
NRL Report 6696

Circular Array for
Scanning

B. SHELEG

Electronics Division

Microwave Antennas and Components Branch
Electronics Division

April 2, 1968

NAVAL RESEARCH LABORATORY
Washington, D.C.

This document has been approved for public release and sale; its distribution is unlimited.

A Matrix-Fed
Continuous



CONTENTS

Abstract ii
Problem Status ii
Authorization i

INTRODUCTION 1

THEORY OF OPERATION I

PATTERN CALCULATION 6

SYNTHESIS OF APERTURE DISTRIBUTIONS 15

EXPERIMENTAL PROGRAM 19

CONCLUSIONS 26

ACKNOWLEDGMENTS 27

REFERENCES 27



ABSTRACT

If the radiators of a circular array are connected to the outputs of a
Butler matrix, a focused radiation pattern can be formed by establishing the
proper current distribution on the inputs of the Butler matrix. Further, if
the amplitudes of the input currents are held fixed, the pattern can be scanned
through 360 degrees in azimuth by the operation of phase shifters alone, just
as the pattern of a linear array is scanned by varying the phases of the ele-
ment currents. One explanation of this is based on the assumption that the
pattern can be written as the sum of a finite number of uniform pattern
modes and that the relative phases and amplitudes of these modes can be
adjusted to form a narrow beam. Then the beam is scanned by adjusting the
currents feeding the Butler matrix. This is only qualitatively correct; the
patterns calculated from the actual current distribution established on the
array by the matrix differ from the patterns formed from the ideal modes.
There is reasonable agreement between the calculated patterns and those
obtained experimentally with a 32-element array of dipoles used to demon-
strate how a beam could be formed and then scanned. The inputs to the
Butler matrix required to achieve a prescribed cophasal sector distribution
on the array are determined from the synthesis procedure of Davies with the
corresponding changes in the current distribution on the array for other
beam positions.

PROBLEM STATUS

This is an interim report; work continues on other phases of the problem.
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NRL Problem R08-38
Project A36533818/6521/FO01-02-02

Manuscript submitted January 18, 1968.



A MATRIX-FED CIRCULAR ARRAY FOR CONTINUOUS SCANNING

INTRODUCTION

Antennas consisting of radiating elements arrayed on a circle have been studied and
have been used for many years, but recent developments in switching and phase shifting
have led to a renewed interest in them. The appeal of the circular array is that, be-
cause of its symmetry, it can be used to scan a beam in discrete steps through a full
360 degrees without the variations in gain and pattern shape that occur when four linear
arrays are used, each scanning through a single quadrant. The purpose of this study was
to determine some of the possibilities and also the limitations of scanning with circular
arrays and, in particular, to demonstrate the use of the Butler matrix in feeding the ele-
ments of the array. The idea of using a Butler matrix for this purpose is due to Shel-
ton (1) who showed that it permitted the formation of a narrow radiated beam which could
then be scanned essentially as is the beam from a linear array - by the operation of phase
shifters alone.

The operation of a Butler-matrix-fed circular array ("multimode array") is first
described as the summation of the various far-field "modes" that are generated by the
excitation of individual inputs to the matrix. This explanation, used by Shelton, assumes
a continuous current distribution on the circle, although the antenna is actually an array;
however approximate, it gives a good insight into the operation of a multimode array. A
more satisfying analysis uses the distribution of currents impressed on the elements by
the Butler matrix. In addition, calculations were made to show how the radiation pattern
of the multimode array varies as it is scanned continuously, rather than in discrete steps,

The experimental portion of this program was performed at L-band with circular ar-
rays of 16 and 32 elements, using dipoles around a conducting cylinder for radiators. All
the arrays were fed from Butler matrices, and scanning was accomplished by mechanical
line- stretchers. Several different corporate structures, providing various amplitude
tapers over the illuminated sector of the array, were used to show that the sidelobe level
could be controlled. There was reasonable agreement between the measured and the cal-
culated patterns.

THEORY OF OPERATION

The principles involved in scanning a multimode array are most easily seen by con-
sidering not an array, but a continuous distribution of current. When this distribution is
expressed as a Fourier series, in general infinite, each term represents a current modE
uniform in amplitude but having a phase varying linearly with angle. The radiation pat-
tern of each mode has the same form as the current mode itself, and these pattern mode
are the Fourier components of the radiation pattern of the original distribution. The ex-
pression of the radiation pattern as the sum of modes of this form is then seen to be anz
ogous to the summation of the contributions made to the pattern of a linear array by its
elements, so the operation of a multimode array can be explained by referring to an
equivalent linear array.

Consider, as in Fig. 1, a continuous cylindrical sheet of vertical currents of infini-
tesimal height, and leti (a), where a is the angular variable, be the complex current
distribution around the circle. The far-field pattern E( 0, ¢5) is given by
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Fig. 1 - Coordinates for a continuous
cylindrical sheet of vertical current
elements

2 T

E(0, k) - KSI (a) sin 0 exp L -- sin 0 cos (b-a) da, (1)
0

where K is a constant, sin 0 is the element factor, and the exponential represents the
relative space phase of the current elements. If I (a) is expressed as a complex Fourier
series

1(a) e' (2)

and is substituted into Eq. (1), it is found upon term-by-term integration (2) that

E(2, s)2T7Ksin6 In n n -(277psi n ) ejn
¢
. (3)

n -- -c

If attention is restricted to the plane of the array 0 = '/2 the radiation pattern is

