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ABSTRACT

This report considers a linear elastic structure to consist of
several parts: a primary structure which has a rigid base, and
one or more substructures which are firmly attached to the pri-
mary structure. The normal modes and natural frequencies of
the combined structure are determined from a knowledge of the
primary structure's normal modes and frequencies and the mass
and the elastic constants distribution of the secondary structure.
The displacements of the total structure are expressed as a series
expansion of the scaled normal modes of the primary structure
alone, and a set of equations is used to find the normal coordi-
nates of the secondary structures for the new natural frequencies.
There is in general an increase in the number of degrees of free-
dom. The scaling factors involved are determined from the equi-
librium equations of the primary structure, with the secondary
structures removed and replaced by their internal forces of con-
nection. Numerical examples are presented.

PROBLEM STATUS

This is an interim report on one phase of the problem; work
is continuing on this and other phases.

AUTHORIZATION

NRL Problem F02-05
Project SF 013-10-05-11655

Manuscript submitted July 19, 1968. Work was performed in the
summer of 1967.
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C, D

Gk(k, kij, Mi)

k.

Mn.
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N

Pk

q a

S
0

Si, 1,2, etc

Ui k

Xi

Xi a

Xk

XJ A

ij

X

a, b

A

Arbitrary constants

Transfer function between internal connecting force and attachment
displacement

Stiffness matrix for secondary structure

Mass on primary structure

Mass on secondary structure

Number of degrees of freedom of primary structure

Number of degrees of freedom of total structure

Amplitude of connection force

Generalized coordinate as a function of time

Scaling factor in displacement expression

Scaling factor associated with ath mode of vibration for total structure

Primary structure

Secondary structure

Kronecker delta; 1 if i = k, 0 if i t k

Displacement of ith point of total structure

ath normal mode of primary structure

Displacement of attachment point

Ath normal mode of total structure

Influence coefficient

Natural frequency of total structure

Natural frequency of primary structure

(Subscripts) normal modes of primary structure

(Subscript) normal modes of total structure



NORMAL MODE THEORY FOR COMBINED STRUCTURES

INTRODUCTION

The response of linear elastic structures to dynamic loadings has been the subject
of several earlier works including the NRL reports of Refs. 1 and 2. Recently normal
mode theory has become widely used and accepted as a tool for structural design and
analysis. This usage has brought to the fore the question of what relationships exist be-
tween the normal modes and natural frequencies of a structure and the normal modes
and natural frequencies of its component parts.

This report is deliberately limited in its use of mathematical methods to those which
are no more complex than necessary. No background knowledge of Fourier transforms,
Laplace transforms, Hamilton's equations, or Lagrange's equations is assumed. These
general methods are so powerful for this type of problem that solutions are produced
with deceptive ease. The feeling of actually understanding the problem is lost while one
is blindly following the operational rules.

It is assumed that the reader has some familiarity with elementary normal mode
theory and with the concepts of characteristic value (eigenvalue/eigenvector) problems.
With this assumption satisfied, this report is self-contained.

A literature search showed that the problem of predicting the normal mode shapes
and natural frequencies of a freely vibrating complex structure from the normal modes
and natural frequencies of its component parts has only partially been solved.

In Ref. 3, for example, the normal modes and natural frequencies are found for
structures to which a mass or a spring has been added, but problems where additional
generalized coordinates result from additions to the structure are not considered. More
complicated structures than those presented in Ref. 3 are treated in Refs. 4 and 5. Once
again, however, the total number of generalized coordinates is not changed by the addi-
tions to the structure, and even then only the natural frequencies of the combined struc-
tures were found.

In Refs. 6 and 7, changes in the natural frequencies are considered for the addition
of mass-spring oscillators to beams in such a manner that the number of generalized
coordinates is changed. No attempt was made, however, to find the normal modes of the
combined structure. There seems to be a need for such a solution regardless of whether
the number of generalized coordinates has been changed by the structural addition or not.
The procedure outlined in this report was developed to predict the normal modes and
natural frequencies of a freely vibrating complicated structure from the normal modes
and natural frequencies of its primary part and a knowledge of the mass distribution and
elastic constants of the secondary structure.

