e duw|de . (18)
-T/2 @y o

From the property of the angle functions as expressed by Eq. (13), the inner integral re-
duces the above to

T/2
27" w, Ry, (e, 1) J 1y s, <02—T‘> di. (19)
-T/2

Dividing both sides of Eq. (17) by 2j"« £, yields

W

w E(w) S (c, — T/9
0 on w
J —__—i) dw = J 1(¢) Son (c,%) dt . (20)

-
2j"wy By Lo 1) T2

-wO

Multiplying the above equation by S, (¢, /N, and summing over all » gives
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vy Elw) § <c, i) ® 72
0 on

2 gy )7 Sl e J 1) 8, (e 2E) e 21)
2j™w, Ry, (e, 1) N T

n=0 " ~T/2

Z.D: Sonle, @)
N

- n
n=0 wo

Interchanging the orders of integration and summation on the right yields

T/2 2y 8, (ec,z) S <c —)
on' &> on \ T
J 1(¢) Z N di, (22)

n
which by the completeness property in Eq. (15) reduces the above to

Jm 1) 8 (;p%f) di = 1(?%) (23)

-7/2

Returning to the left-hand side of Eq. (21) and defining

“o E(w) § n <c, ﬂ)
P P (24)

-wo

we have the desired relationship for the object function as

- T
Z Son(c,m) E. = 1<‘2‘m> . (25)
n=9

This relationship states that given only a segment, |»| < «, and «, arbitrary, of the far
field £(w) from an object existing within some extent I' in space, that object /(:) may be
recc astructed exactly. It should be remembered that the Fourier imaging integral in

Eq. (4) gives the diffraction-limited image, which is only an approximation to the object
function when only a segment of the far field is known. Of course, for exact reconstruc-
tion the far field must be known exactly (no noise) over some | < » , and an infinite
number of wave functions must be employed. Compromising either of these requirements
will again lead to an approximation of the object function. The theoretical predictions of
the degradations of noise on this reconstruction scheme are somewhat pessimistic (7,8)
and will not be examined here. The effect of truncating this scheme to a finite number of
degrees will be illustrated by example in the following section.

Reconstruction Using the Diffraction Image

The relationship in Eq. (9) between the diffraction-limited image 7/'(¢) and the object
function 7(¢ )

7/2 : 1

, a)o sin wo(t—t) , ,

= — —_— [ (t") d¢

(1) == JT ) (¢") (9)
~-1/2

can be solved in an analogous manner explicitly for the object function. Multiplying by
S,, (¢ 2¢/7) and integrating over the finite extent [z| < 7/2 in which the target is known
to exist gives
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T/2 T/2 T/2 . '
, 21 _ % 21 sin wo(t—t ) , , 2
J. 1'(¢) 8, 62 = J‘ on cz 7:> {J. —o ey [ede e (26)

-T/2 T/2 T/2

Consider now only the right-hand side of the above equation. Since the integrands are
continuous, the orders of integration may be interchanged to give

T/2 7/2 . ’
w, , sin wo(t -t") 2¢ ,
—77 J (") |ij _——__&’O(l‘tl) SOn (C, T) dt | dt’ . (27)

-T/2 ~T/2

From the property of the angle functions as expressed by Eq. (14), the inner integral re-
duces the above to

) T/2 ,
=2 Ry, (c,1) ‘f 1t"y 8,, G“ 2§7> de' . (28)
-7/ 2

Dividing both sides of Eq. (26) by (2¢/7) R2, (¢, 1) yields

T/2 2¢

1) Sn(’_) 7/ ,
L o \°T) J s, G%) . (29)

2¢c 2
~T/2 Ry, (e, 1) -T/2

Multiplying the above equation by $,,(c,z)/N, and summing over all » gives

T/ 2 ,

© T/2 ' v 2t o
. Soale,x) J 1) S, <C’ T) B Syale, ) , ( 20 ) + (30)
= o dt = E — 1t 8,, le, - de’.

2
n=0 " ~T/2 Rinte, 1) n=0 n ~T/2

Interchanging the orders of integration and summation on the right yields

El

20, ) 8, (,2Z—’>
wZ : A (31)

-T/2

which by the completeness property of Eq. (15) reduces the above to

7/2 , i
J 1ty s ( -21) de' = 1(1@. (32)
T 2

-7T/2

Returning to the left-hand side of Eq. (30) and defining

(33)

dt,

’ 25
. Jr/z 1°(t) 84, <c, 7—)
LT/2 nRgn(C D

we have the desired relationship for the object function as

2 Syale, ), = /(%1> : (34)
n=0
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This relationship states that given a segment |¢| < 7/2 of the diffraction-limited image
1'(¢) of some object which is known to lie entirely within the image segment, the object
7(¢) may be reconstructed exactly. Again, for exact reconstruction the image must be
noise free, and an infinite number of degrees of angle functions must be employed. It
should be remembered that the range from the object to the imaging aperture, wave-
length, and aperture extent are involved in « and, hence, in the constant parameter

c = w,(7/2), which appears in all wave functions.

IMAGE ENHANCEMENT OF TWO POINT SOURCES

In the previous section it was shown that from a segment of either the far field or
the diffraction-limited image in a noise-free environment, the object function can be re-
constructed exactly using prolate spheroidal wave functions. To illustrate the improve-
ment in resolution that can be obtained by this reconstruction method as opposed to the
diffraction-limited (Fourier) imaging method, the reconstruction process will be applied
to the equal phase and amplitude point sources considered previously.

