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FOREWORD

The following material was presented in a series
of lectures to the staff of the NRL Linac Branch,
Nuclear Physics Division, in the Fall Semester of
1966/1967. 1 thank Dr. T. F. Godlove, Head, Linac
Branch and Dr. L. W. Fagg, Head, Electron Interac-
tions Section, for inviting me to hold these lectures
as an aid to the experimental work on electron scat-
tering and photonuclear reactions which is presently
being carried out at the NRL 60-MeV electron linac.



ABSTRACT

We present a review of the basic theory of electron
scattering from nuclei and of photonuclear processes, as
well as a discussion of the analysis of electron scattering
experiments. This includes cross sections in Born approx-
imation, elastic scattering from nuclei for the study of
nuclear moments, and continuum scattering. Particular
attention is given to inelastic electron scattering with ex-
citation of nuclear levels, both below and in the giant reso-
nance region. Various theoretical models are discussed
that describe excitations of nuclear states.
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This is an interim report on a continuing problem.
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TOPICS IN ELECTRON SCATTERING AND NUCLEAR MODELS:
NOTES ON LECTURES GIVEN AT NRL IN THE FALL OF 1966

GENERAL INTRODUCTION

Kinematics of Photoexcitation and Electron Scattering

Electron scattering is only recently proving itself an important tool for the study of
nuclear structure, both for exploring ground state properties, and for excitation of
nuclear levels. The main advantage consists in the possibility of varying the momentum
transfer q, and thus obtaining nuclear form factors as functions of q. This contrasts
with photoexcitation in which the momentum transfer is fixed. In the following introduc-
tory discussion we shall consider the kinematics of both reactions.

Photoexcitation - The absorption of an incident photon by a nucleus lifts the nucleus
from its ground state to an excited state,

+ Az  -+ Az , (la)

where the excited state has excitation energy w if the center-of-mass (cm) energy of the
photon is equal to w. The excited nucleus A* will decay with the emission of a photon or
a particle,

A* - 4' + y (lb)
or

A> -+ (A- 1)' + N, (ic)

depending on the respective thresholds, etc. Considering only the excitation part of the

process, we have

momentum conservation: k q (2a)

where k = photon momentum, q = nuclear recoil momentum and (using units with o = I)

energy conservation: A- = co (2b)

(the nucleus is assumed heavy). This shows that the recoil q is fixed and equal to

9 = (3)

Thus, photoexcitation will measure for factors of excited states at one value of Y only.

Electron Scattering - Elastic or inelastic electron scattering imparts a recoil mo-
mentum q to the nucleus, in the latter case also raising the nucleus to an excited state
(of energy w):

Az e - A + e' (4a)

The excited nucleus will subsequently decay:

A> - A' + (4b)

or
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,I -* (,-,) + A, (4c)

etc. The electron scattering angle will be called o. The rest mass of the electrons,
assumed to have an energy of more than several MeV, shall be neglected; i.e., we as-
sume for their energy

E (/C 2 
+I 2 (5)

The kinematics, sketched below (calling k the momentum of the incident electron and k2
the momentum of the scattered electron),

k 2

Ic 1 \

k/
////

q

leads to

momentum conservation: k1 - q + k2 (6a)

and
energy conseivation: I - "o, + k' 2 (6b)

Experimentally, one may use a fixed incident energy /Ic and may change , but for each
given 0 obtain one energy spectrum (as a function of k 2 ) of the scattered electrons. In-
stead of a and k 2 , one may introduce the variables

w A - k 2  (7a)

and

q ( 2 + .- 2 - 2k C 0oS 0) 1 2 (7b)

in terms of which the theoretical results usually are given. For forward scattering
(e = 0') one has q - / 1 -/C2  as in photoexcitation. For 1800 scattering, a geometry
used in the NRL linac experiments, one has q - /r I + / 2 21c I - W, which for a given level

can be varied by varying the incident energy /AI, and which can be made quite large.
For example, with the 60-MeV NRL linac, the excitation of nuclear giant resonances

20 MeV) can be explored up to q z 100 MeV/c.

In any scattering problem, a characteristic quantity is qh, where le is the dimension
of the scattering object; for qi % i, diffraction effects will appear. Taking the radius of
the 160 nucleus, R - 3 fm (1 fermi = 10-13 cm), as an example, Table 1 shows that this
value of qY can easily be reached with the 60-MeV NRL linac. It also demonstrates that
the usual replacement of the retardation factors exp (i q • r) or JL( qr) in the multipole
matrix elements by 1 or ( qr)L-'(2L + ) U, respectively, which is fairly well justified for
photoabsorption (wi? z 0.30 in the same example), cannot be made in electron scattering.

