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ABSTRACT

If the electric field intensity in the Fraunhofer region of a one-
dimensional radiating source can be represented as a finite Fourier
transform of the source current, then the source current can be recon-
structed exactly by using prolate spheroidal wave functions and a seg-
ment of either the far field or the diffraction-limited image for the
noise-free case. An example of the image enhancement of this process
is given for the case of two equal point sources, which are unresolved
in the Rayleigh sense. The point response function of this process
shows that the resolution cell extent can be readily reduced to less than
10% of the Rayleigh cell with only 20 degrees of enhancement process-
ing. A method of generating the Legendre polynomial and power series
expansions of the prolate spheroidal angle functions of the first kind
and order zero, S0 ( c, -), has been worked out in detail. The Legendre
polynomial expansion coefficients for degrees n = 0(1)40 and the power
series expansion coefficients for degrees n = 0(1)36 are tabulated for
C = 2.
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This is an interim report; work on the problem is continuing.
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IMAGE ENHANCEMENT WITH PROLATE SPHEROIDAL WAVE FUNCTIONS

INTRODUCTION

The problem of producing an image of a reflecting target or a radiating source of
electromagnetic energy in a noise-free case can be mathematically formulated in either
of two equivalent ways - by two consecutive Fourier integrals or by one convolution inte-
gral. In the first approach a Fourier transform of the target or source current yields
the radiated far field, so that the inverse Fourier transform of the entire far field will
yield the current distribution producing the field. However, in any real situation, only a
segment of the far field is known, so that when the transform of this segment is taken, an
imperfect replica of the object is formed. This replica, due to the finite extent of the
imaging aperture, is called the diffraction-limited image of the object.

In the second formulation, the diffraction-limited image is given by the convolution
of the object function (target or source current) with the point spread function of the im-
aging system. An analogous situation exists in signal theory, where the output of a low-
pass network is the convolution of the impulse response function of the network with the
time signal.

In each of these two formulations the far field or diffraction-limited image, which in
the context of the problem under consideration may be detected by a sensor remote from
the object, is known as a function of the desired quantity - the object function. In other
words the mathematical problem is to determine the target current as an explicit func-
tion of the available information, i.e., a known segment of the far field or the diffraction-
limited image, given the implicit relationship.

A special set of mathematical functions called prolate spheroidal wave functions
have the useful properties of being the eigenvalues of the Fourier transform kernel and
of being orthogonal and complete over a given finite interval as well as over the entire
real Yne. Application of these properties to the imaging problem formulations mentioned
above allows the object function to be written as an explicit function of either the far field
or the diffraction-limited image, which are the presumed knowns.

In this report these two formulations of the imaging problem will be inverted by
using the prolate spheroidal wave functions, and the special case of image reconstruction
of two point sources which are unresolvable in the classical Rayleigh sense will be ex-
amined. Since there is a significant lack of these functions or their expansion coeffi-
cients in the literature, the procedure for generating the coefficients for two different
expansions will be discussed in detail. Tabulations of these coefficients are given in the
appendixes.

AN OBJECT AND FAR FIELD RELATIONSHIP

The current 1(?) in a linear element may be related to the electric field intensity
E(4) in the Fraunhofer or far field region (1) by

f al 2 j(ze 27si (1)
a l dz.

-a/ 2
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The geometry of this relationship is shown in Fig. 1. There are several assumptions (2)
which are implied in the simple relationship of Eq. (1): scalar field theory is assumed
to apply, the medium between the source point 2 and the field point y is homogeneous,
the current in the radiator is linearly polarized, the object dimension is large compared
with a wavelength, and the range R? from the radiator is large so that the field point is in
the Fraunhofer region. Another condition which is often overlooked is that for Eq. (1) to
apply rigorously, the phase variation across the linear element must be zero. This con-
dition is so restrictive when application is made to practical problems that often it is
ignored as an expediency to the analysis. Of course the specific application must be
considered before the validity of any of the above assumptions can be supported, and the
justification for ignoring the constant phase restriction must be made. Also the specific
application determines the actual physical assignment of the variables in Eq. (1).

I E(0

-v Fig. I - The geometrical relationship between the
far field E(0) and the current /(2) in a linear element

Since the purpose of this study is to determine an explicit relationship for the object
current rather than to delve into the applicability of Eq. (1) to all physical situations,
statements of the above assumptions will suffice here as due caution against indiscrimi-
nantly using the far field and current relationship of Eq. (1).

To concentrate on the central problem of solving Eq. (1) for the current, the notation
can be simplified by making the following substitutions. Let

27 .n (2)

=D - I

which is sometimes termed the spatial frequency, because its dimensions are radians
per unit wavelength. If only small angles of 5 are of interest, s i n ¢ can be approximated
by y/H so that w becomes 27y /X/?. Considering wavelength and range as constant param-
eters, w can also be viewed as the distance variable in the far field just as 2 is the dis-
tance variable in the target. Restriction to small angles of ¢, however, is not essential
to the following formulations of the imaging problem, and the large-angle implications
are discussed in another report (3). Also let i = ?, so that at the endpoints of the linear
element, z = a/2, I T/2. Then the integral of Eq. (1) becomes

T/ 2

In the parlance of signal theory the above integral expresses the frequency distribu-
tion of a time-limited signal 1(6). This integral has an inverse which is the Fourier
transform

00 -j t (4)
1 M -CC) EMc e da)

Physically, this means that the time-limited signal I( ) may be reproduced exactly, if
its entire frequency spectrum is known.
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In terms of antenna theory the integral in Eq. (4) states that the current 1(6) may be
determined exactly if the entire far field or radiation pattern of the antenna is known. In
real situations, however, only a finite segment of the far field can be experimentally de-
termined. This segment is often the extent that is contained within a finite receiving
aperture. Herein, the problem lies. The target or antenna current must be reconstructed
with a knowledge of the far field, only over a limited extent in space.

DIFFRAC TION-LIMITED IMAGING

The integral relation in Eq. (4) will be termed the Fourier imaging integral, since it
expresses the antenna current or object function 1() as the Fourier transform of the
electric field intensity E(w) in the Fraunhofer region. In all practical situations the far
field is known only over a finite extent in space so that the reconstruction of the object
function is necessarily imperfect. The reconstructed object function in this case is
termed the diffraction-limited image, and the nature of this phenomenon as related to
resolution can be easily demonstrated by a simple example.

Consider two in-phase, equal-amplitude isotropic point sources separated by a dis-
tance T. The far field radiated by these sources is simply

f( ) + T)+ + 5 - d

-TI 2

2 cos W. (5)
2

Suppose now that an aperture of total extent 2w0 contains the only knowledge of the far
field. Then by the Fourier imaging integral in Eq. (4), the diffraction-limited image of
these two point sources is

'() - 2 cos -- e t dw

0

sin W oT( +) + sin wT(T- (COO 092+ 0  0 ( 2)(6)

Hence, the image of two points is simply the sum of two s in x/x functions, as shown in
Fig. 2, their peaks separated by T and each having a lobe width of 277/ w. If the first
null of one s in x1 x function corresponds to the peak position of the other s in X/ x func -
tion, the two points are said to be resolved in the Rayleigh sense. This condition of Ray-
leigh resolution occurs for 90 T = 7 and represents, in a practical sense, the smallest
aperture 2w0 which can resolve two points separated by T for the case of Fourier
imaging.

In the above discussion two steps were involved to produce the diffraction-limited
image of the object function- an inverse Fourier transform to obtain the far field and a
Fourier transform of a segment of this far field to obtain the image. Often, especially in
the fields of optics and radio astronomy, the imaging process is represented by a single
step involving convolution. Identical results to those shown above are, of course, ob-
tained when the convolution representation is used.
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I- T

Fig. 2 - The diffraction-limited (Fourier) image

of two equal phase and amplitude isotropic point
sources (see Eq. (6))

IMAGE PLANE COORDINATE, t

Since the far field is known only over a segment of space 2(), let H (w/1) be an
aperture weighting function which is zero for I wl > w, which is unity for w] < coo. This
function denotes no relative amplitude or phase weighting across the aperture. Now the
imaging integral in Eq. (4) can be written with infinite limits, since the integrand is zero
for Mo > coas

1 '(M w) E(w) e]Cj- d,) (7)
2 Tfco c

which is the Fourier transform of the product of two functions. By the convolution theo-
rem (4) the above integral is equal to the convolution of the Fourier transforms of each
of the two factors H and E. The transform of the aperture function H is

7T(t) - I- H e-Wt dw

Co o sin co0
t  (8)

7T CD
0 t

and the transform of E by Eq. (4) is the object function 1(t) . Hence, the diffraction-
limited image of I (t) is

COO fT/2 sin 0 (t - ')
1/'(t) = J %( -t' 1(t') dtf (9)

-TI 2

The limits are finite because the object function is known to be zero outside the interval
It ' < TI 2. The above integral states that the diffraction-limited image 1' (6) of an ob-

ject function (t) is the convolution of the object function with a sin x1 x function, which
is the point spread function of a uniform aperture. For the case of the two equal point
sources considered previously, substitution of the object function 1(6) = 3( t + T12) into

the convolution integral in Eq. (9) leads to the identical results of Eq. (6) for the image
produced by the two-step process of finding the far field and then taking a transform.

The convolution integral above gives the image 1'(t ) as a function of the object ItM
and the sin x/o point spread function. The central problem considered in this investiga-
tion is how to determine the object function given information measurable by a remote
sensor. Hence, it is required that the above integral be solved explicitly for the object
function I(t ) in terms of the remotely sensed image function I '(t ).
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To solve Eq. (9) explicitly for the object function (t), the convolution theorem pre-
viously stated is applied with the results of Eq. (7). Taking the inverse of both sides of
Eq. (7) yields

j l'(t) elt dt ( (2) j () elnt dt (10)

If both sides of Eq. (10) could be divided by FI ((,/(,) and the Fourier transform over
kal < co taken again of both sides, the object function 1(0) would indeed be given explicitly
as a function of the image 1'(t). However, this division is invalid since 1i (CD . )O is zero
outside the interval Jwl < o0 . Taking finite limits for the transformation on both sides
results in the identity of the diffraction-limited images I'(6). However, it will be shown
in the next section that both Eq. (3) for the far field and Eq. (9) for the image, each of
which involve the object function implicitly, can be solved for the object function explic-
itly by the use of prolate spheroidal wave functions.

