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ABSTRACT

In discrimination problems, one usually must consider many
variates simultaneously. A nonparametric discrimination method,
based on estimating the probability densities of two populations, is
now available and appears generally applicable to discrimination
problems, based on the results of extensive experiments.

The nonparametric method may also be combined with Gamba's
learning without teacher or classification procedure (M. G. Kendall,
"Discrimination and Classification, Multivariate Analysis," in
"Multivariate Analysis," Proceedings of an International Symposium
held in Dayton, Ohio, June 1965, P. R. Krishnaiah, Ed., New York:
Academic Press, 1966) to obtain a new classification technique
which considers all variates simultaneously.

PROBLEM STATUS

This is an interim report; work continues on other phases of
the problem.
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EXPERIMENTS IN DISCRIMINATION AND CLASSIFICATION

INTRODUCTION

In a recently published paper, Kendall (1) discussed new methods of attacking the
problems of discrimination and classification. He illustrated his methods on data which
Fisher (2) used in his first paper on discrimination. Kendall's methods essentially con-
sider the discrimination of one variate (of a multivariate sample) at a time. Since many
discrimination problems can be solved only by considering all the variates simulta-

neously, a nonparametric discrimination method (due to Specht (3)) is discussed which
is based on a nonparametric estimate of the probability density of two populations, and
this discrimination procedure is compared with Kendall's-using Fisher's data.

This discussion is essentially preliminary background to an exposition of experiments
on a new algorithm for classification, or cluster analysis. This algorithm, which combines
the nonparametric discrimination method with a general classification procedure suggested
by Gamba (4), again considers all variates jointly. As far as is known, experimental con-
firmation of Gamba's classification procedure has not hitherto been reported.

DISCRIMINATION

The discrimination problem may be defined as follows. Let Ak(k = 1, 2. M) be
a given set of p-dimensional vectors having an unknown characteristic "A" in common,
and let Bk(k 2 , 2 ... ,M) represent a given set of type "B" p-dimensional samples.
Let x = x1 .. , xp be an arbitrary vector belonging to either class A or class B. The
problem is to devise an accurate procedure for assigning x to either class A or class B.
If one knew the probability densities of the A and B populations, then the best procedure
would be to assign x to class A if PA(xl . x.. ,) > PB(xl ..... .. xp), where PA(x) is the
probability of x under the hypothesis A. However, all we are given is a finite set of
samples from each class. One approach, then, is to estimate the probability density
of the two p-dimensional populations from the finite set of samples and assign x to that
population for which the estimated probability of x occurring is larger.

The mathematical problem of estimating probability densities has been studied by
Leadbetter (5) and Parzen (6), among others. However, for our purposes, heuristic
considerations suffice. For simplicity we consider a set of one-dimensional observa-
tions xi, where i = 1, 2 ..... ,K. We assume that the variate x is continuously dis-
tributed and has the density p(x). Then

p(x) =_ f p(e)a (x - e) de-= 8 (x - e),(1

where we have omitted the limits of integration, it being henceforth understood that the
integration is to be performed over the entire region of definition of the variate, and
where a (x)is the Dirac & -function.
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As a first approximation one could replace the statistical mean of 5 (x - C) by the
sample mean, thereby obtaining

1 KP *(x) =-- ( x - xk), (2)
k= 1

where p*(x) is the estimate of p(x). To eliminate the discontinuities introduced by the
discrete nature of the averaging, we replace p*(x) by its weighted average, namely,

p*(x)= f p*(4)g (x- e) d /fg() d, (3)

where gW), an arbitrary weighting function, is chosen to be nonnegative and
symmetrical.

Now, defining F (x - e) by

F(x - .)6(x - )/fg (e) de, (4)

and taking the weighted mean of Eq. (2) with the normalized weighting function F(x -
we obtain

K

p(X) fp*( F(x- ) de -k F(x- xk) (5)
k=l1

as the form of the estimate of the probability density which we will use in this report,
where F(x) = F(-x) >= 0, and fF(x) dx 1.