Figure 1 gives a sketch of the general features of a photoexcitation curve c, as a
function of q, and of spectra of scattered electrons as functions of q and a). The figure
illustrates that electron scattering can explore a two-dimensional surface of the cross
section, whereas the photoabsorption cross section u is confined to the one particular
curve on this surface determined by q = w. The electron scattering cross section,
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Table 1
Values of qR for Different Incident Energies k1 in 1800
Electron Scattering from 160 Giant Resonance States

k I q q

(MeV) (MeV/c) (fm-I) qR

40 60 0.30 0.90

60 100 0.50 1.50

a"MOTT(901) 
/

CROSS SECTION

30 60 90

WMev)

/
/ 120 \ 120

150

fl /,
150

q=u

q2
=2m'

Fig. I - Three-dimensional plot of spectra of inelas-
tically scattered electrons, as functions of excitation
energy w (right scale) and of momentum transfer q
(forward scale). The electron spectra are drawn as
solid, shaded curves above the lines ( = const = 1800
inthe(a,q) plane, where q 2k 1 -w (- Z incidentelec-
tron energy), and as dashed curves above the lines
0 = const = 900 in the (w, q) plane. Also indicated as
traces in the (w, q) plane are the lines a) = 20 MeV
(peak of the giant resonance), and = 2/2m* (peak of
the quasielastic scattering), where m* is the effective
nucleon mass inside nuclear matter. The following
features are indicated: (a) disappearance of the large
Mott elastic scattering cross section as a goes from
90* to 1800 (valid for spinless nuclei), (b) changes in
the giant resonance region (emergence of spin-isospin
collection levels, decline of isospin levels with in-
creasing q), and (c) emergence of the quasielastic peak
for increasing q. Also shown is the photonuclear cross
section a above its trace q -coin the (w, q) plane, indi-
cating the giant resonance. The figure presents the
relation between the ways photonuclear excitation
curves (measured at q= o) and scattered electron spec-
tra (measured at k-1 = const and a = const) are obtained
as particular cross sections of the three-dimensional
'nuclear excitation strength surface."

210

q

(MeV/C)
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differential in q and w, is plotted over several curves q (,1(,,,e) in the (w, q) plane for
a = 90' (dashed lines) and 6 = 1800 (solid lines), i.e., for q [k 12 

+ (k I _ I )2]1 '2 and
q 2k 2 I - W, respectively, which intersect each other at the photon line q w, i.e., atA-
and k 2 = o. The various curves correspond to different values of the incident energy A-,
taken as a parameter whose values are shown on the right. Figure 1 emphasizes the fol-
lowing characteristics of the features:

1. The Mott cross section for elastic scattering,

0- = 4Ak 1 
.2 
2 (-4 Cos 2 (8)2

with q :: 2k 1 sin (0/2) and a = 1/137, is nonzero at )= 0 for 0 = 90', but zero (apart from
some small magnetic scattering if the nucleus has spin) for a = 1800.

2. There are several broad (particle unstable) giant resonance peaks around a Z 20
MeV which can be seen both in photoexcitation and in electron scattering, and which
change shape as A-1 varies. Note that this change of shape cannot be observed in photo-
excitation, since here, only one fixed curve is obtained.

3. Below the giant resonance region, a 20 MeV, there are excitations of individual
levels which are narrow when lying below the particle emission threshold.

