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ABSTRACT

This report concerns power spectrum estimates of sampled pseudo-random signals,

and shows that for these signals the spectral power is more relevant than, say, the

autocorrelation function. The power spectrum estimates considered here assume sta-

tionarity and zero means.

The signal under investigation is a pseudo-random noise signal obtained from

maximal length sequences. Pseudo-random signals are popular because (a) they can

be fashioned with relative ease from linear shift registers, (b) their deterministic

waveforms have uniform power throughout their bandwidths, and (c) their autocorrela-

tions are approximately zero outside a narrow peak at zero tau.

This study is concerned with some applied methods and results of these applica-

tions to bandlimited signals that have been corrupted by additive-noise, multiple-path,

and Doppler effects and that have been processed digitally to obtain correlations and

power spectra. The object was to observe the effects on the power spectrum esti-

mates due to these perturbations. The analysis was performed exclusively on filtered

maximal length pseudo-random sequences. These filtered sequences were tailored to

a bandwidth and sample size to yield optimal results for a given computer memory

capability.

PROBLEM STATUS

This is an interim report on the problem; work is continuing.
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INTRODUCTION

Power spectrum density may be the most significant statistical property of a signal.

For some special classes of signals, the spectral power may continue to reveal useful

information where other statistical measurements fail.

This thesis concerns power spectrum analysis of sampled pseudo-random signals and

shows that for these signals the spectral power is more relevant than, say, the autocorre-

lation function. The power spectrum estimates considered here assume stationarity and

zero averages but do not depend upon the Gaussian assumption. It will present the cor-

relations along with the spectral estimates for comparison. As a means for understanding

and as a guide for intelligent design, the power spectrum is without peer [1].

Correlation functions are of little use except as a basis for estimating the power

spectrum. In most physical systems, power spectra have reasonable shapes, are relatively

easily understood, and are directly influenced by the basic variables of the situation.

The signals used throughout this report are maximal length pseudo-random sequences.

The thesis will define maximal length sequences, establish their general properties, show

how many maximal length sequences can be obtained from a given nth-degree linear shift

register, how to select the taps for maximal length sequences, and finally how to express

the sequence in the form of a polynomial.

This study is concerned with some applied methods and results of these applications

to band-limited signals that have been corrupted by additive-noise, multiple-path, and

Doppler effects and have been processed digitally to obtain correlations and power

spectra. The object of this analysis is to observe the effects on the power spectrum

estimates of these corruptions to the signal, when taken individually. The collective

effects of these corruptions are also important but are beyond the scope of this thesis.

The analysis is performed exclusively on filtered maximal length pseudo-random se-

quences. These filtered sequences are tailored to a bandwidth and sample size which

yields the most meaningful results for a given computer memory size.

The analysis and data handling are performed by digital techniques rather than

analog. It would be most desirable to do everything in real time (on line) entirely on a

continuous basis, but such a system is not available for practical use. The digital sys-

tem will always be an approximation to the true continuous representation but is more

reliable than an analog system. The problems of drift, nonlinearity, and bandwidth,
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although present in digital systems, do not have the same adverse effects as in an analog

system which provides continuous analysis. Even if all the data were handled in a

strictly analog system and computed in real time, the final answers would still have to

be approximated, whether they were to be typed out or read from a graph or oscilloscope.

Even if all human errors could be omitted in the calculations, there would still remain

a number of fundamental sources of difficulty in measuring power spectra. The most basic

problem is due to the fact that the actual record lengths are finite rather than infinite in

extent; consequently it is not possible to deal with a single frequency but only with a

finite band which has greater than zero width. This leads to errors in resolution that

cannot be surmounted. It is therefore not physically possible to measure power at some

exact value of frequency - this would require an infinite time interval. The measure-

ments here are thus power spectrum estimates which yield the power in the neighborhood

of the frequency or frequencies of interest.

PSEUDO-RANDOM SEQUENCES

The use of pseudo-random sequences in radar, communications, and ocean acoustic

research has gained widespread popularity over the past decade. This popularity of

pseudo-random signals can be attributed to the relative ease with which they can be

fashioned from sequence generators, to the waveform, which is deterministic with uniform

power throughout its bandwidth, and to the autocorrelation function, which is approxi-

mately zero outside a narrow peak at zero tau.

A pseudo-random sequence will be defined as a sequence of binary bits (zeros and

ones) that appear to be random in their occurrence but which have been produced by a

deterministic device such as a linear shift register. This linear shift register will pro-

duce a deterministic sequence due to its feedback arrangement, giving a noiselike

pseudo-random sequence of zeros and ones rather than a true random sequence [2, 31.

(The term pseudo-random will be abbreviated as PN for pseudo-random noise, and the

designation PN sequence will be used interchangeably with PN signal.)

The implementation of a PN sequence will generally be by a linear shift register of

length n-bits, employing modulo-2 feedback as shown in Fig. 1. The truth table for

modulo-2 addition, Fig. 2, is the same as that for an exclusive or operation, an even

parity generator, or a half adder.

The sequences that will be used in this study are called maximal length sequences.

their periods will be 2n - 1 bits, where n is the number of stages employed in the shift

register. If modulo-2 addition is assumed, the sequence of zeros and ones will have the

following properties [2].



Fig. 1 - Three-stage shift register with mod-2 feedback
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Fig. 2- Truth table for mod-2 addition

A. (Balance) - In each period of the sequence the number of ones will be exactly

one more than the number of zeros.

B. (Runs) - Among the runs of ones and zeros in each period, one-half of the runs of

each kind are of length one, one-fourth are of length two, one-eighth are of length three,

etc., until these fractions cease to give meaningful numbers of runs.

C. (Correlation) - If a period of the sequence is compared, term by term, with any

nontrivial cyclic shift of itself, the number of agreements differs from the number of

disagreements by exactly one.

In properties A and C the wording exactly one has been substituted for the usual

wording of at most one, because this author feels that there is room for possible confusion

otherwise.



An n-stage linear shift register, commonly referred to as a shift register of degree n,

can generate a maximum sequence of length z = 2n - 1 bits. Since there are 2' different

n-tuple (n-digit) binary numbers, 2n would appear to be the maximum length sequence

generated, but a state of all zeros in the shift register is disallowed, since the mod-2

feedback would then yield nothing but zeros. Therefore the maximum output sequence

period for a linear shift register of degree n is 2n - 1.

A given generator can be connected to give maximal or nonmaximal length sequences,

but this study will concern itself with the maximal lengths only. It will be instructive at

this point for us to examine how the maximal lengths are obtained and how they behave.

Figure 1 will serve as an example for the implementation of our maximal length

sequence. This figure shows a three-stage shift register (a register of degree three); it

becomes a generator with the employment of feedback. The output is then of greater

length than the storage capacity of the shift register. The feedback comes from a mod-2

adder and will always be fed to the first stage of the shift register. The output can be

taken from any stage; for convenience we will use the nth stage only.

The number of stages feeding the mod-2 adder must be even to generate a maximal

length z = 2n - 1. The proof of this lies in the truth table associated with the mod-2

feedback. In an odd-tap arrangement to the mod-2 adder the all-ones state is denied in

addition to the all-zeros state, which is always disallowed. Neither of these states would

allow the shift register to go into a different configuration; the generator would be locked

in either the all-zeros or the all-ones state. This means that out of the 2n different

n-tuple states an odd tap arrangement would permit only 2n - 2 n-tuples. Since a maximal

length sequence must be 2n - 1 bits in length, the number of stages employed in the feed-

back must be even.

The number of maximally long sequences available from an n-stage generator has

been stated by Birdsall and Ristenbat-t, a a t,,,,.L .. For an -stage register there

are exactly F(2" - 1)/n sequences of maximal length available with proper feedback con-

nections. Here 4(2 n - 1) is Euler's phi function and is defined as follows: 'I(K) is the

number of positive integers less than K and relatively prime to K, including 1; i.e., F(K)

is the number of integers less than K that have no common factor with K."

Consider our three-stage generator in Fig. 1 (n = 3). Then lD(23 - 1) = F(7). The

number of positive integers less than 7 and relatively prime to 7 is 6; therefore the number

of maximal length sequences is 4D(7)/3 = 6/3 = 2. One connection must always come from

the nth stage (3rd stage in this example). We can further express our n-stage linear shift

register by a polynomial with coefficients that are added and multiplied modulo 2 as

shown by Gold [4]. This polynomial can be represented as
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where k is the stage number and the coefficient of the xk term, Ck, is a one or a zero

depending on whether or not it is employed in the feedback connections. We can clarify

this with a simple example. Figure 1 shows a feedback connection from the mod-2 adder.

For this connection we let k = 0. We have further connections from stage one and three to

the mod-2 adder, for which k = 1 and 3, and by Eq. 1 we have

f(x) =x
0 + x + x 3 = 1 + x + x 3 .

There will always be a term for k - 0, because it is the output of the feedback adder.

The significance of having a polynomial to represent the shift register is that when

one performs the long division of 1/f (x) = h + h1 x1 + h 2 x 2 .. .h xn , the coefficients

h0 , hl,... are the terms of the binary sequence generated at the output. Also, according

to Gold [4]: "A necessary and sufficient condition that an n-stage shift register generate

a maximal sequence of period 2n - 1 is that the feedback taps can be connected so that

the representing polynomial is primitive. A polynomial f(x) of degree n is primitive if it

divides 1 + x2n - 1 but no polynomial of the form 1 + xP for p < 2n - 1." This theorem is in

keeping with our previous condition that one connection must come from the nth stage, for

otherwise we would not have a polynomial of degree n and hence could not generate a

maximum sequence.

In Fig. 1 our polynomial is f(x) = 1 + x + x3 . This divides 1 + x 7 and therefore will

generate a maximum length sequence. We can show this by loading our generator with any

configuration except all zeros. If we assume that we load our generator in Fig. 1 with

001; then the successive states along with the initial load become: 001, 100, 110, 111,

011, 101, 010 and starts over again at 001. The output sequence as seen from stage 3 is

1001110, and it is 23 - 1 bits long. We notice that we have 23 - 1, 3-tuple binary numbers

that represent all possible states except the all-zero state. Furthermore, all of the 3-tuple

binary states can be found in the sequence string 1001110.

An additional property of importance in maximal length sequences is the shift and

add property. This property means that if a sequence is added modulo-2 to a nontrivial

cyclic shift of itself, the resulting sequence is a shifted version of the original. If we

express our sequence string as x(t), then the shift and add property can be stated as*

x(t) O x(t + - 1) = x(t + -r2). (2)

* The symbol (0 means modulo-2 addition.



We can check our three postulates A, B, and C to see if our generated sequence has

these properties. Checking postulate A (balance), our sequence 1001110 contains four

ones and three zeros, and their difference is exactly one. To satisfy postulate B (runs)

there are four runs, half of length one, one-fourth of length two. Smaller fractions are

meaningless in this short sequence. Postulate C (correlation) is closely related to Eq. 3,

which is just another way to state postulate C.

We have thus far defined what maximal sequences are, established their general

properties, and shown how many maximal length sequences can be obtained from a given

n-degree shift register, how to select the taps for maximal length sequences, and how to

express our sequence in the form of a polynomial.

Fig. 3 - Table of taps for various shift register lengths
to generate corresponding maximal length sequences.

The guidelines we have established on maximal length sequences will enable us to set up

a basic generator of any length and reduce considerably the difficulties normally encoun-

tered in picking the proper connections. We will look at some additional properties of PN

sequences and subsequently perform some experiments on a few selected sequences. A

more detailed analysis on the properties of maximal and nonmaximal length sequences can

be found in Refs. 2, 3, and 4.

Our ensuing experiments with PN sequences will come from a PN generator with a

shift register capable of being varied from a length of nine bits to a length of 20 bits.

There will be only one maximum length sequence considered for each length of the regis-

ter used. The table for the taps used in this analysis, along with the length of sequence

Taps Used Pseudo-Random
Shift Register in Mod-2 Sequence

Length (n) Length
Feedback (2n - 1)

9 4 9 511
10 3 10 1,023
11 2 11 2,047
12 1 4 6 12 4,095
13 1 3 4 13 8,191
14 1 3 5 14 16,383
15 1 15 32,767
16 2 3 5 16 65,535
17 3 17 131,071

18 7 18 262,143
19 1 2 5 19 524,287
20 3 20 1,048,275



generated, is given in Fig. 3. The tap numbers correspond to the particular stages of the

shift register employed in the modulo-2 feedback. Notice that some sequence lengths re-

quired four taps. In these cases a maximum length sequence could not be obtained from

two taps.

CORRELATION

The autocorrelation function is one of the most important properties associated with

maximum length sequences. The autocorrelation function is approximately zero outside

its narrow peak at zero tau, and this holds for all maximum length PN sequences. The

sequences are periodic every 2n - 1 bits, making the autocorrelation function periodic

every 2n - 1 bits.

