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ABSTRACT

Measurements of sea clutter using high-resolution radar indicate
that the clutter-cross-section returns follow a log-normal probability
density function more closely than the usually assumed Rayleigh law.
This report develops the theory for the detection of a steady signal in
log-normal clutter by first using a single pulse and then by using the
sum of N pulses integrated noncoherently. Plots of the probability den-
sity of the envelope of the signal plus clutter show the function to be
bimodal, an unexpected result. Curves are presented for the threshold
bias, normalized to the median clutter voltage, versus the probability
of false alarm for several values of the standard deviation 0 and for
various values of N. Probability of detection curves are presented for
o = 3, 6, and 9 dB, for N = 1, 3, 10, and 30 pulses, and for false alarm
probabilities from 10-2 to 10-8. The ratio of signal to median clutter
required for detection increases markedly as a increases because of
the highly skewed clutter density.

Manuscript submitted August 21, 1968.



THE DETECTION OF NONFLUCTUATING
TARGETS IN LOG-NORMAL CLUTTER

SUMMARY

Sea clutter measurements made by NRL using a high-resolution radar show that the
clutter cross section tends to be log-normally distributed. A study of the log-normal
clutter model, therefore, seemed appropriate, and this report presents the results of
such a study.

First, a derivation is presented of the log-normal density function required to estab-
lish a family of threshold values for false alarm probabilities varying from 10-2 to 10-8
and for selected values of standard deviation a. Plots of the clutter density show highly
skewed tails as a increases, resulting in greatly increased bias values as compared to the
Rayleigh model.

Next, the distribution of the envelope of signal plus clutter for a single pulse is de-
rived. Plots of probability densities show a bimodal function, which is an unexpected
result. The bimodal shape holds for all values of signal-to-noise ratio (S/N) and for all
values of (; but the dual peaks draw closer together and the dip becomes less pronounced
as 0 increases. Formulas for the probability of detection are given, but these could not
be evaluated in closed form, so they were programmed for the NRL CDC 3800 computer.

Then the probabilities of false alarm and detection are developed for the sum of N
pulses integrated noncoherently. The general method used is that of the characteristic
function, which essentially requires two applications of the Fourier integral. Here again
no solution in closed form seemed readily obtainable, so the CDC 3800 was programmed
for numerical evaluation, using the fast Fourier transform technique.

Sets of curves are presented for the probability of detection for values of a = 3, 6, and
9 dB, for N = 1, 3, 10, and 30 pulses, and for false alarm probabilities from 10 - 2 to 10-8.
The S/N required for detection for a = 3 dB are about the same as those for the Rayleigh
model, as would be expected since the log-normal tail for this case compares to the
Rayleigh tail. However, as , increases, the required S/N also rises markedly as a result
of the increasingly skewed distributions. It should be noted that the S/N defined in this
report uses the median clutter value for noise and not the usual rms value.

INTRODUCTION

Clutter-cross-section measurements of sea return taken with high-resolution radar
show more of a tendency to follow a log-normal probability distribution than the Rayleigh
distribution usually assumed. Data reported by NRL (1) using an X-band radar with a
0.02-[sec pulse are plotted in Fig. 1 on probability paper with the clutter cross section
a. in dB on an arbitrary scale. A log-normal distribution is indicated by these points
falling in a straight line. It is seen that the cumulative probability closely fits a line
between 5% and 80%. Accurate data at the extremes are difficult to obtain, because ther-
mal noise limits the low or values and the system dynamic range limits the high ac values.

Studies made by Miner (2) and Ballard (3) also consider the log-normal description of
the sea-clutter cross section and relate the standard deviation of the distribution to the
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Fig. 1 - Probability distribution for the
log-normal clutter model, with experi-
mental points for an X-band radar with
a 0.02-fisec pulse

radar illuminated patch area. Ballard actually set up a log-normal probability model but

did not calculate detection curves. The present report follows much of the same theoreti-
cal method and extends the model to include the integration of N pulses.

LOG-NORMAL CLUTTER MODEL

If we assume that clutter cross section is log-normally distributed, then the proba-
bility density is given by

1~a exp _ (Inp( 2) a __ 2 - (

where o is the clutter cross section, o is the median value of a, and a is the standard

deviation of In a. (natural logarithm). Since cross-section values are measures of power,
the standard deviation (s.d.) is expressed in "natural units" (4) by the relationship

a(natural units) (0.1 In 10) a(dB) - 0.2303 a(dB). (2)

The value of a in Fig. 1 is in dB, and a must be converted into natural units by Eq. (2) for
use in Eq. (1).