4. For higher incident energies, a broad peak appears above the giant resonance
region which shifts higher according to

S (9a)2rn*

where in* is the effective mass (roughly Yn, ,2, mn = proton mass) of the nucleon inside the
nuclear matter. This peak is known as the quasielastic peak, and corresponds to the
process of knocking off an individual nucleon out of the nucleus (see sketch);

q

The curves are drawn in Fig. 1 in a way in which the scattered electron spectra are
usually presented. One can however also plot the spectra vs W for fixed q, which can be
achieved by varying a and/or k, as we go along the excitation energy (), using

(- [- 12+ (Ak I )2 - 2Co1(A- ) ,o ] 2, (9b)

which for o = 180' gives, as before,

q = 2k i - (c. (9c0
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Alternatively, one can plot the cross section of a given level (fixed W) vs 0 for fixed q,
by varying the energy k accordingly. Such a procedure has been used to separate longi-
tudinal and transverse contributions to the form factors, as will be seen.

Calculation of Cross Sections in Born Approximation

The calculation of cross sections using the Born approximation is presented in sev-
eral places in the literature (1-3), and the results are quoted in review articles on the
subject (3-6). We shall therefore not repeat the derivation in detail but shall state the
important points. The electron, due to its Coulomb field and to the virtual photon field
that surrounds it, interacts with the following nuclear quantities: (a) the nuclear (ground
state or transition) charge density ep(r), where

A

f(r) d 31r d 3rAkt 2 (r - r o (1Oa)

il

(b) the nuclear current density ei (r) , where

A

1() -r Jd 1" d3r'4 Zj 2 3 (r -ri) pi P0 (10b)
i=

(these two quantities being related by

V*i + 0, (10c)

the continuity equation), and finally (c) the nuclear magnetization density eIp(r), where

A+A3/ 1+T (10d)

L(r) fd3 p.d3rA( qt L (r - ri ) P 2 + 1- 3o ' (1d)

in which m is the nucleon mass (we use units in which -: i) and ap and a, are the
proton and neutron magnetic moments, / p = 2.79 and /. = -1.17. The electromagnetic
field (p = scalar potential, A = vector potential, and H = V x A = magnetic field) which the
electron generates at the nucleus gives rise to an interaction energy

Hin' f 3r oPr ) p(r) - jA - Iz'H] . (11)

The first term is the Coulomb interaction. The last term accounts for the interaction of
the spin magnetic moments, whereas the orbital magnetic moment interaction is con-
tained in the i " A term. This point will be demonstrated a little later on.

The interaction Hamiltonian given by Eq. (11) will be used for a Born approximation
calculation of the inelastic electron scattering cross section, according to the following
Feynman diagram:

A-2  Nf (ground or excited)

q

A-I1 N.
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This calculation can be done noncovariantly (2,7,8) or covariantly (3), but the results are
the same. Noncovariantly, one has for the electron's scalar potential, e.g.,

(r) f Pe(r') d
3

r
(12a)

where in the electron transition charge density

(12b)

one uses plane wave states

t

ik2 rlii - ue2 (12c)

etc. (Born approximation). The quantities ir -r 'I-' and exp [i (k I - k 2 ) " r] one expands in
multipoles, while the vector potential A is expanded in vector spherical harmonics (9).

Before going to the results, let us state what corrections should be (and are) applied
to the simple Born approximation and to the experimental data when comparing the two.
These are the following:

1. The Schwinger radiative corrections (10) (-a effects). The scattered electrons
emit many soft photons, all undetected and causing an energy loss of the scattered elec-
tron within the experimental resolution. To the following diagrams,

etc.,

one has to add those of virtual photons, i.e., vertex renormalization,

of mass renormalization,

YX H
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and of vacuum polarization,

to cancel out the Bloch-Nordsieck infrared divergence inherent in the emission of the
soft real photons. The effect of all these processes is to lower and widen the peaks. The
necessary corrections to be applied to the measured data were obtained by Tsai (5,11,12).
They may lead to considerable corrections of the measured spectrum.

2. The radiative tail (bremsstrahlung tail) (- a effects). Real photons are emitted by
the electron, either before or after the collision with the nucleus, either while passing the

same nucleus on which the electron scatters or while passing another nucleus in the tar-
get. A considerable amount of energy may be lost. Another effect included under the
heading "radiative tail" is Moller scattering of the electron by an atomic electron, again
either before or after the collision with the nucleus. Because of the indistinguishability
of the two electrons, the one detected may actually be the recoiling spectator electron.