EXACT IMAGE RECONSTRUCTION

The Prolate Spheroidal Wave Functions

One of the eleven coordinate systems in which the scalar wave equation

(\2 +k 2 )  o (11)

is separable is the prolate spheroidal system. This system can be formed by rotating
the two-dimensional elliptic coordinate system consisting of confocal ellipses and hyper-
bolas about the major axis of the ellipses. By separation of variables the solution of
Eq. (11) in this system is

- SC(c,7s) 16,(c,) sn (12)

where S and R.,, are the prolate angular and radial wave functions, respectively, of
the first kind, order m, and degree n (5). The coordinates are ( ,=, ) and c kd /2,
where k is the constant in the wave equation and d is the interfocal distance. Although
the geometry of the prolate spheroidal coordinate system is not of particular interest
here, the above discussion explains the nomenclature for these functions.

The properties of these prolate spheroidal wave functions are discussed in detail by
Slepian and Pollak (6), and those properties which are of particular application here are
summarized in the equations below. Note that only order zero (m- o) wave functions are
used, the angle function contains the independent variable, and the radial function is
evaluated at unity:

o (C at dw= 2 W eo n(c, 1) S 0  C, 2 ) (13)

(t') 00  d on') (14)T/ s in aT)'-0 ' d Tle2" (c CI) S 0 '261') (4
T/2 W o(t -0 0 n, --

2jS 0o 1(CtX) Son (c, - ) t _1) (15)
n =O Nn = x - -
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In the completeness relation in Eq. (15) the normalization factor is

(16)N J Son( C, X) 2 dx
-1

and 8 is the Dirac delta function. Two other properties of the angle functions Son( C, X)
which are of interest here are that s0n is an even or odd function of x as the degree n is
even or odd and that SO. has exactly n zeroes in the interval I x < 1. Most importantly,
these functions are orthogonal and complete over both 1 x < and-I x < C. These prop-
erties will now be used to solve for the object 1(t) as an explicit function of either the
far field E() or the diffraction-limited image 1 '(t)

Reconstruction Using the Far Field

The relationship between the far field and object function is

f 
TI 

2

-T/ 2

1(t ) elt dt,

where the object function is known to be zero outside It I - T12. I
object is known to be entirely included within the It I < T/2 extent.

(3)

'his is to say that the

Multiplying by son ( C, cd/Co) and integrating over the finite range < CD0, in which
the far field is known, gives

E(w) S , dco

WOon ' 0

(17)
S0 on 0 T [,

Consider now only the right-hand side of the above equation. Since the integrands
are analytic, the orders of integration may be interchanged to give

J T/ 2-T/2

(18)

From the property of the angle functions as expressed by Eq. (13),
duces the above to

2 jn to 0 n( c, 1) T
I

2

-T/2

the inner integral re-

(19)

Dividing both sides of Eq. (17) by 2] n (,o leon yields

J0 0 E(W) S on c )
-o0 2n 0o 0O n( C, 1) J TI 2TI 2

(20)1(t) son ( I

Multiplying the above equation by son (c, x) Nn and summing over all , gives

I~ c o S o C , w) e i " d co d t .

o 0 01

NIt) S on (c,- L) di.

/Wt e
j~j t

dt I dw .
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Sn(c, x) nc Son(c'x) ( (21)O00n (e-W)dw 0 N N t ) So0" , C, t dt

nT J_ 2] oWo?(C, 1) N -/2

the f 0 0 on n 0 n T/ 2(

Interchanging the orders of integration and summation on the right yields

,-2 S (c Cc,- X ) (22)-L-
(t) N nn dt, (22)

- TI 2 n=0

which by the completeness property in Eq. (15) reduces the above to

T(2(J l(t) S (x--) d6 = I (23)

-T/2

Returning to the left-hand side of Eq. (21) and defining

En 2CnD (c, ) d, (24)
n -co0 2Y, 0 v Ro (C I)

we have the desired relationship for the object function as

nO LSon(C,x) En I( k (25)
rt0

This relationship states that given only a segment, CD1 < CD and Co arbitrary, of the far
field I '(w) from an object existing within some extent I' in space, that object 1(6) may be
recc istructed exactly. It should be remembered that the Fourier imaging integral in
Eq. (4) gives the diffraction-limited image, which is only an approximation to the object
function when only a segment of the far field is known. Of course, for exact reconstruc-
tion the far field must be known exactly (no noise) over some IwI < CD0 , and an infinite
number of wave functions must be employed. Compromising either of these requirements
will again lead to an approximation of the object function. The theoretical predictions of
the degradations of noise on this reconstruction scheme are somewhat pessimistic (7,8)
and will not be examined here. The effect of truncating this scheme to a finite number of
degrees will be illustrated by example in the following section.

Reconstruction Using the Diffraction Image

The relationship in Eq. (9) between the diffraction-limited image I'(1) and the object
function 1(6')

)O f " T I/ 2  
sin ojo(I -t')

/'(M) -: nt 1(6') dt' (9)

can be solved in an analogous manner explicitly for the object function. Multiplying by
S0n ( c, 2 t T) and integrating over the finite extent 6 < T12 in which the target is known

to exist gives
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TI / C F T 2 sino(t - t') I(t dt dt
-. TI 2 T T/2

(26)

Consider now only the right-hand side of the above equation. Since the integrands are
continuous, the orders of integration may be interchanged to give

77 f T/ 2

77
-T/2 S 2 -TI2 sin 0 (- -t ) So , dt d '

From the property of the angle functions as expressed by Eq. (14), the
duces the above to

2c R 2o,7 O ,n l

(27)

inner integral re-

T2-T/2

Dividing both sides of Eq. (26) by (2c/77) R' (c, 1) yields

(28)

f 2 2 1' ( S ) . 2 )

-T 2 on(c,1)

T/ 

2

-TI 2

Multiplying the above equation by S0( c, x) Nn and summing over all n gives

T/
2 '(6)2 on (c,-T dt

-TI/2 0ot (c 2 1)
72 T Son( CX)

n=O

= ,Son(c,cx)

n 0
f TI 2-T/2

Interchanging the orders of integration and summation on the right yields

T/2-TI 
2

SSon(c, X) Son -H

1(6') N dt',

n=n

which by the completeness property of Eq. (15) reduces the above to

T/ 2
-T 2

Returning to the left-hand side of Eq. (30) and defining

T2 S't C, (2
7T 2 n T dt,

In 2e J Nil?
2 (1 d,

-T2 non(

we have the desired relationship for the object function as

L S On(CX)In (
n0O(X

TI 2

TI 2

(29)

(30)

(31)

(32)

(33)

(34)

I'I ) Son 2 )d

1(t ') S (c , lt- ) d tOn 71

1Wt) Son (C,' dt,

I( t I) son C' 2t dt
T

I (t (x - !-t ) d I I (EX).
T 2
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This relationship states that given a segment It < T/2 of the diffraction-limited image
1'(t) of some object which is known to lie entirely within the image segment, the object
1() may be reconstructed exactly. Again, for exact reconstruction the image must be
noise free, and an infinite number of degrees of angle functions must be employed. It
should be remembered that the range from the object to the imaging aperture, wave-
length, and aperture extent are involved in CD0 and, hence, in the constant parameter
C CD0 ( 

7 '/
2) , which appears in all wave functions.

IMAGE ENHANCEMENT OF TWO POINT SOURCES

In the previous section it was shown that from a segment of either the far field or
the diffraction-limited image in a noise-free environment, the object function can be re-
constructed exactly using prolate spheroidal wave functions. To illustrate the improve-
ment in resolution that can be obtained by this reconstruction method as opposed to the
diffraction-limited (Fourier) imaging method, the reconstruction process will be applied
to the equal phase and amplitude point sources considered previously.

Let the two point sources be known to exist within It I < T/2, and in particular at
i = T/4 and at t -T4. Then the far field from these two equal points is

E(f) T + + t- e 
t 

dt
-TI/2

2 csT (35)
4

Substitution of this far field expression into the image reconstruction parameter En in
Eq. (24) yields

En 1 co y Do, i- dCD. (36)C os T W o, (,6"
]CD Nn R 0 (c, 1) _

W0

By noting that for even values of n the angle function S0 (, C'/cd) is an even function of
CD/CO , the above integral may be evaluated at t T /4 by the property in Eq. (13) as

J Co - CoSo w dC D 2n woRon( c, .) Son , (37)

so that use of Eq. (37) in Eq. (36) simplifies the exact object function reconstruction
equation in Eq. (25) to

= 2 /T on 2  (38)
rn- n

But since n is even, the angle functions are also even so that Eq. (38) may be written as

(C-'210On

I(Tx) = (Cn 1 ) +o(,) ~ nk2 cx (39)
S Nn T+ Nnn=0 n=0
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which by the completeness property in Eq. (15) simplifies to

I )+6( 40)

which is of course the exact object function.

The diffraction-limited image 1'(6) can likewise be reconstructed to the exact object
function in Eq. (40). From Eq. (35) the far field from two equal point sources located at
t = T14 and t -T/4 is 2 cos TCD/4, so that the diffraction-limited image by Eq. (4) is

fO T -j]wt

'M 1 2 cos TCe dw

0  sin CD0  (1 +1) W0 s in CD0  (t -+) (41)

Substituting this expression for I'(6) into the image reconstruction parameter In in Eq.
(33) gives

f I Kin w ; + sin CD( ] ) d (2

On2 C, ( -) (42)
2c = 7R . C"I T 0 ( + T) TO  e

Using the property of these wave functions as expressed by Eq. (14) in Eq. (42) simplifies
the exact object function reconstruction equation in Eq. (34) to

T X) 2o ~ ) ~On~ )(

n=O Nn

which again by the completeness property in Eq. (15) becomes the exact image

( ) (x-1)+ ( + ) . (40)

Hence, it has been illustrated by example that by using either a segment of the far field
or the diffraction-limited image of two point sources, the object function may be recon-
structed exactly using prolate spheroidal wave functions.