E (¢) = T C. ein, (4)
n%-(co

where the C,, are complex constants given by
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C,= 27TK n InJ, (27,0) (5)

It is seen from Eqs. (2) and (4) that if the current distribution is expressed as the
sum of current modes of the form ejna, the radiation pattern in the plane of the antenna
is the sum of far-field pattern modes of precisely the same form, el ' , there being a
one-to-one correspondence between current modes and pattern modes. Each current
mode (with its corresponding field mode) has uniform amplitude with phase varying
linearly in azimuth. The total excursion around the circle is 27Tn radians. Although
each pattern mode has exactly the same form as the current mode which is its source,
it should be noted that the relative phases of the pattern modes are not necessarily the
same as the relative phases of the current modes, i.e., if two current modes have the
same phase at some angle, say at a = o, the corresponding pattern modes are not, in gen-
eral, in phase at o. In fact, for the ring of vertical current elements, it may be seen
from Eq. (5) that the Nth and the (N+ i)th pattern modes differ in phase by 77/ 2 at that
angle for which the corresponding current modes are in phase.

Another property peculiar to this configuration is that certain modes might make no
contribution to the pattern in the plane of the circle. This happens when the circle is of
the proper diameter to cause one of the Bessel functions of Eq. (3) to vanish. For exam-
ple, if the circumference of the ring were 8.65k, J0 would vanish in the plane 0 7/ 2,
and there would be no zero mode in that plane. This creates no problem in computing the
radiation pattern for a given current distribution, but it would severely limit pattern syn-
thesis if this pattern mode were not available.

The possibility that certain pattern modes vanish exists because the vertical current
element is omnidirectional in azimuth; therefore, all elements on the ring make contri-
butions of equal magnitude at each azimuth angle, and, with the proper combination of
diameter and phase progression, the elevation pattern will have a null in the plane 0 = 7/2.
If the radiating elements are directive in the azimuth plane, as is true for most practical
antennas, only certain elements (usually those that are optically visible) are effective at
any particular angle, and it is found that none of the modes of interest vanish in the plane
of the array.

Suppose now that the current distribution I (a) is the sum of just a finite number of
current modes 1. e2 

j with -N _ n : N. The radiation pattern is given by

N
Cn+ 'j (6)

n=-N

and Cn, the relative phase and amplitude of each pattern mode, can be set by adjusting
in , the relative phase and amplitude of the corresponding current mode. This is nearly
identical to the formulation for linear arrays. A linear array of 2N + 1 isotropic elements
with interelement spacing a has a radiation pattern given by

N

E(U) A. en" (7)
n=-N

where U ka sin n, is the angle off broadside, and An is the current on the nth element.
Equations (6) and (7) show the similarity of the patterns of the circular current sheet and
the linear array, with the role of the current mode in the circular array taken by the ele-
ment in the linear array. One difference is that for the circular array the argument is
0, and for the linear array it is ka s in (k. A second difference is that equally excited
elements in a linear array make contributions of equal magnitude to the radiation pattern,
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but equally excited current modes do not contribute equally, because their elevation pat-
terns are not identical. This results in differences in directivity in the plane of the an-
tenna. For example, if in the antenna being considered (Fig. 1) it is desired that the
pattern modes be equal in magnitude and be in phase at ¢0, the excitations of the cur-
rent modes must be (from Eq. (5))

In 1 n (8)
2 7K jn j (2J )

Its radiation pattern is then given by

N

K - (9)
n=-N

which may be summed to give the pattern characteristic of a uniform array

E(.21 k) .(10)E(¢) -

2

The beam can be scanned (in theory) by a linear .ariation of the phases of the mode ex-
citations, just as the beam from a linear array is scanned by a linear variation of the
element phases. If the phase difference between adjacent modes is 40 radians (multiply-
ing /7 of Eq. (8) by eJ'j°), the resultant pattern is expressed as

Sin 2N - p q90
E(2) , (11)

which is the original pattern scanned o radians. Although the foregoing analysis was
based on the particular example of a cylindrical sheet of infinitesimal current elements.
the same reasoning applies to any circular antenna having similar pattern modes. The
only difference in the analysis would be the particular relationship between the phases
and amplitudes of the pattern modes and their respective current modes.

Various antennas have used the multimode principle in their operation. One was [he
multiterminal direction finder developed by the Stanford Research Institute (3) in which
a zero mode (TEM mode with no azimuthal phase variation) and the ±1 modes (TE modes
with ±27 radians variation) were generated in a biconical horn to form a rotatable car-
diod pattern. Another was the concentric loop array (4) of Schell and Bouche in which
circular wire loops of circumference X, 2k,., NX were used for modes ±1, ±2, ... I,
respectively, with a small loop at the center for the zero mode. Both these antennas had
the property that the radiated modes conformed precisely to the desired eJ n ( patterns.
It is, in general, difficult to generate a number of such pure modes, but it was shown that
concentric-ring arrays could be used to obtain good approximations (5). A concentric-
ring antenna, shown in Fig. 2, consists of rings of radiating probes mounted between cir-
cular parallel plates. The center element radiates in the zero mode. Modes +1, +2, and
+3 are established on rings 1, 2, and 3 by feeding each ring from an individual corporate
structure which provides currents of uniform amplitude with phase varying linearly
around the ring. The number of radiators in each ring is enough to make the radiation
pattern conform, within some prescribed tolerance, to the desired e j ¢ pattern. Al-
though the antenna described has only modes with a positive sense of phase variation, the
modes may be combined in a corporate structure to give a directive pattern which may
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- N~ (0

VARIABLE PHASE.
SHIFTERS

Fig. 2 - Concentric ring array

then be scanned by varying the phases of the inputs to the modes. The radiation pattern
when the four modes have equal amplitude is

(12)E( e) e'( 3€/2) sin 2¢
sin ( /2)

If both positive and negative modes are simultaneously established, there would be seven
modes which could be added to give the pattern

si n (7# /2)
sin (4)/2) (13)

almost halving the beamwidth of the four-mode pattern.