We have tacitly assumed up to this point what correlation means; we will clarify this.

Correlation is a measurement of the relationships between two functions and provides

another method of statistical measurement. Autocorrelation is a measurement of similarity

between delayed replicas of identical functions and crosscorrelation is a measurement of

similarity between two nonidentical functions. Correlation can be applied to periodic,

aperiodic, or random functions.

The time autocorrelation function for a real function x(t) is defined as

1 T/2

R xx(r) = lim -1 x(t) x(t + T) dt. (3)
T-, oo T -T/2

When x(t) is periodic, as in the case of the maximum length sequences, no limiting

process is necessary, and the autocorrelation becomes

1 T/92
Rxx(-) = - f X(t) x(t + - dt. (4)

J -T/ 2

Two basic properties of the autocorrelation function follows from Eq. 4. First, Rxx(7-)

is an even function. This can be shown by a change of variable in Eq. 4. Let t' = t + -r;

then,

1 RT/2

T - T/2

The second property is that the autocorrelation function evaluated at T= 0 is the mean

square value of the function x(t), namely,



1 e T/2RXX(0) = J T/2x 2 (t) dt, (6)

and is not exceeded by the absolute value at any T / 0, namely,

R, ,(0) >j I R x,(T)-I -

We have made no mention up to this point about what the shift rate would be for our

sequence generator. We will designate the shift rate as f. in bits per second, and the bit

interval will be At seconds in duration. With the application of isomorphic groups the

autocorrelation function for maximum length sequences is shown in Appendix A to be

2nr 1-ITI 2 , for ITI <lbit

RXX(T)~ =(7)
1 ,for I - _ 1 bit

2n"- 1

This will generate a normalized autocorrelation function as shown in Fig. 4. Notice

also that we have a peak at integral multiples of the sequence period 2n - 1 (clock

periods), and beyond one clock (bit) period the correlation is essentially zero for large

values of n.

Another way to express the correlation for maximum length sequences is by the cor-

relation coefficient (normalized). The expression for the autocorrelation coefficient is

given by

number of agreements - number of disagreements
Pxx --number of agreements + number of disagreements (8)

where JPxx < 1.

We have defined the autocorrelation as a measurement of similarity between delayed

replicas of identical functions and also stated that crosscorrelation is a measurement of

similarity between two nonidentical functions. We can express the crosscorrelation of

two real periodic time functions x(t) and y(t) as

1 f-T/2
-- () / x(t) y(t + -) dr. (9)

T f-T/2

Unlike the autocorrelation function the crosscorrelation function is not an even func-

tion. Furthermore, the crosscorrelation function is not necessarily a maximum at tau
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zero. As with autocorrelation, crosscorrelation tends to zero as the displacement tends

to infinity in either direction; that is

Rxy(± o)0.

POWER SPECTRUM

The experiments to be performed on our PN signals will be analyzed to find out what

effects they will have on the power spectrum of the signal. It has been suggested by

Blackman and Tukey [1] that the power spectrum of a signal will yield meaningful infor-

mation where other analysis may fail to give anything significant. By application of the

Wiener-Khintchine theorem, it is possible to obtain the power spectrum of PN signals by

Fourier transform of the autocorrelation function. The power spectrum as derived in

Appendix B (Eq. B24) is

WxI 8 (f) +7Z ±1 (sin n=l-Z n. .) (10)
z2 Y1Z2_ \n7/Z

n =-
nP0

where Z = 2n - 1 is the number of bits in the sequence and fs is the shift frequency in

bits per second.

The Dirac delta function 8(f) as explained in Appendix B can be thought of as a

sifting function, such that it has unit area and is zero for all nonzero values of its

argument.

The expression for the power spectrum has some interesting aspects to it that

deserves further comment. The first term in the equation pertains to the energy asso-

ciated in the neighborhood of the zero frequency component and is essentially zero for
any sequence that is long. Since 1/Z 2 b" ... gificant when n> 10, the minimum

value of n dealt with in this thesis will be 10.

The second term, containing [(sin n-a/Z)/(nii/Z)] 2 will create an envelope around the

discrete line frequencies and will always be positive and real. The Dirac delta function

multiplying the sine-squared term will generate the discrete line spectrum with frequency

components every fs/Z Hz and would have a constant height of (Z + 1)/Z 2 were it not for

the modulating sine term. Another interesting effect that takes place is the occurrence of

nulls at integral multiples of the shift frequency fs" These nulls are created because

sin n7r/Z is zero for every value of n that is a multiple of Z and since in the argument of

the delta function this ratio of n/Z multiples fs, our nulls appear at integral multiples of

the shift frequency. The bandwidth of the spectrum is also dependent on fs and its width



out to the half-power points gives a bandwidth of Wx(f) = 0.32 fs, where the constant term

0.32 is the approximate multiplication factor for the -3 db-down point.

One further noteworthy point about PN sequences is the time period associated with

the sequence. We have spoken of the bit length and shift rate without combining these

two effects to establish the PN time period. The inversion of the term fs/Z in the equa-

tion of the power spectrum is the time period of the PN sequence and will be designated

as P = Z/fs, the period in seconds of a given PN sequence.

Measurement of Power Spectrum

The first phase of our experiment will be a laboratory measurement of the power

spectrum to see how close we are in agreement with the mathematical model of the power

spectrum.

When building a PN generator one would like to know how fast it should be shifted or

whether there is an optimal shift rate for a given sequence length that should be con-

sidered. Since there does not seem to be any mathematical basis for checking the output

power level as a function of shift rate and sequence length, this test becomes a logical

starting point in the experiment.

The PN generator employed in this and all subsequent tests is a variable length

generator with a shift register that can be varied from a length of nine bits to a maximum

of 20 bits and will generate the sequence lengths tabulated in Fig. 3. The logic for the

generator was made up of Navigation Computer Corporation 300-kHz modules and driven

by a Hewlett-Packard 5100A frequency synthesizer. The frequency synthesizer is driven

by a 5100A synthesizer driver and will provide any output frequency from 0.01 Hz to

50 MHz, selectable in steps as small as 0.01 Hz. The high stability of the 1-MHz basic

crystal (3 parts in 109 for 24 hours) makes an excellent standard for laboratory experiments.

A check of the output power in decibels versus shift rate on a maximal length se-

quence revealed that the output was essentially constant for all maximal sequence lengths

that could be generated by our generator and was invariant to the shift rate. These pre-

liminary results are in keeping with our assertion that the sequence has uniform power

throughout its bandwidth. It will be subsequently shown that the bandwidth is independent

of the sequence length and is determined solely by the shift rate, i.e., how often the

waveform switches.



Output Power Versus Frequency

When selecting PN sequences as a signal source, the question of what shift rate

should be employed will be of some concern. The shift rate will determine the bandwidth

of the signal and can be roughly estimated, but the behavior of the power spectrum of PN

sequences may not be readily understood, and the effects of using various shift rates may

not be apparent. In some applications of PN signals it must be bandlimited (such as

sonar signals) and as a result it would be instructive to get a plot of the power spectrum

of the wideband signal before applying any filters.

The test procedure for obtaining the frequency response output of the PN signal was

as follows. A Hewlett-Packard frequency synthesizer was used to drive the PN generator,

and the output of the generator was fed to a Muirhead-Pametrada Type D-489-E wave

analyzer. The Muirhead analyzer is of the degenerative feedback type employing two

selective amplifiers in cascade. The output at the tune frequency is fed through a further

amplifier to the meter. Tuning is by resistance-capacitance networks, and the tuning of

the two amplifiers can be staggered to give a bandpass effect. The analyzer was operated

in the IN Tune High position, so that both selective amplifiers are in the circuit and tuned

to the same frequency, giving a Q-factor of 80 and an octave discrimination of better than

70 dB.

Tabulating the decibel output versus frequency for various fixed shift rates and all

maximal length sequences obtainable from our PN generator, a composite graph was

plotted for output versus frequency and is shown in Fig. 5. Values less than 150 Hz

could not be obtained due to a coupling capacitor in the PN generator that blocked these

lower frequencies. Figure 5 shows that there is a frequency null at integer multiples of

the shift rate frequency fs and that the spectrum was the same for all maximal length

sequences that could be obtained from our generator. Although the nulls were not zero,

they were 15 to 25 dB below the average value and each corresponding peak. The graph

is in excellent agreement with that of Allen and Westerfield [5] except where the spectrum

starts to roll off. This difference in roll-off, may be attributed to shape of the square

waves generated at the output of our respective units; i.e., the squareness of the output

pulses will have some effect on the spectrum.

The interesting thing about the graph is that it depicts pictorially what is inherent in

Eq. 10. The graph is drawn smooth rather than as discrete line frequencies because it is

a composite of virtually any shift rate and any sequence (maximal) length. The spectrum

plot enables one to select a particular bandpass filter where the power is essentially

constant and to avoid the areas where the nulls occur.
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BANDWIDTHS

A function cannot be limited in both the time and frequency domains. There is a

duality in nature between time, whose dimension is t, and frequency f, whose dimension

is 1/t. A precise determination of frequency requires a long time base, and conversely a

precise determination of time requires a broad frequency band.

The dual assumption that the sample record f(t) can exist for a finite time interval

from 0 to T seconds, and its Fourier transform F(wo) exists only in a frequency interval

from -W to +W Hz is not theoretically possible because of an uncertainty principle [6].

Assuming f(t) and F(o) are so restricted as to their time and frequency properties, it will

be shown in the section on sampling analysis how many distinct samples of f(t) or F(w)

are required to describe f(t) completely for all t.

In actual practice, we can closely approximate this dualty with finite time intervals

and bandpass filters. For a bandlimited signal the Fourier transform F(o)) corresponding

to f(t) vanishes identically for all real w outside some specified band. In the case of a

low-pass signal where W is the highest frequency (Hz) appearing in the signal we can

specify our band for all real a as being -277W < o < 27W for W > 0, and this would imply

that

IF(w)I = 0 for 1coj > 27TW. (11)

The total bandwidth would be equal to 47W Hz centered about the zero frequency

component. A bandpass signal is defined in the same way as the low-pass signal, except

the boundaries of (o are different. If w0 is the center frequency of our band, then the

range of the bandpass signal can be given by

Q0<) < 
0 +2 (12)

and

-(00 -2 < o_<- 0 2y

This means that IF(o)j = 0 for }wl > o +01/2.

The important concept about bandlimited functions is that they are zero outside the

band. It is not possible in a practical case to get a time function whose Fourier trans-

form vanishes identically outside some specified band. Generally, we assume that the

Fourier transform is very small outside some finite interval.

Bendat and Piersol [6, Ch. 6] describe three types of bandwidths that are of interest

to the power spectral density measurement problem. These three bandwidths are the



half-power-point bandwidth Br, the noise bandwidth Bn, and the equivalent statistical

bandwidth B s.

The half-power-point bandwidth Br is the frequency interval between the upper and

lower frequencies where the filter attenuates the applied signal by 3 dB below that of

maximum transmissability. The half-power bandwidth is convenient due to its ease of

measurement and is represented by

Br = f2 - f1, (13a)

where

lH(fl)12 = JH(f2)12 = Hm12. (13b)

H(f) is the frequency response function of a linear filter. IH(f)l is the magnitude of the

frequency response function (gain factor) at any frequency f and IHmj is the maximum

value of the gain factor.

The noise bandwidth Bn is the bandwidth of a hypothetical rectangular filter which

would pass a signal with the same mean square value as the actual filter when the input

is white noise (random signal with uniform energy distributed over all frequencies).

Noise bandwidth Bn can be defined as

B = IH(f) 12 df (14)

The equivalent statistical bandwidth Bs is the bandwidth of a hypothetical rectan-

gular filter which would pass a signal with the same mean-square-value statistical error

as the actual filter when the input is white noise and is defined as

[ f= •H( f 2  
( 5 )

$o IH(f)l 4 df

In actual practice there is very little difference between these three types of filters,

provided one is using a highly selective bandpass filter that closely approximates the

ideal rectangular form. We can only assume that ideal filters will give us exact band-

widths. The consideration of theoretical rectangular filters (unity gain within the pass-

band) is a mathematical artifice that enables us to use the sampling theorem.



SAMPLING ANALYSIS

The concept of bandwidths is useful in a mathematical treatment of sampled signals,

and in a practical sense transmission of information is more economical when bandwidth

is conservative.