Let the two point sources be known to exist within {z| < 7/2, and in particular at
¢t = T/4 andat ¢ = -7/4. Then the far field from these two equal points is

T/2 . .
E(w) = J [8 (H—Z—>+ 5(5—%)} RASArT

-7/2

2 cos {—w. (35)

Substitution of this far field expression into the image reconstruction parameter £ in
Eq. (24) yields

“o
E = 1 cos—T-wS e, 2\ do. (36)
i"w, N R__(c,1) 4 on “o
0''n on ’ @y

By noting that for even values of » the angle function §,, (¢, »/w,) is an even function of
w/w,, the above integral may be evaluated at ¢ = 7/4 by the property in Eq. (13) as

“o .
J cos ?f- wSOn <C, a)—‘:) dw = 2]'”(4)05’0"(0,]) SO" (C,é—) s (37)

so that use of Eq. (37) in Eq. (36) simplifies the exact object function reconstruction
equation in Eq. (25) to

1
® g (c,—-) S,ple z)
P(£e) =2 ) 2 . (38)

But since » is even, the angle functions are also even so that Eq. (38) may be written as

® 1 © 1
. I . Z SOn (C, "2-> Son( c,x) Z SOn (C, -E> SOn( c,x) (39)
Z = Nn + N >

n=0 n=0 "
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which by the completeness property in Eq. (15) simplifies to

T _ _1 . 1
[(—2—93)—8(m 2>+é<x+2>, (40)
which is of course the exact object function.
The diffraction-limited image /'(¢) can likewise be reconstructed to the exact object

function in Eq. (40). From Eq. (35) the far field from two equal point sources located at
t = T/4 and ¢ = -T/4 iS 2 cos Tw/4, SO that the diffraction-limited image by Eq. (4) is

1'(¢) = = 2005%‘606

. T . T
@, sin w, (¢ +Z @, sin &, t-—4— . (41)

Substituting this expression for /'(¢) into the image reconstruction parameter /, in Eq.
(33) gives

. T . T
772 ) | st0 @ \t g sin @, |0 -

77 2t
I . — — + — S <C’, 7“) dt . (42)
" 2eN,R2 (c,1) J i w (1 +F w [ -L o r

-T/2 0 4 0

Using the property of these wave functions as expressed by Eq. (14) in Eq. (42) simplifies
the exact object function reconstruction equation in Eq. (34) to

1

.8 c,=] S, (c,@)
T ) on(vg) on' ¢
’(Eo”> ~Z: N

n=0 n

1
@ Sn<c,——r>5n(c,x)
e — , (39)

n=0

which again by the completeness property in Eq. (15) becomes the exact image

1(% ) -5 <ac -%) + 3(33 +%> (40)

Hence, it has been illustrated by example that by using either a segment of the far field
or the diffraction-limited image of two point sources, the object function may be recon-
structed exactly using prolate spheroidal wave functions.

To find a value of ¢ for which two equal points are not resolvable by Fourier imag-

ing, consider the diffraction-limited image of two equal points as given by Eq. (41) in
the z = 2¢/7T scale:

L L
@, sin ¢C <J: 2> w sin ¢ <:v + 2) (43)

I'(m):7 ; +?0 "
C<,"§> C<x +—2~>
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where use has been made of the relation ¢ = «,(7/2). Clearly the two points are re-
solved in the Rayleigh sense if ¢ > 7. Hence, if ¢ is chosen to equal 2, a meaningful
test of image enhancement below the classical limit of resolution can be performed.

The diffraction-limited image of two equal points is shown in Fig. 3a for ¢=2. As-
suming the object is contained within |z| < 1, the reconstructed image as given by Eq.
(39) for enhancement of n =0 through » = & degrees, shown also in Fig. 3, where specifi-
cally # = 10 (Fig. 3b), # = 20 (Fig. 3c), and # = 40 (Fig. 3d), clearly illustrates that the
two points are resolved by this process.

I T
| l
| | (a)
[ [
| i

e
«
T

[f)
S \ I
2
E | | ]
z | | 5
| | E 0.0 /\ \//\
a /! | &
B [ I
0.0
| |
| |
! ! | | ! | § | 1
e -3 -2 o1 o ! 2 3 4 ™30 0.5 0.0 0.5 1.0
IMAGE PLANE COORDINATEs X IMAGE PLANE COORDINATEs X
1.0 1.0
M=20 () M=40 \ (d)
0.5 0.5 — \
w ud
: \ ? )
SO PN 5 oA A\ A A
ol 1Y)
\VARRY; £ I
05 | | 05 | !
o -0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
IMAGE PLANE COORDINATEs X IMAGE PLANE COORDINATEs X
Fig. 3 - The ¢ =2 diffraction-limited image (a) and the enhanced images

(b), (c), and (d) of two equal point sources for ¥+1 degrees of enhancement

THE POINT SPREAD FUNCTION

In any real reconstruction process the number of degrees of the wave functions
which are used will certainly be finite. This means that the completeness property of
Eq. (15) does not hold exactly. The summation over a finite number of » values will not
give a delta function but something akin to the point spread function in diffraction-limited
imaging systems. However, the width of this spread function in the reconstruction proc-
ess is considerably narrower than the one for the Fourier imaging process. Hence, an
improvement in resolution is possible if enough wave functions are employed.
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To illustrate the dependence of the point spread function of this enhancement system
on the number of terms employed, consider a point source of unit amplitude located at
t =0, 1(¢) = 8(0), The far field by Eq. (3) is then E(w) = 1, so that the reconstruction
parameter E, of Eq. (24) becomes

E_ = ! on N <c, ﬁ) dw. (44)
o2y N, R (e 1) ) on “o
0
By the property of Eq. (13) at ¢ =0, the reconstructed image becomes
. S, .( ) 8,.(c,0)
T _ E on' G E) DoptCs 45
I(E? m) = A% 5 ( )

n=0

which is simply the completeness relation of Eq. (15) if an infinite number of the angle
functions are summed. For ¢ =2 this point response function is shown up through de-
gree M of enhancement in Fig. 4. Note that the main lobe width reduces rapidly from
M=10 (Fig. 4a) to ¥=20 (Fig. 4b), but much less reduction occurs from #=30 (Fig. 4c)
to M =40 (Fig. 4d).

0S5

M=10

0.5

M=20

w L
. / g
= =
PRI VaN oy 2 oo \/ \/A Ja
& &
-0.5, l ] 0.5 I J
-1.0 0.5 0.0 0.5 1.0 ~1.0 ~0.5 0.0 0.5 1.0
IMAGE PLRANE COORDINATEs X IMAGE PLANE COORDINATEs X
1.0 1.0
M=30 M=40
(c) (d)
o5 05—
s
ol
= =
S aolh A FANVAN = oA A A /\/\ /\/\/\/\ Y
SO A RGeS IR N tetatd /i TEANsee
a
s | I s L I
0.5 00 05 1.0 -1.0 0.5 0.0 0.5 1.0

-1.0

IMAGE PLANE COORDINATEs X

IMAGE PLANE COORDINATEs X

Fig. 4 - The point-response function of the ¢ =2 enhancement process
for M+ 1 degrees of enhancement
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The dependence of the main lobe width on the number of degrees of enhancement
M+1 can be more vividly illustrated by a comparison with the point response function
lobe width of the ¢ =2 diffraction-limited system. For the Fourier imaging system the
point response function is simply

w. .
1" (2) :7"72“ (46)

The width of this main lobe is ». The main lobe widths of the enhanced system in Eq.