As has been mentioned, Shelton noted that the complicated radiating structure of
Fig. 2 was not necessary, but that it was possible on a single ring of N elements to excite
simultaneously and independently all the modes, both positive and negative, from zero to
N/2 by connecting the elements to the outputs of a Butler matrix. That this is true is
evident from the definition of the Butler Matrix (6). This matrix is a lossless, passive
network having N inputs and N outputs, where N usually is some power of 2. The inputs
are isolated from one another, and a signal into any input results in currents of equal
amplitude on all the outputs with phase varying linearly across the elements. Specifi-
cally, if N is even and the Kth input port is energized (K= 0, ±1, ±2, ... , ±(N- 2)/2, N/2),
the difference in phase between adjacent output ports is K ( 277/N), and the total phase vari-
ation around a circular array connected to the Butler matrix would be 277K, which is the
Kth mode. Hence, with the Butler matrix we may establish on the array the N current
modes corresponding to K = 0, ±1, ... , ±(N- 2) /2, N/ 2, and, because the input ports are
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isolated, the modes are independent. It
should be noted here that there are Butler
matrices that do not satisfy the definition
given above and that cannot be used un-
modified in a multimode array - these net-
works establish, across their outputs,

LENGTHS linear phase progressions whose total var-
iations are odd multiples of 7 radians. A
matrix of this type can be changed to one

BUTLER MATRIX having the proper modes by adding fixed
phase shifts to all the output ports; if the

VARIABLE PHASE N outputs are labeled J= 1, 2, . . . , N, the
SHIFTERS phase shift applied to the Jth output is

FIXED PHASE J ( 7 7 /,A01l SHIFTERS"

012-ON A schematic diagram of a scanning
- -N-I multimode array is shown in Fig. 3. The

P W DER corporate structure is used to establish the
POWERDIdesired amplitude distribution over the in-

puts to the Butler matrix. If all the modes
were to be excited, the corporate structure
would have N outputs. There is a variable

Fig. 3 - Schematic diagram of phase shifter, used in scanning the beam,
a scanning multimode array in each line connecting the corporate struc-

ture to the Butler matrix; in addition, there
are fixed phase shifters to put all the pat-
tern modes in phase at some desired azi-

muth angle. Obviously, the fixed phase shifters could be incorporated (and usually are)
either in the corporate structure or in the variable phase shifters. The exact values of
the fixed phase shifts can be determined experimentally or by calculating the mode pat-
terns. Once the pencil-beam pattern is formed at some azimuth angle, it is scanned just
as is a linear array, the mode amplitudes are held fixed, and a linear phase progression
is set up on the mode inputs by operating the variable phase shifters.

PATTERN CALCULATION

Thus far, the explanation of a multimode array has been based on the summation of
pattern modes of the form e

1 
K,'. The summation could be exactly achieved with a contin-

uous current sheet, or it could be approximated arbitrarily well with a ring array having
a sufficient number of elements. For arrays fed from a Butler matrix, as many current
modes can be established as there are elements, and it is not obvious how many of these
modes have far-field patterns that fit the eiKs form sufficiently well. For example, in an
N-element array the highest order mode (K= N/2) has an element-to-element phase vari-
ation of 7 radians. By symmetry, its pattern must be scalloped, with N nulls and N
peaks; therefore, it obviously cannot be used as a uniform mode.

To determine the quality of the modes established by the Butler matrix, a series of
calculations was made, both of mode patterns and of pencil-beam patterns obtained by
summing different numbers of modes. The arrays consisted of either 16 or 32 elements,
and the interelement spacing was varied from 0.4 to 0.6k. Two different element patterns
were used; one was an approximation to the measured pattern of the elements that were
actually used (dipoles around a cylinder) and the other was the exact pattern of an infin-
itesimal vertical current element in front of a conducting cylinder. The approximate
pattern of the dipole in front of a cylinder is given by
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1A(O) (I + ( cos fl, (14)
2

where the phase was assumed constant in azimuth when referred to a point one-third the
distance from the cylinder to the dipole. This assumption is reasonably good, at least in
the unshadowed region. Mode patterns and pencil-beam patterns computed using Eq. (14)
were in good agreement with those obtained using the exact pattern of the vertical current
element, and no results for the latter have been included.

OJ=2

OJ-- 0 Fig. 4 - Geometry of the

a circular array

OJ=N-I
R 0 /

Consider, as in Fig. 4, a circular array of radius R with N elements equally spaced
at a. = J(277/N), where J = 1, 2, ... , N. Referred to the center of the circle, the relative
space phase of the J th element is (27T1/X) cos ( - aj) , where only the plane of the array
is considered. If the element pattern is A(¢- aj) and the current on the element is
Aj e j PJ, the radiation pattern of the array is given by

N

EA( ) = A e/Ck A (k-c) exp j-2 Cos ( - aj) .(15)