The Shannon Sampling Theorem states [7]: "If a function f(t) contains no frequencies

higher than W Hz, it is completely determined by giving its ordinates at a series of points

spaced 1/2W seconds apart." Stated mathematically the theorem becomes

-i n 2 W t- -n

W~ 27W n~~

Equation 16 shows that a time function f(t) can be completely determined by its

sample points (n/2W). Since f(t) contains no frequencies higher than W Hz, it cannot

change to a substantially new value in a time less than one-half cycle of the highest

frequency, i.e., 1/2W. Shannon's proof of this sampling theorem is given in Ref. 7 and

repeated here due to its simplicity.

*Let F(a)) be the spectrum of f(t). Then

o 2"rW

f 1 fm (0. i jo f 2 F(wo) ej't do), (17)
f~t)= o F~o) e dco= 27T W

since F(w) is assumed zero outside the band W. If we let

2W= -, (18)2W

where n is any positive or negative integer, we obtain

"ITW . II d6n
2- 2 2W o) e 2Co W dco. (19)

_27TW

On the left are the values of f(t) at the sampling points."

The validity of this proof lies in the fact that the integral on the right is the nth

coefficient in a Fourier-series expansion of the function F(W)), taken on the interval -W to

+W. The values of the samples f(n/2W) determine the Fourier coefficients in the series

expansion of F(a)); thus they determine F(6.). Since IF(a))I = 0 for wl > W, F(w) is deter-

mined if its Fourier coefficients are determined. By the uniqueness of Fourier transforms

(see Eqs. B4 and B7) only one function can have a particular transform F(o); hence f(t) is

completely determined by its samples taken every 1/2W seconds apart.



More elaborate proofs on the Sampling Theorem can be found in the literature dealing

with sampled data. It shall suffice at this point to say that the techniques of sampling

data has extensive application in communication systems and areas where digital com-

puters are employed. The use of digital computers will require that time functions be

represented by sampled data points.

The analysis in this thesis has been performed with the aid of a digital computer on

*sampled data points taken from a PN generator. By thinking of the PN signal as being

bandlimited to a bandwidth W and some time interval T, we can completely specify our

time function f(t) by 2TW numbers.

These 2TW numbers are the degrees of freedom that represent the original time func-

tion. Our 2TW samples are obtained by equally spaced sampling. According to Shannon

these samples may be unevenly spaced, but the reconstruction process is more involved

with unequal spacing. The value of the function can be also determined by sampling at

half the prescribed sampling rate and taking the derivative, or by sampling at a third of

the rate and taking both first and second derivatives at these sampled points. In short,

any set of 2TW independent numbers associated with the function can be used to

describe it.

FILTERING

Our previous discussions about bandwidths, and sampling of bandlimited functions,

dealt with theoretical bandwidths with very sharp cutoffs. In actual practice there is

some departure from the ideal bandwidth where the frequency spectrum is identically zero

outside the band as described by Eqs. 11 and 12.

The usual method employed in obtaining bandlimited functions is with some appro-

priate type of filtering. Winder and Loda [8] discuss various types of filtering and some

methods used in obtaining the filtering. The more rigorous details of filtering and their

effects will not be undertaken in this report, since filtering comprises a complex area of

'study on its own.

This study of PN signals will deal almost exclusively with low-frequency (less than

1 kHz), bandlimited signals that have undergone some type of corruption. We have re-

stricted our signals to the lower frequencies because this is the range generally used for

long-range underwater acoustic transmission. These low-frequency signals are band-

limited both to match the frequency response of the transducer and to minimize disper-

.sion (velocity spread of the different frequencies).



The filters used in this study are of the commercial variety and do not possess the

characteristics of an ideal rectangular-bandpass filter, nor do they lend themselves to any

known mathematical models of bandpass filters.

One filter that has been used in this study is a Krohn-Hite Model 330-A Ultra-Low-

Frequency bandpass filter. It is an adjustable filter whose gain is unity in the passband

and drops off at a rate of 24 dB/octave outside the passband. Both the high and low cut-

off frequencies are independently adjustable from 0.02 to 2000 Hz. This filter is superior

to a 24-dB filter with unity peaking, because with the same attenuation outside the pass-

band, the gain near the corner frequencies is greater due to employment of corner peaking.

The second type of filter employed in this study is a Burnell filter that is not adjust-

able but comes in various bandwidths for a given center frequency. The filter bandwidths

are expressed as a percent of the center frequency such that a 400-Hz 30-percent filter is

centered at 400 Hz with a bandwidth of 120 Hz. The Burnell filters drop off at a rate of

55 to 65 dB/octave outside the passband and are not maximally flat within the passband

but display an equi-ripple passband characteristic. Although the Burnell filters do not

have unity gain within the passband, they exhibit more than twice the attenuation rate per

octave than the Krohn-Hite filters. The sole purpose of using filters as far as this study

is concerned is to limit the signal to a frequency band that fits a particular system. The

filters will not perform any preprocessing of the signals such as predicting, smoothing,

and correlating; all processing will be handled by the computer.

PN SIGNATURE

The logical starting point on the investigation of power spectral estimates of sampled

data is to find what type of signature the PN possess under normal conditions. A PN

model suitable for our studies will be undertaken first, and consideration will be given to

the following parameters: PN period (seconds), bandwidth (Hz), sampling rate (bits per

second), computer program resolution for power density (Hz), harmonic separation of PN

(Hz), and the number of sample points per PN period.

We shall discuss the meaning of the terms used above as they apply to this investi-

gation. The PN period in seconds is a function of the sequence length and shift rate

such that the period p = Z/f s , where Z = 2n - 1 bits and fs is the shift rate in bits per

second. The period of the PN must be restricted so that a full sequence length of the

sampled signal can be accommodated in the computer memory. The significance of this

consideration about the PN sequence length will be borne out in later developments.



Long PN sequences when filtered have distributions that are almost Gaussian and there-

fore more desirable for some applications.

A compromise on the PN sequence length must be made or it will require a high shift

rate to hold the PN period to a few seconds. If a PN of 2 seconds were considered and a

sampling rate of 2000 Hz were used, this would give 4000 data points to cover one period

of the PN, which would be too much data for the computer used in this analysis. Although

the upper frequency of the bandwidth is about 450 Hz, the sampling rate is higher than

that required by the sampling theorem, but this higher rate gives better coverage of the

signal and minimizes the need for interpolation between data points.

The bandwidths used on the PN in this study will generally be 100 Hz wide centered

at either 200 Hz or 400 Hz. The filtered PN is sampled and encoded using the NRL [9]

magnetic digital recording system. The system is capable of eight-channel multiplexing

but is used in a single-channel mode in this report. Essentially the recording system will

sample the analog signal at some designated rate and encode the instantaneous value of

voltage into binary digits consisting of ten bits and sign. The 11-bit data word is re-

corded on tape along with a parity bit and clock bit, this process being repeated for each

sample point. This recording system has a maximum sampling rate of 8 KHz and also

incorporates a visual monitor (Fig. 6). The visual monitor serves as a very useful device

for inspecting the data after it is written on tape.

The computer used in this report is a Computer Control Company DDP-24 high-speed,

solid-state, general-purpose digital computer. The computer has a 24-bit word length and

uses standard IBM character format for its input-output tape units. The model used in

this report has a 4096-word memory expandable to 32,768 words. The total memory capac-

ity at present of 4096 words will dictate selection of the length of the PN period. The

computer memory will be required to hold the power spectrum program along with appro-

priate subroutines and enough data to cover a minimum of one full PN period.

COMPUTER PROGRAM

The program for computing the power spectrum is part of the standard library of pro-

grams available for IBM compatible computers. We will not attempt to go through the

algorithms associated with the computer handling of the power spectrum except to outline

briefly the more important aspects of it. Some standard methods for computer computation

can be found in Ralston and Wilf [10]. The program handles the calculation of the power

spectrum using the following method.

First we consider a time series with zero mean and define an autocovariance function

W(-) as
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W() - N - TJ xi xi+T, (20)

i=1I

where -is the lag between observations, N is the total number of observations, and

x. is an individual observation. The autocovariance function described by Eq. 20 is for

a discrete time function, and since we are assuming a time series with zero mean, the

autocorrelation function will be the same as the autocovariance function.

Recalling that the autocorrelation function and power spectrum are Fourier trans-

forms of each other (Appendix B, Eqs. B19), we can express the power spectrum in terms

of the autocovariance function. If x(t) is real, W(T) is real and symmetric around T= 0.

Therefore W(T) and P(f) may be expressed as two-sided cosine transforms:

W(T) = J P(f) cos 2rfT- df, (21 a)

C,00

P(f) - W(T) cos 27-fTdT-, (21b)
00

or more simply as

W(-) = 2 JO P(f) cos 2rfT- df, (22a)

"0

P(f) = 2 fO W(T) cos 27TfT dT. (22b)

Equations 21 and 22 are used in piaCC f1_ UUaL ... f... C1Lai iurii1 for convenience

of future developments, and the justification for this cosine transform lies in the fact that

the autocorrelation function is an even function and the sine terms are zero. The power

spectrum associated with only positive frequencies would be equal to twice the P(f) given

in the above equations.

Since we are dealing with a discrete set xi(t), it is necessary to use a finite Fourier

series transformation rather than the infinite integral transformation. If the spectrum in-

volves angular frequencies no greater than 7r, estimates of the spectral density can be

given by
M-1

ST(f) = Wo + 2  Wq Cos M + W M COS 77T, (23)

q=l



where W0 , W1 ,..., WM are calculated by Eq. 20, M is the maximum number of lags, and q

is a discrete time index.

The raw estimates of spectral power given by eq. 23 are printed out as a function of

frequency, "rAf where - is incremented by one for each calculation and

fs

Af = 2M' (24)

in which fs is the sampling frequency, and M is as defined previously. The quantity Af is

essentially the frequency resolution of the program.

The computer program holds 2500 data points, and working with a rule that the tau

shifts should not exceed 10 percent of the data points, we get 250 tau shifts for our value

of M. At -= 0 (no shift) we get Wo, and the program generates a power component for each

tau shift up to a maximum of 250. Our concern with frequency resolution of the computer

program is based on a desire to have the computer program resolve frequencies finer than

those generated by the PN signal being investigated.

As mentioned earlier four basic parameters to be considered are PN period, bandwidth,

sampling rate, and computer program resolution. Our concern with these parameters lies

in selecting a PN period with an appropriate bandwidth such that our sampling rate will

give at least one full PN period for our 2500 computer data points.

This restriction on the number of data points, dictated by the computer memory size,

puts a severe limitation on the period length of the PN. Ideally we would like PN periods

of about 1 minute, or more because these would have amplitude distributions more closely

approaching Gaussian distributions and would lend themselves to mathematical models

already established for the Gaussian case. We are essentially faced with using PN

periods that are so short in length that they lose their random characteristics as well as

not being Gaussian distributed, and our mathematical models may not fit our actual results.

The compromise between the most desirable signal and limitations imposed on a

signal due to the computer hardware represents a rather realistic picture of what one is

actually confronted with in a practical situation. This compromise may be summed up as

being the difference between what is mathematically elegant and what is physically

realizable as far as a given computer is concerned.

EXPERIMENTAL RESULTS

Pseudo-Noise Signature

The first computer experiment in this report involves finding a suitable PN sequence

and bandwidth that can serve as a model for the power spectrum estimates. This means



that we will have a PN signature of the power spectrum for a given PN sequence and

sample size, to be compared to other PN power spectrums after there has been some per-

turbations of the PN signal.

We start out by selecting three PN sequences generated by shift register lengths of

10, 11, and 12 bits. The sampling rates, shift rates, and bandwidths will be changed

until we find a PN sequence with the most desirable looking power spectrum.

Noting from Eq. 24 that the computer program had a frequency resolution given by

Af = sampling rate/2M, where M = 250 tau shifts, we would like the resolution of the com-

puter to be smaller than the harmonic separation of the PN sequence. The bandwidths

were selected for frequency ranges of 150 to 250 Hz and 350 to 450 Hz. These two band-

widths are located before the first null as shown by Fig. 5 and in the region where the

power is almost constant over the entire bandwidth of interest.

The block diagram of the recording setup is shown in Fig. 7. A frequency synthesizer

(Hewlett-Packard) was used to drive the PN generator at some appropriate shift rate, such

that for a given sequence length the harmonic separation is an integral multiple of the

computer program resolution. The square waves from the output of the PN generator were

fed to a bandpass filter. The filter can be either a 150 to 250 Hz Krohn-Hite bandpass

filter or a Burnell 350 to 450 Hz bandpass filter. The output of the filter is taken across

a voltage divider before feeding into a wideband dc amplifier. The amplifier serves as an

impedance match between the PN generator and the analog-to-digital (A/D) converter and

also serves to maintain the voltage level into the converter at full scale. Between the

amplifier and the A/D converter is an isolation transformer to block out any dc bias.