Examples of F(x) are:

F(x) = (D/I7) (D2 
+ x2) (6a)

and

X2 ID21 -x2/D 2

F(x) e (6b)

where D is an empirical parameter.

The generalization of Eq. (5) to a bivariate set of samples is

1K
p*(x, y) =' K FI(x- x k ) F 2 ( y -  y k ) '  (7)

k=l1

where F1 (x) and F2 (x) may have different functional forms or different parameteric
values.

Specht (3) and Fix and Hodges (7, 8) have discussed and used empirical estimates of
probability densities in problems of nonparametric discrimination and pattern recogni-
tion. In particular, Specht has successfully applied this technique to the classification
of electrocardiograms. The following experiments in discrimination do not embody any
original ideas but are described because they are a necessary preliminary to the classi-
fication experiments, not only to determine the value of certain parameters, but also to
establish the necessary background.
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EXPERIMENTAL COMPARISON OF
DISCRIMINATION TECHNIQUES

Table 1 gives data on two varieties of iris (taken from Fisher's paper (2)) which
Kendall (1) uses to illustrate his method of discrimination. For brevity, use x, y, z, and w
to designate the variates SL, SW, PW, and PL. One is given K samples Ix , Yi, Z wi1 ,
where i =1, 2, ..., K from class A, and K samples Ix',, Y i, z'i, w-},where i =1, 2, ... , K
from class B, and an unknown sample I x, y, z, wIto be identified.

One computes, using Eqs. (6b) and (7),

K

PA(, y, z, w) I exp { [(x x) 2 + Y) 2 + ) (w wi)2] (8)

which is the probability density estimate for the occurrence of the unknown sample, sub-
ject to the hypothesis that it is of type A. Similarly, one computes

1 K

PB(x,y,z,w)- 4 exp- [(X _ x)2 + (y_ y,) 2 + (z-z)2+ (w-_w2].)2(9)
77 D K - 1 Dexp -(9

The rule of discrimination is: if PA(x, y, z, w) > PB(x, y, z, w), allot (x, y, z, w) to A.

If pA = PB make no decision.

On the other hand, one may disregard the rationale leading up to Eq. (7) and instead
one may interpret

__L exp{ [(X - x) 2 + (y )2 (z_ zi)2 + (w _ wi)2]}

D

as a "closeness" function which is a measure of how close (x, y, z, w) is to (x,, y,, zi, wi).
According to Eq. (8), PA(x, y, z, w) measures the average closeness of (x, y, z, w)to
class A, and the criterion for discrimination is to assign the unknown to that class which
is, on the average, closer to it.

To test this closeness criterion against Kendall's criterion 40 samples from each
class were chosen randomly to serve as data from which the parameters of the decision
criterion for the two methods were obtained. The remaining ten samples from each
class were used to test the accuracy of discrimination of the two methods. The experi-
ment was repeated ten times, with independent random selections of the 40 samples from
each class being taken each time. The results are summarized in Table 2, which indicates
the slight superiority of the closeness method and, also, that the choice of the parameter
in Eq. (8) is not critical.

However, we note that the closeness method is applicable in general, whereas,
although it is quite effective with the present data, Kendall's method would not be useful
in discriminating between two distributions having the same marginal distributions for
all the variates, but with different joint distributions.

THE CLASSIFICATION PROBLEM

Suppose we are given a set of p-variate samples which may originate from the same
or from different populations. The problem of separating this mixed set of samples into
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Table 1
Measurements on Two Varieties of Iris (in cm): SL, SW, PL, and PW

Iris Versicolor Iris Virginica

SL SW IPL IPW SL ISW PL PW

7.0
6.4
6.9
5.5
6.5
5.7
6.3
4.9
6.6
5.2
5.0
5.9
6.0
6. 1
5. 6
6. 7
5.6
5. 8
6.2
5. 6
5.9
6. 1
6.3
6. 1
6.4
6.6
6.8
6. 7
6.0
5. 7
5.5
5. 5
5.8
6.0
5.4
6.0
6.7
6.3
5. 6
5.5
5.5
6. 1
5.8
5.0
5. 6
5.7
5.7
6.2
5. 1
5.7