To find a value of c for which two equal points are not resolvable by Fourier imag-

ing, consider the diffraction-limited image of two equal points as given by Eq. (41) in
the x =2t/r scale:

,J sin e (X -!) 0  sin c (.+ (43)

1') - + (43)
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where use has been made of the relation c = C 0 ( T12). Clearly the two points are re-
solved in the Rayleigh sense if c > 7T. Hence, if c is chosen to equal 2, a meaningful
test of image enhancement below the classical limit of resolution can be performed.

The diffraction-limited image of two equal points is shown in Fig. 3a for c = 2. As-
suming the object is contained within Ix < 1, the reconstructed image as given by Eq.
(39) for enhancement of n = 0 through n = Al degrees, shown also in Fig. 3, where specifi-
cally M = 10 (Fig. 3b), 4l = 20 (Fig. 3c), and M = 40 (Fig. 3d), clearly illustrates that the
two points are resolved by this process.

I (a)

0.5
II

II

0.2 - - I

IMAGE PLRNE COORDINRTE9 X

0.

a 0.
YE

-1.0 -0.5 0.0 0.5 1

IMAGE PLANE COORDINATE9 X

0.5

-J 00

[ M=10

-1.0 -0.5 0.0 0.5

IMAGE PLANE COORDINRTEP X

-0.5 0.0 0.
IMAGE PLANE COOIRDINRTE X

Fig. 3 - The c =2 diffraction-limited image (a) and the enhanced images
(b), (c), and (d) of two equal point sources for M+ I degrees of enhancement

THE POINT SPREAD FUNCTION

In any real reconstruction process the number of degrees of the wave functions
which are used will certainly be finite. This means that the completeness property of
Eq. (15) does not hold exactly. The summation over a finite number of n values will not
give a delta function but something akin to the point spread function in diffraction-limited
imaging systems. However, the width of this spread function in the reconstruction proc-
ess is considerably narrower than the one for the Fourier imaging process. Hence, an
improvement in resolution is possible if enough wave functions are employed.

I.-0 F_-

M=20

//\ /(\fn

5
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To illustrate the dependence of the point spread function of this enhancement system
on the number of terms employed, consider a point source of unit amplitude located at
t - 0, 1(t) W= (0). The far field by Eq. (3) is then E(C) = i, so that the reconstruction
parameter En of Eq. (24) becomes

1

2jn C 0 Nn Ron( C, 1)
(44)s onc+) dCD.

60

By the property of Eq. (13) at t = 0, the reconstructed image becomes

M

which is simply the completeness relation of Eq. (15) if an infinite number of the angle
functions are summed. For c = 2 this point response function is shown up through de-
gree /l of enhancement in Fig. 4. Note that the main lobe width reduces rapidly from
M= 10 (Fig. 4a) to M= 20 (Fig. 4b), but much less reduction occurs from M= 30 (Fig. 4c)
to M = 40 (Fig. 4d).

1.0

M= 10

(a)

0.5

0. 0

-0.5
-1.0 -0.5 0.0 0.5

IMAGE PLANE COORDINRTE, X

1.0

M=30

(c)

0.5

0.0 \'' /_\ \ vvv VA

-1.0 -0.5 0.0 0.5

IMAGE PLANE COOR0INATEP 0

IMAGE PLANE COORDINATE9 X

1.0-

0.5

-j0.0 /

0.5 -
1.0 -1.5 0.0 0.5

IMAGE PLANE COORDINRTE X

Fig. 4 - The point-response function of the c =2 enhancement process
for A+ I degrees of enhancement

En =
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The dependence of the main lobe width on the number of degrees of enhancement
M # I can be more vividly illustrated by a comparison with the point response function
lobe width of the c - 2 diffraction-limited system. For the Fourier imaging system the
point response function is simply

X) coo s in 2x (46)
r 2x

The width of this main lobe is 7. The main lobe widths of the enhanced system in Eq.
(45) were measured from M = 2 to M- .10 in increments of two and divided by 77 to give the
enhanced lobe width relative to the Fourier system lobe width. The results of these cal-
culations are shown in Fig. 5. There is no point in the figure for M= 0, because the angle
function S00(2

,x) has no zeros within x1 < i. Hence, the point response function of
Eq. (45) also has no zeros by which lobe width is measured within this valid enhancement
range of IxI < I. For only M-- 2 degrees of enhancement the main lobe width is less
than half of its diffraction-limited counterpart, and for M 20 the resolution has been im-
proved over ten times that of the Rayleigh case. Above M = 20 the improvement is much
more gradual. The failure of these points to lie precisely on a smooth curve is due to
the approximation of the zeros of the main lobe by linear interpolation between adjacent
values of x between which the response function changes sign.

0.5

0.4-

0.1

0.0 I I

0 20 30

DEGREES OF ENHRNCEMENT, M

Fig. 5 - The point-response-function
main lobe width of the enhancement
process relative to that of the corre-
sponding c = 2 Fourier imaging sys-
tem for M+ I degrees of enhancement

GENERATION OF THE WAVE FUNCTIONS

The prolate spheroidal angle functions are generally found as a weighted summation
of Legendre polynomials of the first kind with d°n designating the weight of the rth-degree
polynomial for the nth-degree, order zero angle function. There is a noticeable lack of
tabulation in the literature of these d.11 expansion coefficients and of the angle functions
themselves. Flammer (5), whose book is now out of print, provides the drn coefficients
for n = 0(1)3 -* and for c = 0(0.2)5 and the angle functions s0n (c, Cs 0) for 0 = 0o(50)900,

*iThis notation designates that n takes on values from 0 to 3 in steps of 1.
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n = 0(1)3, and c = 0.5(0.5)5. These tables are reproduced in the readily available NBS
Handbook AMS 55 (9). More extensive tabulations of the angle functions S 0J(c,x) can be
found in an AFCRL report (10) for c = 0.1(0.1)10, n = 0(1)20, and x = 0(0.05)1.

Although these tabulations provided an independent verification of the expansion co-
efficients and angle functions generated in this report, neither the range of the degree n
nor the increment of x was sufficient for the production of the enhanced images shown in
the previous section. Also, in a real situation, it may not be convenient or desirable to
force the parameters of the object and aperture extents, range to the object, and wave-
length to fit a predetermined value of the constant c which appears in the angle function
son( c, x). Hence, it is advantageous to have the capability of generating the angle func -
tions for any value of c and for any increment of x.

Legendre Polynomial Expansion

The procedure described in this section for determining the angle function expansion

coefficients follows that of Flammer (5) but with several typographical corrections made.

Since the differential equation

(1-X 2
) So(cx) - 2X) Sn(c,) + ( On -c 2x 2) Son(c, o 0, (47)

which is satisfied by the angle functions, differs from the one which is satisfied by the
associated Legendre functions for c = 0 only by an essential singularity at infinity, an
expansion in Legendre functions is suggested:

Sn(C ,o) dn(c) P0 (x) (48)
r0 , 2

Here the prime indicates a summation over either even or odd values of r, depending on
whether n is even or odd. Substitution of Eq. (48) into the differential equation in Eq. (47)
yields a three-term recursion formula for the don coefficients:

d2 + ( on)dr + Bdo 2  0. (49)

The factors A, B, and r are functions only of r and c"

( r + 2) ( r + 1) c
2  (50a)

(2r+3)(2r +5)

B r(r - 1) C2 (50b)
(2r - 3)( 2r - 1)

Yr - (2 +1 + 2r
2 

2r1 
2 (0c)( 2P - 1) (2r + 3)

By letting

2P - 3 dr
2r + B dr (2

the ratio of dr +2 to dr can be found as
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Nr +2 Adr +2

~n Y r - r

where

T 2( 7, - , )2 C
4

(2r - 1)2 (2r - 3)(2r + 1)

and where the initial coefficient ratios are defined as

N 2 = -On- Y 2

and

N 3 = Kon- >3

Equation (52) may be solved for the ratio of dr to dr 2 for r > 2 as

N =- 
13r

r on- Yr - Nr +2

From the condition that

lim N0 0
m -sin

the convergent infinite continued fraction expansion of Eq. (55) for r

N +2

/o -O n -

Similarly, from the condition that don

finite continued fraction

NAn+2 K onn

f n + 2

lkOn - n+24
0on - -/7,+4 4

0 for r < 0, Eq. (52) may be expanded into the

/n

On -) -2 - -OoU - Y _ 4 - .

(57)

(58)

Equating Nn+ 2 in Eq. (57) as computed downward from some Nr 0 to Nn+ 2 in Eq. (58)
as computed upward from A'2 or N, yields a transcendental equation, the roots of which
are the eigenvalues \0n, which is of the form

where

as computed upward from Eq. (58) and

as computed downward from Eq. (57).

(52)

(53)

(54a)

(54b)

(55)

(56)

iS

U( kon) ( I ( kon) + U 2 ( 0 )

U 2 -N+ 2

(59)

(60)

(61)
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A method of Bouwkamp (11), also briefly discussed by Flammer (5), provides a
method whereby the transcendental equation in Eq. (59) is used to obtain a correction
factor 3X to an estimated value of k. For small values of c (< 10), the first estimate
can be simply

(62)On = n(n+I) ,

which are the eigenvalues of the differential equation in Eq. (47) for c
transcendental equation in Eq. (59) as

= 0. Writing the

0 = U = U(A + 8k)

nU(X) + 8U

UI + U2 + 8U 1 + 8U 2

and defining

and

A2 U2

8x

(64a)

(64b)

the correction factor 6X is found to be

(63)

U1 + U2
Al +A 2 '

so that the corrected eigenvalue K' is

X + 8x.

The A1 and A2 terms in Eq. (64) can be found from
N. with respect to X as given by Eqs. (52) and (55) as

/3r
Nr +2  N ')+ - 8

(n) 2

and

8Nr = 8 1 ort- 6Nr +2 "

(65)

(66)

the first variations of Nr +2 and

(67a)

(67b)

Hence,

A I  
8Nn+ 2

_8x On M on

(68)
(N7)2 ( N 2 + _2 % 4)2

where the last term is /321( N 2 ) 2, if n is even, and /33 (N 3 ) 2 , if n is odd. Also
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WU2  3Nn+ 
2

A2 - __ __

2 on 
6o n

%N+2) 2  N) 2  % +6) F.69
/3+ + + (N... (69)

/ 13 + 2 8 , + 4 / 3 n + 6

where the last term (NK) 2/3K is insignificantly small.