J=1

Mode patterns were calculated from this equation with the element pattern given by
Eq. (14) and, for the Kth mode, a current distribution given by Ai = 1, 0b1 2=7(KJ/N). Re-
sults are shown for a 32-element array, for which the modes correspond to K = 0, ±1,
±2, ... , ±15, 16. The computed mode patterns for an array with 0.5-x spacing are in
Fig. 5 and show both the amplitude and a comparison of the computed phase with the ideal
linear variation. It is seen that all modes up to ±10 are in substantial agreement with the
ideal patterns, having at most a ±0.25-dB difference from a uniform pattern, with a maxi-
mum phase error of 3 degrees. Modes ±14, ±15, and 16 are poor approximations. Mode
patterns were also computed for arrays with element spacings of 0.4 and 0.6x. With the
closer spacing, modes up to ±12 are close to ideal, and modes ±15 deviate about as much
as did modes ±14 for the array with 0.5-X spacing. For 0.6-X spacing, modes up to ±9
are good, and mode 12 corresponds to mode 14 for 0.5-x spacing. Table 1 lists the rel-
ative gains of all the pattern modes for 0.5-X spacing and also their relative phases at
t = o when the current modes are in phase at a = o (i.e., at element 32). To form a nar-
row beam with its peak at ¢ = 0, the pattern modes must be in phase in that direction;
therefore, the phase differences between the modes must be accounted for, as shown in
Fig. 3, by fixed phase shifts at the inputs to the Butler matrix. For modes nearly ideal,
the phase differences of Table 1 would be used, but for a mode whose phase deviated sig-
nificantly from the proper linear variation (such as mode 12 of Fig. 5) a best-fitting lin-
ear phase would be used to establish the proper correction.

The analysis of a circular array in terms of ideal modes is adequate for a qualitative
description of its operation and does predict reasonably well the position and shape of the
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Fig. 5 - Calculated mode patterns for a 32-dipole circular array
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Table 1
The Relative Gains and Phases of the Pattern

Modes of a 32-Element Array

Relative Gain Relative Phase at c = 0Mode (dB) (degrees)

0 0.0 0.00

1 0.2 0.74

2 0.1 7.51

3 0.2 14.63

4 0.2 29.27

5 0.0 44.63

6 0.5 63.06

7 0.2 91.93

8 -0.5 115.35

9 0.8 144.56

10 1.0 -168.45

11 -0.5 -128.07

12 0.7 -105.74

13 3.5 -35.18

14 5.1 20.91

15 5.6 120.92

16 5.6 -172.05

main lobe but not the structure of the sidelobes. For a more accurate estimate, the cur-
rent distribution on the array must be determined, and the pattern must then be calculated
from Eq. (15). First assume that the N-element Butler matrix has all the current modes
in phase at the Nth element if the mode inputs are fed in phase; this means that for the
Kth mode the jth element has phase 27T(KJ/N). Then, if Be' 'K is the current applied to
the Kth input port, the resultant current Aj ej VJ on the Jth radiating element is given by

A~
e j J

j B ej
l
Ke jKJ(27l/N) (16)

If many input ports are simultaneously excited, the output currents may be added to give

(17)Aj e
j  k

J  e1 Ke jKJ( 2/N)

NNK

This current distribution may then be substituted into Eq. (15) to give the radiation pat-
tern expressed as

E(q5) - BKe e A(j- ) e (18)
J K
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It is perhaps evident from the symmetry of the multimode array that the pattern shape
does not change if the beam is scanned by some multiple of 2,,/N, the angle between ele-
ments. If, for example, the beam is to be scanned M(27/N) radians, where M is an inte-
ger, the mode amplitudes B. are held constant but there must be a mode-to-mode phase
difference of M('277/N); hence, the phase of the Kth mode becomes /3K+ KM(27/N). When
this is substituted into Eq. (17), the current on the Jth radiating element is found to be

AjeJj 1 E BK eJ 
3
KeJ(M+J) K(27T/N) (19)

VK K

showing that the original current distribution has been moved, intact, M elements around
the array.

To show the formation of the radiation patterns as the modes are superimposed, pat-
terns of a 32-element array with 0.5-X spacing were computed from Eq. (18) using the
cardiod element pattern of Eq. (14). With uniform excitation of the Butler matrix inputs
(all BK = 1 ) and with phases corresponding to those in Table 1, the modes were succes-
sively excited and at each stage the radiation pattern was calculated, giving the series of
patterns shown in Fig. 6. It can be seen that the beam narrows as more modes are added
and that, until modes ±11 are reached, the far-out sidelobes decrease as they would if
the modes were perfect. This improvement ceases as the higher modes are added; when
all the modes but the 16th are included, the pattern is noticeably worse than when just the
modes up to ±10 are used. The two patterns using modes up to ±10 and up to ±15 are
compared in Fig. 7 with the patterns that would result if the corresponding numbers of
ideal modes were summed. The agreement, when all the modes are used, is particularly
poor in the region of the far-out lobes; when the less uniform modes (11 through 15) were
not used the patterns for the discrete and continuous cases agreed everywhere to within
0.5 dB.

It is interesting to examine the current distribution that is established on the array
when the Butler-matrix inputs are fed so as to produce a focused radiation pattern (as in
Fig. 7). Since the radiating elements have directive patterns, it is reasonable to expect
that the strongly excited elements would be on the side of the array in which the beam is
directed and that their phases would be, to a degree, corrected to a line normal to the
beam. A current distribution of this type is called "cophasal." From Fig. 8 the phase of
the Jth element should then be

2 R Cos JN (20)

where R is the radius of the array, ¢0 is the angle of the pattern peak, and J(277/N) is the
angular position of the Jth element. The current distribution on the array when all the
modes but the 16th are fed with uniform amplitudes is shown in Table 2. It is seen that
about 95% of the total power is radiated by the 13 elements nearest element 32 (which is
in the direction of the pattern peak) and that the currents on 11 of these differ from the
phase required for a cophasal distribution by less than 20 degrees, while the end ele-
ments differ by 34 degrees.