3.2
3.2
3. 1
2.3
2.8
2.8
3.3
2.4
2.9
2.7
2.0
3.0
2.2
2.9
2.9
3. 1
3.0
2.7
2.2
2.5
3.2
2.8
2.5
2.8
2.9
3.0
2.8
3.0
2.9
2.6
2.4
2.4
2.7
2.7
3.0
3.4
3. 1
2.3
3.0
2.5
2.6
3.0
2.6
2.3
2.7
3.0
2.9
2.9
2.5
2.8

4.7
4.5
4.9
4.0
4.6
4.5
4.7
3.3
4.6
3.9
3.5
4.2
4.0
4.7
3.6
4.4
4.5
4.1
4.5
3.9
4.8
4.0
4.9
4.7
4.3
4.4
4.8
5.0
4.5
3.5
3.8
3.7
3.9
5. 1
4.5
4.5
4.7
4.4
4.1
4.0
4.4
4.6
4.0
3.3
4.2
4.2
4.2
4.3
3.0
4.1

1.4
1.5
1.5
1.3
1.5
1.3
1.6
1.0
1.3
1.4
1.0
1.5
1.0
1.4
1.3
1.4
1.5
1.0
1.5
1. 1
1.8
1.3
1.5
1.2
1.3
1.4
1.4
1.7
1.5
1.0
1. 1
1.0
1.2
1.6
1.5
1.6
1.5
1.3
1.3
1.3
1.2
1.4
1.2
1.0
1.3
1.2
1.3
1.3
1. 1
1.3

6.3
5.8
7. 1
6.3
6.5
7.6
4.9
7.3
6.7
7.2
6.5
6.4
6.8
5.7
5.8
6.4
6.5
7.7
7.7
6.0
6.9
5.6
7.7
6.3
6.7
7.2
6.2
6.1
6.4
7.2
7.4
7.9
6.4
6.3
6. 1
7.7
6.3
6.4
6.0
6.9
6.7
6.9
5.8
6.8
6.7
6.7
6.3
6.5
6.2
5.9

3.3
2.7
3.0
2.9
3.0
3.0
2.5
2.9
2.5
3.6
3.2
2.7
3.0
2.5
2.8
3.2
3.0
3.8
2. 6
2.2
3.2
2.8
2.8
2.7
3.3
3.2
2.8
3.0
2.8
3.0
2.8
3.8
2.8
2.8
2.6
3.0
3.4
3. 1
3.0
3. 1
3. 1
3. 1
2.7
3.2
3.3
3.0
2.5
3.0
3.4
3.0

6.0
5. 1
5.9
5.6
5.8
6.6
4.5
6.3
5.8
6. 1
5. 1
5.3
5.5
5.0
5. 1
5.3
5.5
6.7
6.9
5.0
5.7
4.9
6.7
4.9
5. 7
6.0
4.8
4.9
5. 6
5.8
6. 1
6.4
5.6
5. 1
5.6
6.1
5.6
5.5
4.8
5.4
5.6
5. 1
5. 1
5.9
5.7
5.2
5.0
5.2
5.4
5. 1

2.5
1.9
2. 1
1.8
2.2
2. 1
1.7
1.8
1.8
2.5
2.0
1.9
2. 1
2.0
2.4
2.3
1.8
2.2
2.3
1.5
2.3
2.0
2.0
1.8
2. 1
1.8
1.8
1.8
2. 1
1.6
1.9
2.0
2.2
1.5
1.4
2.3
2.4
1.8
1.8
2. 1
2.4
2.3
1.9
2.3
2.5
2.3
1.9
2.0
2.3
1.8
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Table 2
Comparison of the Closeness and Kendall Methods

Closeness Method Kendall Method

No No
D Failures No Successes Failures son SuccessesDecision Decision

0.2 13 0 187 15 7 178
0.4 12 0 188
0. 6 11 0 189
0.8 11 0 189
1.4 14 0 186

subsets all of whose elements originate from the same population is termed the "classi-
fication problem" by Kendall (1) and "self-learning," or " learning without teacher" by
Gamba (4). One recalls that, in the discrimination or learning with teacher problem, one
is given, say, NA samples of class A, I x, , where i = 1, 2, ... , NA, NB samples offB, I x },

where j = 1, 2, ... , NB , and the sample x to be classified. One constructs a decision rule
or algorithm F(I x, , Ix i, x), whose numerical value depends on the sets A, B, and the
sample x.