Since the eigenvalues were accurately determined by Bouwkamp's method, the values
of Nm were automatically computed so that the expansion coefficients don can be com-
puted from Eq. (51) as

dr 4r,2.1 Nr (70)
dr - 2  r(,- I) C 2

This relation easily gives dr relative to do or d1 depending on whether n is even or odd,
respectively. These initial coefficients may be obtained from the particular normaliza-
tion scheme chosen, which here will be that given in Flammer (5). Requiring for n even

(-1) n/27,!

Son(C, 0) - (O) 2 n 2n (71)

and for n odd

( -1 ( n - I ) I / 2 ( n + 1

tS o 7 ( C 'o ) = I ' l ( o ) n -,n ( 7 2 )
2(72

where the prime denotes the derivative of the function, substitution of these values at
x = 0 into the expansion in Eq. (48) yields for n even

Co

P~ (0 d~ on 1(0 (73)(o =0=P O

and for n odd

00

, 3(O) d" P'(O) (74)P'0 r  =

Explicitly, the initial coefficients are given by

dOn 
(

0 P(o)do ~ ~A A[

and

on
d

P0 (0) ± P2 (0) 2 + P4 (0) 4 +

0P, ( 

(0) + 1- (0 d~. P 5(0) d +
(76)
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A tabulation of these d°n expansion coefficients is given in Appendix A. The eigenvalues
On are tabulated in Appendix B.

The prolate spheroidal radial functions I0n(c, x) may be found in a similar fashion
as the angle functions were found, but since both satisfy the same differential equation in
Eq. (47), they must be proportional to one another. In the image reconstruction process
only the radial function at x = I is used, and this single value is related to the initial ex-
pansion coefficients by

2 dn (7 7a)

for n even and by

n,2 ) 2 (77b)
3(n+l)!

for n odd. A tabulation of these radial functions at x = i is given in Appendix B.

Another term which is needed in the enhancement process is the normalization fac-
tor N. As introduced initially in integral form, this factor may be found more readily
in terms of the don expansion coefficients as

N = 2 2 2 (78)
/Y 2-2 + I

r =0, 1

These normalization factors are also tabulated in Appendix B.

Power Series Expansion

The angle functions which are the solutions to the differential equation in Eq. (47)
may also be expressed as the simple power series

co

S (c, x) 2 n (C) X (79)
r =0,lI

The power series coefficients ap, of course, can be found from the d. and Legendre poly-
nomial coefficients, if the latter are given; this technique was used as a cross check of
the method given below. However, the power series coefficients can be found directly in
a manner similar to that for the d,.

Differentiating the angle function expansion in Eq. (79) gives

co

So"(C,X) Y 1 a~J.r-I (80)
.r=0, ]

and again
co

So1(ex) a (r - 1) x 2 (81)
in= , 0
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Substitution of the function in Eq. (79) and its first two derivatives in Eqs.
into the differential equation in Eq. (47) gives

co cc (co

a T ( r X - i 2  
-a, [ (m 'r +1) - X inX - C 2  a4 aiX r+

2

=0, Pr=0 s o a=0, I

Adjusting the indices so that the powers of x are r only gives

21 a +(mr +li + 2) Z + 2 a, amkon, - T( r + 1)] X' _- 2 I " ar2Xr=
rm0 0, Iirn2, 3

Defining ai =o for i < 0, the index of the last summation in Eq. (83) may be
0, 1. Collecting all terms under a single summation then gives

0
I (-r + 1)( r +2)a.+2 + [X 0 - rT( P + 1)] a. - C2 am 2}.i

(80) and (81)

: 0 . (82)

(83)

extended to

(84)

which contains the desired recursion formula between ar -2, am, and ar +2 as

(ir + 1) (ir + 2) am +2 + [>on - 'r( r + 1)] a, - ar -2 - .

Defining

-r i(i +1)

and

/3' -c 2 
r(r -1)

the recursion relation in Eq. (85) becomes

/3;
N' +ini

which is the same form as the recursion relationship in Eq. (55) for the d, coefficients.
Hence, the same method and formulas may be used for computation of the power series
coefficients relative to a0 or a1 as was used for the Legendre expansion simply by re-
defining Nr, y,., and /3 according to Eq. (86). A tabulation of these power series expan-
sion coefficients is given in Appendix C.

In using Eq. (87) an M is picked such that the error in the computation of N, without
the Nk 1 2 term is less than some predetermined accuracy E. Expressed in a formal way

(88)-- 1< a

where NM is N without the N +2 term. Simplifying Eq. (88) yields

(85)

am +2N'+ -(in i )(rn +2)
m+ ar

(86a)

(86b)

(86c)

(87)
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N_+2 < . (89)
0n - 'YM

If the error in the computation of N without the Nd+2 term is negligible, then certainly
the error in the Nk+ 2 term without using N +4 is also negligible, so that Eq. (89) becomes

c 2 ( M+ 2) (M+ ) < (90)
[K&0 - M(M+ 1)] [X - (M+2)(M+3)]

Now the eigenvalues Xon are on the order of n (n + 1), and since n << M, Eq. (90) can be
approximated by

c2 (91)
M(M +3)

Solving for M and noting that c >> e,

M > (92)

For example, for c = 2 and a decimal accuracy of 10-6, M is approximately 2000 or
greater.

The initial expansion coefficients a0 and al may again be found directly from the
same normalization requirement as before. For n even

So(0, 0) a0  PlO0) (93)

and for n odd

€So c, 0) aI  P'(0) (94)

which is much simpler than for the d. and d, coefficients.

Another term which is required in the enhancement process is the normalization
term which was defined in the integral form as

N n [Son(C,x)]2 dx. (16)

The integrand expressed as a power series for n even is

[S,(~ ) 2  = '
S C ) L b =i  (95)
1 1 i=O

where the coefficients bi are

i
b°n -- , a° n ao _n (96)

1-jo

The normalization factor is then
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Nn -f[ b[0 ijd
-1 i=0

c bon (97)

i =0

The integrand expressed as a power series for n odd is

6=1

where

a- a- (99)
j =1

so that the normalization factor becomes for n odd

co 

n

Nn : 2 L, b ° - (100)

Verification of Results

Although care was exercised at each step of the generation of the eigenvalues and the
relative and absolute expansion coefficients to reduce series truncation error to the same
order as roundoff error, verification of the results is still highly desirable. The NBS
Handbook (9) and the AFCRL report (10) mentioned earlier provided some substantiation
of the overlapping range of values for c = 2.

However, by far the most useful verification was provided by W. H. Buckler of the
NRL Acoustics Division who, on request, provided the author with a set of Legendre
polynomial expansion coefficients at c = 2 for n = 0(1)36 in double precision (25 signifi-
cant figures). His method of checking used the Wronskian for the angle functions of the
first and second kinds and the first derivatives of each. The single-precision (10 signifi-
cant figures) do' expansion coefficients shown in Appendix A agreed through the ninth
significant figure with those provided by Buckler. By recombining Buckler's double-
precision don coefficients with the proper coefficients of the Legendre polynomials, a
verification within eight significant figures of the single-precision power series coeffi-
cients shown in Appendix C was obtained. Such a recombination using single precision is
not possible due to the rapid accumulation of roundoff error.

An indirect check of the generated angle functions can be performed by the basic
differential equation in Eq. (47) at x -: 1 which simplifies to

S0n(c, 1) k0 -cIn on (101)

Son(c, 1) 2

Again this check must be performed in double precision, because roundoff error in single
precision is prohibitive in the derivative at x - 1. Using Buckler's data, Eq. (101) was
satisfied by both the Legendre polynomial expansion and the power series expansion
within one part in 10-25 at n = 0 with an almost linear decrease down to 10-14 at n = 36.
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Another consideration is that of the number of expansion coefficients necessary to
reduce the series truncation error to the order of roundoff. Of course the number of
terms required varies both with order n and with the independent variable x. For x - 1
the largest number of expansion coefficients will be needed for any given n. By comput-
ing the partial sums of the angle function series expansions at x = 1, the number of terms
necessary to reduce the truncation error to that of the same order as roundoff is readily
observed. For the Legendre polynomial expansion in Eq. (48) the following empirical
formula gives the necessary number of expansion coefficients for single-precision com-
putation of the angle functions

7,)2 7 (102)

and for the power series expansion in Eq. (79) the number of coefficients is given by

+ 1 -. 6) + 16.

The tables of the expansion coefficients in Appendixes A and C include a sufficient num-
ber of coefficients according to the above criteria.

SUMMARY

If the electric field in the Fraunhofer region of a radiating source can be related to
the source current by a Fourier transform, the inverse transformation taken over the
finite limits of a known segment of the far field will produce the diffraction-limited
image of the source current. This diffraction-limited image can also be formulated as
the convolution of the object current with the sin x/x point spread function of the finite
aperture imaging system. Both of these formulations may be solved explicitly and ex-
actly for the object function given either the far field or the diffraction-limited image in
a noise-free environment by using the special properties of prolate spheroidal wave
functions. Although exact reconstruction requires an infinite number of these wave func-
tions, considerable image enhancement and resolution improvement beyond the classical
Rayleigh limit can be obtained with only ten or 20 degrees of processing. A simple ex-
ample of two equal point sources unresolvable in the Rayleigh sense readily illustrates
the resolution improvement capability of this process. Because of the meager tabulation
of these wave functions in the literature, the method of generating the Legendre polyno-
mial expansion coefficients and the power series expansion coefficients of these functions
was given in detail with a tabulation of the results.
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Appendix A

THE COEFFICIENTS OF THE

PROLATE SPHEROIDAL ANGLE FUNCTION

LEGENDRE POLYNOMIAL EXPANSION

don = D COEFFICIENT
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N R D COEFFICIENT

0 0 8,31618991-001
-3,

2,
.5,
9.
9,
6.