In Fig. 1 the log-normal probability distribution function is plotted for a = 3 dB and

6 dB. The dashed line is a close fit to the NRL experimental results on sea clutter
previously mentioned. For this line, a - 5.4 dB. From Ref. 3, a value of a = 4.7 dB

resulted from a clutter patch size of 3840 sq yd in a sea state 4. From the NRL studies

(1), = 5.4 dB corresponds roughly to a clutter patch size of 135 sq yd in sea state 1.*

To determine the probability of false alarm and subsequently the probability density
function of a signal plus clutter, Eq. (1) must first be transformed into a voltage-amplitude

-In general a increases directly with sea state and inversely with clutter patch size.
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density. If we let vc be the envelope of the radar echo from the clutter area a , then
c U 1/2 or or = kv 2 . Using this substitution in Eq. (1) yields

p(v1) 1 _L expL"77OrV

where v, is the median value of v. and a remains the s.d. of in a.. Then, f is still mea-
sured according to Eq. (2).

The probability of false alarm for a voltage bias level /3 is given by

PFA = p(v) dv 1-PFI y

f/2 In

exp (-t 2 ) dt,

where y - fi/,, is the normalized bias level. The integral in Eq. (4) is related to the error
function, which is well tabulated.

DETECTION OF A NONFLUCTUATING SIGNAL IN CLUTTER

Let us assume a radar pulse return from a target which is a steady signal of constant
amplitude v. The clutter return will be assumed to have the log-normal amplitude density
function as given in Eq. (3) and a phase 0, that is uniformly random over -7 <b < . The
analysis can be performed as though the radar were operating as a cw system. If the
signal and clutter voltages add linearly prior to envelope detection, then we can assume
that the signal plus clutter may be represented by the two components

X= v s . vC cos bc

and

(5a)

(5b)Y v c sin b,,

where X and Y are the in-phase and quadrature components of the signal plus clutter.

We can define two new variables x and Y' such that their joint probability is that of
the clutter alone:

X, = X- vs = vc Cos 0c

Y" = Y = v c sin Oc"

(6a)

(6b)

Then, the relationship between these joint distributions is

9x'
P(Vc,k c) dvcdc a Vc

r3Y"
av c

ax,

1' C P X Y) d dy = P X , ' x d ,

and

202
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But since vC and oc are independent variables, P(Vc,0c)dvcdoc = p(v,)dvcp(0c)d0c
= p(vc)dvc(1/2)d0,. Hence, from Eqs. (3) and (7) we have

p(X',Y') dX'dY= = 1 1 exp [-1 (2 In Vc 2j dvcdc,. (8)
7,T v 2a2

From Eqs. (6) this becomes

p(X,Y) 1 exp 1 (21n (X - v)2+y2J (9)f o [(X - v +)2 + y 2 ] L2a V

Finally, using Eqs. (5) in Eq. (9) yields

p(v,() v exp (2 In v2"2vvs cos + vs2) (10)

n 1 (v2 - 2v v cos qk + v2) L2a2  Vm

where v 2 
- X2 + y2, X = v cos 0, Y = v sin 0, and the transformation from Eq. (9) to Eq. (10)

is analogous to the one used in Eq. (7) with k uniformly random from -7 to +7. Now v
represents the envelope amplitude of signal plus clutter. The probability density function
of v alone is obtained from Eq. (10) by 70

p(v) = 2 { p(v,) do. (11)

Attempts to evaluate Eq. (11) in closed form were not successful, so computer numerical
evaluation was employed. However, before illustrating the results, it is more meaningful
to transform Eq. (10) into an expression containing a "psuedo" S/N, actually a signal-to-
clutter ratio, since vs is not easily obtained. If we let r = V/in in Eq. (10) the probability
density becomes

p(xq) _(x2  
+ exp[2 (In x2 - 2 xr cos ++rr2 )2], (12)

where x = v/v, is now the normalized envelope amplitude of signal plus clutter. Then the
probability density function of x is

77

p(x) = 2 p(x, 0) d. (13)

The probability of detection for a single pulse of a steady signal in log-normal clutter
for a normalized bias level y is thus