IfF(IxJ, Ixi , x)>0, then one assigns x toA. IfF(Jx i } ,x , x)=0,onemakesno
decision. IfF( xi, 1x }, x)<0, one assigns x to B. For example, the nearest-neighbor
rule determines whictA element in either of the sets I xil orl x/l has the smallest Euclidean
distance from x. If that element belongs to A or B, then F is assigned, respectively, the
value 1 or -1. If one is given an infinite set of samples so that, in effect, one is given
the probability density for the populations A and B, then the maximum-likelihood rule is
available, namely, F = PA(x) - PB(x).

In general, there are many discrimination rules which are more or less successful,
depending upon the problem attacked. In 1961 Gamba (4) described a device which employed
a novel discrimination rule to perform learning or discrimination. Gamba also described
an ingenious procedure whereby the classification problem may be resolved into an iterated
sequence of discrimination problems.

Gamba's procedure is to separate, at random, the given mixed set of N samples
into two sets of N/2 samples each and to designate these sets by A0 and B0 . Treating
these arbitrarily chosen sets as though they were indeed two sets of samples having
different distributions, each of the N samples is classified as to whether it belongs to
A0 or B0 , according to Gamba's discrimination rule. Thus, let F(A0 , B0 , x) be the dis-
crimination rule, and let x be x1 ,the first sample in A0 . One computes F(A6, Bo , x 1),
where Ao comprises the set A0 minus the sample x1. If F(A', B0 , x 1) > 0 , one classifies
xias class A. Similarly, one proceeds with the remaining samples of A0 and of B0 .

After all N samples are so classified, let all those just classified as class A com-
prise the new set A1, and let the remaining samples comprise the set B,. Now let
F(A1 , B1 , x ) be the discrimination rule, and, again, letting x in turn represent each of
the N samples, one reclassifies all the samples into two revised classes, A2 and B2 .
This procedure is repeated until, hopefully, after n cycles, A. and Bn are more homo-
geneous than A1 and B1 .

Gamba closed his paper with the remark that experiments on this type of learning
are in progress and will be reported later. Apparently, however, as previously
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mentioned, these experiments were not reported, presumably because they were un-
successful. The following experiments use the Gamba procedure with the modification
that the closeness criterion is used as the discrimination rule.

In the experiments described below, based on the data in Table 1, the discrimina-
tion rule chosen was PA(x, y, z, w) - PB(x, y, z, w), where

1E exp { [ + ( z. + (ia)

and

PB N{ - [ D) + ( 0.7D) + + (. 5D ] (lOb)

The prime in the summation of Eq. (10a) signifies that the summation is to be taken over
all sample values in class A, except the sample which is being classified, if the sample
being examined belongs to class A. The prime in Eq. (10b) has a similar significance.
The number of different values of j participating in the summation of Eqs. (10a) and
(lOb) are NA and NB, respectively. The fact that the range of w is roughly 1/2 that of x
or z and that the range of y is 3/4 that of x or z is reflected in the choice of the averaging
coefficients in Eq. (10a) and (10b). In effect, PA and PB are proportional to the mean
generalized "closeness" of the point to be classified from its deleted A and B neighbor-
hoods, respectively.

The classification procedure consisted of the following steps: (a) of the 100 samples
shown in Table 1, 50 were chosen randomly and designated as classA0 , and the remain-
der were allotted to class B0 , (b) for each element, PAO and PB0 were calculated from
Eqs. (10a) and (10b). Following this, each element was assigned to class A1 or B1 , de-
pending upon whether or not PAO =PBo , and (c) step (b) was repeated nine times for a
total of ten discriminations.