20587980-001
10622161-002
95512890-004
38759904.006
43710366.008
57632997-0io

N R D COEFFICIENT

8,

3,

.6
6,

;5
2,

39202240-002
08451884+000
07998762QO01
65959431-003
39157444-005
86478544-007
01050418-009
65193330-011

N R D COEFFICIENT

N R D COEFFICIENT

7,92760280-001
z1,30491677-001
5,97968297-003

Z1.,30795467.004
1,68419464QO06

:1,43184143.008
8,64641366.011

N R D COEFFICIENT

6 76858005-002
9 ,57492177-001

:6 79487256;002
i 81857167;003

z2 63670709=005
2 4251n649=007
*i 54902666;009

7 .29180410"012

N R 0 COEFFICIENT

1,44409253-003
5.61070465-002
1 022Q3697+000

z5 65197954-002
1 24998160-003

zi 54d95661-005
1,24557216-007
7 072482 3 010
2, 9976406?7.012

*09666396=003
j41971206;002

.81817303.001

.44374947;002

4 37021714=004
.05270556-006
O464184442;w08

3031 i41, 010
S73O t640 2
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N D COEFFICIENT

6 0 1,02359929.005
6 2 8,19354403-004
6 4 3,86028640-002
6 6 1.01064294+000
6 8 .3.87401234.002
6 10 6,35239040-004
6 12 ;6,09289769-006
6 14 3.91211199-008
6 16 z1.81653822-010
6 18 6,41741700-013

N R D COEFFICIENT

4.03807630-008
5, 50295367-006
4 75966681.004
2,94783939-002
1, 00615259+000

z2, 95275101-002

3 84351563:004
.3,00420867-006

1.60415570-008
6 .29661721-011
1.90600664.013

N R D COEFFICIENT

N R D COEFFICIENT

7. 72048334=006
6 03691285=004
3,28362251=002
9,90109234:001

z3 29146026:002
4.77731127:004

z4, 11530792"006
2 39966118:008

:1 02093389:010
3.32885671;013

N R D COEFFICIENT

3. 03849550.008
3.88217892:006
3.74507947:004
2.60735647:002
9 93808199:001

z2 61049811:002
3.07981193:004

;2.20287864-006
I 08471704;008

:3 95142533 011
1.11605634:013

N R D COEFFICIENT

01549165-010
10732071.008
87375818=006
08116748-004
38467090-002
004n0980+000
386P1225-002
57455U32-004
6971.8925.006
7528661CI-009

63446621,011
97362144.014

7 .63?57226-011
S44264147z08

2, 14151483.006
2,53495357:004
2 16037429=002
9,95765368=001

:2, 1618 724z002
? .14766408:004
;1,3127q069-0096

5, 59212105"009
:1 78047237z011
4.43429388.014

1.
2.
2,
3,
2,
1,

=2,
2.
--1

7.

z2,
6,
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N R D COEFFICIENT

1
5,
1,

2,
2.
1.
=2

1,

4.

2,

76997193-013
19950739-011

02298531-008
65759549-006
15092641-004
00228848-002
00282063+000
00336207-002

84438040-004
05089067-006
19318729-009
25584336-011
95289843-014

N D COEFFICIENT

2,26401017-016
8.94304377-014
2.39335915-011

5,41821385-009
1,03615519-006
1,58470488-004
1, 72564566-002
1 00209223+000

z1,72624088-002

1.38596911-004
.6, 95225927-007
2,46202951-009
-6.59058586-012
1,39370572-014

N R D COEFFICIENT

6 0 2,21565989-019
6 2 1.13277148-016
6 4 3,95334987 014
6 6 1,18706750.011
6 8 3.10793469-009
6 10 6,88898973.007
6 12 1,21531438-004
6 14 1,51619685-002
.6 16 1,001 1376+no0
.6 18 z1,516E5269-002
.6 20 1. 07942616-004
.6 22 z4,83545596-007
.6 24 1,53907279 0o9
.6 26 3,723940U5:01
.6 28 7,15411389.015

N R D COEFFICIENT

1 .32949984z013
3 4822e908=011

7 32392592-009
I .29200025z006
1.82561050-004
, 84353923z0o2

9 96923304.001
z1.84432574Q002

1,58197855.004
.8.44051281.007
3,16725280.009
8 95402892Q012

i 99386610-014

N R D COEFFICIENT

i .69993518-016
5.89037936.014
i 66164347-011
4 04992032-009
8,35702105.007
1, 37599635i004
I 60744022-002
9 97664244-001

;1. 60789478-002
I ,2133n176z004

z5 74234166=007
I 9251%268=009
z4,89340401.012
9.85182612.015

N R D COEFFICIENT

1.66320652.019
7.3639?653z017
2.67877255.014
8.58110128.012
2140580508;009
5,70442834:007
1 0736621-4=004
1 42479170. 0 0 2
9, 9816fi667=001
1,42507224=002
9 ,59821.674..005
4,081.26051.U07
1 236400 47= 009
2 ,5431531.z012
5.2432q783-.015
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N P D COEFFICIENT

1 71245784-022
1,10026359-019
4 85076958-017
1 86116998=014
6 35596632 .012
1.90197048-009
4,80524613-007
9,61276220-005
1.35210554-002
1,00128259+000

=1 35233106-002
8 64379106-005
*3 49769125-007

1 o1O86070-009
=2 ,23120975:012
3,92661442-015

N P D COEFFICIENT

0 0 1,07171472-025
0 2 8,45319785-023

0 4 4,5921.8874Q020
0 6 2,18880042:017
0 8 9,41837595:015
0 10 3,63259143z012
0 12 1,22632352.009
0 14 3.48203132z007

0 16 7,79199227:005
0 18 1.22007402.002
0 20 1,00104389+000

0 22 z1,22022375:002
0 24 7,07730614-005
0 26 z2.61115395-007
0 28 6,91025028:010
0 30 zi.40209969-012
0 32 2,27627775-015

N R D COEFFICIENT

1.28524470=022
7 07746369:=020
3,22260540z017
1 30915145;014
4 75699255=012
1,5143!364:009
4,06236169:007
8,60825365:005
I .27932883=002
9. 98522909;001

=1.27951115:002
7,78142094=005

:3,00344540:007
8.29827073:010
:1.75458041:012
2.96336687:015

N R D COEFFICIENT

8, 04246673=026
5.39048880:023
3.00153053.020
1.50499323F017
6,85268473z015
2 79828049;;012
9,98892283.010
2,99330843=007
7,05424743:005
1.16076537:002
9.98784610:001
. lb 080891-002
6.43518771:005

:2 .27389706-007
5.77421327-010

:1 12610958;012
1.75998384;015



NRL REPORT 6798

N R LU COEFFICIENT

22 0 5,54177835-029
22 2 5,26471002-026

22 4 3,45430217-023
22 6 2.00045174-020
22 8 1,05663933-017
22 10 5.08252684-015
22 12 2.19181251=012
22 14 8,25082065-010
22 16 2,60248633;007
22 18 6,44297787=005
22 20 1.11154n77-002
22 22 1,00086616+000
22 24 111164404=002
22 26 5,90101639.005
22 28 =2.00057073-007
22 30 4,88251710-010
22 32 =9,16610248-013
22 34 1.38100438-015

N D COEFFICIENT

4 0 2,40748593-032
4 2 2.71143857-029
4 4 2,11356389.026
4 6 1,46075926-023

4 8 9,27887900-021
4 10 5,42992641-018
4 12 2,89747490-015
4 14 1.38366041-012

4 16 5.75036230-010
4 18 1,99550937.007
4 20 5,41593644-005
4 22 1,02074405-002
4 24 1,00073026+000
4 26 =.02081755-002
4 28 4,99532634-005
4 30 1,.56641445-007
4 32 3,54687491-010
4 54 ;.6,19527338-013

4 36 8,70710803-016

N P D COEFFICIENT

4.15831583=029
3. 33290115:026
2 22702715=023
1. 34929544z020
7,50569187:018
3. 80646371=015
1,72936179:012
6,84800515=010
2,26812826:007
5.88542184:005
I 06228256=002
9 98982478:001

:1. 06236921:002
5,41010287"005

:1,76263212=007
4 14069388=010
;7 *49325294=013
1.08973722z015

R D COEFFICIENT

1 80634223.;032
1 70594377;029
1,34679111z026
9. 69181777;;024
6,45646850=021
3.96892648:018
2 223917090 15
I 1138R9020l2
4,84814969.010
1.75918491=007
4.98441234:005
9.79183682=003
9.99135696=001

=9 79246231=003
4,61163989=005

zI 3937P050:007
3 04596498:010

:5 1413321.8-013
6 99105007z016



H. A. BROWN

N P D COEFFICIENT

26 0 8.91033035-036
26 2 1.17393841-032
26 4 1.u7224508-029
26 6 8,713 9 8161-02 7

26 8 6.54703584-024
26 10 4,57141612-021
26 12 2.94715449-018
26 14 1.73070542-015
26 16 9,07382056-013
26 18 4.12804588-010
26 20 1,56332415-007
26 22 4,61607892-005
26 24 9.43663746-003
26 26 1,00062401+000
26 28 =9.43717469-003
26 30 4,28318272-005
26 32 =1,24930450-007
26 34 2.63824717=010
26 36 .4.30823750-013
26 38 5,67371378-016

N P D COEFFICIENT

2,84319698-039
4,33232797-036
4,58251698;033
4 32483734-030
3. 79093031-027
3,10916487-024
2. 37690529-021
1,67704161-018
1,07582787=015

6 14643190;=013
3. U3895228-010
1.24734513-007
3,98106352z005

8 77409492-003
1,00053939+000

=8,77449664=003
3,71312635-005

z1. 01231521l007

2 00279952-010
=3 07061402-013
3,80419421--016

N P D COEFFICIENT

6.68505457=036
7 .34688789;033
6.76387442-030
5 69963741-027

4 47455288;024
3.27125652-021
2 ,?0808402.018
1,35645563=015
7 43029865=013
3,52693002:010
1 39163440:007
4.27532143:005
9,08129108:003
9099256750:001
9, 08175380:003
3.97763891=005

:1,121.03113:007
2. 29019426=010

z3.62195835=013
4.62428627:016

N P D COEFFICIENT

2,13303523:039
2,69882640:036
2.86539759:033
2,79370565;030
2 55041133;027
2 18371581:024
1,74329881=021
1 28361952z018
8.58476279:016
5 10723731;013
2 62617357-010