The A/D converter is triggered by another frequency synthesizer of the same model

used for shifting the PN generator. The trigger pulse into the converter is essentially the

sampling rate, and this sampling rate is set to give the computer program a frequency

resolution finer than the harmonic separation of the PN generator. The output of the 'A/D

is fed in parallel ten-bits, sign, parity, and clock onto a 16-channel digital magnetic

recorder. A total of 18 recordings were made from this arrangement using three different

maximal length PN sequences. The values used in this recording are shown in Table 1.

The table shows three different sampling rates along with appropriate values of PN shift

rates that were used for the 150 to 250 Hz bandwidth and also for the 350 to 450 Hz band-

width. In all cases the harmonic separation of the PN was at least double the frequency

resolution of the program.

The unsmoothed raw estimates of the spectral density were computed using Eq. 23,

and the normalized values of the frequency components were plotted. Figure 8a shows

the power spectrum of a pseudo-random sequence of length 210 - 1 bits that has been

filtered through a bandpass filter of 150 to 250 Hz. Associated with the plot of the
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spectral density is the corresponding plot of the normalized autocorrelation function, Fig.

8b. Figure 8 represents the data associated with Case 1 of Table 1.

The autocorrelation plot of Fig. 8b shows the very sharp spike at T= 0 and all multi-

ples of the PN period. These sharp spikes with almost zero side noise between peaks

are also in excellent agreement with the literature on maximal length sequences. The

small gap between every other maximum value of the correlation was due to the computer

bringing in a new block of data while the chart paper was still in motion. The plots of

the autocorrelations were made by a Brush two-channel strip recorder (Mark 280) and will

be used for comparison with the spectral analysis.

Figures 9a and 9b are the plots of power spectrum and autocorrelation for Case 16

associated with Table 1. The bandwidth in this case was 100 Hz centered at 400 Hz,

and a different type bandpass filter was used than that of Fig. 8. The power spectrum is

as it should be for filtered PN sequences and all the associated data for it are in Table 1.

This filter displayed an equi-ripple characteristic in the bandpass region and had a con-

siderably sharper cutoff outside the passband than that used in the lower frequency case.

The autocorrelation of Fig. 9b is still well defined at T= 0 and all multiples of the

PN period. The development of a (sin x)/x envelope is better defined in this higher

frequency case. This envelope is better developed at this frequency due to the ability of

the filter to pass higher frequency excursions and the fact that the bandwidth approaches

that of a square wave. The excursions within the(sin x)/x envelope are essentially at

the center frequency of the filter.

Figures 10a and 10b are for PN sequences of 2 111 bits and represent Case 2 from

Table 1. It can be noted how the envelope of the power spectrum is not as smooth for

the low-frequency bandwidth using this longer PN sequence length as it was for the pre-

vious case. This PN sequence exhibits a high ripple component in both frequency bands.

Figures Ila and 1lb are for PN of sequence length2 12 - 1 bits. The plots are for

Case 3 of Table 1. The most noticeable item of this power spectrum is the considerable

power in frequency bands between the harmonic separation of the PN. In other words for

the sequence and shift rate used the frequency separation should have been every 8 Hz

but instead was every 4 Hz. Since the program had a resolution of only 4 Hz, it is not

possible to see how intense this crosstalk really was. The autocorrelation of Fig. 1lb

remains well defined for all of the in phase values, similar to the previous two cases.



Cases Recorded for PN

Table 1

Sequences of Shift Register Lengths 10, 11, and 12
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These few examples of power spectrum for the three selected PN sequences were

introduced to see which sequence would be used as a reference model for future develop-

ments. Longer sequence lengths were not introduced because of the limitations imposed

by the computer system being employed. The PN sequence of length 210- 1 bits appears

to be the one most suitable for our studies. We will call the power spectrum associated

with that sequence the signature of the PN and any perturbations of this signal should

reflect some changes in this signature.

Additive Noise Effect

The problem of noise in a communication system has been and will continue to be an

area of concern to the communication engineer. The literature associated with and the

methods of extracting signals from a noisy background has become a specialized area in

engineering [11-131. There is the classic study of shot noise due to thermionic emission

of electrons in vacuum tubes [13] and the noise figure associated with amplifiers. In a

communication system, noise is associated with the transmitter, antenna, transmission

medium (air, water, or electric conductor), and receiver.

The problem of isolating the noise and finding the particular component associated

with some particular component in the communication system is seldom undertaken [14].

Generally all the sources that contribute to the noise are considered in terms of their

total effect or noise figure in the entire system. We are usually dealing with a system

such that the signal-to-noise ratio will ultimately determine our success with a given

situation.

This particular analysis will be concerned with the power spectrum of PN with

additive noise. The noise component will be of the manufactured variety generated by a

thermal noise source. This noise source is a Western Electric-Acoustic Laboratory type

300A, designed to furnish a broad, continuous, and steady noise spectrum. The funda-

mental source used in this instrument is the noise due to electronic agitation within a

cold resistor. This arrangement is supposed to give a noise source that is extremely

stable, being dependent only upon the magnitude of the resistor and the ambient

temperature.

This fundamental noise source has a very low output and requires a large amount of

amplification. Consequently, the electronic noise is amplified by a feedback amplifier

providing about 100 dB gain. This noise source did not live up to the specifications set

by the manufacturer, in that it was not stable and did not have a steady noise spectrum.

Ideally we would have liked for the noise to have been white (constant power over the

entire frequency spectrum).



The procedure in this experiment was to take some filtered PN and add to it various

amounts of noise both wideband and narrow-band to obtain different signal-to-noise ratios

and then compute the power spectrum along with the autocorrelation and also some cross-

correlation. The purpose was to see what happens to the power spectrum of PN when it

becomes deeply embedded in noise.

The recording setup was as shown in Fig. 12, and 26 recordings were made with this

arrangement. A single PN sequence of length 210 - 1 bits and a sampling rate of 2000

Hz were used. A bandwidth of 100 Hz centered at 200 Hz was used for recording. The

selection of the particular PN sequence to be used as well as the shift rate and sampling

rate was based on previous considerations. The specifications associated with the PN

are listed in Table 2.

The first 13 recordings were made using wideband noise and adding it linearly with

the aid of an operational amplifier to the filtered PN (Fig. 12). The procedure was to set

some voltage level as read by the rms meter with the thermal noise source disconnected.

After establishing a level for the PN signal, this signal was disconnected and a reading

was taken on the thermal noise source. The combined voltage value had to be such that

it would not exceed full scale on the A/D converter. The corresponding voltage values

were recorded, and their resulting signal-to-noise ratios were also recorded (Table 2).

Wideband noise was used on the signal to try to simulate a condition whereby one

receives a bandlimited signal at a very low voltage level and employs a series of wide-

band amplifiers to increase the level to some appropriate value. If a filter is not em-

ployed at the final output of these cascaded amplifiers, some wideband noise com-

ponents could possibly be introduced on the signal.

The second set of recordings, 15 through 27, were made with the bandpass filter

inserted after the noise source, and this filter had the same frequency response as that

used with the PN signal. The procedure for adjusting the voltage levels was the same as

for the first set explained earlier. In all cases, although not shown in Fig. 12, an isola-

tion transformer was used between the wideband amplifier and A/D converter to keep out

any dc bias.

The mathematical rationale associated with this noise analysis is straightforward

and does not involve the more complex analysis of mean square error or threshold (detec-

tion) requirements. The filters used here are simply for bandlimiting purposes and do not

perform any preprocessing such as smoothing or predicting and are not optimum filters or

matched filters. The mathematical analysis for computing the power spectrum of a signal

with additive noise can be handled by ordinary statistical methods.
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We shall represent our periodic PN signal as s(t) and letn(t) be the additive noise

without any periodic component. We further define a function y(t)as being the sum of the

two signals expressed as

y(t) = s(t) + n(t). (25)

We will assume that signals can be treated as a random process (see Appendix C for

definition of italicized terms). Both signals will have zero mean.

The autocorrelation function of y(t) taken as an ensemble average is given by

D yy (-) E{[s(t) + n(t)] [s(t + -) + n(t + -)1. (26)

If our process is wide-sense stationary the autocorrelation function is a function of

the sample time interval w,and since E is a linear operator we get the following, where

a bar symbolizes ensemble average:

Syy(T-) = [s(t) s(t + -)] + [s(t)n(t + -)] + [n(t) s(t + -)] + [n(t)n(t + -). (27)

which gives us

D yy (-) = ±ss(0 + [s(t) n(t + T)] + [n(t) s(t + -)] + nn(T). (28)

We further assume that s(t) and n(t) are statistically independent, which allows us to

separate the second and third terms in Eq. 28 into

s(t) n(t + -) = s(t) n(t + -T) (29a)

and

n(t) s(t + -) n(t) s(t + T). (29b)

But

s(t) - mean value of s(t) (30a)

and

n(t) = mean value of n(t). (30b)

From our previous assertion that both signals, s(t) and n(t) will have zero mean, Eqs.

29a and 29b will equal zero; therefore

Syy (T) = ss(-) + nn ( T). (31)

By application of the Wiener-Khintchine theorem, the power spectrum will be the

Fourier transform of the autocorrelation function, giving

Wyy(f) = Wss(f) + Wnn(f). (32)



Equation 32 shows that our power spectrum will be simply the contributions of the

power spectrum of the original signal added to the noise. If we were truly successful

with the linear addition of noise to our signal, we should be able to subtract the power

spectrum of our noise from our combined spectrum and be left with the spectral power of

our signal.

The computed results for the power spectrum are shown in Figs. 13 through 18 and

the data for the various cases are tabulated in Table 2. Included with plots of the power

spectrum are the autocorrelations and, in some cases, the crosscorrelation between the

reference PN without noise against the signal under investigation.

Figure 13a is the power spectrum of the wideband thermal noise source (Case 1 of

Table 2). The spectrum is not constant over the frequency band and therefore cannot be

considered as white noise. The autocorrelation function (Fig. 13b) shows no periodic

components.

Figure 14 is Case 8, where the signal-to-noise ratio equaled zero. We can still see

the envelope associated with the PN power spectrum (Fig. 14a) and the wideband additive

noise filling in the background. The autocorrelation (Fig. 14b) is still well defined, in-

dicating that a periodic signal is still present, but the peak values are less than half of

what they were for the PN signal alone.

Figure 15 is Case 10, where the signal-to-noise ratio is now -10 dB. The power

spectrum shows no evidence of the PN signal and has essentially the same appearance

as the wideband noise in Fig. 13a. The autocorrelation (Fig. 15b) fails to show any

periodic components, but the crosscorrelation of the reference PN signal against this

noise corrupted signal (Fig. 15c) reveals a detectable periodic component. This shows

that while there is nothing to be gleaned from the power spectrum or autocorrelation

for this particular case of additive noise, there seems to be some processing gain asso-

ciated with comparing a clean signal against one deeply embedded in noise.

The second half of this analysis deals with the same PN signal, but the additive

noise has been filtered through the same type of filter as the PN. The data for these

cases are in Table 2 (Cases 15 through 27). Figure 16a is the power spectrum for the

bandlimited thermal noise and represents Case 15. The filtered noise shows very heavy

components representing harmonics of 60 Hz. This becomes a good example of noise

with a few transient spikes mixed in and represents a very undesirable situation in a

communication system. The autocorrelation (Fig. 16b), although it does not indicate any

cyclic components, has considerably higher values than that associated with the wide-

band noise of Fig. 13a; there appears to be a modulation effect on the autocorrelation.

Figure 17a is the spectral power associated with Case 22, where the S/N equals

0 dB. There is almost a complete deterioration of the PN power spectrum, and the



harmonics of 60 Hz are very pronounced. The gaps between the harmonic separation of

the PN have been entirely filled in by the additive noise. There would be very little

confidence associated with trying to identify the PN in this spectrum plot. The autocor-

relation and the crosscorrelation (of Case 22 against Case 16) continue to give meaning-

ful results (Figs. 17b and 17c). The crosscorrelation still gives higher values than the

auto co rrel ation.

Figure 18a is the spectrum for a S/N ratio of -10 dB and represents Case 24. The

power spectrum has been corrupted to the point of representing nothing more than the

power spectrum of the bandlimited noise plotted in Fig. 16 a. The plots of the autocor-

relation (Fig. 18b) also fail to yield the periodic components associated with the PN.

However, the crosscorrelation of the noise corrupted PN signal versus the reference PN

(Case 16) continues to give noticeable peaks at each period of the PN (Fig. 18c).

The plots of the three remaining cases (not shown) fail to yield anything for power

spectrum or correlations; they are e ssentually the point at which this type of analysis

fails to give any meaningful results.