There are two basic approaches for the analytical representation of a linear elastic
structure responding to dynamic forces. One method breaks the structure into a finite
number of concentrated masses restrained by a weightless structure having the same
strength properties as the real structure. Such systems are called lumped-parameter
systems and have their governing equations of motion in the form of ordinary differential
equations. The second method treats the structure as a continuous elastic body (an infi-
nite number of masses) in which (at least segmentally) the material is assumed to be
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homogeneous and isotropic, and to follow Hooke's law. These systems are called
distributed-parameter systems and have partial differential equations for their equations
of motion. Most engineering structures are too complex to be solved by this second
method.

The primary concern of this report is to find the normal modes and natural frequen-
cies of a structure which is formed by adding a linear elastic, undamped, lumped-param-
eter system to an existing linear elastic structure whose normal modes and natural fre-
quencies are known.

The usual assumptions concerning linear elasticity are made in this report. In addi-
tion, unidirectional motion is assumed; e.g., all forces and deflections are parallel, and
only primary structures which rest on infinitely massive and rigid bases are considered.

THEORY

Consider a primary structure so (Fig. 1) which rests on an immovable base. As-
sume that this structure has been previously analyzed for its normal mode shapes, Xi a,
and for its fixed-base natural frequencies, w,, where a is the mode number. We assume
that this set is complete. A new structure s1 (Fig. 2) is to be added to s o at the mass
point k. What then are the new normal mode shapes, x, A. and the new natural frequen-
cies, k1, of the combined structure (s o + s1)?

Pk(X) sin Xt

SI
Fig. 1 - Primary Fig. 2 - Secondary

structure so structure

Pk (X)sin Xt

Primary Structure

We assume that a force [ Pk (X) sin Xt] is applied to structure S 0 at the attachment
point. The magnitude and sign of the force is unknown at the present but will later be
chosen to correspond to the internal connecting force in the structure (s o + S]) during
free vibrations.

Using D'Alembert's principle and influence coefficients, the distortion of the struc-

ture S0 is described by the n equations

n

Xi =-L .ij.I + l iXPk(X) sin Xt,(
j=1

with n the number of degrees of freedom of the primary structure.

A solution of Eq. (1) is sought in the form of a series by

X' q i n1 , (2)
X, L

=
] aa
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where the Xia's are the mode shapes for the structure S and the qa'S (the generalized
coordinates) are to be determined. Substitution of Eq. (2% into Eq. (1) yields

(qa ijmjXja + a ik"k(J) sin t (3)
a=i I=1

for all i.

From the definition of a normal mode,

Xa °)a.J~ .m.X. a i - 1 ....... a (4)

where % is a fixed-base frequency of So so that

al 
+  q a ) X a ,k k() sin kt, i 1-l , n (5

a=1 a

The influence coefficient times the force can be brought into the parentheses by expand-
ing this expression into a series of mode shapes. It is well known (1) that

)-- XiaXka (6)
a1 kpk(2 = -2X)(6n 212mX

ja1

and if this is substituted into Eq. (5) there results

4 a + q- - n Xi a O (7)

a=1 =

The use of the orthogonality relationship reduces Eq. (7) to

XkaPk() sin Xt

4'a + Wa qa (8)

2 ~X
jl

for each a, 1 to n.

No further progress can be made until the internal force Pk) sin Xt is defined, and
this requires analysis of the structure S1 .

Secondary Structure

Before we can write the equations of motion for the secondary structure, it is neces-
sary to know the characteristics of the part of the structure being attached to So . If we
assume that the connection point on structure S1 is labeled point k, one of two possibili-
ties can exist -either the point k on structure S 1 has mass or it does not. See Fig. 3.
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M3

k3

k2

k,

(C)

Fig. 3 - Possible characteris-
tics of point of attachment of
secondary structure: (a) At-
tachment point has mass and (b)
attachment point has no mass

Case 1: Point k has Mass - For this case,
point k has mass and the differential equations
of motion of the secondary structure s, can be
written as

N

k N + k i P;M nX
kik k L E ij Xi 

=
z - ii+k N ( ~ )

Uk

j =J/+ 1

(9)

where i -- k, n + 1, n i 2,..., and u1 ik 0 unless
i =k, at which time Ukk =]; (N -n) is the number
of degrees of freedom of structure S1; and ni
are the masses making up the secondary struc-
ture (shown as circles in all figures).

Since we are only seeking sinusoidal solu-
tions of the form

D. sin Xt

- k 2J ,

Eq. (9) can be written

L
=n =+I

2--.
ki -X . 2mX i - Pk( v)(sin Xt) Uik

iy Ui
(10)kik Xk I

where i - k, n + 1, ... N.