The sidelobes from a linear array can be lowered by tapering the amplitude distri-
bution over the array, and, by analogy, the same should be true for a circular array if the
mode amplitude distribution is tapered. With the phases again as in Table 1, a cosine
taper was applied to the mode inputs (i.e., BK cos (K7/32)), and the patterns were com-
puted as modes were added successively (Fig. 9). Figure 10 is a comparison of the final
pattern, when all the modes were used, with the pattern that would result if the modes
were ideal. This shows that the sidelobe level has indeed been reduced but not to the
level that would be obtained with perfect modes. The corresponding current distribution
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Fig. 6 - Mode-by-mode buildup of the pattern of a 32-element
array with uniform excitation of the modes
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Fig. 7 - Comparison of the patterns of a 32-element array and of a continuous
current sheet, using 21 and then 31 uniformly excited modes



NRL REPORT 6696

0

N- 0
2

0

C

) Rv

210

A/
N_

N- A 1

00
0A

0 • -PHASE TO BE
0 0 0 0 CORRECTED

0 NOT EXCITED

0 EXCITED

N ELEMENTS AT
Qj = J 2.

N
J = 1,2,..... N

Fig. 8 - Geometry for the
cophasal distribution

Table 2
The Current Distribution on a 32-Element Array with Uniformly

Excited Modes, Compared with a Cophasal Distribution

Phase Phase
Element Power Phase Variation Element Power Phase Variation
Number (dB) (degrees) from Number (dB) (degrees) from

Cophasal Cophasal

1 -3.44732 175.48183 11.8 17 -21.95263 179.11611 -
2 -0.05273 -134.29380 13.8 18 -25.74411 10.08901 -

3 -0.45288 -29.86873 6.8 19 -25.95690 115.87377 -

4 -4.12162 96.31795 18.1 20 -19.17377 -68.86822 -
5 -9.23428 -134.74211 8.6 21 -17.13523 129.24006 -
6 -11.60679 -3.78167 33.5 22 -16.15650 -49.15206 -

7 -12.45165 156.25335 - 23 -16.63500 136.38897 -
8 -14.95675 -28.98433 - 24 -14.95675 -28.98430 -

9 -16.63499 136.38895 - 25 -12.45165 156.25339 -
10 -16.15650 -49.15207 - 26 -11.60680 -3.78159 33.5
11 -17.13523 129.24005 - 27 -9.23429 -134.74200 8.6
12 -19.17377 -68.86822 - 28 -4.12162 96.31803 18.1
13 -25.95691 115.87382 - 29 -0.45288 -29.86869 6.8
14 -25.74410 10.08906 - 30 -0.05273 -134.29377 13.8
15 -21.95262 179.11612 - 31 -3.44732 175.48185 11.8
16 -22.16723 8.13703 - 32 0.00000 169.67831 0.0
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Fig. 10 - Comparison of the patterns of a 32-element array and of a continuous
current sheet, using cosine amplitude taper on 31 modes

on the array and the deviation from a cophasal condition are given in Table 3. More than
97% of the total power is radiated from nine elements, and on these elements the currents
differ from cophasal by at most 5 degrees.

One of the distributions used in the experimental program was B K= cos 
2 (uK/40)

which provided a 17-dB taper over the 31 mode inputs. To indicate how much the pattern
shape could be expected to change as the beam was scanned, patterns were computed for
various beam positions. Figure 11 shows three patterns, one phased so that its peak is
in the direction of element 32 (¢-- o), the other two having the same amplitude distribution
over the modes but phased to scan the beam one-quarter and one-half, respectively, of
the angle between elements. The current distribution on the array for each of the pat-
terns appear in Table 4; the second and third distributions are symmetrical, since only
these correspond to patterns symmetrically located with respect to the elements. It may
be seen that, at least for this distribution, the pattern changes only slightly as the beam
is scanned.

Patterns were also calculated for different element spacings, element patterns, and
amplitude distributions, but those shown satisfactorily illustrate the beam formation and
scanning and also indicate how the pattern differs from one based on the existence of
perfect pattern modes.

SYNTHESIS OF APERTURE DISTRIBUTIONS

It should now be evident that the radiation pattern of a circular array computed on
the assumption that the pattern modes are perfect is not the same as that computed from
the actual current distribution, and that a certain amount of cut-and-try is involved in
determining the number of modes to use and in adjusting the phases of the modes to form
a beam in a particular direction. Instead of picking the mode excitations, only to find that
the corresponding current distribution results in a poor radiation pattern, it would be
preferable first to pick a current distribution having an acceptable pattern and then to
find the mode excitations which will give these currents. That this is always possible
was discovered by Davies (7) who showed that any prescribed output currents can be
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Table 3
The Current Distribution on a 32-Element Array with Cosine Taper

on the Modes, Compared with a Cophasal Distribution

Input Aperture Distribution on the Array

Deviation from
Phase Ele- Power Phase Cophasa m

Mode Amplitude (radians) ment (dB) (degrees) (degrees)

0 1.00000 -2.66400 1 -0.47257 -176.49142 3.1
-1 0.99517 -2.67700 2 -1.75887 -123.19997 2.0

1 0.99517 -2.67700 3 -4.50998 -38.68408 2.2
-2 0.98079 -2.79500 4 -9.18096 72.52077 5.0