1.11964759=007
3.70732336=005
8.46679693003
9 99354050..001
:8.46714654.003

3, 46586925:005
;9, 15026235z008

1 75490489=010
z2.61073000=013

3.14134064=016



NRL REPORT 6798

N P D COEFFICIENT

'0 0 7.90233661-043
;0 2 1,37895933-039
'0 4 1,67215975-036
;0 6 1,81326603-033
'0 8 1,83299258-030
;0 10 1,74306991-027
'0 12 1,55653936-024
'0 14 1.29577489-021
'0 16 9,94179685-019
;0 18 6,92114112-016
'0 20 4o28113078-013
'0 22 2,28615739-010
'0 24 1,01103207-007
;o 26 3,46855655-005
'0 28 8,19849813-003
'0 30 1,00047088+000
;0 32 z8o19880448-003
;0 34 3424972884-005
;0 36 =8,31662049-008
'0 38 1,54764263-010
'0 40 z2,23604366=013
'0 42 2.61521302-016

N D COEFFICIENT

N P D COEFFICIENT

I I 5.92830194z043
1 3 8,55553648:040
1 5 1.03752553 036
1 7 1.15848778z033
1 9 1.21611074z030
1 11 1.20412448-027
1 13 1.12017801;024
1 15 9.71070821=022
1 17 7.75212015=019
1 19 5.60949291=016
1 21 3,60260627=013
1 23 1.99522158.010
1 25 9,14107055:008

1 27 3,24535371=005
1 29 7,93012700=003
1 31 9,99433427=001
1 33 z7,93039603.003
1 35 3,04682878=005
1 37 :7.56542359=008
1 39 i.36723351=010
51 41 ;192005050=013
1 43 2.18449809=016

N P D COEFFICIENT

1 93025913-046
3. 82432933-043
5 26992382-040
6, 50590887:037
7,50987808=034
8,19021424-031
8,43758548-0-28
8,16750614=025
7, 36313768-022
6 10753807-019
4,58741657-016

3,05494343-013
1, 75250576=010
8.30797863-008
3,04896183-005
7, 69378376-003
1 00U 41465+000

z7 69402144.003

2,86795283-005
;6 ,91553784-008
1,21473448-010
=165940020-013
1,83790417-016

1 44802815-046
2.36426984;043
3,24748987.040
4. 11612885:037
4,92099020:034
5. 57473557;031
5. 9 70035 9 0;028
6 00597987z025
5 62347063.022
4, 84031719;019
3076894492.016
2,59933692.013
1 *54273481Q010
7.55915465=008
2 86459296.005
7. 45738802;.003
9,99499025.001
;7 45759840.003
2.69940453-005
;.632633650.008
1.08092147;010
*1 43742465z013

1 55093421=016



H. A. BROWN

N P D COEFFICIENT

34 0 4117630506-050
34 2 9.32360764-047
34 4 1.44877165-043
34 6 2.01990496-040
34 8 2,63973536-037
34 10 3.27091943-034
34 12 3,84703078-031
34 14 4,27833899-028
34 16 4.46791141-025
34 18 4.33944939-022
34 20 3.87110077-019
34 22 3.12106879-016

34 24 2,22665736-013
34 26 1,36576830-010

34 28 6,90957307-008
34 30 2,70111777-005
34 32 7.24761633-003
34 34 1.00036792+000
34 36 u7,24780354-003
34 38 2,54969837=005
34 40 .5.81226156=008
34 42 9.66708986-011
34 44 z1,25231187-013
34 46 1.31718213-016

N P D COEFFICIENT

36 0 8,05935461:054
36 2 2.01383237-050

36 4 3.50457095-047
36 6 5,47917123-044

36 8 8.04623396-041
36 10 1,12365029-037

36 12 1,49532176-034
36 14 1.8913466S-031
36 16 2.26134817=028
36 18 2.53606767-025
36 20 2.64119326-022
36 22 2,52216404-019
36 24 2,17293904zfl16
36 26 1,65360034-013
36 28 1,08000545-010
36 30 5.80805445-008
36 32 2.40955657-005
36 34 6.85036599-003
36 36 1. 000328o7+00f)
36 38 :6.85051544.003
36 40 2.28161785-005
36 42 :4*9316976 9-0(18
36 44 7 78870 0 89 -011
36 46 =9.59372264-014
36 48 9,60692965-017

N P D COEFFICIENT

3.13287052-050
5.74568816=047
8.87332422w044
i .26680785=040
1.71058238z037
2.19696032-034
2,68070488Q031
3 09276572=028
3, 34887807z025
3.36997837z022
3 11208922-019
2. 59509952-016
1 91311,665:013
1.21146746-010
6 32196135:008
2,54707610:005
7,03780579:003
9,99553858Q001

z7 03797266;003
2.40816560=005
5.34365072 008
8 65770766:011

;1. 09328819=013
1.12167560z016

N P D COEFFICIENT

6 04562363=054
1. 23748940-050

2.13469387=047
3.40936864.044
5,16190252Q041
7 45698605 038

1.02766278=034
1. 34620576;031
1. 66633480.028
1.93345682:025
2.08172917w022
2.05350359z019
1.82602917=016
1,43307941-013
9 ,6448'1850=011
5.34053428z008
2,27954178z005
6. 66289693=003
9 .9601159-001

:6 66303099-003
2 ,l 62268.005
-4 55434665:;008
7 .01r'76452;=0Ol
*8 4642;279-;014

8,24802800-017



NRL REPORT 6798

R D COEFFICIENT

1,39581574-057
3.88036951-054
7,51675935-051
1.30955905-047

2.14672334-044
3,35477514-041
5,01244925-038
7.14863005-035
9,68977049-032
1. 24047070-028
1,48763237-025
1.65424019-022
1.68400236-019
1.54412835-016
1.24862810-013
8.65186465-011
4.92867260-008
2.16276320-005
6 49440521-003
1, 00029539+000
6. 49452596-003
2.05369384-005

=4,22037415-008

6034515151-011
7 44930877-014
7,11810490-017

N R D COEFFICIENT

i 04703441c057
2.37833964:054
4,55593534:051
8 09076251.048
I 36472361044
2,20219023=041
3.40173948:038
5,01683462;035
7,03001237=032
9 29893585z029
1.15148357=025

1.32117224=022
1.38667434.019
1.30995625:016
I109049350:013
7,77318271.011
4,55208599=008
2.05202904=005
6,32589111:003
9, 99639610:001
*6 32600003:003

1095107913:005
:3091311125;008
5,74520141:011

;6 59049267z014
6.15657724:017



H. A. BROWN

N P D COEFFICIENT

40 0 2.18166353-061
40 2 6.71134493-058

40 4 1,43924769-054
40 6 2,77842308-051
40 8 5,05433491-048
40 10 8.78372073-045

40 12 1.46353315-041
40 14 2,33596264-038

40 16 3,55963595-035
40 18 5,15204228-032
40 20 7,03490855-029
40 22 8,98662888-026
40 24 1,06292904-022

40 26 1,14923765-019
40 28 1,11755254-016
40 30 9.56974414-014
40 32 7,01197280-011
40 34 4,21816116-008
40 36 1,95202279-005
40 38 6.17361403-003
40 40 1,00026691+000

40 42 ;6.17371265-003
40 44 1,85828938-005
40 46 z3.63951290-008
40 48 5,22103633-011

40 50 z5,85511050-014
40 52 5,34990750-017



Appendix B

THE PROLATE SPHEROIDAL EIGENVALUES

AND

NORMALIZATION CONSTANTS

X01, = EIGENVALUE

N = NORMALIZATION CONSTANT
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N EIGENVALUE

0 1,12773406+000
1 4.28712854+000
2 8,22571300+n00
3 1.41002039+001
4 2,20548298+001,
5 3.20352631+001
6 4.40247476+001
7 5,80183708+001
8 7,40141944+001
9 9,20113044+001
.0 1.12009219+002

Ll 1,34007664+002
.2 1,58006473+002
.3 1,84005541+002
.4 2.12004797+002
.5 2.42004193+002
.6 2,74003697+002
.7 3,08003284+002
.8 3,44002937+002
.9 3.82002642+002
)0 4,22002390+002
I 4,64002172+002
!2 5,08001982+002
!3 5.54001817+002
)4 6,02001671+002
15 6,52001542+002
)6 7,04001428+002
)7 7.58001325+002
!8 8,14001234+002
!9 8,72001151+002
i0 9,32001077+002
1 9,94001010+002

;2 1,05800095+003
)3 1,12400089+003
4 1,19200084+003
;5 1,26200079+003
;6 1,33400075+003
;7 1,40800071+003
;8 1.48400068+003
)9 1,56200064+003
10 1,64200061+003

NORM, CNSTANT

1 42438959+000
4,23850910-001
4.87151652001
2,65834509.001
2 34288356c001
1,76088681-001
1,57646355.001
1,31019042.001
1 ].9315967:001
1,04113591=001
9,61158943.002
8.63053829;002
8,05178068.002
7,36704721:002
6.92962895:002
6,42490086:002
6,08301135.002
5,69570383.002
5,42128035.002
5,11476345.002
4,88970483z002
4064112819w002
4, 45325406.002
4,24763127.002
4,08845243:002
3,91554942.002

3,77897190z002
3,63156320.002
3,51310108z002
3,38594089:002
3,28221969:002
3,17140782:002
3.07984098z002
2.98241770z002
2,90098956:002
2,81466844;002
2,74178520.002
2,66477206.002
2,59915701:002
2 ,53002428;002
2, 47064275;002
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Appendix C

THE COEFFICIENTS OF THE

PROLATE SPHEROIDAL ANGLE FUNCTION

POWER SERIES EXPANSION

do' = A COEFFICIENT
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N P A COEFFICIENT

.* u 0 U U0 000+000

.638kJ032-001

.0439i)822nr01
,51255909 oO3
.13632926-004

.81!i )777-005

.6L667093-007

.71.41 '898-009

.2 /'119352-010

N P A COEFFICIENT

.0 00000 0 601

.05642825+000
O,48i)84924- 001
.9080!267-002
.51.697396 003
.33644450-004

.5.5278222.006

.881Cl 248-008

.02931330.009

.270cjl-6950-011

N P A COEFFICIENT

3.75000000=001
-4,135 8058+00
5.65 76u215+000
-9.38884388 001
6,97176508-002
-3.03852920=003
8.823&i488-005
-8'0 4 )9524-006