Case 2: Point k has no Mass - For the case in which point k has no mass the dif-
ferential equations of motion of the structure SI can be written as

j=71+1

where i = n+l, .. ., N
tached to point k,

form the set for si

kij Xji XiXi + Pk()(sint) Ui,n+, (11)

I which, along with the force-elongation equation for the spring at-

(12)Pk(X) sin Xt = (Xn+1 - Xk) kn+,n+ I

ij -X. i -Pk()(sin X) Ui,n+1

]n+l,n+lXk, i -n+]. ..... N.

We note that ut + has the same definition as in Eq. (9). Equations (10) or (13) -
depending upon the case involved - are solved for [Pk( sin Xt] as

(14))k(X) sin XI = Gk(X, kij, mt)Xk

and

Y
=n +l

P (x) sill Xt c ln ln l

(13a)

(13b)
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That is to say Gk(X, k., ni ) is the transfer function between [Pk() sin Xt] and Xi .
In general this will have the form

- Det BIk))sn k Det Cj Xk " (15)

Here Det C is the determinant of the left-hand side of Eq. (10) or (13) with [pk(X) sin kt]

being considered an unknown, and Det B is the determinant of the left-hand side of Eq.
(10) or (13) with the [Pk(X)sin Nt] coefficient column replaced by the column -kik.

More Than One Secondary Structure

All of the foregoing has been based on the assumption that only one structure S, was
attached to one mass point on structure So, and therefore only one internal force was in-
volved. If more than one structure is added to the structure SO , then the right-hand side
of Eq. (8) would become a summation of terms (similar to the term on the right-hand
side of Eq. (8)) - one term for each structure attached. There will exist P sets of inde-
pendent equations such as Eqs. (10) or (13) - where P is the number of structures
added - which will enable the force in each term to be evaluated. If, on the other hand,
the same structure is attached to more than one mass point of S. , more than one inter-
nal force will again be present and again the right-hand side of Eq. (8) will become a
summation of terms. In this case, however, only one set of equations such as Eqs. (10)
or (13) will be available but will nonetheless yield expressions for all the internal forces.

Natural Frequencies and Normal Modes

The displacement Xk in Eq. (15) is expressed according to Eq. (2), and the equations
that determine the generalized coordinates qa are obtained by substituting Eq. (14) into
Eq. (8):

2 XkaGk(X i ), ,- -

+ 71 +kbjb, a 1, .. n (16)

mj X ) a b=i
j= 1

Since we are only interested in solutions at frequencies X, we write

Sq a sin kt , (17)

and Eq. (16) becomes

S kGk(XI ki. 1Z)

q(a) -X - q - 0, a 1, .... .1 . (18)

mj'J a b=1

Equation (18) is a set of n homogeneous algebraic equations linear in the generalized
coordinates Va. If other than the trivial solution is to exist, the determinant of the coef-
ficients must vanish. This fact yields an Nth-order polynomial equation in N2 from
which the natural frequencies of the total (S0 + S,) structure (Xh, A = 1, 2.. ,N) are
determined.

These natural frequencies are then substituted back into Eq. (18) and for each of the
N XATs, we obtain (n - 1) of the n q 's in terms of the one remaining q,. We arbitrarily
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choose one of the a 's to be unity and substitute the resulting values of the Va 's into Eq.
(2) which now should be rewritten as

(19)XiA = XiaAa i 1], n and A = 1,N

a=1

Equation (19) gives N mode
ture (so + S ). The mode shapes
ing Eq. (10) or (13) for the X
known coordinate X,,"

shapes for n of the N discrete mass points of the struc-
for the remaining (N-n) mass points are found by solv-
through XN remaining unknowns in terms of the now

I Det Dj
n+j, A -Det CI kA (20)

where Det C is the same as in Eq. (15) and Det D) is the lefthand side of Eq. (10) or (13)
with the coefficient column of Xn j replaced with the - k column into which, of course,
the particular values of N 2 have been substituted.

We have thus determined the mode shapes and natural frequencies of the composite
structure from a knowledge of the normal modes and natural frequencies of the primary
structure and a knowledge of the parameters of the added structure.