(45) were measured from #=2 to ¥=40 in increments of two and divided by = to give the
enhanced lobe width relative to the Fourier system lobe width. The results of these cal-
culations are shown in Fig. 5. There is no point in the figure for #=0, because the angle

function §,,(2.2) has no zeros within |z < 1. Hence, the point response function of
Eq. (45) also has no zeros by which lobe width is measured within this valid enhancement
range of |z| <1, For only #=2 degrees of enhancement the main lobe width is less

than half of its diffraction-limited counterpart, and for # =20 the resolution has been im-
proved over ten times that of the Rayleigh case. Above ¥ =20 the improvement is much
more gradual. The failure of these points to lie precisely on a smooth curve is due to
the approximation of the zeros of the main lobe by linear interpolation between adjacent
values of » between which the response function changes sign.

0.3 —

MAIN LOBE WIDTH

DEGREES OF ENHANCEMENT, M

Fig. 5 - The point-response-function
main lobe width of the enhancement
process relative to that of the corre-
sponding ¢ = 2 Fourier imaging sys-
tem for M+ 1 degrees of enhancement

GENERATION OF THE WAVE FUNCTIONS

The prolate spheroidal angle functions are generally found as a weighted summation
of Legendre polynomials of the first kind with ¢°" designating the weight of the rth-degree
polynomial for the nth-degree, order zero angle function. There is a noticeable lack of
tabulation in the literature of these ¢°" expansion coefficients and of the angle functions
themselves. Flammer (5), whose book is now out of print, provides the ¢°" coefficients
for » = 0(1)3* and for ¢ = 0(0.2)5 and the angle functions S, (¢, cos 6) for ¢ = 0°(5°)90°,

*This notation designates that n takes on values from 0 to 3 in steps of 1.
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n = 0(1)3, and ¢ = 0.5(0.5)5. These tables are reproduced in the readily available NBS
Handbook AMS 55 (9). More extensive tabulations of the angle functions S, ,(c.z) can be
found in an AFCRL report (10) for ¢ = 0.1(0.1)10, » = 0(1)20, and = = 0(0.05)1.

Although these tabulations provided an independent verification of the expansion co-
efficients and angle functions generated in this report, neither the range of the degree »
nor the increment of « was sufficient for the production of the enhanced images shown in
the previous section. Also, in a real situation, it may not be convenient or desirable to
force the parameters of the object and aperture extents, range to the object, and wave-
length to fit a predetermined value of the constant ¢ which appears in the angle function
S,,(c,z). Hence, it is advantageous to have the capability of generating the angle func-

on

tions for any value of ¢ and for any increment of z.

Legendre Polynomial Expansion

The procedure described in this section for determining the angle function expansion
coefficients follows that of Flammer (5) but with several typographical corrections made.

Since the differential equation
(1-22% 8., (c,x) - 22 8; (ec,@) + (A, -c%e®) S,,(c,2) =0, 47)

which is satisfied by the angle functions, differs from the one which is satisfied by the
associated Legendre functions for ¢ =0 only by an essential singularity at infinity, an
expansion in Legendre functions is suggested:

Sealee) = )0 d¥™c) Pola) . (48)
=0

d , 1

Here the prime indicates a summation over either even or odd values of r, depending on
whether = is even or odd. Substitution of Eq. (48) into the differential equation in Eq. (47)
yields a three-term recursion formula for the 42" coefficients:

on

AdT, 4 (v, =N ) dy" + Bd = 0. (49)

r+2 r-2

The factors 4, B, and , are functions only of » and ¢:

14:(7#-2)(7'+1)c2 (50a)
(27 +3)(27r +5) 7
B - r(r~1)c? (50b)

(2r =3)(27 - 1)’

2r2 427 -1 2 (5OC)

= 1 _—
L T T T

By letting

_2r-3 r
rr e B (51)

r-2

the ratio of d,,, to 4, can be found as
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Mepy = 4 ;*2
8,
= >\071—’y7‘ —N— ? (52)
where
72(7'_1)204 (53)

a (27 =D2(2r = 3)(27 +1)
and where the initial coefficient ratios are defined as

Ny = Nn =7 (54a)

and
Ny = Ao =74 (54b)

3

Equation (52) may be solved for the ratio of 4, to «,_, for » > 2 as

Noe P (55)

From the condition that

lim N, =0 (56)

r > o

the convergent infinite continued fraction expansion of Eq. (55) for » =x is

Pu

nre /jn+2 .
- 57
- i (57)

on —'yn+4 -

On_yn*-z B A

Similarly, from the condition that 4, =0 for r < 0, Eq. (52) may be expanded into the
finite continued fraction

/ - : By
Novo = N =V - By ) (58)

-y -
on 7n-2 - —
>\On yn—4

Equating N, ,, in Eq. (57) as computed downward from some ¥, =0 to ~,,, in Eq. (58)
as computed upward from ¥, or N, yields a transcendental equation, the roots of which
are the eigenvalues X, , which is of the form

Ulhy,) = Uhg )+ Uy ) =0, (59)
where
U, =N (60)
as computed upward from Eq. (58) and

(61)

as computed downward from Eq. (57).
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A method of Bouwkamp (11), also briefly discussed by Flammer (5), provides a
method whereby the transcendental equation in Eq. (59) is used to obtain a correction

factor 3 to an estimated value of A.
can be simply

AN, =aln+l),

on

which are the eigenvalues of the differential equation in Eq. (47) for ¢=o0.

transcendental equation in Eq. (59) as
O =U-=U(N+ 5N
xUN) + 38U

U +U, + 88U + 80,
and defining

sSU
A = —1
! SA
and
A
2 A
the correction factor 3x is found to be
U +U
S = - A] 2 ’
1 + AZ
so that the corrected eigenvalue A\’ is
A= N+ SN

For small values of ¢ (<10), the first estimate

(62)

Writing the

(63)

(64a)

(64b)

(65)

(66)

The 4, and A, terms in Eq. (64) can be found from the first variations of »,,, and

N, with respect to X as given by Eqgs. (52) and (55) as

SN BA br 5N
= +
r+2 (Nr)z r
and
(N2
W = [sxon—szvﬂz].
r
Hence,
AL S0 BN,
! b\>\On 8>\On
B B, B -
SN IS TR R [ Al N | TS Chul S (R
(N2 (N,_)? (N,_)?

where the last term is 5,/(N,)*, if » is even, and 8,/(N,)?, if 2 is odd.