2 0.98079 -2.79500 5 -14.80740 -166.42169 -
-3 0.94622 -2.91900 6 -18.44634 -35.00849 -
3 0.94622 -2.91900 7 -21.73024 133.34552 -
-4 0.92388 3.09000 8 -31.54853 -41.41308 -

4 0.92388 3.09000 9 -32.89055 75.26568 -
-5 0.88192 2.83900 10 -29.02351 -71.29683 -
5 0.88192 2.83900 11 -30.86602 113.83807 -

-6 0.83147 2.51800 12 -28.29847 -112.19534 -
6 0.83147 2.51800 13 -32.42267 5.40598 -

-7 0.77023 2.01400 14 -30.31264 91.12548 -
7 0.77023 2.01400 15 -33.26910 -158.42240 -

-8 0.70711 1.60500 16 -33.21392 70.90724 -
8 0.70711 1.60500 17 -33.26910 -158.42240 -

-9 0.63776 1.09500 18 -30.31264 91.12548 -
9 0.63776 1.09500 19 -32.42267 5.40598 -

-10 0.55557 0.27500 20 -28.29847 -112.19534 -
10 0.55557 0.27500 21 -30.86602 113.83807 -

-11 0.47140 -0.39200 22 -29.02351 -71.29683 -
11 0.47140 -0.39200 23 -32.89055 75.26568 -

-12 0.38268 -0.92100 24 -31.54853 -41.41308 -
12 0.38268 -0.92100 25 -21.73024 133.34552 -

-13 0.32350 -1.90400 26 -18.44634 -35.00849 -
13 0.32350 -1.90400 27 -14.80740 -166.42169 -

-14 0.19509 3.12400 28 -9.18096 72.52077 5.0
14 0.19509 3.12400 29 -4.50998 -38.68408 2.2

-15 0.09800 2.73100 30 -1.75887 -123.19997 2.0
15 0.09800 2.73100 31 -0.47257 -176.49142 3.1

32 0.00000 168.95482 0.0

achieved with a Butler matrix by properly exciting the matrix inputs. To demonstrate
this, consider a Butler matrix with outputs labeled g = 1, 2, ... , N and the inputs labeled
K = 1, 2, ... , N, with the property that a current into input K results in currents

K JK 2 11/,V)

on the output ports. This is the definition used previously, except that the inputs have
been relabeled with K = 1, 2, ... , N now corresponding to modes 1, 2, ... , N/2, ... ,

-1, 0, respectively. Note that all the modes, when fed in phase, have the same phase at
the Nth output terminal. When this is true the matrix is bilateral; i.e., if the roles of the
inputs and the outputs are reversed, the matrix is again a Butler matrix having a zero
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Table 4
Aperture Distribution

Asymmetric Case (a) Symmetric Case (b) Symmetric Case (c)

I Power Phase Relative I Power Phase IRelative ] Power Phase Relative
(dB) (degrees) Power (dB) (degrees) Power J (dB) (degrees) Power

1 -0.21668 176.62222 0.95133 1 -0.00000 171.99979 1.00000 1 -0.44343 -176.60862 0.90294
2 -1.55109 -141.90281 0.69967 2 -0.99395 -156.00899 0.79544 2 -2.11568 -125.20641 0.61437
3 -3.77393 -65.54656 0.41938 3 -3.06736 -86.15058 0.49347 3 -4.73247 -44.38657 0.33632
4 -8.96522 38.95468 0.12690 4 -7.62366 6.54675 0.17284 4 -9.52727 70.76172 0.11150
5 -14.39432 150.57976 0.03636 5 -11.45312 121.78994 0.07156 5 -17.48372 -163.78746 0.01785
6 -16.71394 -62.86015 0.02131 6 -15.85444 -82.85757 0.02598 6 -20.31012 -41.88725 0.00931
7 -20.83982 119.71317 0.00824 7 -24.44876 94.86337 0.00359 7 -20.71442 131.29208 0.00848
8 -31.40056 29.70634 0.00072 8 -31.14171 122.73945 0.00077 8 -25.51536 17.35010 0.00281
9 -32.25528 4.63284 0.00059 9 -25.86347 22.59884 0.00259 9 -30.92661 -84.04295 0.00081