SAMPLE PROBLEMS

General Case

We desire to know the normal modes and natural frequencies of the structure shown
in Fig. 4a. The structure shown in Fig. 4b is arbitrarily chosen as the primary struc-
ture, leaving the structure 4c as the secondary structure. The solutions for the primary
and total structure obtained by ordinary means are shown in Table 1.

k k2  k, k
(o m 2  R3 R 4

M-1  - 2  M3x M I 4

(b) M, M2 P2(X)sinXt
x, I-'X2

m, z1 k, =2
m 2 : 4 k2=6
m 3 .i k3 =4
m 4 -2 k4 -2

Fig. 4 - Sample structure: (a)
Complete structure, (b) pri-
mary structure, and (c) sec-
ondary structure

k_3 - 4 -
(c) P2 (X)sinXt I

x2 -x3 -x4

Since point X2 on the secondary structure has no mass, this is an example of a
Case 2 problem, and we write the equations of motion for S, as

3 X,

(k - m X2) X :4 x .

k4X3

which are a form of Eq. (13).

- P2 sinaiX k3X 2

- k 4 X 4

- (k 4 -rn 4 A 
2

)Y 4

P 2 sinXt = 0 (21)
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Table 1
Solutions for the Primary Structure and the Total

Structure as Obtained by Ordinary Methods

Structure Frequencies Mode Shapes

s o  0.327049 x = 0.781968 x 21 = 1.0

9.172952 x 12 = -5.115299 x 22 = 1.0

so+ S 0.174454 x Il= 1.0 x 21 = 1.304258

X31 = 1.533112 X = 1.857091

1.074521 X12 = 1.0 X22 = 1.154247

x32 = 0.145355 x42 = -1.950523

6.708285 X13 = 1.0 X23 = 0.215286

X 33 =-2.405985 X43 = 0.421490

9.542740 x14 = 1.0 x24 = -0.257123

X34 = 0.310850 x44 = -0.036384

In this case,

G 2 (k, ]i j, mi
) =

k 3 k 4 (m 3 + m 4 ) N
2  - k37374X4

k 3 k 4 - X
2
(k 4 M3 + k4m 4 + k 3 7n4 ) + m37n

4
x

4 (22)

From Eq. (21),

k
3

k4 -in
3

k 
4

P s n t -

x2)

0 k3

-Ik 4  0

(k 4 -m4 N
2

) 0

k3  0

(k 4 -M 3
x 2

) - k 4

k 4  -((k 4- 4 x 2 )

Upon substituting values for the structure into Eqs. (22)

P2 sin Xt = G 2 X2 ,

(23)-1

+1

0

and (23), we obtain

(24)

4 X2 (3 - N
2
)

2 4 -72 + 4

which gives for Eq. (18)

where



FOURNEY AND O'HARA

[ 
_2a 

4-(3 
- 2 )

X k 72+4 ]
a(w>N 2 ) _

2

b2bb
b=i

2

j=1

or, for the structure being studied,

0.867402 (3 N)] 0.867403 N (3 -N 
2 )

[(0327049 -N) - N4 - 7 2 
+ J 1  - (X4 -7 k 2 + 4)

0.132598 N
2(3 - X2 ) [ 2 0.132598(3 - N2

X
4 - 7N 2 + 4 qI + [( 172952 - N) - N4

- 7N2 + 4 q

Expanding the determinant of the coefficients of Eq. (25), we arrive at the frequency
equation

8 6 4 -2N - 17.500001 N + 84. 500014 N - 83. 000045 N+ 12. 000020 =0,

which gives X = 0.174455, 1.074521, 6.708286, and 9.542740.
ral frequencies as given in Table 1 for the total structure.

These agree with the natu-

When these four values are substituted back into Eq. (25), taking qIA

q] I = 1 q21 0.002602

ql 2 -- 1 22

q13 2  q23

q 1
11 2

1, we obtain

1 -= 0. 174455

2
-- 0.014109 for N2 - 1.074521

2
-0.395790 for N3  6. 708296

2
3.809717 for N 4 9.542740

which when substituted into Eq. (19) (taking XlA

XII = 1.0 X21 =

X12 = ].0 X22 
=

i.o) yields

1.304354

1. 154250

(27)

(28)
X13 - 1.0 X23 0.215286

X14 10 X24 -0.257123

The solution of Eq. (21) for X3 and X4 gives

2
k 3k4 - k3im 4NA

X 3A

X A

X 2A
4 2

2 NA - 14 NA + 8

k 3 k 4

4 2 A
NAX 14 NA+ 8

the mode shapes are found to be

(29)

(25)

(26)
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X31 = 1.533224 X4 1 = 1.857224

X32 = 0. 145356 X42 = -1.950528

X33 = -2.405988 X43 = 0. 421490 (30)

X 34 = 0.310852 X44 = -0.036388

and all of the mode shapes are in agreement with the values given in Table 1 as found by
ordinary means.