The attempt to subtract the power spectrum of the thermal noise from that of the

combined signal plus noise fails to yield the power spectrum of the signal. Ideally

(Eq. 32) we should be able to perform

Wss(f) = W yy(f) - nn(f). (33)

One reason Eq. 33 is not applicable in this analysis may be that the computer has

normalized the values of the power spectrum, therefore making a linear subtraction all

but meaningless. Another reason is that the crosstalk due to the frequency components

associated with the noise spikes cannot be resolved. A final and probably the most

important reason can be found in Eq. 27. We showed that the second and third terms of
Eq. 27 vanished because s(t) and n(t).....cally indepcndent. However, in actual

computation there is a crosscorrelation of low level associated with Fig. 15. This means

that these two terms are not identically zero but have a significant value over the time

duration that this analysis was being performed. This means that Eq. 27 will be trans-

formed as follows:

W yy(f) = Wss(f) + Wsn(f) + Wns(f) + Wnn(f), (34)

which indicates that we can no longer simply subtract Wnn(f)from Wyy(f) and getWss(f).

However, if the other two components in Eq. 34 were included, all three terms could be

subtracted from the additive noise spectrum, leaving the spectrum of the signal, provided

we still adjust for the normalization effects.



Table 2

Cases Recorded for PN Sequences with Additive Noise
(Z = 210 - 1 = 1023 bits; Bandwidth = 150 to 250 Hz; Shift Rate - 8184 Hz)

s(t n(t) Af f XFtN Noise S/N Computer Harmonic Sampling

Case Signal Vol. Ratio Program Separation Rate

(dB) (dB) (dB) Resolution (Hz) (Hz)(Hz)

Wideband Thermal Noise

1 0 -10 -00 4 8 2000

2 -3.5 0 +00 "

3 -2 -27 +25 it

4 -2 -22 +20 if

5 -2 -17 ±15 iI t

6 -2 -12 +10 ""

7 -2 -7 +5 " " "

8 -2 -2 0 ""

9 0 +5 -5 " " "

10 -5 +5 -10 " "

11 -10 +5 -15 " "

12 -15 +5 -20 ""

13 -20 +5 -25 " "

14* - - -.

Narrow-Band Thermal Noise (150 to 250 Hz)

15 0 -8 -4 8 2000

16 -5 0 +0 11 ""

17 0 -25 +25 " it

18 0 -20 +20 it if

19 0 -15 +15 " if

20 0 -10 +10 " It

21 -5 -10 +5 " it

22 -10 -10 0 if if

23 -15 -10 -5 f " "

24 -20 -10 -10 f " "

25 -25 -10 -15 if

26 -30 -10 -20 f " "

27 -35 -10 -25 " "

*Not transferred to the IBM reel.
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Multiple-Path Effect

In addition to the problem of additive noise on a signal, another phenomena asso-

ciated with the reception of a transmitted signal is multiple path. Multiple path poses a

problem to the communication engineer whether the transmitted signal is electromagnetic

or acoustic. The result of this multiple path is the creation of a signal that consists of

several signals overlapping one another. The resultant signal is sometimes referred to

as a multiple-epoch signal [15], but more commonly in acoustics it is called simply a

multipath signal [16].

The object of this phase of study is to see what effects multipath has on filtered PN

and in particular what effect it has on the power spectrum of the PN. The PN selected

for this analysis has a sequence length of 1023 bits and is shifted at 8184 bits per

second. The multipath analysis will be concerned with the noiseless case only. A few

cases of multipath will be considered and will consist of the original signal plus a

single delayed replica overlapping it. The other cases of multipath will be the signal

plus two delayed replicas (different amounts of delay) all overlapping.

A symbolic representation of the multipath effect is shown in Fig. 19. The recording

procedure was essentially the same as that used for the additive noise study, with the

insertion of a tapped delay line to simulate multipath effects. There were 12 cases

recorded, all with a sampling rate of 2000 Hz. The specifications for the PN and band-

widths are listed in Table 3. The first six cases used a bandwidth of 100 Hz centered at

200 Hz, and the second six cases used a bandwidth of 300 Hz centered at 300 Hz. The

tapped delay line had a maximum delay of 5 milliseconds (ms) and the PN period was

125 ms, so the maximum delay was 1/25th of the PN period. The delay line had 100 taps

representing increments of 0.05 ms of delay. However, these very small increments of

delay were so small compared to a PN period they proved to be ineffectual in the experi-

ment, and only delays representing multiples of 1 ms were employed.

We can obtain the power spectrum of the multipath PN by employing essentially the

same techniques used in the additive noise case. Let s(t) represent our periodic PN

signal and s(t - kT) represent the delayed component, where T equals 1 ms and k takes

on integer values of 1 through 5. The output signal y(t), Fig. 19, can be written as

n
y(t)= Y1 s s(t -kT), n=1),2, 3),4,5. (35)

k=0

We shall always be working with s(t) plus the addition of one or more delayed replicas of

s(t); hence the general expression in Eq. 35 will not yield s(t) alone.
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Table 3

Cases Recorded for Effects of Multipath on PN Sequences

s(t)
0-
INPUT
SIGNAL

y(t)

OUTPUT
SIGNAL

x ~Affn X fs
Computer f AT

ae Shift Sample Cogme H c Shift Bandwidth DelayCaeProgram HarmonicDea
Register Rate Resolution Separation Rate (Hz) (is)
Length (Hz) (Hz) (Hz)

1 10 2000 4 8 8184 150-250 1

2 1 1 it 1 " 3

3 if " " " " 5

4 It " " " " 1,3

5 if " " " " 1,5

6 it " " " "I 3,5

7 " " " " " 150-450 1

8 " " " " " " 3
9 " " " " " " 5

10 " " " " " " 1,3

11 " " " " " " 1,5

12 " " " " " " 3,5



Assuming a wide-sense stationary process with zero mean, we can write the auto-

correlation function of y(t) as an ensemble average for the case where n = 1 in Eq. 35:

E[y(t) y(t + T)] = [s(t) + s(t - T) [s(t + -) + s(t + T - T)]. (36)

This gives us

(y(-) = 2( -) + (Sss(T - T) + (s s(7 + T). (37)

The Fourier transform of Eq. 37 will yield the power spectrum:

Wy(f) = 2Wss(f) + Wss(f) e - j27TfT + Wss(f) ej 2 7TfT= 2Wss(f)(1 + cos 2rfT). (38)

It would appear at first glance that Eq. 38 can be extended for any single value of

delay that is an integral multiple of T, but this is not the case. A modification of Eq. 37

will allow us to express the power spectrum for a single delay that is an integral multiple

of T milliseconds. Extending Eq. 37 for this special case will give

Wy(f) = 2Wss(f)(1 + cos 2"nmfT), (39)

where m is any integer not equal to zero.

Equation 39 shows that the power spectrum for a single multipath signal is twice the

spectrum of the undelayed signal plus twice the spectrum of the mrth harmonic. At first

glance it would appear that we are getting extra power from a signal that has broken off

into multiple paths, but this is not the case. The power components associated with the

cosine term can cause canceling effects for some of the frequencies, and in an extreme

case the overall effect of the multipath signal can give rise to complete cancellation of

power components associated with the fundamental frequency terms.

A general expression for the power spectrum using Eq. 35 can be readily obtained

but will be deferred until later in this analysis. For the present we will develop the

power spectrum for the various values of delay and combinations thereof that are used in

this study. Our general expression obtained in Eq. 39 will take care of six of the cases

in Table 3, where only one multipath was considered. For Cases 4 and 10 of Table 3,

where two multipaths were considered with delays of 1 and 3 ms, our output signal y(t)

will take the form

y(t) = s(t) + s(t - T) + s(t - 3T). (40)

Using the same procedure as was used for the single multipath case, we can compute the

power spectrum from the autocorrelation function and get

W(f) = Wss(f) (3 + 2 cos 27TfT + 2 cos 47rfT + 2 cos 6"rfT). (41)



The same analysis can be extended for the other cases associated with Table 3 and

obtain similar results as that given by Eq. 41, with the exception of the argument of the

cosine terms. The total number of terms within the brackets of Eq. 41 will remain the

same as well as the values of the constant terms (this is true for the special cases given

in Table 3 and is not true in general, as will be seen in later developments). Table 3

reveals that the delay terms are not taken in sequence but involve only two delay terms

at most, plus the undelayed signal s(t).

To complete the analysis associated with the delays given in Table 3, we next con-
sider Cases 5 and 11. From our general expression in Eq. 35, y(t) will have the form

n

y(t) 2 s(t - kT).

k=0

For n - 5 and k / 2, 3, or 4,

y(t) = s(t) + s(t - T) + s(t - 5T). (42)

The power spectrum becomes

Wy(f) = Wss(f) (3 + 2 cos 27HfT + 2 cos 87TfT + 2 cos 107MfT). (43)

The power spectrum for Cases 6 and 12 can also be obtained by first noting that

y(t) = s(t) + s(t - 3T) + s(t - 5T), (44)

and from this the spectrum will become

Wy(f) = Wss(f) (3 + 2 cos 47TfT + 2 cos 6-ufT + 2 cos 10MAfT). (45)

Thus far the expressions for the power spectrum for all 12 cases have been con-

sidered and it appears that a pattern is being formed so that we can obtain a general

expression for the power spectrum for the number of multipaths considered and the

amount of delay associated with each path. We shall defer the development of this

general expression until after the results of the data have been analyzed.

The item of interest here is that for any delay path, or combinations thereof, that

are integer multiples of some given delay T the power spectrum contains cosine terms

that are all even harmonics. The extent of these harmonics will be better understood in

later developments.

Returning our attention to the data associated with Table 3, we find some interest-

ing developments. Figures 20 and 21 are for Cases 3 and 9 respectively. The band-

widths are 150 to 250 Hz and 150 to 450 Hz and the multipath delay is 5 ms. The
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autocorrelations and crosscorrelations are presented with each plot of the power spectrum

under consideration. The crosscorrelation is s(t)versus the multipath signal of the same

bandwidth. The correlations are shown without comment, since there does not appear to

be anything unusual about them, and they are presented for purpose of comparison against

the power spectrum.

Figure 21 represents the same value of multipath as Fig. 20 but a different band-

width. The wider bandwidth of Fig. 21 shows how the power components are distributed.

Notice the sizable secondary spectrum from 300 to 470 Hz. This secondary spectrum is

well outside the band of Fig. 20 but has enough energy associated with it so as to be

clearly visible. The two plots of Figs. 20 and 21 correspond to Eq. 39 with m = 5. The

effects of this single cosine term has a marked effect on the power spectrum, where

components of frequency are either reinforcing the fundamental or canceling it out.

In all cases of multipath considered, the envelope of the power spectrum was gov-

erned by the modulating effects of the cosine terms. The reinforcing of power compo-

nents at various values of frequency were so strong that very significant power terms

were displayed well outside the narrow band of 150 to 250 Hz. The wider band gave a

better representation of the power distribution for the cases considered.

Had we been able to incorporate delays that represented a more significant percent-

age of the PN period, the effects of power spectrum as well as the correlation would have

been more dramatic. Specifically, the larger values for the delay path would have re-

duced the power components within our band considerably. Since multipath represents a

form of interference with the original signal, the effects of this interference has to be

reflected somewhere in the spectral analysis. These longer delay paths would put power

at harmonic frequencies that are considerably outside our passband and consequently

subtract from the power within the band.

The correlation analysis would reveal these multiple returns as secondary peaks,

well removed from the peak at -= 0. In actual practice, by crosscorrelating the received

multipath signal with a reference signal, the measurement of the distance of the second-

ary peaks from that of the main peak will give an indication of length of the delay path

or paths.

We should like to complete our analysis of multipath effects by computing a general

expression for the power spectrum from the general expression of Eq. 35. If we change

the indexing in Eq. 35 to n - 1 instead of n, we get

y(t) = s(t) + s(t - T) + s(t - 2T) + ... + s[t - (n - 1)T]. (46)

If we take the Fourier transform of Eq. 46, we get



Y(f) = S(f) + S(f) e- j 2 fT + S(f) e-j47TfT + .. . + S(f) e - j 27T fT(n - 1)

= S(f) [1 + e - j 2 7TfT + (e-j 2'7fT) 2 ±+ ... + (e-J 2 "ufT)n - 11. (4 7 a)

Since the geometric progression is of the form

S=a+ar+ar2 + +arn- a (1-rn)

Eq. 47a can be written as

Y(f) = S(f) e - j2 -Tf 
'

= S(f) ej7TfT(n - 1) (sin_7fnT (47b)k sin -TfT

The energy spectral density can be obtained from the relationship

Wy(f) = Iy(f) 12,  (48)

and by noting that Iejl fT(n-l) 12 - 1,we get the expression

Wy(f) = Ws(f) sin 7rnfT 2 (49a)

(sin 7TfT

or by application of the Woodward [17] notation, where

sin rrf
sinc f = s , (49 b)rTf

Eq. 49a can be written in the form

Wy(f) =n 2 W (f) (sincnf)2 (49c)sinc fT )4c

Equations 49a and 49c are expressions for the power spectrum associated with the

nongeneral expression given by Eq. 46. The reason Eqs. 46 and 35 are not general ex-

pressions for a multipath signal is that they only allow for a signal with successive

increments of delay. Neither expression allows for arbitrary amounts of delay in the

multipath structure; hence, the corresponding expressions for the power spectrum are

not truly general.