(67a)

(67b)

(68)

Also
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dU SN

5, = - 2 _ _ Pnee
é>\'On 5>\0n
- (N v (1 + (M) 1+ (Nnrg)” (69)
By L Bty Bp s

where the last term (N.)?2/8, is insignificantly small.

Since the eigenvalues were accurately determined by Bouwkamp's method, the values
of N, were automatically computed so that the expansion coefficients ¢! can be com-
puted from Eq. (51) as

d
R VL SV (70)
r-2 r(r-1)¢?

This relation easily gives ¢, relative to ¢, or ¢, depending on whether » is even or odd,
respectively. These initial coefficients may be obtained from the particular normaliza-
tion scheme chosen, which here will be that given in Flammer (5). Requiring for » even

(-1 2p!

Sonle,0) = PO) = —————" (71)
i
2 (2 )
and for » odd

(-1) ("D 2 (g 4y

S’ ,0) = P/(0) =
anl €5 0) ,(0) 271(” - ]> ' (n " ]> ' (72)
2/ °\ 2 /)
where the prime denotes the derivative of the function, substitution of these values at
z=0 into the expansion in Eq. (48) yields for » even
D op0) @)™ = P(0) (73)
= [
and for » odd
D Pl0) @)™ = PlO). (74)
r =1
Explicitly, the initial coefficients are given by
dOn - Pn(o)
0 P,(0) 1<)d2 P,(0) i (75)
+ P(0) — + — + ...
0 2 d, 4 d,
and
Jon - P(0)
! d, d, ' (76)
ol J— —_
P (0) + P,(0) 2, + P.(0) 2, t.
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A tabulation of these 4" expansion coefficients is given in Appendix A. The eigenvalues
N, are tabulated in Appendix B.

The prolate spheroidal radial functions ® (¢, z) may be found in a similar fashion
as the angle functions were found, but since both satisfy the same differential equation in
Eq. (47), they must be proportional to one another. In the image reconstruction process
only the radial function at = =1 is used, and this single value is related to the initial ex-
pansion coefficients by

n 2 on
2 (%') 4 (77a)
Ryyle, 1) = ——
for » even and by
an, (n -1 n+1 on
2 ’“( 7 )l ("‘—2 )"dl (77b)
Bonle: 1) = 5(ntD)!

for » odd. A tabulation of these radial functions at z -1 is given in Appendix B.

Another term which is needed in the enhancement process is the normalization fac-
tor N,. As introduced initially in integral form, this factor may be found more readily
in terms of the ¢?" expansion coefficients as

©

ony 2
Mo =2 Z (er+)1 ' (78)
r

r=9,1

These normalization factors are also tabulated in Appendix B.

Power Series Expansion

The angle functions which are the solutions to the differential equation in Eq. (47)
may also be expressed as the simple power series

©

Syale,a) = Z’: al™c) " . (79)

r=0,1
The power series coefficients q,, of course, can be found from the ¢, and Legendre poly-
nomial coefficients, if the latter are given; this technique was used as a cross check of
the method given below. However, the power series coefficients can be found directly in
a manner similar to that for the «,.

Differentiating the angle function expansion in Eq. (79) gives

S(;n(c,w) = Z a,rm"l (80)

and again

. (81)
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Substitution of the function in Eq. (79) and its first two derivatives in Eqgs. (80) and (81)
into the differential equation in Eq. (47) gives

@®

Z’: a, (7 -Da""? - Z a, [r(r+l) —)xon]x’ - ¢? Z a,z"*? = 0. (82)

r=0,1 r=0,1 r=o,1

Adjusting the indices so that the powers of =z are r only gives

3]

CL‘ ©
Z’: a, Hr + D (r +2)a" + Z_" a, [Ngy = 7(r +1)] &" - 2 Z a, @ = 0. (83)

r=0,1 r=0,1 r=2,3

Defining @, =0 for ¢ < 0, the index of the last summation in Eq. (83) may be extended to
0, 1. Collecting all terms under a single summation then gives

@

Z {(r +D(r+2)a,,, + [Ag,-r(r +1)] a, - c? ar_z}xr =0, (84)
r=0,1
which contains the desired recursion formula between «,_,, <., and «,,, as
(r+D{r+2)a, ., + [Ny, -7(r +D] e, - c? a,_, = 0. (85)
Defining
' A 49
Nr+2:—(7+1)(r+2) -‘a—-, (863.)
vy = rlr+1), (86b)
and
B, =-cir(r-1), (86¢)
the recursion relation in Eq. (85) becomes
N (®7)
>\0n—’yr _Nr+2

which is the same form as the recursion relationship in Eq. (55) for the 4, coefficients,
Hence, the same method and formulas may be used for computation of the power series
coefficients relative to a, or «, as was used for the Legendre expansion simply by re-
defining N,, v,, and 3, according to Eq. (86). A tabulation of these power series expan-
sion coefficients is given in Appendix C.