2.9021 /73= 008
-3,5559j653l-010
5.5 7 , i )5797-(112

N R A COEFFICIENT

1.00000)00+ 0O0
.3.811189f.91ofiol

5.2997P628.1102
-3.85810849-:103
1.73266429 2 04
-5.28427984-1)06
1.16635671=007

-1. 9 498n6 8 6-009
2.55445?03-011

N R A COEFFICIENT

1.500ni'oo+o00
3.02509097+000

-6.17661-189=001

5.42742120-002
2.730OR800-U03
8.98520510005

.2.09495829z006
3.6500641.6ij08

F4.93917870oU 10
5.34514802012

N P A COEFFICIENT

1.875o0nf00+000
-9.38601972+000

9.77756872+000
.1.36771437+000
8.79633303.002
z3.3826n 75-003

8*79001,763=005
-1,65942945-006

2,38893236.0n8
-2.71595173o0

2.50417013-012



H. A. BROWN

N P A COEFFICIENT

-3.125r0000-001
6.8786682+000
-2.19 ] ,'312+001
1.645t3942+001

-2.2311/)117+(000
1.2659:,815-001

-4.355&.3430 003

1.0241 2632-004
-1,765(!391.006
2.338d/3512-008
-2.46220478.010
2.1138,1888-012

N P A COEFFICIENT

2.73437500-001
-1.01191281+001
5.74448415+001
-1,04777112+002

6.4f'023962+001
-6,069:L3015+000

2,79449475-001
-7,94302346-003

1.56914401-004
-2.3048P320.006

2.63238457-008
-2.41419526-010
1.82169274-012

N P A COEFFICIENT

-2,46093750-001
1,3782.5844+001

-1.21837015+002
3,75508607+002

-4.76151222+002
2.29249461+002

-1,79788888+001

6.916 ,878-001
-1.674;9433-002

2.85709935-004
-3 .6-d5 55 447-U 06
3.669' 7241-0 08
-2.981.'7579-010

2.0U6 6347-G12

N P A COEFFICIENT

-2,1875 0 00+ 000
2,04233643+001
.4.74299977+001
3.35858266+001
.3.5765n892+000

1.81461132-001
.5.64900960=003

1.21291013-004
-1,92390533=006
2,35990472-008
a2.31337230-010
1,85809829-012

N R A COEFFICIENT

2,46093750+000
.3.69186991+001
1.48187851+002
o2.22309446+002

1.19422285+002
.1.02675668+001

4,30144462-001
-1.1248??99-002

2.05760936=004
-2.81405:191-006

3.00687951=008
-2.59069864-010
1.84328586-012

N P A COEFFICIENT

;2.70703125+000
5.95581zi54+001

u3.63868917+002
9.06747352+602

r1,002621.09+003
4.3409n927+002
z3,12948286+001

1.11643710+000
z2.51674192-002

4.fllOn9400-04
=4.82008964-906

4.562294179- 08
=3.50624233=010
2.,23905231-Ul12



NRL REPORT 6798

N R A COEFFICIENT

2.25595938-001
-1.78220192+001
2.2583:j386+002.
-1 .04i2478+003
2.17311528+003
-2.12296623+003
8.37943 811+002

-5,.58T95764+001

-3.

5.
-6,

5.
-4.

2.

856.3i.298+000
9!, 5 6902-002

85951404-004
6'-087855=006
946i7257-008
33563606-010

6,-37,055-012

N R A COEFFICIENT

-2.09472656-001
2.22r!';,)039+001

-3.81 ?57734+002
2.443,'1/107+003

-7,4439C769+003
1.1688 896+004
-9.2',79-512t003
3*1 c57; 7o9+o003

-1. 8:1 '2047+002

5.2: '. 8 8715+000
-9.,B82 .9078 =002

1.3! 1.5694-003
-1,33397345-005

1 .07 1 8818- 0 07
-7. '1e6 42 8-0 10
3943 7 U495-0l 2

N P A COEFFICIENT

2.9326!719+000
z8.89587628+001
7. 6 5 6 5 6 5 2 9+002
o2*81593o54+003
5.048941)81+003
=4.417?-n203+o3

1.60201.792+003
Q9,94367823+001

3.08883386+000
-6.11886330-002

8.63577193-004
-9.25861,078-006

7. 65?1749=008
-5.45534767-010
3.15989606-012

N R A COEFFICIENT

-3.14208984+000
1.25685790+0n2
z1.44604135+003
7.31118100 003

Q1.89679772+004
2.64769799+004
=1.91566649+004
5.97803685+003
w3.25763970+002
8.96087512+000

z1.5831.5921-001
2,00526o20.n03
-1.94023853-005

1.494999491107
-9.4482?'17 6-010
5.0071P1!38v,012



H. A. BROWN

N P A COEFFICIENT

.6 0 1.9665 615-,01
6 2 -2,6 9 0';5073+Lo1.
.6 4 6.0';94,079+002
L6 6 -5.0916 912+0o3
L6 8 2.11 371.526+004
6 10 -4.7068,,276+004

L6 12 5.9 8 6tL40 7 +004
6 1 4  -3.98631826+004

6 16 1. 1o 6-651+P,04
L6 18 -5.9' 523542+002

L6 20 1.55,58/462+001
6 22 -2.60447329=001

6 24 3.13798457-Co3
6 26 -2.895'r6862-005
6 28 2.131.6,380-007
6 30 -1.28986253-009
6 32 6.55692285-012

N P A COEFFICIENT

8 0 -1.85L7:581-001
8 2 3.'19012123+001
8 4 -8.9862t.444+002
8 6 9.7U94,*227+003
8 8 -5.24263315+004
8 10 1.58877266+005
8 12 -2.81538273+005

8 14 2.96072178+005
8 16 -1.7ti3i227+o05
8 18 4.38792C40+004
8 20 -2.021k"8470+003
8 22 4.74465682+001
8 24 -7.21257432z001
8 26 7.9"!7a7443-003
8 28 -6.669f 7206-005
8 30 4.5 jfA85-607

6 32 -2.:7,- 73 6 - 09
8 34 1. 1bt) 228-011

N P A COEFFICIENT

3.33847046+000
-1.70263821+002
2.5206nO20 +03
-1.67003855+004
5.8592442+n4
-1.16729013+005

1.33197963+005
z8.21412'4+004

2.24958483+004
P1.09252217+003

2.69652016+001
z4.29913435=001

4.93890051-003
,4.35412876.005
3.06955934-007
-1.78163809-009
8.70183211-012

N P A COEFFICIENT

-3.523941,04+9)00
2.23184484+002
a4.12964723+003
3,463!,922+004
=1.57036208+005
4.18122865+005
-6.74102345+o5

6.49974959+005
v3.49244746+005
8.52146878+004
.3.73246072+003
8,35410!.84+001
=1,21348411+000
1.27543274=002
-1.03269626 004
6.70921736-1107

=3 60039407-009
1.63065913-011



NRL REPORT 6798

N P A COEFFICIENT

20 0 1.76-,97052-001
20 2 -3.71777885+001
20 4 1.288 '614+003
20 6 -1.727 2679+004
20 8 1.17324619+005
20 10 -4.5737357+0o5
20 12 1.08382423+006
20 14 -1.5 9410 9 71+006

20 16 1.426 69 8 6+00 6

20 18 -7.19v7!651+005
20 20 1.66 9:]242+005
20 22 -6.95:)55229+003

20 24 1.4875,165+002
20 26 -2,06870732+000
20 28 2.0856(,248-002

20 30 -1.62246708=004
20 32 1.014.5>176=006

20 34 -5,245..73333-009
20 36 2.29234576-011

N P A COEFFICIENT

22 0 -1.68188(95-001
22 2 4,27199428+001
22 4 -1.787181073+003
22 6 2.9077'873+004
22 8 -2.420.o254+005

22 10 1,1741!:497+006
22 12 -3.54745818+006

22 14 6.88686117+006
22 16 -8.6l0.36713+006
22 18 6.73t;75541+006
22 20 -3.0,'5o9,7924006

22 22 6.3561.355+005
22 24 -2.4 6'6128+004
22 26 4.765-'1380+002

22 28 -6.1')/9U707 Cl0o
22 30 5.69,411252-02

22 32 -4.1tw'85-04
22 34 2.373 .-562- ()06

22 36 -1. I1y':7 8397-008
22 38 4.69 9-655-011

N P A COEFFICIENT

3.70013809+000
2. 849i19720 02
6.43978-54+003
z6.6571R767+004
3,77600408+005
z1.286P6964+006
2.74714560+006
z3.71355288+006
3.09864887+006
z1.47499258+006
3.2451 7)83+005
-1.2944n893+004