A completely general expression for the power spectrum for any type of multipath

signal can be obtained. Notice of the form that Eqs. 39, 41, 43, and 45 took for the

various values of multipath considered leads to a general expression of the form *

WY(f) = Ws(f) (m + 2 21 mAk cos 27AkfT (50)

allAk 2TkT

where m is the total number of ki terms, i = 0, 1, 2, ..., Im-1 and where ki is some

value of delay such that in the general expression for the multipath signal

m-1

y(t) = .s(t - kiT) (51)

j=0

kiT is the total amount of delay time for a given path and T is some convenient unit of

time (1 minute, 1 second, etc.). Further, we define a parameter Ak = k- kj 1, i j, and

define mAk as the number of times a given value Ak appears.

A simple example will clarify the use of Eq. 50. We shall derive Eq. 41, which is

the power spectrum for the multipath signal in Eq. 40 repeated here:

y(t) = s(t) + s(t - T) + s(t - 3T). (40)

To apply Eq. 50 we see that there are three terms in Eq. 40; so m = 3. We havek i = 0,

1, 3. Our difference terms are Ak = 1, 2, 3 respectively, with mAk = 1 for each Ak.

Inserting the appropriate values in Eq. 50 gives

Wy(f) = Ws(f) (3 + 2 cos 2TrfT + 2 cos 47fT + 2 cos 67fT), (52)

and we see that Eq. 52 is the same result as obtained in Eq. 41.

Correspondingly we can derive the power spectrum for the other cases of multipath

that were considered in this report. We further assert that by application of Eq. 50 we

can derive the power spectrum for any multipath signal, when the amount of delay time is

known. For the cases when the delay paths appear in progressive numerical values

Eq. 49a or 49c can be used as well as Eq. 50, which can always be used. Equation 49a

can be transformed into the form of Eq. 50 by application of trigonometric identities, so

that the sine term in the denominator can be divided out and the final expression trans-

formed to cosine terms to correspond to Eq. 50.

*Equation 50 is a theoretical derivation by the author and coworker D. A. Swick of the Acoustics Division,

Naval Research Laboratory.



Doppler Effect

Our last investigation on power spectrum of PN sequences will deal with the Doppler

effect. The Doppler effect is the change in the apparent time interval between two events

at a source which arises from the change in distance between the source and an observer

together with the finite velocity of transmission of information about the events [18, 19].

The relative motion between a sound source and the observer along the line joining them

causes a change in pitch as heard by the observer. The Doppler effect is not restricted

to sound waves, but can act on any transmitted wave whether it be electromagnetic or

acoustic waves. If there is no relative motion between source and observer, there is no

Doppler effect.

The Doppler effect is one of the more common phenomena associated with sonar sys-

tems. The popular designation for the increase in pitch or frequency due to motion is

called up Doppler; conversely for a decrease in pitch the effect is called down Doppler.

The Doppler effect can also be considered as frequency compression or expansion. We

shall develop the various cases of the Doppler effect and then apply them to some sampled

data for power spectrum estimates.

Source in Motion- Referring to Fig. 22a we can calculate the Doppler effect for the

source in motion toward a fixed observer. Velocities will be assumed constant and radial.

The following notations will be used: c = velocity of sound (ft/sec), v. = velocity of

source (ft/sec), f = frequency of source (Hz), and SO = radial distance sound travels in

1 sec.

When there is no motion of source or receiver the f waves produced by the source S

would travel the distance SO in 1 sec. When the source is moving toward the stationary

observer 0 with velocity vs, the f waves are now crowded into the space S'O in 1 sec,

where S'O = c - vs. The wavelength of the sound will he shortened from X\ = c/f to

A' = (c - vs)/f and the pitch f' = c/,\' of the sound heard is

c
f/ = f (53)

c -v s

If the source is receding, the sign of vs is negative, so that the pitch f" of the sound

heard is

c
f" = f (54)c + Ivsl"

Observer in Motion-When the observer is moving with velocity vo toward the

stationary source (Fig. 22b), there is no crowding of waves, but the ear receives each
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second not only the f waves in the interval c but an additional number vo/, in the distance

00' = Vo. Therefore, the increase in frequency heard is f(vo/c), and the pitch f' of the

sound heard is

( c

If the observer is moving with velocity vo away from a stationary source, the sign of vo is

negative, so that

f=(.V0) (56)

In the two cases thus far considered, there is a definite physical difference between

source or observation in motion. When the source is in motion the character of the waves

is altered by a real change of wavelength. When the observer is in motion the wavelength

is unchanged, but there is an apparent change of frequency due to his motion.

Source and Observer in Motion-By substitution of the results obtained in the pre-

ceding cases, one can obtain the Doppler effect for any combination of source and

a 4N 4N aV V V

/' r\J V

(55)



observer in motion either toward or away or some combination thereof. For the case when

source and observer approach each other, we get by substituting f' of Eq. 52 for f in

Eq. 55 a new f' with the relationship

f/ = f (,+2)O (57)
(C - v S

and for the case when source and observer recede from each other

fil = f(c VO (58)

Equations 53 and 55 are the basic equations for the Doppler effect when either source

or receiver respectively are in motion. Equation 57 is the basic equation for both source

and receiver in motion. All three equations are applicable for any radial direction of

velocity, and care must be exercised for the proper notation of sign (plus or minus) to be

applied to the velocity terms in a given equation.

The terms in parenthesis in Eqs. 53 through 58 are sometimes referred to as the

Doppler stretch factor, and implicit in this term stretch can be an increase or decrease

in frequency depending on the direction (sign) of velocity. For a single frequency the

Doppler effect can be considered as a frequency shift, causing either an increase or

decrease in the frequency. However, in the case of a band of frequencies this frequency

shift is different for each individual frequency component. The Doppler stretch factor is

a constant for a given velocity of either source or observer, but when this constant value

multiplies each frequency component in a band, the frequency shift will be proportional to

the un-Dopplered value. For a given Doppler stretch factor, designated k the Dopplered

bandwidth is given by

f - fq = k(f2 - fl), (59)

where fl and f2 are the upper and lower frequencies in the band and k is determined by

the appropriate terms in parenthesis in Eqs. 53 through 58.

We shall consider a method of introducing the Doppler effect in sampled data for the

case where the observer is fixed and the source is in motion. Rather than assume some

velocity of the source and from that calculate the Doppler component, we shall instead

assume various values for the Doppler component and calculate the sampling rate needed

to introduce this frequency change in an un-Dopplered signal. Since we are interested

only in the Doppler effects on sampled PN sequences, we will not be concerned with the

source velocities which would introduce these various Doppler values.



The test shall involve introducing a Doppler component in increments of 0.4 Hz until

a maximum of ±3 Hz has been achieved. This will allow an analysis for both up and

down Doppler or frequency expansion and compression for a bandwidth of 150 to 250 Hz.

Let the un-Dopplered signal have a sampling rate SR = 2000 samples per second, and

let fi be any frequency component in the band. The Doppler shift for any component fre-

quency is then fl - fi = AFand is either positive or negative depending on whether the

Doppler shift is up or down.

We further notice that for an un-Dopplered signal and a given sampling rate there

would be SR/fi samples per cycle. If we consider the case of up Doppler, a given fre-

quency component fi would be shifted to a new value fV and

SR SR- > --- 12 ... IM .
fi f

The Doppler effect can be simulated by changing our sampling rate to SR' such that

SR'/fi = SR/f . Substituting f = kfi we get

SR' = SR/k. (60)

Since k is a constant, our new sampling rate SR' given by Eq. 60 is valid for any fre-

quency fi within the band.

Since the center frequency of our band is 200 Hz, we shall designate fi equal to 200

Hz, and our AF will be associated with the Doppler shift for this frequency only. How-

ever, the ratio AF/fi = k-1 is a constant for all frequency components within the band-

width; therefore no additional errors are introduced by performing our calculations on the

center frequency. Table 4 shows the tabulation for each assumed value of AF and the

associated sampling rates calculated by Eq. 60 to give our simulated Doppler, where SR

remained fixed and equal to 2000 Hz.

There were 19 recordings made on Dopplered PN sequences that had been filtered

through a 150 to 250 Hz bandpass filter. The sequence length of the PN was 1023 bits

and the shift rate was constant for the 19 cases at 8184 Hz. The recordings are tabulated

in Table 4 and consist of one reference PN un-Dopplered, nine cases of up Doppler and

nine cases of down Doppler, where the Doppler effect was changed by increments of

AF = 0.4 Hz.

Before viewing the results of the power spectrum estimates, some additional infor-

mation would be instructive. Recall that Eq. 23 for power spectrum estimates was used

to compute the power spectrum for all the PN studies thus far considered. It was also

mentioned at that point, but not stressed, that Eq. 23 generated the raw estimates of

spectral power that are computed for harmonics ofAf (program frequency resolution).



Table 4

Cases Recorded of the Effects of Doppler on PN Sequences
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This calculation of the raw estimates is considered as being unsmoothed. The usual

procedure is to calculate the smooth estimate of the power spectral density. The smooth-

ing is a method of averaging over frequency to get truer estimates of power in the neigh-

borhood of the frequencies being analyzed [1, 6, 10]. The technique of frequency smooth-

ing is generally the Hanning method [1, p. 14].

The procedure for smoothing requires that we calculate an S (f) from the ST(f)

where the prime indicates smoothing and no prime indicates the raw estimates. For

T= 0, 1, 2,... m, we obtain



S(f) = 0.5 So(f) + 0.5 S1 (f)

S-f = 0.25 S7__ lM + 0.5 5 7(f) + 0.25 ST+ l(f), T 1, 2, ... , m -; (61)

Sm(f) = 0.5 S ± (f) + 0.5 Sm(f).

Smoothing is necessary since the periodogram (raw estimate) given by Eq. 23 is con-

sidered an inefficient estimate of the true spectral density. The variability of these esti-

mates does not decrease with increased record length or sample size. This leads to the

requirement of smoothing the periodogram or, equivalently, weighing the correlation func-

tion nonuniformly. The rationale for weighing the correlation function stems from the fact

it too is an estimate, and certain instabilities can occur that are reflected in the power

spectrum; hence the need for smoothing.

The obvious question at this point would be, why the concern for smoothing now

when in all our previous cases of analysis it was not used? The answer is that smooth-

ing will always help the power spectrum estimates and will make the spectrum conform

to some reasonable bounds. Our estimates prior to this Dopplered data did not appear to

have any unusual appearances from what was anticipated. A few records were compared

with their smoothed values and the change was not significant enough to incorporate

smoothing throughout.

The power spectrum estimates of the Dopplered PN has dramatized the effects of

smoothing; hence this technique was now introduced. Since PN has a power spectrum

composed of discrete line frequencies, the Doppler effect would only serve to shift these

frequency components by some amount AF, with the value of AF different for each indi-

vidual frequency. The tabulated values of Af (computer program resolution) are given in

Table 4 for all the cases of the Doppler effect considered; they tend to indicate that the

frequency shift would be too small to reflect any changes in the plots of the power

spectrum.

Intuitively, one could assume that because all frequency components within a given

band are shifted in proportion to the Doppler stretch factor, the net result of plotting all

the various cases of Doppler considered in this report :should have displayed essentially

the same pattern of power spectrum. An examination of various cases of Doppler effect

will reveal essentially the same power spectrum when smoothing was applied but a

dramatic change on the plots of the unsmoothed spectrum.

Referring to Table 4, since Case 1 was the un-Dopplered data, it had the same

spectrum as shown in Fig. 10a and is therefore not repeated in this presentation. Figure

23 is the spectrum for a frequency shift of 0.4 Hz associated with the center frequency

and represents Case 2. Figure 23a is the -smoothed spectrum and has a higher density of



spectral lines due to the smoothing routine. The appearance of the power spectrum con-

forms reasonably well with the frequency response of the bandpass filter. Figure 23b has

the basic shape and density of the un-Dopplered PN, with the addition of small values of

power components associated with frequencies within the band and extending well outside

the bandpass region. The plots of the autocorrelation and crosscorrelation (Figs. 23c

and 23d) show no significant changes for the amount of Doppler effect thus far considered.