In using Eq. (87) an # is picked such that the error in the computation of ¥, without
the vy, , term is less than some predetermined accuracy . Expressed in a formal way

Ny
— -

v (88)

< e

>

where Ny is N, without the #,, term. Simplifying Eq. (88) yields
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[
Nirs o

— " i< e. 89
>\0n_7M ‘ ( )

If the error in the computation of N, without the ~,,, term is negligible, then certainly
the error in the ~y,, term without using ~,,, is also negligible, so that Eq. (89) becomes

A M+2)(M+ 1)

<e. 90
Nop = MCHM+D] [N~ (M+2) (M+3)] ) (%0)

Now the eigenvalues A, are on the order of n(n+1), and since 2 << #, Eq. (90) can be
approximated by

C . (91)
M(M+3)
Solving for ¥ and noting that ¢ >> ¢,
Mo>—. (92)
NG

For example, for ¢ =2 and a decimal accuracy of 10~°, ¥ is approximately 2000 or
greater,

The initial expansion coefficients ¢, and «, may again be found directly from the
same normalization requirement as before. For » even

(¢,0) = a, = P,(0) (93)

S()n
and for » odd

Seale,0) = ay = Pi0), (94)

1

which is much simpler than for the ¢, and ¢, coefficients.

Another term which is required in the enhancement process is the normalization
term which was defined in the integral form as

1
N = J I:S(m(c,:v)]2 de. (16)

n
=1

The integrand expressed as a power series for » even is

[Son(c,w)]2 = ) pimat (95)
i=0
where the coefficients 5, are
[
BN = Z a;-m a,?fj. (96)
j=0

The normalization factor is then
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1 ©
. J {Z’ b?"w"’}dm
1 =0

=z
i

ey}
"

b 97
21,Z=01',+1. ()

The integrand expressed as a power series for » odd is

I

©

[Sonu,m]z = D pom it (98)

=1
where

i

bem = et et (99)
i=1

so that the normalization factor becomes for » odd

8

| oo
o
3

~
+
(3]

(100)

«
n
RN

Verification of Results

Although care was exercised at each step of the generation of the eigenvalues and the
relative and absolute expansion coefficients to reduce series truncation error to the same
order as roundoff error, verification of the results is still highly desirable. The NBS
Handbook (9) and the AFCRL report (10) mentioned earlier provided some substantiation
of the overlapping range of values for ¢=2.

However, by far the most useful verification was provided by W. H. Buckler of the
NRL Acoustics Division who, on request, provided the author with a set of Legendre
polynomial expansion coefficients at ¢ =2 for » = 0(1)36 in double precision (25 signifi-
cant figures). His method of checking used the Wronskian for the angle functions of the
first and second kinds and the first derivatives of each. The single-precision (10 signifi-
cant figures) 2" expansion coefficients shown in Appendix A agreed through the ninth
significant figure with those provided by Buckler. By recombining Buckler's double-
precision ¢°" coefficients with the proper coefficients of the Legendre polynomials, a
verification within eight significant figures of the single-precision power series coeffi-
cients shown in Appendix C was obtained. Such a recombination using single precision is
not possible due to the rapid accumulation of roundoff error.

An indirect check of the generated angle functions can be performed by the basic
differential equation in Eq. (47) at z=1 which simplifies to

Si(e, 1) A, - c?

on

= (101)
Son(c, 1) 2

Again this check must be performed in double precision, because roundoff error in single
precision is prohibitive in the derivative at 2=1. Using Buckler's data, Eq. (101) was
satisfied by both the Legendre polynomial expansion and the power series expansion
‘within one part in 1072% at « =0 with an almost linear decrease down to 10-'* at « =36.
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Another consideration is that of the number of expansion coefficients necessary to
reduce the series truncation error to the order of roundoff. Of course the number of
terms required varies both with order » and with the independent variable 2. For z=1
the largest number of expansion coefficients will be needed for any given ». By comput-
ing the partial sums of the angle function series expansions at z =1, the number of terms
necessary to reduce the truncation error to that of the same order as roundoff is readily
observed. For the Legendre polynomial expansion in Eq. (48) the following empirical
formula gives the necessary number of expansion coefficients for single~precision com-
putation of the angle functions

(&) vaer (102)

and for the power series expansion in Eq. (79) the number of coefficients is given by

n \? n (103)
(12. ) Yy T 16

The tables of the expansion coefficients in Appendixes A and C include a sufficient num-
ber of coefficients according to the above criteria.

SUMMARY

If the electric field in the Fraunhofer region of a radiating source can be related to
the source current by a Fourier transform, the inverse transformation taken over the
finite limits of a known segment of the far field will produce the diffraction-limited
image of the source current. This diffraction-limited image can also be formulated as
the convolution of the object current with the sin 2/2 point spread function of the finite
aperture imaging system. Both of these formulations may be solved explicitly and ex-
actly for the object function given either the far field or the diffraction-limited image in
a noise-free environment by using the special properties of prolate spheroidal wave
functions. Although exact reconstruction requires an infinite number of these wave func-
tions, considerable image enhancement and resolution improvement beyond the classical
Rayleigh limit can be obtained with only ten or 20 degrees of processing. A simple ex-
ample of two equal point sources unresolvable in the Rayleigh sense readily illustrates
the resolution improvement capability of this process. Because of the meager tabulation
of these wave functions in the literature, the method of generating the Legendre polyno-
mial expansion coefficients and the power series expansion coefficients of these functions
was given in detail with a tabulation of the results.
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Appendix A

THE COEFFICIENTS OF THE
PROLATE SPHEROIDAL ANGLE FUNCTION

LEGENDRE POLYNOMIAL EXPANSION

d®® = D COEFFICIENT
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D COEFFICIENT

7.92760280<=001
1,30491677-001
5.97968297<003
=1,30795467-004
1,68419464s006
$1,43184143<008
8,64641366=011

D CREFFICIENT

6,76858005+002
9.57492177«001
1.81857167=003
S2.63670709=005
2,42510649=007
=1.54902666=009
7.29180410=012

D COEFFICIENT

1,09666396=003
4,41971206=002
9,81817303=001
=4.,44374947:002
8,37021714=004
29.05270556=006
6,46434442:2008
23,303114141<010
1.273016472012
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7.72042334=006
6,03691285=-004
3,283672251=002
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=3,29146026:002
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1,08471704=008
23.951425335<011
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D COEFFICIENT
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D COEFFICIENT

1,76997193=013
5,19950739-011
1,02298531+008
1,65759549-006
2,15092641-004
2,00228548-002
1,00282n63+000
z2.00336207-002