Although the results of the discrimination experiments (Table 2) indicate that the
value of the weighting parameter in Eqs. (10a) and (10b) were noncritical, the range of
D was much more restricted in the classification experiments.

In the following experiments to determine the useful range of the parameter D, the
initial dichotomy always consisted of set A0 having 29 iris versicolor, which we desig-
nate by 29 + , and 21 iris virginica, which we designate by 21-. The set B0 always con-
sisted of 29- and 21', namely, the remaining 50 samples. The results of the experi-
ment are in Table 3, where, for each value of D, the composition of the two sets after
each cycle of learning and reappraisal is enumerated. In the last experiment the initial
dichotomy consisted of two perfectly homogeneous sets chosen for testing purposes.

In each learning cycle, each of the 100 samples is assigned to one of the two sets.
The percentage of correct assignments which are made is a useful index of learning and
is designated %S. Table 4, which gives this percentage for the successive learning
cycles for various values of D, indicates that for D = 0.2, 0.3 and 0.4, the learning
process begins oscillating after three cycles. For D = 0.6 the discrimination capa-
bility increases slowly for seven cycles before it reaches its final value. For 0.8 = D = 1.2
the discrimination capability is essentially the same, reaching equilibrium after three
or four cycles.
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Table 3
The Changing Composition, With Learning,

*Each experiment starts with the same arbitrary dichotomy of two
mixed sets but employs different values of D in the discrimination
criterion.

of Two Sets*

For D = 1.4, the percentage of successful assignments begins to drop slightly.
It is surprising that the initial percentage of successful assignments (88 to 90) should be
so large, while the learning models (the initial states of the two sets) are so inhomo-
geneous; it is also surprising that the further increase in discrimination capability is
so small when, after the first learning cycle or so, the revised learning sets have be-
come fairly pure.

Another measure of performance is the relative purity of a set, designated by R
and defined as the ratio of the majority to the total number of elements in the set.
Table 4 gives the percentage of successful assignments %S and the relative purity RA
and RB of each of the two sets, as a function of learning cycle, for different values of
D. The same initial states of the two sets are kept, namely, an initial relative purity
of 0. 58. The data indicate that the average relative purity (RA + RB)/ 2 is approxi-
mately equal to the fractional number of successful classifications made. An indication

Composition
Cycle A B

Number A B
+ - + -

D = 0. 2

0 29 21 21 29
1 28 19 22 31
2 32 21 18 29
3 30 22 20 28
4 33 22 17 28
5 30 22 20 28
6 33 22 17 28
7 30 22 20 28
8 33 22 17 28
9 30 22 20 28

10 33 22 17 28

D = 0. 3

0 29 21 21 29
1 35 20 15 30
2 38 20 12 28
3 35 19 15 31
4 36 21 14 29
5 35 19 15 31
6 35 21 15 29
7 36 19 14 31
8 32 21 18 29
9 34 20 16 30

10 33 21 17 29

D = 0. 4

0 29 21 21 29
1 40 18 10 32
2 45 15 5 35
3 44 11 6 39
4 44 13 6 37
5 44 11 6 39
6 44 13 6 37
7 44 11 6 39
8 44 13 6 37
9 44 11 6 39

10 44 13 6 37

Composition
Cycle

Number A B

+ - + -

D = 0. 6

0 29 21 21 29
1 47 14 3 36
2 47 9 3 41
3 47 8 3 42
4 47 7 3 43
5 47 6 3 44
6 47 4 3 46
7 47 4 3 46
8 47 4 3 46
9 47 4 3 46

10 47 4 3 46

D = 0. 8

0 29 21 21 29
1 47 9 3 41
2 48 3 2 47
3 48 4 2 46
4 48 4 2 46
5 48 4 2 46
6 48 4 2 46
7 48 4 2 46
8 48 4 2 46
9 48 4 2 46