H
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Finally, straggling losses of the electrons (ionizing collisions) may also play a role. The
result of all these effects is to observe in the scattered electron spectrum a broad tail
stretching from the elastic peak downward (Fig. 2); this tail actually increases toward
very low energies, for two reasons: (a) electrons which emit the photon before they
scatter, scatter at a lower energy for which the scattering cross section (- 1IE

2 ) is
larger, and (b) the spectator electron in Moiler scattering (which is symmetric between
the incident and the spectator electron) is observed. Each inelastic peak will also have
its own radiation tail. The inelastic peaks one wants to study are observed to sit on top of
this radiative background, and one has to subtract the latter. The procedure is described
in several papers (12-15). Calculations of the bremsstrahlung tail are given by Hand (16),
by Ginsberg and Pratt (17), and by Maximon and Isabelle (18), the latter including radia-
tive tails of inelastic peaks.

counts
ME,90 MeV

8 = 100"

500-

100 calculated radiative tail H 0
1 0 L .

20 40 60 80 Ff MeV

Fig. 2 - Spectrum of electrons inelastically scat-
tered by a water target for k 1 -- Ei = 90 MeV and
0 = 100'. (The peak labeled H corresponds to
elastic scattering on hydrogen.) The outgoing
electron energy is k 2 - E,. The calculated radia-
tive tail of the elastic peak for scattering from
oxygen (the latter multiplied by 1/20) is shown.
(After Isabelle and Bishop (13).)

3. Going beyond the first Born approximations (cZa effects). Only light nuclei (be-
low Ca) can honestly be treated with the Born approximation. For heavier nuclei one
must go beyond the first Born approximation, which can be done in two ways. The first
way is by phase shift analysis of elastic as well as inelastic scattering. (The initial and
final electrons are treated as nonplane waves, distorted by the Coulomb field.) For the
latter case, this was done by Biedenharn et al. (19) and by Drechsel (20). The effect of
such a calculation is to fill in the diffraction zeros of the Born approximation (Fig. 3) for
the cross section plotted vs 0 or vs q2 . This figure also shows that beyond the first
Born approximation, a difference in the scattering of electrons and of positrons will ap-
pear: the lowest order diagram
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U)

0

-

4,-

b

Fig. 3 - Relative cross sections for 187-
MeVelectrons andpositrons scattered from
8 8 Sr with an E2 excitation, compared with
the corresponding Born approximation.
(After Onley, Reynolds, and Wright (19).)

+ 
-

e ,e

is the same for e + or e -, while higher order diagrams such as the following are not.
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The second way heavier nuclei can be treated is by higher Born approximations. The
diagram immediately above refers to this. It also permits the inclusion of dispersion
effects (21), i.e., excitation of the intermediate nuclear states:

N*

Dispersion effects, for elastic electron scattering, will again deepen the diffraction min-
ima (which had been filled in by non-Born effects) by approximately 10% of the value of
the cross section at the minimum.

After this discussion of corrections to be applied, we list the formulas for the cross
section of inelastic electron scattering in the Born approximation, with the nucleus mak-
ing a transition from the ground state of spin J0 to an excited state of spin J. This in-
cludes the elastic scattering also. In the notation borrowed from Lewis and Walecka (22):

dor k2 877a2 V ( JoJ( 2 + t F eJ1 O( 2 mJoJ 2]} (13a)

dQ - k i A4 L(O) F q) TL
IL-o L=i

in which
Fl (q) J M(q)flJo> '  (13b)

cJ0 J(q) ; jo <J1T(() J o> ,  (13c)

and
MtJo Jm
TL0  (q) Jo' <JH IT (q) IJJo>. (13d)

Here, a = 1/137 is the fine structure constant; the four-momentum transfer squared is
A2 = q 2 

W
2 ; further notation is J0  (2J 0 

+ ) I1/ 2 There appear two kinematic factors .vi
and v, (longitudinal and transverse), given by

V1(6) (A
4
/q

4
) 2k Ik 2 cos 2' (14a)

and
2Ik k2 2 2 2

Vt2(k) 2 sin 2 (ki +k 2 )
2  

- 2klk2 cos
2  (14b)