1,84438040-004

=1,05089n067-006
4,19318729-009
21,25584336-011
2,95289843-014

D COEFFICIENT

2,26401017-016
8,94304377-014
2,39335915.011
5.41821385-009
1,03615519-006
1,58470488-004
1,72564556-002
1,00209223+000
=1,72624088-002
1.38596911-004
%6,95225927-007
2.46202951-009
=6,59058586-012
1,39370572-014

D COEFFICIENT

2,21565989~-019
1.132771485016
3,95334987:014
1,187067504011
3.,107934569-009
6,88898973.007
1,21531438-004
1,516196385-002
1.00161376+000
21,51655265-002
1.07942618-004
=4 ,83545598-007
1.53907279<«009
53,72394005:017
7.154411389«015

13
13
13
13
13
13
13
13
13
13
13
13
13

15

15
15
15
15

15
15
15
15
15
15
15

x

NN W

11

15
17
19
21
23
25
27

2

NU W

0

i1

15
17
19
21
23

27
29

D COEFFICIENT

1.,32949984=013
3.48223908=011
7,32392592=009
1.29200025=006
1.82561050-004
1,84353923=002
9,96923304:001
=1.84432574:002
1,58197855=004
=8.44051281<007
3,16725280=009
=8.,95402892=012
1,99386610<014

D CGEFFICIENT

1.69993518<016
5,890379365014
1,661643472011
4,04992032=009
8,35702105=007
1,37599635:004
1.60744022:002
9,97664244=001
21.60789478-002
1.21330176=004
25,74234166=007
1,92518268=009
24,89340401=012
9,85182612:015

D COEFFICIENT

1.66320652=019
7.36392653=017
2,67877255:z014
8,568110128:5012
2.40589508z009
5.7044?834:007
1.07365214:00n4
1.,42479170=0n2
9,9816/5667=001
21.42507224=002
9,59821674:005
=4.08124051=007
1.23640047=009
52,85434531.:012
5,2632%783=015

29



30

P

Db NVO

10
12
14
16
18
20
22
24
26
28
30

Pl

oA NO

10
12
14
16
18
20
22
24
26
28
30
32

H. A. BROWN

D CQEFFICIENT

1,71245784-022
1,10026359-019
4,85076958-017
1,86116998.014
6,35596632<012
1,90197048-009
4,80524613-007
9,61276220-005
1,35210554-002
1,00128259+000
£1,35233106<002
8.,64379106<005
23,49769125-007
1.01086070=009
=2,23120975=012

D COEFFICIENT

1,07171472+025
8,45319785-023
4,59218874s020
2.18880042<017
9,418375952015
3,63259143:2012
1,22632352:009
3,48203132:007
7.79199227=005
1,22007402<002
1,00104389+000
51,22022375=002
7,07730614<005
52,61115395<007
6.91025028=010
=1,40209969-012
2.27627775-015

21
21
21
21
21
21
21
24
21
21
21
21
21
21

21
21

po)

-
0 NV

13
15
17
19
21
23
25
27
29
31

o)

-
P ONJ W

13
15
17
19
21
23
25
27
29
31
33

D COEFFICIENT

1.728524470=022
7.07746369=020
3,22268540=017
1,30915145:014
4,75699255=012
1.51431364:0009
4,06235169:007
8,60825365=005
1,279328832002
9,98522909:001
=1,27951115=002
7.78142094=005
=3,00344540=007
8,29827073=010
=1.75458041=012
2.,96336687=015

D COEFFICIENT

8.,04246673=026
5,39048880=(23
3,00153053=020
1.50499323<017
6,85268473=015
2,79828049=012
9,98892283%z010
2.99330843=007
7,05424743:005
1,16076537z002
9,98784610=001
$1.,1608R891=002
6.43518771=005
£2,27389706=007
5¢77421327-010
21.12610958=012
1,759948384=015



24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

o= e NN b N ]

10
12
14
16
18
20
22
24
26
28
30
32
34

o -\ Sl ]

©

10
12
14
16
18
20
22
24
26
28
30
32
34
36

NRL REPORT 6798

D COEFFICIENT

5.54177835-029
5.,26471002-026
3,45430217-023
2.00045174-020
1.,05663933-017
5. 08252684-:015
2,.19181251<012
8.25082065-010
2,60248633-007
6,44297787-005
1,11154077<002
1,00086616+000
£1,11164404<002
5,90101639:005
%2,00057073-007
4,88251710<010
=9,16610248<013
1,38100438-015

D CEEFFICIENT

2,40748593-032
2:71143857-029
2,11356389.026
1,46075926-023
9,27887900-021
5,42992641-018
2,89747490-015
1.,38366041-012
5,75036230-010
1,99550937.007
5.41593644~005
1.,02074405=002
1,00073026+000
=1,02081755-002
4,99532634-005
=1,56641445~007
3.54687491-010
56,19527338<013
8,70710803-016

25
25
25
25

25

25
25
25
25
25
25
25
25
25

25
25
25
25

o]

Lol NR G AN o

13
15
17
19
21
23
25
27
29
31

35

D COEFFICIENT

4,15831583=029
3.33290115=0256
2.22702715=023
1,34929544.020
7.,50569187=018
3.80646371=015
1,729361792012
6,848005155010
2,26812826=007
5,885421842005
1,N06228256=0902
9,98982478=001
51,06235921:002
5,41010287=005
=1,76263212:007
4,14069388=010
27.49325294=013
1.08973722=015

D COEFFICIENT

1,80634223=032
1.70594377=029
1,34679111:026
9,691817775024
6,45646850:021
3,96892648-018
2,22391709:015
1.11388902=012
4,84814969:010
1,75918491<007
4,98441234:005
9.,79183682=003
9,99135696=001
29,79246231=003
4,61163989=005
21,39378050=007
3.04596498<010
25,14133218=013
6,99105007=016

31



32

26
26
26
26
26
26
26
26
26
26
26

26
26
26
26
26
26
26
26

pel

o ANO

10

14
16
18
20
22
24
26
28
30
32
34
36
38

[o 3N SRS I = ] ps]

o)