10 48 4 2 46

D = 1. 0

0 29 21 21 29
1 47 7 3 43
2 48 4 2 46
3 48 4 2 46
4 48 4 2 46
5 48 4 2 46
6 48 4 2 46
7 48 4 2 46
8 48 4 2 46
9 48 4 2 46

10 48 4 2 46

Composition
Cycle A B

Number A+ - + -

D = 1.2

0 29 21 21 29
1 48 9 2 41
2 48 4 2 46
3 48 4 2 46
4 48 4 2 46
5 48 4 2 46
6 48 4 2 46
7 48 4 2 46
8 48 4 2 46
9 48 4 2 46

10 48 4 2 46

D = 1.4

0 29 21 21 29
1 48 8 2 42
2 49 6 1 44
3 49 6 1 44
4 49 6 1 44
5 49 6 1 44
6 49 6 1 44
7 49 6 1 44
8 49 6 1 44
9 49 6 1 44

10 49 6 1 44

D =0.3
Initial States Perfectly Pure

0 50 0 0 50
1 48 2 2 48
2 49 2 1 48
3 49 2 1 48
4 49 2 1 48
5 49 2 1 48
6 49 2 1 48
7 49 2 1 48
8 49 2 1 48
9 49 2 1 48

10 49 2 1 48
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of how accurately the classification would proceed if the initial dichotomy had resulted
in two perfectly homogeneous sets is given by the last three lines of Table 4. For
D = 0.8 the third and fourth cycles appear identical, as shown in Table 4. Actually,
only the conclusions are identical, since the probability densities (not indicated) are
different; that is, the degree of confidence is different for the two cycles. However,
the fifth cycle repeated the fourth cycle precisely, and is so indicated.

After the constant value D = 1 was chosen, ten experiments were performed
similar to the preceding ones. In these experiments the initial dichotomy, chosen by
random numbers, was different in each case. Table 5 gives the composition of the two
sets as the classification procedure evolves. Table 6 gives the percent of successful
discriminations made in each state and the resulting relative purity of the two sets.

Experiment 7 is especially interesting. Here the initial purity was 0. 52, and this
increased after the first cycle to 0. 58. Nevertheless, poor discrimination reduced
the purity in the second cycle to 0. 52, and in the following cycles the two sets were
rendered increasingly homogeneous, with final relative purities of 0. 96 and 0. 92; how-
ever, the final majority type of elements was opposite to the initial majority type, as
shown in Table 5. It is also noteworthy that experiment 10 was successfully conducted
to an average final relative purity of 0. 89, despite the fact that the initial learning sets
had the same number of type A as of type B. Of the ten experiments performed for
D = 1 , five achieved a final successful discrimination of 94%, and the other five
achieved 86%. The relative purity of the initial dichotomy of the first five was 0. 568,
that of the second five was 0. 54, the ratios for discrimination and for purity begin
roughly the same.

It seems intuitively obvious that the detailed structure of the function F(x) defined in
Eq. (5) is inconsequential, and that the particular form of F(x) defined in Eq. (6a) would
be just as effective in the classification procedure as the functional form defined by
Eq. (6b). This was verified experimentally by using the same initial dichotomy for the
two functional forms and obtaining essentially the same results.

CONCLUSION

A "closeness" discrimination criterion was combined with a "learning without teacher"
concept described by Gamba to successfully perform experiments in classification.
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Table 5
The Evolving Composition, with Learning, of* Two Sets Initially Formed

by an Arbitrary Dichotomy of Two Mixed Sets

Composition
Cycle A B

Number

T + T

Experiment 1

0 29 21 21 29
1 47 7 3 43
2 48 4 2 46
3 48 4 2 46
4 Rep Rep Rep Rep

Experiment 2

0 28 22 22 28
1 50 28 0 22
2 50 20 0 30
3 50 14 0 36
4 50 14 0 36
5 Rep Rep Rep Rep

Experiment 3

0 24 26 26 24
1 27 36 23 14
2 24 44 26 6
3 18 47 32 3
4 13 48 37 2
5 7 48 43 2
6 3 47 47 3
7 2 46 48 4
8 2 46 48 4
9 Rep Rep Rep Rep

Experiment 4

0 24 26 26 24
1 5 24 45 26
2 4 32 46 18
3 0 36 50 14
4 0 36 50 14
5 Rep Rep Rep Rep

Experiment 5

0 20 30 30 20
1 8 31 42 19
2 4 34 46 16
3 0 36 50 14
4 0 36 50 14
5 Rep Rep Rep Rep

*For each experiment D = 1, but the initial dichotomy is different.