Special Case - Node at Point of Attachment

If a fixed-base natural frequency of the secondary structure has the same value as
one of the natural frequencies of the total structure, a node appears at the point of at-
tachment. At this frequency, the secondary structure behaves as if attached to a fixed
base. Equations (20) are now indeterminant and of little value in determining mode
shapes for this mode of vibration. The ratios of displacements for points on the sec-
ondary structure (mode shapes) are seen to be the same as those obtained from the solu-
tion of the secondary structure as if supported on a fixed base. The values of the dis-
placements must still be chosen, however, to be compatible with the displacements of
the primary structure. For this reason it is felt that these displacements for the sec-
ondary structure are best found from the orthogonality conditions

N

7n iXi AXiB = o, AB . (31)

If the normal modes for all other frequencies are first found according to the proce-
dure outlined in the section on theory, Eq. (31) will always supply the number of inde-
pendent equations required to find the mode shapes of the secondary structure for this
nodal frequency.

The structure shown in Fig. 5a results in a situation wherein a point of attachment
becomes a node.

The solutions for the primary structure and the total structure are given in Table 2.

k1  k2  k

l- x. -x 2  I-.X 3
rnm:4 k,-3

Fig. 5 - Structure with a new m2 =6 k2 =6

node located at attachment kM 3 =4 k3 9

point: (a) Complete structure, (b) m p2 (X sinXt
(b) primary structure, and (c)
secondary structure L l'x2

(c) PA(X)sinXt k

The generalized coordinates are found from
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Table 2
Solutions Obtained by Ordinary Methods for the

Nodal Attachment Point Problem

Structure Frequencies Mode Shapes

s o  0.250000 x = 1.0 X2 1 = 1.333333

3.000000 xl2 = 1.0 X 2 2 = -0.500000

SO+ SI 0.163524 xl = 1.0 X2 1 = 1.390984 X3 1 = 1.500000

2.250000 x1 2 = 1.0 X2 2 = 0 x3 2 = -0.666667

4.586476 X13 = 1.0 X2 3 = -0.557651 x 3 3 = 1.500000

[ ( .25 - N2 ) -4.363636 
2 ]

02 -0)- - X

4. 363636k 2

9 -4N
2 q, [ (3 -N 2

)

1.636364 -0
+ q 2  

0

1.9 64 6 2 1

which yield the frequency equation

X
6 

- 7.000000k
4 

+ 1].437500X
2 

- 1.687500 
= 0

whose roots N
2 = 0.163524, 2.250000, and 4.586476 are the same as the values given in

Table 2.

When these values are substituted back into Eqs. (32), taking q iA : 1, we obtain

11 I q 21 -0.030499

1 - 2.666667 (33)

q I q23 2.733405

These qi A
taking XI =1,

values give in turn the mode shapes of the points on structure s o as,

xN1 1 X 1.391008

x12

X13 

x 22 0

x23 - .557649

and we find from Eq. (20) that

x31- 1.500025,

x33 1.499998,

and that
k 3 X 2 2  0

X3 3 -i 3 - 0

is indeterminant.

(32)

(34)
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To evaluate the modal component X3 2, we write Eq. (31) for A = l and B-- 2,

1 Xl1 12 + M2X21X 22 + M3X31X32 = 0

or (36)
- _ -___ X12 

= -0.666656

32 3 3 31

and all of the mode shapes are therefore determined and agree with the values presented
in Table 2.

Another problem of special interest is what happens when the point of attachment is
a node on the primary structure before the structure s I is added. This will be covered
now, as part of the discussion that follows.

Continuous Primary Structure

As one further example of the procedure developed, we wish to examine a continuous-
type structure as our primary structure. Consider the structure shown in Fig. 6a where,
as our basic structure, we chose the simply supported beam of length {. Our secondary
structure consists of a mass-spring oscillator.

Fig. 6 - Continuous primary structure:
(a) Complete structure and (b) second-
ary structure

x~ko

Mo'

-112-

4

Xo

(X)sin Xt

(b)

The primary structure has as its natural frequencies

a 27T4 Ei
a M a 1, 2, 3,

where M is the mass of the beam per unit length. The normal modes of the primary
structure are

2 a7TX

c(X) - sin-

We arbitrarily pick

0  1.0, M t = 1.0, and Mo = 1.0

48EI

We rewrite Eq. (2) for a continuous system as

a'-]

(37)

Therefore, Eqs. (18) become
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(/ -- 2) G.X , C
~b= 1

o I

(38)

The finite expressions in Eqs. (2) and (18) have been replaced with infinite summa-
tions in Eqs. (37) and (38). To make the solution tractable, we will terminate the infinite
series with only four terms -- realizing of course that the answers will be only approxi-
mate and that a computer solution retaining more terms could very easily be accom-
plished not only to improve the answers but to check on rates of convergence and accu-
racy of answers as well.