10
12
14
ls
18
20
22
24
26
28
30
32
34
36
38
40

H. A, BROWN

D COEFFICIENT

8.91033035-036
1.,17393841-032
1,07224508-029
8,71398161-027
6.,54703584-024
4,57141612-021
2,94715449.018
1.,73070542-015
9,07382056-013
4,12804%83-010
1,56332415-007
4,61607892.005
9,43663746-003
1,00062401+000
$9,43717469-003
4,28318272-005
£1,24930450-007
2.63824717<010
54,30823750<013
5,67371378<016

D COEFFICIENT

2,84319698-039
4,33232797-036
4,58251698:033
4,32483734.030
3.79093031<027
3,10916487-024
2.37690529<021
1,67704161-018
1,07582787=01%
6,146431902013
3.03895228-010
1.24734513<007
3.98106852<005
8.774094%92<003
1,00053939+000
<8,77449654«003
3.71312635-005
=1,01231521=-007
2.00279952-010
=3,07061402-013
3,80419421-016

N W X

O

13
15
17
19
21
23
25
27
29
31

35
37
39
41

D COEFFICIENT

6.68505457=036
7.34688789:033
6,76387442:030
5,69963741027
4,47455288<(024
3,271256524021
2,20808402:018
1.35645563015
7.43029865=013
3,52693002:010
1.39163440=007
4,27532143:005
9,08129108=003
9.99256750=001
29,08175380=003
3,97763891=005
=1,12103113=007
2.29019426-010
23.62195835=013
4,62428627=016

D COEFFICIENT

2,13303523=039
2.69882640=036
2.,86539759=033
2,79370565=030
2,55041133=027
2,18371581:=024
1.74328881=021
1,28361952=018
8.58476279=016
5,10723731=013
2.,62617357=010
1.11964759=007
3.70732336=005
8.46679693:003
9,99354050=001
58.46714654=003
3.46584925:005
=9,15026235=003
1.75490489:010
22,61073000=013
2,14134064=016



42

NRL REPORT 6798

D COEFFICIENT

7,90233661-043
1,37895933-039
1,67215975-036
1,81326603-033
1,83299258-030
1,74306991-027
1,55653936-024
1,29577489-021
9,94179685-019
6,92114112-016
4,28113078-013
2,28615739-010
1.01103207-007
3,46855655-005
8,19849813-003
1.00047088+000
<8,19880448-003
3.24972884-005
©8,31662049-008
1,54764263<010
22,23604366-013
2,61521302-0156

D COEFFICIENT

1.93025913-046
3.82432933<043
5.26992382<040
6,50590887:037
7.50987808:034
8,19021424-031
8,43758548-028
8,16750614s025
7.,36313768<022
6,10753807-019
4,58741657-016
3,05494343-013
1,75250576<010
8,30797863-008
3.,04896183-005
7,69378376-003
1,00041465+000
=7,69402144.003
2.86795283-005%
56,91553784-008
1,21473448-010
=1,65940020-013
1,83790417-016

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31

33
33
33
33
33
33
33
33
33

33
33

33
33
33
33
33
33
33
33
33
33

P

O NV W

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43

el

O N W

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45

D COEFFICIENT

5,9283n0194:-043
8,55553648=040
1,03752553:036
1.,15848778=033
1.21611074=030
1.,20412448-027
1.12017801<024
9,71070821=022
7.75212015=019
5,60949291=016
3.,60260627s013
1,99522158=010
9.,141070555008
3.24535371=005
7.93012700=003
9.99433427001
=7.93039603s003
3.04682878=005
=7.56542359=008
1,36723351=010
=1.92005050=013
2,184498095016

D COEFFICIENT

1,44802815=046
2.36426984=043
3,24748987:040
4,116128855037
4,92099020=034
5,57473557:031
5,97003590:028
6,005979875025
5.62347063=022
4,84031719:019
3,76894492:5016
2.,599336%92:013
1.54273481-010
7.559154652008
2.86459296=005
7,4573R802:003
9,99499025<001
=7,457598405003
2,69940453-005
26.32633650=008
1,08092147<010
21.,43742465=013
1.,55093421016

33



34

36
36
36
36
36
36
36

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

OO HNVO

10

14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

pol

obd O

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

H., A. BROWN

D COEFFICIENT

4,17630506-050
9,32360764-047
1,44877165-043
2,01990496-040
2,63973536-037
3.27091943-034
3,84703078-031
4,27833899.028
4,46791141-025
4,33944939.022
3,87110077-019
3,12106879<016
2,22665736-013
1,36576830-010
6.90957307-008
2,70111777=005
7.24761633-003
1,00036792+000
$7,24780354-003
2.54969837=005
5,81226156=008
9.66708986-011
£1,25231187-013
1.,31718213<016

D COEFFICIENT

8,05935461<054
2.01383237~-050
3.50457095-047
5,47917123-044
8,04623396-041
1,12365029037
1,49532176<034
1.89134668-031
2,26134817<028
2.53606767-025
2,64119326%022
2.52216404=019
2:17293904=016
1,65360034~-013
1,0800054%-010
5,80805445<008
2.40655657-005
6,85036599-003
1.00032867+000
£6,85051544<003
2,28161788=00%
$4,9316976%9-008
7.76870989+011
29,59370264~014
9,606R8298%-017

P

OV W

11

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

el

-
L SEANAV RN o

13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

D CGEFFICIENT

3.13287052-050
5,74568816=047
8,87332422=044
1,2668n785:040
1,71058238<037
2.,19696032=034
2,58070488=031
3,09276572.028
3,34887807=025
3,36997837z022
3,11208922-5019
2.59509952-016
1,91311665=013
1,211467462010
6.32196135=008
2,54707610=005
7.03780579=003
9,99553858<001
=7.03797266=003
2.40816560=005
£5.34365072=008
8,65770766=011
1,09328819=013
1,12167560=016

D COEFFICIENT

6.04562363=054
1.237489409=050
2.13469387=(47
3,40935864<044
5,16196252<041
7,45698605-038
1,02766278=034
1.34620576=031
1.66633480-028
1.93345682=025
2.08172917=<022
2.,05350359<019
1.82602917=016
1.43307941=013
9.64487850=011
5,34053428008
2.,27954178<005
6.66289693=003
9.,994600159=001
26.66303099<003
2,16162268x005
24,55434665=008
7.015%74452=011
28,484232792014
B,24R02690=017