Composition
Cycle A B

Number

Experiment 6

0 24 26 26 24
1 1 33 49 17
2 0 36 50 14
3 0 36 50 14
4 Rep Rep Rep Rep

Experiment 7

0 26 24 24 26
1 29 21 21 29
2 25 23 25 27
3 23 33 27 17
4 20 43 30 7
5 15 46 35 4
6 9 48 41 2
7 4 48 46 2
8 2 47 48 3
9 2 46 48 4

10 2 46 48 4

Experiment 8

0 22 28 28 22
1 8 35 42 15
2 3 47 47 3
3 2 47 48 3
4 2 46 48 4
5 2 46 48 4
6 Rep Rep Rep Rep

Experiment 9

0 17 33 33 17
1 5 47 45 3
2 2 46 48 4
3 2 46 48 4
4 Rep Rep Rep Rep

Experiment 10

0 25 25 25 25
1 12 23 38 27
2 11 27 39 23
3 7 29 43 21
4 4 32 46 18
5 0 36 50 14
6 0 36 50 14
7 Rep Rep Rep Rep
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Table 6
The Evaluation with Learning of the Percentage of Correct Discrimination and
Relative Purity of Two Sets Formed Initially by an Arbitrary Dichotomy of Two
Mixed Sets. For Each Experiment D = 1, but the Initial Dichotomy is Different.

Experiment Cycle Number in the Classification Experiment
Number Cycle1 0 o 1 2 I 3 4 5 1 6 1 7 i 8j 9 10

1 %S
RA
RB

2 %S

RA

RB

3 %S
RA
RB

4 %S
RA
RB

5 %S
RA
RB

6%S
RA
RB

7 %
RA
RB

8 %
RA

9 %S

RB

10 %

RB

0.58
0.58

0.56
0.56

0.52
0.52

0.52
0.52

0.60
0.60

0.52
0.52

0.52
0.52

0.56
0.56

0.66
0.60

0.50
0.50

90
0.87
0.94

72
0.64
1.0

59
0.57
0.62

69
0.83
0.63

73
0.80
0.69

82
0.97
0.74

58
0.58
0.58

77
0.81
0.74

92
0.90
0.94

61
0.66
0.59

94
0.87
0.96

80
0.71
1.0

70
0.65
0.81

78
0.89
0.72

80
0.90
0.74

86
1.0
0.78

52
0.52
0.52

94
0.94
0.94

94
0.96
0.92

66
0.71
0.63

94
0.92
0.96

86
0.78
1.0

79
0.72
0.91

86
1.0
0.78

86
1.0
0.78

86
1.0
0.78

40
0.41
0.39

95
0.96
0.94

94
0.96
0.92

72
0.81
0.67

Rep
Rep
Rep

86
0.78
1.0

85
0.79
0.95

Rep
Rep
Rep

86
1.0
0.78

Rep
Rep
Rep

27
0.32
0.19

94
0.96
0.92

Rep
Rep
Rep

78
0.89
0.72

Rep
Rep
Rep

91
0.87
0.96

Rep
Rep
Rep

19
0.25
0.10

94
0.96
0.92

86
1.0
0.78

94
0.94
0.94

11
0.16
0.05

Rep
Rep
Rep

86
1.0
0.78

94
0.96
0.92

6
0.08
0.04

Rep
Rep
Rep

94
0.96
0.92

5
0.04
0.06

Rep
Rep
Rep

6
0.04
0.08

6
0.04
0.08

I
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