= J p(x) dx = 2 :p(x,) dbdx - 1 - 2 p(x,O) dqdx. (14)

In Fig. 2 plots of Eq. (3) for various values of a are compared with the Rayleigh
distribution for which the median value has been set equal to vm. It should be noted that
the tail of the Rayleigh distribution falls off about as rapidly as that of the log-normal
for o = 3 dB, but the tail falls off less rapidly as a becomes larger in the log-normal
distribution. For these larger a values, then, the bias values for a fixed PFA are expected
to be greater for the log-normal than for the Rayleigh distribution. Plots of bias values,
obtained from Eq. (4), illustrate in Fig. 3 how rapidly the bias does increase as , increases.
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To plot the probability density function in Eq. (13) the integral had to be evaluated
numerically, since no closed form solution was found. The CDC 3800 was programmed
using Simpson's rule for the integration. Figure 4 shows a family of curves for the
probability density of the envelope of signal plus clutter for a = 3 dB and for several
values of r - v,/v = SIN which has been designated as a voltage SIN. The double hump
or bimodal curve is most unusual and surely not predicted. Note that this curve is the
envelope distribution and hence assumes linear detection. The values of S/N shown are
voltage ratios. Figure 5 shows curves for a = 6 dB. Again the double hump is present
but less pronounced. In Fig. 6 by increasing a for a fixed value of r (i.e., S/N) the dis-
tributions remain bimodal but the humps tend to converge and the dip becomes less
pronounced. Figures 4 and 5 show that as r increases, the curve shapes do not change
substantially.

A word of caution is in order regarding the definition of the signal-to-noise ratio
r = S/N = v/N V. It should be noted that this is not the usual definition of the signal-to-
noise ratio, where the noise is taken to be the rms value. Herein the noise (which is
clutter) is taken to be the median value. This is a convenient definition to use and, also,
one which would have considerable engineering significance, since clutter is frequently
expressed in terms of its median value. However, in subsequent parts of this study
where N pulses are integrated, care must be exercised in interpreting r. Since the log-
normal model yields a two-parameter distribution, its behavior is more difficult to
analyze and interpret than the Rayleigh model.

DETECTION USING THE SUM OF N PULSES

The straightforward method of determining the probability density for the sum of N
envelope detected pulses, assuming they are independent, is by use of the characteristic

14
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plus log-normal clutter for a = 3 dB and voltage S/N
= 0, 2, 4, and 6. Note the double peaks.
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function. Starting with the probability density of the envelope of signal plus clutter given
by Eq. (13), the characteristic function is given by

b(w) = f p(x) exp(iwx) dx, (15)

which is the Fourier transform (FT) of p(x), since x > 0. The characteristic function for
the sum of N independent pulses is

N(w) = [ O(w) N. (16)

It is noted that in general 0(w) is a complex function. Using the inverse FT of Eq. (16)
gives the probability density for the sum of N pulses:

PN(X) - J N(w) exp(-iwx) dw. (17)

Plots of Eq. (17) for N = 1, 2, and 3 and for S/N = 2 are shown in Fig. 7. Note that the
double hump disappears as N increases. Also the distribution spreads out as N increases
and begins to look more like a normal distribution.

For the sum of N pulses, the probability of false alarm is

pN(FA) = py(x) dx- 1 - PN(x) dx, (18)

where r = 0; and the probability of detection is

PN(Det.) = 1 - pN(x) dx, (19)

where PN (x) is evaluated for the parameter r # 0. All attempts to find a closed-form
expression for the integral in Eqs. (18) and (19) proved fruitless. Fortunately, the new
digital technique known as the fast Fourier transform (FFT) made it possible to evaluate
these integrals numerically in a reasonable time.

PROBABILITY OF DETECTION RESULTS

Bias values for N = 3, 10, and 30 were determined from Eq. (18) by numerical inte-
gration for false alarm probabilities from 10-2 to 10-8 and for a = 3, 6, and 9 dB. These
are plotted in Figs. 8 through 10. Curves for bias values are repeated in Figs. 11 through
13 with N varied for a fixed a value.