10 -21.72481 -91.70139 0.00672 10 -21.57459 -96.29391 0.00696 10 -24.50283 -87.60305 0.00355
11 -25.82403 148.82783 0.00262 11 -33.69180 154.78219 0.00043 11 -22.77846 161.60114 0.00527
12 -22.82111 -153.00851 0.00522 12 -21.20791 -166.18353 0.00757 12 -28.15539 -143.27151 0.00153
13 -18.76618 59.67982 0.01329 13 -23.48150 54.29705 0.00449 13 -16.76397 65.15051 0.02107
14 -18.39255 90.06239 0.01448 14 -16.93887 79.19901 0.02024 14 -19.81080 103.98944 0.01045
15 -21.22390 133.47058 0.00754 15 -20.84027 127.76109 0.00824 15 -21.89253 137.51160 0.00647
16 -25.30403 157.70873 0.00295 16 -24.17335 149.80169 0.00383 16 -25.71077 161.33603 0.00268
17 -22.94357 142.51320 0.00508 17 -24.17334 149.80167 0.00383 17 -21.89253 137.51159 0.00647
18 -20.60362 117.86860 0.00870 18 -20.84027 127.76107 0.00824 18 -19.81079 103.98941 0.01045
19 -16.31634 71.30738 0.02335 19 -16.93887 79.19899 0.02024 19 -16.76398 65.15050 0.02107
20 -39.67240 52.94398 0.00011 20 -23.48152 54.29704 0.00449 20 -28.15537 -143.27152 0.00153
21 -21.42659 177.96982 0.00720 21 -21.20791 -166.18356 0.00757 21 -22.77846 161.60111 0.00527
22 -32.19092 -94.49640 0.00060 22 -33.69183 154.78227 0.00043 22 -24.50282 -87.60306 0.00355
23 -24.20390 -98.25608 0.00380 23 -21.57459 -96.29391 0.00696 23 -30.92663 -84.04288 0.00081
24 -24.12936 20.44488 0.00386 24 -25.86346 22.59884 0.00259 24 -25.51536 17.35010 0.00281
25 -23.58973 136.81066 0.00438 25 -31.14169 122.73954 0.00077 25 -20.71442 131.29206 0.00848
26 -27.46216 9.66008 0.00179 26 -24.44877 94.86329 0.00359 26 -20.31011 -41.88730 0.00931
27 -17.09603 -113.17053 0.01952 27 -15.85444 -82.85761 0.02598 27 -17.48371 -163.78756 0.01785
28 -10.04857 97.60342 0.09889 28 -11.45312 121.78989 0.07156 28 -9.52727 70.76167 0.11150
29 -6.07377 -21.15001 0.24696 29 -7.62366 6.54669 0.17284 29 -4.73247 -44.38661 0.33632
30 -2.62493 -106.31989 0.54639 30 -3.06736 -86.15062 0.49347 30 -2.11568 -125.20645 0.61437
31 -0.69653 -167.53290 0.85182 31 -0.99395 -156.00901 0.79544 31 -0.44343 -176.60863 0.90294
32 0.00000 169.33749 1.00000 32 0.00000 171.99979 1.00000 32 0.00000 168.47203 1.00000

mode. To show this, assume that the N inputs are excited simultaneously with currents
ejKM( 27/N) , where M is an integer and K = 1, 2, ... , N. The output currents are then
given by

(21)Ajel 
J  e

K ( M +J ) ( 2 1
N )

K=1

which vanishes unless J = N- M. Therefore, all the power must exit from the (N-hi) th
terminal. Then, by reciprocity, if the Mth output port is excited, currents corresponding
to the Mth mode appear on the N input terminals and the matrix is bilateral.

If the prescribed currents Aie j i J , where J = 1, 2, ... , N are to be set up on the ar-
ray, the Ncurrents that must be applied to the inputs of the matrix are

N j (NBKeJH
l

K = Aj e
¢

e
-
JKJ(2 

/
N) (22)

_; 11,

These currents are conjugate to those that would appear at the inputs if currents Aa Je
were fed into the outputs of the matrix. The correctness of Eq. (22) may be verified by

eJ (M+J) (7/N) , j (M+J) 7T 1in [(M + J) 7-T]
sin I(M +J) N I

11
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substitution into Eq. (17). As has been shown previously, since the matrix has a zero
mode (looking from input to output), the current distribution that has been set up can be
moved, intact, M elements around the array by hdIding the amplitudes BK of the input
currents fixed but changing their phases by applying a linear phase progression with a
mode-to-mode phase difference of M ( 27T/N).

It might seem unnecessarily restrictive to assume that the Butler matrix be bilateral
and have a zero mode, but it may be shown that the matrix must be of this type if it is to
be used to commute the currents around a circular array using phase shifters alone. If
a matrix not satisfying these conditions is used, it is found that fixed phase shifts must
be added at the inputs and/or at the outputs, and when these are lumped with the matrix,
the resultant network is a bilateral, zero-mode Butler matrix.

It has been shown that the current distribution and the radiation pattern of a multi-
mode array are invariant (aside from rotation) if the beam is scanned in steps equal to
the angle between elements. For any other angle of scan, the current distribution will be
changed. If, for example, all inputs are fed in phase with equal amplitudes, only element
N will be excited. If the linear phase progression e -jK( 27TN) is then applied to the inputs,
the excitation is switched to element 1. If, however, the linear phase progression were
only half this (i.e., e- j K(-n/N)), two elements, N and 1, would be strongly excited, but there
would be currents on all the elements of the array. As a practical example, consider a
32-element array with a cophasal distribution on the 14-element sector which includes
elements 26 through 7. The desired amplitude distribution is cos I[K- (1/2)1 7/161, which
is symmetrical about a point midway between elements 32 and 1, and the elements are to
be phase to form a beam in this direction. All other elements are to be inert. To show
how the current distribution varies as the beam is scanned in small steps, the input cur-
rents required to achieve this distribution are first determined from Eq. (22), then their
phases are changed to scan the pattern and the new distribution on the array is computed
from Eq. (17). Table 5 gives the original distribution, phased for a peak at 0 = 5.625',
and the corresponding input currents to the Butler matrix. Also in Table 5 is the distri-
bution on the array when the beam is scanned to 11.25' (the direction of element 1) and
the distribution when the beam is scanned to the angle midway between the first two. It
is seen that, for the scanned beams, the currents are no longer confined to a sector; all
elements are illuminated, with those on the rear of the array about 30 dB down. The
stronger currents are on 15 or 16 elements, and over this sector there are only minor
amplitude ripples with the currents differing from the cophasal condition by about 20 de-
grees. The two scanned patterns (Fig. 12) do not differ significantly from the original
one. Their beamwidths, near-in sidelobes, and the general level of their far-out lobes
are comparable. If the distribution had been designed for very low sidelobes, it is likely
that the pattern changes would have been more significant.