2 (1 j

They multiply the dynamical quantities called form factors, FL' (Coulomb or longitudi-
nal), TJOJ (transverse electric) and Tm (transverse magnetic), which are expressed
as the reduced (double-barred) matrix elements of corresponding operators ML and T'm
in Eqs. (13b) to (13d). Reduced matrix elements are defined by the Wigner-Eckart the-
orem in the form
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<J/M/ MLM}J M > (MLMVJ 1MI ) <JL I MLJj >; (15)

i.e., the entire dependence on magnetic quantum numbers of the matrix element
<JiM f IMLM J.Mi > of the spherical tensor operator MLm of rank L is contained in the
Clebsch-Gordan coefficient (Ji Mi, LM IJiM). Note that the matrix elements appear in
Eq. (13a) as a multipole expansion of multipolarity L, of which only the Coulomb form
factor contains a monopole (L - 0) (an example of which is the elastic peak), whereas the
transverse matrix elements, due to the photon having spin 1, are dipole (L i) or higher.
The operators MLM,, TLM and TL34 are

MLM(g) = fd3r/P(r) jL(
q r) YLM(r), (16a)

where ]L(qr) is the spherical Bessel function,

e ej e j
TL4(q) = TL3(q) + TLM(q) (16b)

and

T M (q)- T= M (q) + TmL(q) (16c)
L L M LM

We split the transverse matrix elements into orbital contributions containing (r) and
spin contributions containing z(r ):

Teq ('.~ r j (qr) M (1 6d)

TL (q) q- f-  d r i(r) • V ×x]L(l YLL() ,(1 d

TL (Y) -- ri(r) - jL (qr) YLI.( r (16e )

TLM(q) qfd r p(r) jL(qr) YLL(r) (16f)

and

TM q )  3 (r) ' V L(qr) YLL(r) . (16g)

We use vector spherical harmonics defined by

Mm

with coordinate unit vectors in spherical components (23), m',. Only the vector spherical
harmonic with I = L appears, which is sometimes written XLM4(?), and satisfies

34

YLL(7) XLM() [L(L+ I) 2 LYLM(), (17b)

where L = -ir x V. Note that Eqs. (13b) to (13d) for the matrix elements, like Eqs. (16)
for the operators, are dimensionless.

A different notation for the differential cross section, going back to Alder et al. (2),
is (24) (for the Lth multipole):
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22 q2L 477(L+ 1)

k2 L[(2L+I)+ ] 2
B(CLq))1 (0) + B(EL, q) + B(M!L, 9) 1t(6)

L± j

with kinematic factors vl,, (0) related to the previous ones by

Vt (0) = 2klk 2 (1 - cOs 0))2 , (1 )

and with reduced matrix elements (i = C, E

B(iL, q) = j !<JMIM IM I
MLM

M) defined by

I 1 j / I M d o> 1 2 (18c)

i.e., in terms of the operators M/ which are related to the ones we used before by

(18d)

(18e)

and

MLM = - L 1 2 2L+ 1) T .

mlm -? L 2) 2L + ]) Mf, (18f)

Hence, we have the connecting relations

B(CL, q) q-2L [(2L+ 1)!!

B(EL, Y) L L [(2L

2 Flo (q)

2
21! ] CJ 0 )

and

B L - 2 L + I 11
2  

7,j 7 j 2
(MLq) + q (2L+ ) ] 2 ( )

Probably the simplest notation of the differential cross section known
of the "Mott cross section of the proton";

2 COS 2a2

4k12 sin
4

2

(19a)

(19b)

(19c)

is given in terms

(20a)

A 2  
= q

2  
-

2  
= 4k i k2 sin 2 (2

we have that

with

(18a)

(18b)

ML = -L( 2 L+ 1)!! MLM,

Using

(20b)

dc-/dQ A
4  

2
4

7T7cM q LP2
t ,

F
V I t jI

(20c)
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q ( tan2 - (20d)
Vl A2  A2 2  2

We have abbreviated the form factors by

22
F1

2 
- Xi FL(q) (20e)

L=o

and

Ft
2  TL 

0
(q) + TL  21(q) (20f)

L=i

Equations (20c) and (20d) are useful not only because they are simple but also because
they show under which condition one can obtain the often encountered approximation

4 d F 2  
+ + tan

2  Ft. (21)
4'ciiM -

This is the condition A2  q 2, or W
2 

<< q
2

. For the excitation of an C R 20 MeV level,
one has 2 10-2 fm -2, and Eq. (21)will be valid for q 2 >0. 1 fm-2 which is often the case.