Using these bias values, Eq. (19) is evaluated, giving the probability of detection
versus S/N per pulse, in values of PD from 0.1 to 0.9999. Figures 14 through 17 are for
o = 3 dB. A summary of PD for PFA = 10-6 and N = 1, 3, 10, and 30 is presented in Fig. 18.
In Figs. 19 through 23 detection curves are given for a = 6 dB, and in Figs. 24 through 28
for a = 9 dB. An inspection of these curves shows that the S/N required for detection
increases rapidly as a increases. In fact the S/N in dB appears to increase linearly as
a increases, doubling as a goes from 3 to 6 dB and increasing by a factor of 3 as a goes
from 3 to 9 dB.

It is interesting to compare the set of curves for a = 3 dB and N = 1 (no integration)
with those obtained using a Gaussian model. Skolnik (5) shows that the S/N required com-
pares favorably with the results using a log-normal model (Fig. 14) as should be expected
for the a = 3 dB case.
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Fig. 7 - Probability densities of a signal plus log-normal
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N = 1,2, and 3. Note as N increases the curvelooks more
like a normal distribution.
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Fig. 9 - Bias levels for false alarm probabilities
from 10-2 to 10-8 for N = 10 with a 3, 6, and
9 dB
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Fig. 11 - Bias levels for false alarm proba-
bilities with the number of pulses integraded,
N = 1, 3, 10, and 30 for a = 3 dB
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Fig. 15 - Probability of detection vs S/N
for PFA = 10-2 to 10 - 8 with a = 3 dB and
N=3
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Fig. 20 - Probability of detection vs S/N for
PFA = 10-2 to 10-8 with o = 6 dB and N = 3
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Fig. 25 - Probability of detection vs S/N for
PFA = 10-2 to 10-8 with o = 9 dB and N = 3
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Fig. 28 - Probability of detection vs S/N
for N = 1, 3, 10, and 30 with a = 9 dB and
PFA = 10-6

ACKNOWLEDGMENT

The author expresses his appreciation to G. V. Trunk of the Radar Analysis Staff for
his many valuable discussions during the course of this work and Jon David Wilson of the
Radar Analysis Staff for his helpfulness in the programming.

REFERENCES

1. Findlay, A.M., "Sea-Clutter Measurement by Radar-Return Sampling," NRL Report
6661, Feb. 12, 1968

2. Miner, R.Y., "Review of ASW Radar Sea Clutter," TRW Systems Doc. 7234:1:001
(Confidential Report, Unclassified Title), Feb. 8, 1966

3. Ballard, A.H., "Detection of Radar Signals in Log-Normal Sea-Clutter," TRW Systems
Doc. 7425-8509-TO-000, May 31, 1966

4. Fenton, L.F., "The Sum of Log-Normal Probability Distributions in Scatter Trans-

mission Systems," IRE Trans. on Comm. Systems CS-8, 57-67, Mar. 1960

5. Skolnik, M.I., "Introduction to Radar Systems," New York:McGraw-Hill, 1962



Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Naval Research Laboratory
Washington, D.C. 20390 2b). GROUP

3. REPORT TITLE

THE DETECTION OF NONFLUCTUATING TARGETS IN LOG-NORMAL CLUTTER

4. DESCRIPTIVE NOTES(Type ofrepor and inclusive dates)

A final report on one phase of the problem
5. AUTHOR(S) (First name, middle initial, lastname)

Samuel F. George

6. REPORT DATE 7a. TOTAL NO. OF RAGES 7b. NO. OF REFS

October 4, 1968 22 5
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR*S REPORT NUMBER(S)

b. PROJECT NO. NRL Report 6796

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this repo rt)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

11I. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy
Naval Research Laboratory
Washington, D.C. 20390

13. ABSTRACT

Measurements of sea clutter using high-resolution radar indicate that the
clutter -cross -section returns follow a log-normal probability density function more
closely than the usually assumed Rayleigh law. This report develops the theory for
the detection of a steady signal in log-normal clutter by first using a single pulse
and then by using the sum of N pulses integrated noncoherently. Plots of the prob-
ability density of the envelope of the signal plus clutter show the function to be
bimodal, an unexpected result. Curves are presented for the threshold bias, normal-
ized to the median clutter voltage, versus the probability of false alarm for several
values of the standard deviation a and for various values of N. Probability of detec-
tion curves are presented for a = 3, 6, and 9 dB, for N = 1, 3, 10, and 30 pulses, and
for false alarm probabilities from 10-2 to 10.8. The ratio of signal to median clutter
required for detection increases markedly as a increases because of the highly
skewed clutter density.
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