2.650?7639+002
=3.53531622+000
3.424371.47=002

-2.56334470=004
1.54433?89-006

-7.70604283-009
3.25361902=011

N P A COEFFICIENT

-3,86832619+000
3.55887180+002
=9.64534858+o 103

1.20371-517+005
=8.3310551+005

3.51659425+006
=9.53965127+006

1.696591-42+007
.1.97260532+007
1.4502 090+007

.6.19623650+006
1.24125741+006

.4 54495260+004
8.57489607+002
-1.05748290+001
9.49809934=002

-6.61098535u04
3.71294682-006
1 .073 1 P 1 )52-0 8
6.)84571,979-011



H. A. BROWN

N R A C@FFFICIENT

1.61!' 258=001
-4.85t5S923+001

2.4i- 91'-D830+P03
-4.6/!5 9739+004

4,6771-.5 252+005
- . 7:'63)8 01 +006

1,0U_8cii552+U07

-2,52 72'625+ [07
4.1449.'457+007

-4.5039 8548+(}007
3.!>47Q198+ 007

-1. 2 o99 5s09 [07

2. 435 2"66 3Cl+ 006
-8, 5 49' 400+(04

1.55487609+003

-i.6477,)772+001
1.6U1 28232-001

-1. 076F,.38J0-003
5.8496 01 -[0b

-2.64 i7 y8 75-0 80
i.01_17418=010

N p A COEFFICIENT

-1 .53 961017-001
5.4553,'286+001

-3. 1/572 925+003
7.23575077+004
-8.5559/614+005
6 .0ll 2)ho4 + O6

-2. 79 77,094+(107
8,166' 1137+007

- ,..5 ) ' 6 71 , 00

-2.291i 6,;197[+008

-5 .3Lufc 0 68.00 7

9. 18lrg79+hJ06

-3. 052 ' 3jl4+005
5, 1 5i'Th 55+i'03

4 . 6; 263 ,01

-2 .9 1t , 98 - 0 0 3
t.4",2/, 687.;005

-6.2 , 7,-' & - 4 - 0 8
2.2 / , 28; = -: i 0

M R A COEFFICIENT

4.n2950644+o00
-4,3653 0900+U02
1.3969A 284+'004

u2. 6920593+O05

1.7136,944+006
=8.7629e..86+006
2.92530402+007
=6.5640r085+0o7

9.98558827+007
.1.nl791957+008
6.68737927+007
-2.59155960+007
4.76515788+006

zI,61253629+005
2.8208J621+003

-3,23450893+001
2.70818509=001

=1.7614n823-003
9.26467495-006
4-4.0541:3539-008
1.50739617-010

N P A COEFFICIENT

-4.18448746+000
5 27246345+002

=- 1Q6671 6 05+004
3, 40948283+005
;3,32534466+)06

2.012063494+007
,8 .116989(02+007
2*2302 1 808+008

-4 250?2C.21+ 008
5 65524589+008

-5.1303(11315+008
3 04584489+008

; 1.07994F83+008
1 .83503254+007

z5 .77222'>95+005
9 .4120C 1.38+003

=1 .00843964+002
7 90733.118-001
4 .82643451 L003

2 3871r1576-005
=9 .P40l33191008
3,45272103010

26
26
26
26
26
26

26
26
26
26
26
26

26
26

26
26

26
26

26
26

26
26



NRL REPORT 6798

N R A COEFFICIENT

1.494459 1-001
-6 .08246064 + 01

4. 095 5/957+(003
-1. 08404618+005
1. 494751) 01+006

-1.2328i.570+007
6.579 5 [,476+007

-2. 3, & .5795+(08
6. 00451. :593+00b

-1 .0666,464+009
1.331-1,6387+009

-1.14449045+009
6.48241313 +008

-2.2U 465235+008
3.60917243+007

-J-.09605393+006
1 .729a7525+004

-1.79417961+002
1.36355377+000

-8.07444899-003
3.87776395-005

-1.55350501-007
5.30154613-010

N P A COEFFICIENT

-1.44464448i:001
6.732Cl5106+001

-5.1949'360+003
.1.57935752+005
-2.51042445+ 106
2.39955497+007
-1.4950'5101+008
6.3797,,055+008
-1.92172116+009

4.15' 323502+009
-6. 46686427+009
7.20475215+009

-5 .607716230+009
2. 91 824 110 + 009

-9. , 9540 +0008

1. ,395(14797+008
-3.9- 574799+')06

5.8/3325b2+004
-5.7291 751+002
4. il n521+000

-2. 292'l) 2 85-002
.04U4 '999-wC004

-3,94-)0 254-007
1,2766b310-009

N P A COEFFICIENT

4.33393344+000
-6.28421.181+002

2.7023n137+004
z5.41807676+005
6.141.9Q693+006
=4.36837809+007
2.07375745+008
-6.82210656+008
1.58818906+009
=2.63639087+009
3.10347643+009
-2.53552267+009
1.37297347+009
-4.48637865+008
7.08551758+007
*2.08208967+006

3.17919886+004
=3.19662302+002
2.35686872+000

-1.35519763-002
6.32504536-005
-2.46452172-007

8.18627918-010

N P A COEFFICIENT

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31

r4,47839789+000
7,40429205+002
;3,6356no70+O04
8.3452P314+005

=1.08740809+007
8,93956203+007
.4.94247508+008
1.9127Q551+009
=5.30965713+009

1.07038t31+010
z1.56985346+010

1.65898250+010
,1.23258559+010
6,13456719+009
z1.8587P893+009

2.74225777+008
=7,56040633+006
1.08543874+005
1.,0280Qh34+[[03
7.15306461+000
-3.88764897-002
1.7177f0,-34-004

-6.34531,-41-107
2.n 0099u' 47-[09

30
30
30
30
30
30
30
30
30
30
30

30
30
30
30

30
30

3,1
30
30
30
30
3U
30



H. A. BROWN

N P A COEFFICIENT

1.39949934w0Qj
-7 4 U" '35 3 15+001
6,4903981+00-3
-2.24575488+005

4.0749%839+006
-4.46529093+007
1 .2081.2879+008
-1,59094578+009
5.62609494+009
-1.4,;736972+010
2.7-3307571+010

-3.78673436+010
3.80659576+010

-2 .7 [ 5 947 +01
1.29416017+010

-3.78 :7 ; 412+009
5.40416833+008
-1.4453(:808+007
2.01478076+005

-1,85456708+003
1.25,197583+001

-6.63884135-002
2.85709851-004

-j.02871601-006
3.16396546-009

N P A COEFFICIENT

4,61834783+000
-8.63631730+002

4,80188864+004
;1,25086093+006

1.85571204+007
1.74482568+008
1.11000700+009
-4,9825n244+009
1.62094729+U10

=3.88283430+010
6.89360946+010
-9.04961849+010
8.67327382+010

-5,90788889+010
2,72019887+010

-7.68348920+009
1.06348048+009

-2,76150142+007
3.74102579+005

-3.34916560+003
2.20592096+001
-1,13662657=001

4.76777220-004
-1,67428493-006
5.02544162-009



NRL REPORT 6798

N R A COEFFICIENT

4 0 -1.35833760-001
;4 2 8.09569778+001
;4 4 -8.0129893+003
4 6 3.12595097+005
4 8 -6.4199-982+006
;4 10 7.990;5375+007

;4 12 -6.55186519+008
;4 14 3.73128248+009

;4 16 -1.52780970+010

;4 18 4.598?9648+010

;4 20 -1.03617556+011
;4 22 1.72540198+011
;4 24 -2.15171 723+011
'4 26 1.97033849+011

4 28 -1.28845819+011
4 30 5.7183DI14+010
;4 32 -1.56224913*010
i4 34 2.09750981+009

;4 36 -5.29259918+007
;4 38 6.97329247+005
;4 40 -6.07632838+003
;4 42 3.898!9890+001

;4 44 -1.9t)774350-001
;4 46 8.00933702z004
54 48 -2.7448vb082-006
;4 50 8.04496846-009

N P A COEFFICIENT

-4.75418158+000
9.9837S762+002

-6.23996631+004
1.83048638+006

-3.06641338+007
3.26779192+008

Q2.36784233+009
1.21837081+010

-4.58133484+010
1,28205650.011

-2.69669425+011
4.273671494011

-5.07516148+011
4.44885690+011

-2.79739238+011
1.19822368011

=3.16960829+010
4.13173636+009

-1.01389705+008
1.30020812+006

c1.1035?648+004
6.9003n1.04+001

3.37988663-001
1.34943118=003

-4.51578592-006
1.29312369=008



H. A. BROWN

N P A COEFFICIENT

36 0 1.3;r.'Ci600-001
36 2 -8,6e4' '"695+001

36 4 9,748n,417+003
36 6 -4,2697,199+005
36 8 9.8b1,/598+006
36 10 -1,38.:' 449+*08
36 12 1.,2P.45276+oo9
36 14 -8.217 -.053+009
.36 16 3 ,g797048+U1O
36 1.8 -i .35,4,4001+011
36 20 3.5;9',5446+Ci11

36 22 -6.9]4?1167+ll
36 24 J,.05,t.9028+012

3-6 26 -3.191i-9,637+012
36 28 1 .0";.1.97418+012
36 30 -b.0666:'404+011
36 32 2,5111'056+011

36 34 -6. 43 -)679+010
36 36 8.1 5-809+009
36 38 -1.9.765347+098
36 40 2.4A'?70992+906

36 42 -2.0V242i28+004
36 44 1,22728722+002

36 46 -5 .8 ,i66<237 1)01
36 48 2.28715700=003

36 50 -7.4'759577-006
36 52 2. 09322877,-008



Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 20. REPORT SECURITY CLASSIFICATION

Naval Re search Laboratory UNC LASSI FIED

Washington, D.C. 20390 2,. GROUP

3. REPORT TITLE

IMAGE ENHANCEMENT WITH PROLATE SPHEROIDAL WAVE FUNCTIONS

4. DESCRIPTIVE NOTES (T ype of report and inclusive dates)

Interim report on one phase of the problem; work is continuing.
5. AU THOR(S) (First name, middle initial, last name)

Henry A. Brown

6. REPORT DATE 7a. TOTAL NO. OF PAGES F REFS

November 29, 1968 56 11
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMSER(S)

NRL Problem R02-14
b. PROJECT NO. NRL Report 6798

RF-05- 151-402-4005
C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

this report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy
(Office of Naval Research),
Washington, D.C. 20360

13. ABSTRACT

If the electric field intensity in the Fraunhofer region of a one-dimensional
radiating source can be represented as a finite Fourier transform of the source
current, then the source current can be reconstructed exactly by using prolate
spheroidal wave functions and a segment of either the far field or the diffraction-
limited image for the noise-free case. An example of the image enhancement of
this process is given for the case of two equal point sources, which are unresolved
in the Rayleigh sense. The point response function of this process shows that the
resolution cell extent can be readily reduced to less than 10% of the Rayleigh cell
with only 20 degrees of enhancement processing. A method of generating the
Legendre polynomial and power series expansions of the prolate spheroidal angle
functions of the first kind and order zero, s0( e, x), has been worked out in detail.
The Legendre polynomial expansion coefficients for degrees n = 0(1)40 and the
power series expansion coefficients for degrees n = 0(1)36 are tabulated for c = 2.

D D ~FORM 1473 (P AGE 1)DDFORM 47 (PAGE I)DD 101651

S/N 0101-807-6801 Security Classification



Security Classification

14. LINK A LINK B LINK C
KEY WORDS

ROLE WT ROLE WT ROLE WT

Imaging
Image enhancement
Wave functions
Resolution
Resolution improvement
Super resolution
Rayleigh criterion
Prolate spheroidal
Wave functions

DD ovo%651473 (BCK)
(PAGE 2) Security Classification