NRL REPORT 6798

D CREFFICIENT

1,39581574-057
3.88036951-054
7.51675935-051
1.30955905-047
2.14672334-044
3,35477514-041
5,01244925-038
7,14863005-035
9.68977049-032
1.,24047070-028
1,48763237-025
1,65424019-022
1,68400236-019
1,54412835-016
1.24862810-013
8,65186465-011
4,92867260-008
2,16276320-005
6+,49440521-003
1,00029539+000
6,49452596-003
2.05369384-005
£4,22037415-008
6,34515151-011
57.44930877-014
7.,11810490-017

D COEFFICIENT

1,04703441=057
2.37833964=054
4,55593534=051
8.090762515048
1,36472361s044
2.20219023=041
3,40173948s038
5.,01683462:035
7.03001237=032
9,29893585:029
1,15148357:025
1.32117224=022
1.,38667434=019
1,30995625:z016
1.09049350=013
7,77318271:011
4,55208599=008
2,05202904=005
6,32589111=003
9,99639610=001
=6,32600003=003
1,95107913=005
=3.91311125=008
5.,74520141=011
6,15657724=017

35



36

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
49
40
40
40

H. A, BROWN

D COEFFICIENT

2,18166353-061
6.71134493-058
1,43924769-054
2,77842308.051
5.05433491-048
8.,78372073-045
1,46353315-041
2,33596264.038
3:55963595-035
5,15204228-032
7.0349085%.029
8,98662888-02¢
1,06292904-022
1,14923765-019
1,11755254-016
9.56974414-014
7,01197280-011
4,218146115-008
1,95202279-005
6.,17361403-003
1,00026691+000
6,17371265-003
1,85828938-005
53,63951290-008
5,22103633-011
5,85511050-014
5,%4990750-017



Appendix B

THE PROLATE SPHEROIDAL EIGENVALUES
AND

NORMALIZATION CONSTANTS

>
1

EIGENVALUE

on

2
1l

NORMALIZATION CONSTANT

n
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P4

VEOENITPVDBUWUNHO

[ S
BN NP O

WP
N ow

NN B
nNHO O®

N
(7]

BULUWWUWWWWWHWHWNODODNOND DN
OVCOINOTAHEWNHOOX N VA

NRL REPORT 6798

EIGENVALUE

1,12773406+000
4,28712854+000
8,22571300+000
1,41002039+001
2.,20548298+001.
3,20352631+001
4,40247476+001
5,801837084+001
7,401419444+001
9,20113044+001
1,12009219+002
1,34007664+002
1,580064734+002
1,84005541+002
2,120047974+002
2,42004193+002
2,740036974+002
3,08003284+002
3,44002937+002
3,82002642+002
4,22002390+002
4,64002172+002
5.,08001982+002
5,54001817+002
6,020014671+002
6,52001542+002
7.04001428+002
7.58001325+002
8,140012344+002
8,72001151+002
9,32001077+002
9,940010104002
1,05800095+003
1,12400089+003
1,19200084+003
1,26200079+4003
1,33400075+003
1,40500071+003
1,48400068+003
1,56200064+003
1,64200061+003

NGRM, CONSTANT

1.42438959+000
4,23850910-001
4,87151652<001
2,65834509:-001
2,34288356<001
1,76088681=001
1,576463552001
1,310190422001
1,19315967:z001
1,04113591=z001
9,61158943:002
B8,63053829<002
8,051780685002
7,36704721:-002
6,92962895-002
6,42490086:002
6,08301135:-002
5,69570383<002
5,42128035<002
5,11476345:002
4,88970483=002
4,64112819:002
4,45325406=002
4,24763127:002
4,08845243:002
3,91554942:002
3,77897190:002
3,63156320:002
3,51310108:002
3,38594089-002
3.,282219692002
3,17140782=002
3,07984098z002
2.982417702002
2,90098956:002
2,81466844:002
2,74178520,002
2,66477206:002
2,59915701:002
2,530024285002
2,470642755002
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Appendix C

THE COEFFICIENTS OF THE
PROLATE SPHEROIDAL ANGLE FUNCTION

POWER SERIES EXPANSION

d°" = 4 COEFFICIENT
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OO0OO0O0 OO0 OO0CO

z

PPN PPN NN NN

P4

D AN DD DDA DN

Py

[o e N N \§ W)

12
14
16
18

NRL REPORT 6798

A COEFFICIENT

1.0u220000+000
-5,638457032-001
1.04391822:=n01
<9,51255909:003
5.13632926-004
-1,8312:3777-005
4.62667093-007
-8.71433898-009
1.2703193522010

A COEFFICIENT

~5.000060000=001
2.056428254+000
-5,48,)84924-001
5,90801267-002
-3.51697396.003
1,33644450.004
-3.535276222-006
6,88100248.008
-1,02931330.009
1.,220316950-011

A COEFFICIENT

3.75000000<001
-4,13528058+000
5,6276215+000
-0,358884338,001
6,97176508-002
-3.03852920=003
8.82361488-005
-1,840R9524.006
2.90217703=008
~$.,585%5653-010
357127972012

z

[ o i

4

W W WWWWWW

=z

U U Ut YOt T v On

P o)

P e
ON Uil B O N W

Py

O NO W

13
15

19
21

A COEFFICIENT

1.00000)00+200
=3,81188191-001
5,2997262857102
«3,8581n68492503
1,73266429=904
«5,28427984-0106
1.16635671=007
«1,9498n686=009
2.55445203=011

A COEFFICIENT

=1,500n0100+000
3.02505097+000
=6,17661189=001
5,42742120-002
=2,7300R800-003
8,9852n0510<005
«2,09495829:006
3,.65006416=1.08
=4,93917870.510
5.34514802=012

A COEFFICIENT

1.875n00900+000
=9,38601972+000
9.77756872+000
»1,367714374000
8,79633303=002
=3,3826n175-003

8,79001763=005
s1,65942945-,06

2.,38893236-0N08
=2,7159%173=010

2,50417013-012
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o N« ¢ Nl o Ne e o e R o e s R o} z

4

o O O o0 D O ™

10
10

10

10

106
10

10
10

10

106
10
10

DB NO

10
12
14
16
18
20
22
24
26

H. A, BROWN

A COEFFICIENT
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