Figure 24 represents the spectral plot for Case 6 in Table 4. The Doppler shift was

AF = 1.8 Hz, and the spectrum in the case of smoothing (Fig. 24a) remains essentially

the same as Fig. 23a. The unsmoothed spectral power (Fig. 24b) reveals some unusual

anomalies which at first glance appear to be caused by aliasing (frequency folding). The

use of a bandpass filter and sampling at greater than twice the upper frequency of the

band should have eliminated the problem of aliasing. The spectrum has such significant

power components extending far outside the passband that one is lead to believe that this

phenomenon must be due to the Doppler effect.

The object lesson here is that one must be careful in his selection of analysis so as

to avoid biasing the data. The method used heretofore was raw spectral estimates; this

resulted in a complete breakdown in the power spectrum analysis. The more effective

method of analysis on Dopplered signals would be autocorrelation on smoothed estimates

of power spectra. The crosscorrelation deteriorates rapidly with Doppler effects and

hence has very little value (Fig. 24d).

There is no need to dwell at length on the remaining cases, since the same reasoning

for the two cases just considered can be applied. It will suffice to say that the smoothed

estimates of power spectrum remain relatively unchanged for all the cases of Doppler

considered here, and it dramatizes the usefulness of smoothing. The crosscorrelation

appears to be very sensitive to Doppler, and a shift of 0.8 Hz has a very damaging effect.

Had the signal contained any significant additive noise, the crosscorrelation would have

been all but useless for any Doppler shifts of more than 0.8 Hz. The Doppler effect is

essentially symmetrical for corresponding values of up or down Doppler.

We can translate our Doppler shifts given in Table 4 to velocity terms by application

of either Eq. 52 or 56. Equation 52 is for a fixed receiver and moving target, and if we

assume the values c - 5000 ft/sec (velocity of sound in water), f = 200 Hz, and fV= 200.4

Hz, then AF = 0.4 Hz. The velocity of the source or target for a Doppler shift of 0.4 Hz

corresponds to 6.8 mi/hr or 5.9 knots. Since all Doppler shifts were based on increments

of 0.4 Hz, we can get the corresponding velocity for any of the cases given in Table 4.
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Equation 56 corresponds to a moving receiver and moving 'source. If we assume the

receiver and source have equal velocities, the resulting velocity for a Doppler shift of

0.4 Hz is 3.4 mi/hr or 2.96 knots. Similarly, as in the previous case, all velocity terms

could be found, since all Doppler 'shifts were multiples of 0.4 Hz. The case of moving

receiver and source with equal velocities corresponds to two-way propagation with a

fixed receiver.
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6 of Table 4:



CONCLUSIONS

Power spectrum estimates of sampled pseudo-random sequences have been presented.

The pseudo-random sequences were generated by a linear shift register of length n bits,

employing modulo-2 feedback. Only bandlimited maximal length sequences were con-

sidered in this analysis. PN sequences were chosen for this study because of their

deterministic properties and their desirable autocorrelation functions that are approxi-

mately zero outside a narrow peak at zero tau. Both the autocorrelation and crosscorre-

lation were carried along with the power spectrum analysis for comparison.

The preliminary check of the output power in decibels versus shift rate on maximal

length sequences revealed that tne output was essentially constant for all maximal

sequence lengths. There are a number of points to be noted about the power spectrum

of the PN signal. First, it is a line spectrum with frequencies at multiples of the funda-

mental frequency (shift rate per bit). Second, since the binary waveform is a constant-

amplitude square wave and hence has constant power, there is a scale factor inversely

proportional to the period of the sequence. This means that if the period of the sequence

is doubled, the spectral lines become twice as dense and the power of each line is re-

duced by a factor of two. Third, there is an envelope of the spectrum that is determined

by the digit period of the waveform. This means that the bandwidth is independent of the

length of the waveform but is determined solely by the digit period, i.e., how often the

waveform switches.

We have studied the power spectrum by limiting the sample size and the period of the

PN to the constraints imposed by the computer facilities. Our estimates of spectra were

computed on single time functions, although spectral analysis need not be so restricted.

We could have calculated cross-spectra from two or more concurrent time functions. Some-

times there is some difficulty in justifying why one prefers the power spectrum over the

autocorrelation. Since they are Fourier transforms of each other, it would appear to be

purely a matter of convenience as to which one is used in any particular situation. Our

studies of power spectrum with the effects of additive noise, multipath, and Doppler tend

to favor power spectrum over correlation, particularly in the case of Doppler effects. In

the design of optimum filter characteristics for protection of signals against noise in

communication systems, the filter designer invariably turns to the power spectrum as the

final criterion of adequate design and performance.

Some authors [20] contend that the practice of spectrum analysis is entering either

its third or fourth era. Their conclusions are based on the slow computational speed of

earlier methods such as the periodogram or mean lagged products for obtaining power

spectra. They feel that the approach for computational purposes should be via the fast

Fourier transform, and this should greatly reduce computation effort.



Another procedure recommended in spectral analysis techniques that may be useful

in special applications is prewhitening and recoloring. Prewhitening requires advanced

knowledge of the spectrum and involves applying a special filter (analog or digital) to

the data which will result in the filtered data having a white (flat) spectrum. The filter

must have a frequency response that has valleys where the spectrum of the data has

peaks and vice versa. A flat spectrum is desired for the filtered data since this assump-

tion is made in the derivation of the uncertainty formulas. A recoloring operation has to

take place at the finish of the computations in order to obtain the original spectrum.

This involves the application of a filter which is the reverse of the prewhitening filter.

REFERENCES

1. Blackman, R. B., and Tukey, J. W., "The Measurement of Power Spectra," Dover,

1958

2. 'Golomb, S. W., "Digital Communications with Space Applications," Prentice-Hall,

1964

3. Birdsall, T. G., and Ristenbatt, M. P., "Introduction to Linear Shift-Register

Generated Sequences,* Technical Report 90, University of Michigan Research

Institute, Oct. 1958

4. Gold, R., "Optimal Binary Sequences for Spread Spectrum Multiplexing," Magnavox

Research Laboratories, Torrance, California

5. Allen, W. B., and Westerfield, E. C., "Digital Compressed Time Correlators and

Matched Filters for Active Sonar,' J. Acoust. Soc. Amer 36:121 (Jan. 1964)

6. Bendat, J. S., and Piersol, A. G., "Measurement and Analysis of Random Data,"

Wiley, 1966

7. Shannon, C. E., "Communication in the Presence of Noise," Proc. I.R.E. 37:10

(J an. 1949)



8. Winder, A. A., and Loda, C. J., "Introduction to Acoustical Space-Time Information

Processing," ONR Report ACR-63, Jan. 1963

9. McCoy, C., Jr., and Peterson, H. L., "A Magnetic Digital Recording System for

Field Use," NRL Report 6016, 1963

10. Ralston, A., and Wilf, H. S., "Mathematical Methods for Digital Computer," Wiley,

1962

11. Wainstein, L. A., and Zubakov, V. D., "Extraction of Signals from Noise," Prentice-

Hall, 1962

12. Rowe, H. E., "Signals and Noise in Communication Systems," Van Nostrand, 1965

13. Davenport, W. B., and Root, W. L., "An Introduction to the Theory of Random Signals

and Noise," McGraw-Hill, 1958

14. Bennett, W. R., and Davey, J. R., "Data Transmission," Wiley, 1960

15. Young, T. Y., "Representation and Analysis of Signals, Part XVI - Representation

and Detection of Multiple-Epoch Signals," Carlyle Barton Laboratory, The Johns

Hopkins University, May 1963

16. Horton, J. W., "Fundamentals of Sonar," United States Naval Institute, Annapolis,

NavShips 92719, 1957

17. Woodward, P. M., "Probability and Information Theory, with Applications to Radar,"

Pergamon Press, 1964

18. Gill, T. P., "The Doppler Effect," Logos Press and Academic Press, 1965

19. Jenkins, F. A., and White, H. E., "Fundamentals of Optics," McGraw-Hill, 1950

20. Godfrey, M. D., and Tukey, J. W., "Modern Techniques of Power Spectrum Estima-

tion," Princeton University, Institute for Advanced Studies (Vienna) and Bell

Telephone Laboratories, 1965



APPENDIX A

PROPERTIES OF PSEUDO-RANDOM SEQUENCES

SHIFT AND ADD PROPERTY

Let the ith digit of a maximum length sequence be designated by xi; then by the re-

currence relationship* we have

xi = Xi-a 0 Xi-b (Ala)

and

Xi+T = Xi-a+T E) Xi-b+T, (Alb)

where - is some integral multiple of clock periods.

Adding these equations (module 2), we get

xi (D) xi+--= Xi-a G xi-.b 0 Xi-a+,- 6 Xi-b+-" (A2)

Let yi = xi () Xi+T. Then

Yi-a-=xi-a () xi+r--a (A3a)

and

Yi-b-- xi-b D xi+7--b (A3b)

Similar to Eq. Ala we have

Yi =Yi-a G Yi-b. (A4)

Thus yi satisfies the same recurrence ielauuship as xi.

The subscripts a and b refer to the shift register stages employed in the mod-2 ad-

dition. Since both sequences are maximal length, each will contain all possible n-tuples.

Hence the two sequences will contain the same n-tuple binary bits. Therefore the se-

quence generated by the yi's will be the same as that generated by the xi's but shifted

in time.

*S. W. Golomb, "Digital Communications with Space Applications," Prentice-Hall, 1964; T. G. Birdsall and

M. P. Ristenbatt, "Introduction to Linear Shift-Register Generated Sequencies," Technical Report 90,
University of Michigan Research Institute, Oct. 1958.



DERIVATION OF THE AUTOCORRELATION FUNCTION

The output sequence associated with the PN generator is a series of l's and O's

representing the two states of the flip-flops. We would like to make a transition from

the shift and add property to a shift and multiply property. This later property will

enable us to solve the integral for the autocorrelation function given by Eq. 4. The

property of isomorphic groups given in Table Al, where "1" corresponds to "-1" and

"0")) to "1," we have the modulo-2 addition with "0" and "1" corresponding to the multi-

plication of "1" and "-1"

Truth Table
Table Al.

for the Isomorphic Groups {1,0;+I and 1-1,; .

A B AEB A B AB

1 0 1 -i 1 -I
0 1 1 1 - -I

0 0 0 1 1 1
1 1 0 -I -i 1

Corresponding to Eq. 3, we have the shift and multiply property, namely,

x(t) x(t +T 1)= x(t + T2), (A5)

where -r1 and -2 are some integral number of clock periods.

will allow a solution to the correlation integral as follows:

This shift and multiply

x(t) x(t + - 1 ) dt, for -- 0,

=- f x(t + T2 ) dt,
T

where

2n - 1
T =(2 n - 1) At =-

fs

On each subinterval of length At, x(t + T2 ) is either plus or minus one. Letting

ai = +1 and rewriting our equation in the form

(A6)



iAt ai dt = 2-1 _ I ai iAtT i-1 )At

ai [ti A t  1 2 -10- O aiT

and substituting

T = (2n - 1) At,

we get

1 2 n - I
Rx(-I) = n  ai.

i=l

Postulate A (balance), written in terms of the "-1" and "1" representation of the

group, states that in each period of the sequence the number of minus ones will be

exactly one more than the number of plus ones. Hence

2n-1

ai = -1.

Therefore for - ;; 0

1Rx( rl) 2n2n-1

and for r = 0

Rx(0) = 2 (t) dt,

and since x2 (t) will always equal +1,

Rx(0) = dt = 1.

0

1R x(-I)
T

2

1=1

S2n -I

T
(A7)

(A8)

(A9)
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Since the autocorrelation function of a random binary sequence is linear, we can write

the correlation function as

for I- 1bit

(A10)

for -I > 1 bit

2n

Rx(T) =

2 n -1'



APPENDIX B

MATHEMATICAL CONCEPTS

IMPULSE FUNCTION

The Dirac delta function, sometimes called the impulse function or unit area func-

tion, is defined by

and

8(t) =0,

fi

for t # 0,

8(t) dt = 1.

(B 1 a)

(Bib)

Due to the singular character of the delta function, it has meaning only so long as a

subsequent integration over its argument is carried out. Keeping this in mind we can

write some basic properties of the delta function:*

8(x)
8' (x)

x (x)

x '(x)

8(ax)

f(x) 8 (x-a)

(-x);
8 '(.-x);

0;
-8 (x);
a-3(x), for a > 0;

f(a) 8(x - a).

(132)

One of the more useful properties of a delta function is its so called sifting

property, or equivalently, how the delta function acts as an operator on a continuous

function. If x(t) is continuous at t = 0, then as a consequence of Eqs. B1

S-008(t) x(t) dt = x(0) (133 a)

and

*L. I. Schiff, "Quantum Mechanics,* McGraw-Hill, Chapter 2, 1949.
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f 8(t-a) x(t) dt = x(a). (B3b)

This useful property of the delta function will be used in the section Power Spectrum.