EXPERIMENTAL PROGRAM

The circular arrays used in the experimental program had either 16 or 32 elements
and were operated at 900 MHz. Various radiating elements were used: dipoles, short
back-fire elements, and Yagis (the latter two to reduce the elevation beamwidth without
increasing the height of the antenna), but the only array that will be described is a 32-
element array of slot-fed dipoles, vertically polarized, spaced 0.5k apart and 0.25k
from a conducting cylinder. This antenna is shown in Fig. 13, and the associated beam-
forming and scanning network is shown in Fig. 14. The Butler matrix was supplied by
the Advanced Development Laboratories, Nashua, New Hampshire, and consisted of two
16-element matrices plus the proper interconnecting networks to form a 32-element
matrix. Since 3-dB quadrature couplers were used in the matrix, it had no zero mode;
therefore, the coaxial cables connecting the matrix to the dipoles had to be cut to the
proper lengths to correct for this. Corporate structures made in triplate line were used
to establish the various amplitude distributions over the inputs to the Butler matrix.
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Fig. 14 - Beam-forming and scanning network
for the 32-dipole array

(a) Uniform output (b) Tapered distribution

Fig. 15 - Printed circuit corporate structures for feeding the Butler matrices

Figure 15 shows the center conductors of two 16-element corporate structures - one for
a uniform distribution, the other for a cosine-squared distribution on a 17-dB pedestal.

Other amplitude tapers were used; none however were designed following the synthesis
technique described in the preceding section. In the lines connecting the corporate struc-

ture to the Butler matrix were variable phase shifters (General Radio Type 874-LTL
Trombones), with a maximum pathlength variation of one wavelength, which were used

first to adjust the relative phases of the modes to form a beam in a desired direction and
then to scan the pattern.

The measured mode patterns for this array (Fig. 16) do not compare favorably with
the computed patterns in Fig. 5. The deviations are attributable primarily to phase and
amplitude errors in the matrix. All the current modes were fed so as to have the same
phase at element 32, and the relative phases of the pattern modes were determined by
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comparing the phase of each mode with that of the zero mode in the far field at v - 0.
This was done by feeding the two modes from the difference arms of a rat-race hybrid,
then adjusting the phase shifter at the input port of the mode being phased until the far-
field pattern showed a minimum in the specified direction. A final 180-degree adjust-
ment in the phase of the zero mode then put all the pattern modes in phase at ¢ - 0. This
procedure is most accurate when the two signals have equal amplitude; when a minimum
of a mode pattern happened to lie in the direction in which the modes were being phased,
the comparison was made at a slightly different angle, and the error resulting from this
was then accounted for by adding an amount computed from the theoretical phase distri-
bution for that mode.

Figure 17 shows the pattern of the array when a corporate structure was used pro-
viding currents of equal amplitude to all the mode inputs but number 16. For compari-
son, the corresponding calculated pattern (from Fig. 7) is shown solid. The two patterns
agree reasonably well; both have beamwidths of about 10 degrees, the measured first
sidelobes are 1.5 dB higher than those calculated, and the general level of the far-out
sidelobes is about 21 dB down for both.

-0

-1
F

\  
z/ CALCULATED

LIJI

-20 ' MEASURED

II 3II V, I I

4 0 1_ _, __- -
-180 -150 120 90 -CIO -30 30 60 90 120 150 180

AZIMUTH ANGLI (DI GREF )

Fig. 17 - Measured and calculated patterns of the 32-element
array with uniformly excited modes

The next series of patterns was taken with a tapered amplitude distribution over the
modes. Thirty-one modes were fed from a 16-element corporate structure by dividing
the outputs with tees. This resulted in a stepped distribution (since pairs of adjacent
modes had equal amplitudes) with a 17-dB taper. The mode-by-mode buildup of the pat-
tern is shown in Fig. 18, and Fig. 19 compares the final pattern, which includes all but
the 16th mode, with the corresponding calculated pattern. The measured beamwidth
(11.5 degrees) and the first sidelobe (19 dB down) agree well with those calculated, but
the level of the far-out lobes was somewhat worse than for the calculated pattern. The
beam was then scanned by operating the phase shifters, and some of the patterns are
shown in Fig. 20. It was found that the beamwidth and sidelobe level changed only
slightly, and the gain varied by about 1 dB as the beam was scanned.
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Fig. 18 - Measured mode-by-mode buildup of the pattern
with a tapered, stepped distribution on the modes
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Fig. 19 - Measured and calculated patterns of the 32-element
array with a tapered, stepped distribution on the modes
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Fig. 20 - Scanned patterns for the 32-element array
with a tapered, stepped distribution on the modes

CONCLUSIONS

It has been shown that a Butler matrix can be used to feed a circular array to form a
narrow pattern which can be scanned through 360 degrees in azimuth by the operation of
phase shifters alone. One explanation of this, based on the assumption that the radiation
pattern could be written as the sum of a finite number of uniform pattern modes, was
found to work only qualitatively in that it could not be used to predict the structure of the
sidelobes. A 32-element array of dipoles was used to demonstrate experimentally how a
beam was formed by superposition of the pattern modes (even though imperfect) and how
the scanning was performed. Finally, the synthesis procedure of Davies was described,
and, as an example, the inputs to the Butler matrix required to achieve a prescribed co-
phasal sector distribution on the array were determined and the changes in the current
distribution for other beam positions were shown.
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