Equations (38) are

(,2 - N2
)

48 N
2

48 - N
2

48k
2

48 - N2

,2 sin T12 ( qI42 sin 77/2 + q3 2 sin 37T/2)

-2 sin 37/2 (ql,2 sin 77/2 + 33 2 sin 37T/2)

4 (02 -W 2) 0

The frequency equation is

2 X ) _X2 2 J 2 ) X 6 2(: C ) <2 )

( - N,) 2 ( _ -N
2

) C,_ 2
X)(c N

2
) - 96 

2
( 

2
) - 96

giving
N2 21. 1374

0 ,(40)

21 8. 4947

\; = 1558.544

N2 = 7987.9079
4

N2 =24936. 7065.5

These are in good agreement with the values for the natural frequencies obtained in Ref.
7, considering the numbers involved and the number of places retained past the decimal
in the calculation performed.

Back-substitution of these values into Eq. (39) results in the following values for the
generalized coordinates:

,, = -103.1705

q 1 2 63.3638

q 1 3 --

q1 4 --

"q 1 --

0

0.01239

q2 1 =0

q 2 2  0

= arbitrary

q 024 0

q 3 1  = 1.0

332 = 1.0

q 3 3  0

q 3 4 = 1.0

q 3 5 0

q 4 1 0

q 42 = 0

q 43 =0

q4 4 =0

q = arbitrary.

q 2 (02 -
2 ) z 0

q3 (w 2
- N2)
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These yield upon substitution into Eq. (37)

X1 = -103. 1821 F- sin 71X/t + 2 sin 37TX/'(

X 2 = 4W sin 371X/'( + 63. 3630 2- sin 71X/,t

X3 = C sin 2TX/ t (41)

X4  = -0.01239 '[2 sin 7TX/,t + ",_ sin 377X/-{

X4 = D sin 47TX/t,

with C and D arbitrary constants.

Now, from Eq. (20) written for the single oscillator, we find

koXA( '/2)
XoA 0 ] Mo 0 (42)

and
X0l = -263.2670

Xo02 =- 24.8301

X03 = 0 (43)

Xo04 - +0.008655

X05 = 0 .

The answers given in Eqs. (41) and (43) cannot be verified as being correct, but the
orthogonality conditions for the total structure are for all practical purposes satisfied,
and a modal effective mass calculation shows that all but 5 percent of the total mass is
accounted for. This is good considering that the values obtained for the higher natural
frequencies here and in Ref. 7 are known to be in slight error.

Note also that for two of the modes - three and five - the primary structure exhibited
a node at the point of attachment. However, it was not necessary to use the orthogonality
conditions, as the equations developed in the section on theory were adequate.

SUMMARY

A method has been demonstrated for obtaining the normal modes and natural frequen-
cies of a structure from a knowledge of the uncombined modes and frequencies of a pri-
mary part and the mass distributions and elastic constants of the secondary part.

In passing we note that there are other, perhaps more efficient, ways of obtaining
the natural frequencies of the total structure. We chose to use the determinant Eqs. (18)
merely to show that all the needed information on the structure (i.e., normal modes and
natural frequencies) can be obtained from the equations developed in the theory section.

This development is of great interest to an experimentalist. What we have shown is
that a complex structure might possibly be tested by breaking it down into one primary
structure and several secondary structures. To determine how the primary structure



FOURNEY AND O'HARA

will react to dynamic loading when it is a part of the total structure, one merely drives
(at points of attachment) the primary structure with sinusoidal forces of arbitrary ampli-
tude but with frequencies which correspond to the natural frequencies of the total struc-
ture. The displacements thus obtained (when normalized) are the normal modes of the
primary structure when part of the total structure.

To determine how the secondary structures will react to dynamic forces when they
are a part of the total structure, each secondary structure is individually driven at its
attachment with sinusoidal forces. These forces are equal but opposite to those used to
drive the primary structure. These displacements, when normalized, are the normal
modes of the secondary structure when it is a part of the total structure.
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