FOURIER TRANSFORMS

Given f(t) as a complex valued function of a real variable t defined on -- 0 < t <

we form the integral

F(F) f f(t) e- O t dt. (134)
oo

If this integral exists for every real value of the parameter o, it defines a function F (j)

known as the Fourier transform of f(t). A sufficient condition for this integral to exist

is for f(t) to be absolutely integrable in the sense

$ f(t) Idt< . (135)

The function F(0o) is in general complex and can be represented as

F(co) = R(w) + j X(o) = A(ow) ej 0(W), (136)

where A(o)) is the magnitude of the Fourier spectrum, A2((j) is the energy spectrum, and

k(ow) is the phase of F(a)).

The inversion formula, permitting the representation of f(t) in terms of its Fourier

transform F(co) is given by

f(t) F 1c$ ) F(o)e t d(o. (137)

27 -0.0

Equations B4 and B7 are called Fourier transform pairs.

A useful identity in frequency analysis is the Parseval relation. For two real-

valued functions f(t) and g(t) there exists a time and frequency domain relationship

such that

f(t) g(t) dt - j F(-o) G2(j) d = 1 F(w) G(-w) doi,

(138)



and, for complex functions,

f (t) g*(t) dt = JF) G*(()do, (39)

where G*(ao) is the complex conjugate of G(wo). Notice that if g(t) is real valued, then

its transform G(w) must satisfy

G(o) =G* (-o) (B10a)

or

G*(o) G (- . (B10 b)

CONVOLUTION

In signal analysis the convolution theorem is a powerful tool. Given two functions

fl(x) and f2 (x) we form the integral

ff(x) f 1 (X) f2 (x - X) dX. (B11)

This integral defines a function f(x) known as the convolution of f1 (x) and f2 (x), often

written as

f(x) = fl(x)* f2 (x). (B12)

The convolution theorem states that the Fourier transform of the convolution of two

functions is the product of their individual transforms (e.g., the product of two functions

in the frequency domain is the convolution of these two functions in the time domain

and vice versa).

POWER SPECTRUM

If ft watts represent the amount of power dissipated in a 1-ohm resistance and if the

portion of ft arising from the components having frequencies between f and f + df is de-

noted by W(f) df, then

,.= W(f) df = <x 2 (t) >, (B13)



where W(f) is called the power spectrum or power spectral density of x(t) and has the

dimensions of energy. The quantity expressed by Eq. B13 is called average power, or

mean-square voltage.

If x(t) is a periodic time function with period T and has a Fourier series represen-

tation of

I o ,jna"t'"x(t) =- CnC 0 , c0 =-7

n=-_0

(B14)

where

Cn = x(t) e - jn o)Ot dt,

the power spectrum of x(t) becomes

Cn2T 8(f - nf).

The total mean-square value of x(t) is given by

W (f) df =
Cn 2

T - '

and by P arsenal's theorem

Cn[ 1
T- = _TJO x(t)] 2 dt.

We see from Eq. B15a that the power spectrum consists of a series of impulses at

the component frequencies of x(t), where the area of each impulse is the strength of

power in the frequency component. Thus, for a periodic function the power spectrum is

discrete. It is also apparent from Eq. B15a that W(f) is never complex and, therefore,

does not contain phase information. This implies that the spectral density is not a

unique function of x(t).

00

W (f) I ,

n=_oc

(B15 a)

(B15 b)

T f) df=

-00

(B15 c)



Since x(t) as defined by Eq. 1314 is periodic, and complex, its autocorrelation

function is given by

1 T/2R(T) =- T/ x(t) x*(t + T) dt,

and by substitution of x(t) from Eq. B14

Rx(T) = 21 1 e-jn0 -. (B16)

We would like to investigate the relationship between spectral density and the

autocorrelation function of a periodic time function. Taking the Fourier transform of

Rx(7-) we obtain

Rx(T) e- j ' d= 1e-J(o -n(0o)-r dT. (B17)

n = o

The integral will yield the Dirac delta function; hence

n12f e-J(°-nZ)'rdr= 8 (f - nf 0) = Wx(f). (B18)

n=-0 n=_-00

Thus, for a periodic time function the spectral density and the autocorrelation

function are a Fourier-transform pair. This relationship between the autocorrelation

and spectral density is the Wiener-Khintchine theorem. The theorem states in part

that if an arbitrary function is amenable to Fourier analysis, then its autocorrelation

function and power spectrum are Fourier transforms of each other. The relationship

can be written as

Rx(T) = J_ Wx(f) e j 2 7fT- df (B19 a)

and

Wx(f) =f Rx(,T) e- j2-ufr dr. (B19 b)
00



Notice that

Rx(0) --- Wx(f) df 2 c 2

n=-0

in full agreement with our previous definitions of spectral density and mean-square value.

DERIVATION OF POWER SPECTRUM FOR MAXIMAL LENGTH SEQUENCES

By application of Eqs. B19 the power spectrum can be computed for our maximal

length sequences, and using a procedure similar to Hampton* we get

W x(f) = f ,00R,(T) e - j 2 TfT dr.

We use the Fourier series representation for R,,(T) as defined by Eq. B14,

1
Rx(T)

O

rn ej 2 7Tnf0

n=-00

where 277f0 = oO, and we obtain

W x(f) $ T- -

n =-oo

rn eJ 27nfo -e-J 27f -dr.

Changing the order of integration and summation we get

Wx(f) = T rn

n=-om

e 2 a(f-nfo)-

f 0,

d= 7 rn8(f-nfo).

n=-m

Substituting for rn we get

Wx(f) =T
n=--o

F-T/2
fT2Rx(T) -j

2 7TnfoT dT

Due to the sifting property of the delta function the integral will have values only for

f = nf 0 ; therefore our expression becomes

*R. L. T. Hampton, "A Hybrid Analog-Digital Pseudo-Random Noise Generator," Spring Joint Computer Con-

ference, pp. 287-301, 1964.

(B20)

(B21)

8 (f - nf 0 ).



Rx(-) e - j2 77f r d- 5 (f - nf 0 ).

n=-00

The integral in Eq. B22 can be evaluated by application of the relationship given

in Eq. A1O for the autocorrelation function. The solution becomes

T/2

Rx(-) e
- j 2 77fT -T/z 1e27f . d- 0dTr= [ I ej27T fTr dT F

f-T/2 z -T/z

+ {T/2 [ T 2]e-2uf-r d

f0

+ (z +1) J277 fT d-
TI

T/2

JT/ z

1---e-2 r fT dT-.

Our four integrals can be further reduced to three, giving

cos 2r7f- d- +
z 2 fT/z

JT/z e j2 fTdT-2 ( Tj) 0
- cos 277f-dT

and giving finally that

Rx(r) e-j 2 r7f -dT= 
_ T I sin [2-af(T/2)]
z 2-af (T/2) J

r- sin 2.nf(T/9) z 12
[ 2rfT/2z JT

+' z ( + 1)

where T = z/fs = 1/f 0 . Substituting in Eq. B22 we get

Wx{ T(z + 1) [sin 27nf0(T/2) z 2

n=-0

sin n(77/z)] 2

n (7/z) I

T

z sin 27nfo(T/2)27Tnfo (T/2) IJI

(Sin )77) 15(f
DO 

{( 

)

nI =o2

(continued)

2 T/2

Z JT/z

T/2

(B23)

8(f - nfo)

1 jT/2Wx(f) = - T/
(B22)



12 21 z2

n=-0
nA 0

sin n(7/z) 2 f _ nf'n(77 z)JI kz)

where fs = shift rate = zf O.

(B24)



APPENDIX C

DEFINITIONS OF STATISTICAL TERMS

There are a few terms associated with the statistical theory of communication that

have become an integral part of communication theory. Some of these terms have been

tacitly used in the text of this report and deserve further comment. There will be no

attempt to prove or develop these terms, since they are given rather comprehensive

treatment in present-day literature* The definitions given here are predicated on an

understanding of probability theory, and only a few basic terms associated with prob-

ability are included here.

PROBABILITY

If S (for sample space) defines the totality of outcomes in an experiment and A

defines the event of interest, then there are three basic definitions associated with

probability: relative frequency, the classical definition of probability, and the axio-

matic definition of probability.

Relative Frequency

If n(A) = total number of times A has occurred in N trials, then relative frequency

of

A _n(A)A- N -FN (A)" (Cel)

The probability of A can be defined as

P(A) = lima 1 (Al) lim F
N* 0NN -* FoN(A).N, N N_-, 0

Classical Definition of Probability

Let N =' total number of alternatives and N (A) =' total number of alternatives fa-

vorable to A; then the classical definition of probability results:

*L. A. Wainstein and V. D. Zubakov, "Extraction of Signals from Noise," Prentice-Hall, 1962; H. E. Rowe,

"Signals and Noise in Communication Systems,* Van Nostrand, 1965; W. B. Davenport and W. L. Root,
"An Introduction to the Theory of Random Signals and Noise," McGraw-Hill, 1958; W. R. Bennett and

J. R. Davey, "Data Transmission," Wiley, 1960; Y. W. Lee, "Statistical Theory of Communication,"
Wiley, 1960; J. M. Wozencroft and I. M. Jacobs, "Principles of Communication Engineering," Wiley, 1965;
A. Papoulis, "Probability, Random Variables, and Stochastic Processes," McGraw-Hill, 1965.

79



P(A) = N (A) C

Axiomatic Definition of Probability

The probability of an event A is a number P(A) assigned to this event such that

P(A) > 0 (nonnegative) (C3 a)

P(S) = 1 (certain event). (C3b)

If A and B are mutually exclusive (disjoint), then

P(A+B) = P(A) + P(B). (C3c)

CONDITIONAL PROBABILITY

Given two events A and B, the conditional

that A has occurred, is given by

P (B/A) A P(A, B)
P(A)

probability of B, subject to the condition

P(A) ; 0. (C4a)

Also

P(A/B) A P(A, B)

P(B)
P(B) ; 0. (C4b)

Note that

P(A,B) = P(B/A) P(A) = P(A/B) P(B).

RANDOM VARIABLES

A random variable is a real-valued function defined over the sample space S of a

random experiment. The word random stresses the fundamental fact that we are

dealing with experiments governed by laws of chance rather than any deterministic law.

A random variable (r.v.) may be either discrete or continuous.

ENSEMBLE

In a communication system we are not concerned with just a single random time

function, but an aggregate of random functions. The infinite aggregate of messages

or noise, or of their combination, is called the ensemble. When only one function in

the ensemble is meant, the function is called a member function of the ensemble.

and

(c2)



RANDOM PROCESS

A single time history representing a random phenomenon is called a sample func-

tion. The collection of all possible sample functions which the random phenomenon

might have produced is called a random process.

PROBABILITY DENSITY FUNCTION

Any function can be a probability density function [denoted p(x)] if it satisfies

p(x) > 0 and

p (x) dx = 1.

ENSEMBLE AVERAGE

Ensemble average is the limit of the arithmetic average or in a communication

system it is the limit of a time average. If x is a discrete r.v.,

n

EXI=X=2I xi p(xi), (C5)

i=1

and if X is a continuous r.v.

E IX=X= f xp(x) dx, (C6)

where p(x) is the density function.

The ensemble average, statistical average, expected value, and mathematical av-

erage are all the same.

MOMENTS

The nth moment for a discrete r.v. X is

E Xn = Xn = I Xi p(Xi) (C7)

and the nth moment for a continuous r.v. X is

E {Xn =X- = $ Xn p(x) dx. (C8)



STATIONARITY

A random process is said to be wide-sense stationary (weakly stationary) when

E JX(t) I = const.

E {X(ti)X(ti + I)= (DFyy (T) = function of T only, for all i.

(C9a)

(C9b)

STATISTICAL INDEPENDENCE

If the joint probability of event A and B is such that

P(A, B) =P(A) P(B)

P(A/B) = P(A)

(C 10 a)

(C10b)

or if the joint probability density function of A and B is such that

p(A, B) = p(A) p(B), (Cll)

then A and B are said to be statistically independent.

ERGODICITY

For a process to be ergodic, these requirements must be met

for every i (C 12)

where < > represents a time average and

<X> = lim -
T--, 2 I X(t) dt

OT T

and <X> is a r.v. indicative of the average value of all occurring r.v.'s in the ensemble.

Equation C12 defines first-order ergodicity; similarly the ergodicity of the second

order implies

E IX(ti) X(ti + T)I = <X(t) X(t + -)>, for all i. (C 14)

We can further state that ergodicity guarantees stationarity, but the converse is

not true.

or if

(C 13)

E {Xti) I = <X >
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