We shall now prove the statement made after Eq. (11), that the i - A term contributes
the orbital magnetic moment interaction energy. The latter gives rise to the magnetic
form factor T'i which gets its contribution from the charge current. The entire mag-
netic form factor can be written

TLM(q) J d 3rPtot (r) .VxjL(qr) YLL(r) (22a)

(this is, however, true only for ground state form factors, i.e., elastic scattering), where

tot 
= IL + ILob ; (22b)

here 1 is the spin magnetization density of Eq. (10d), and the orbital magnetization den-
sity is given by

A I + (i)
f d-"- r,./ "" 3" 37A r -(r- i 3 q(i (220

/or b L~ 2 (2c
i =1

with L = r x p. As a proof, we note that according to Blatt and Weisskopf (9) the nuclear
charge current is derived from its magnetization density by

j(r) - Vx/,Lob(r) . (22d)

Inserting this into TLm(q) of Eq. (16e) and applying partial integration, we find

Mj d3 M(2e

rLM(q) fd3r orb "VxjL(qr) YLL' (22e)

i.e., an expression of the form of Eq. (16g), which proves Eq. (22a) and our statement.
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The contribution to the cross section equation (Eq. (13a)) of the Coulomb form factor
usually is larger than that of the transverse form factor by an order of magnitude. This
is true except in the vicinity of 0 = 00 and ) = 1800: at 1800 because

V, ( 1 8 0° )  = 0, (23a)

and at 0' because

I I m (V L A
4

) = 2k, k 2  , (23b)

]im(V/A
1

) = (k 1
2 

+ k22
) 12w 2 A

2 , (23c)

and A2 = k1 k 2 si n 2 (0/2) -0. This makes the contribution of the transverse part go to
infinity while that of the longitudinal part remains finite, but this singularity is really due
to our neglect of the electron mass. Retaining the latter, we would find (25) a ratio of
Coulomb/transverse terms of me/ i.e., still a large predominance of the transverse
terms.

At all intermediate angles, say 0 = 30' to 1200, the Coulomb terms dominate. It
turns out, however, that the transverse terms are more interesting, leading to a greater
variety of levels. Experiments at forward angles are difficult, but one now turns in-
creasingly to an investigation of electron scattering at large angles or at 1800 outright,
so that the transverse form factors are being studied.

One should point out here that photonuclear processes are described by the same
transverse matrix elements, Eqs. (16d) through (16g), that enter in inelastic electron
scattering. In fact, the photoabsorption cross section integrated over the level width is
given by

(k) dk (2 ) L I 2L-) I [(EL, (,,) + B(ML,) (24a)

and the gamma decay width of a level j decaying to the ground state .0 is given by

L±j 2
877a L+ 0 2L +, 1 0 B(EL,w) + B(ML,w)] (24b)

1. - L[(2L+1 )!!] j2

Note that only the matrix elements at q w appear, the momentum transfer for photon
reactions being fixed and equal to the energy transfer.

The advantages of the above-mentioned electron scattering experiments at 1800 are
threefold:

1. By Eq. (23a) the less interesting Coulomb term is removed and the transverse
terms that lead to a greater variety of nuclear levels (especially magnetic levels) can be
studied in detail.

2. We can reach the largest possible momentum transfers there, namely, q = 2k L - o).
Thus although at 1800 the same (transverse) form factors enter that also describe photo-
nuclear reactions, they generally appear at a much larger momentum transfer than in the
photonuclear case (where q - w) and may then lead to excitation probabilities of certain
states that are vastly different from the photoexcitation probabilities.
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3. As the elastic peak is removed or much reduced at 1800, so is the disturbing
background of the radiation tail.

The selection rules governing the nuclear matrix elements given in Eqs. (13b) to
(13d) are the same as the familiar selection rules of the photoexcitation matrix elements
which constitute their low-q limits; in particular FL(q) and TL(q) have the same selec-
tion rules. These are, (a) with regard to electric multipoles (for FL, Tj"),

change of parity = (-l)L (25a)

and (b) with regard to magnetic multipoles (for TL),

change of parity = (-l)L+I  (25b)

Of course, the familiar order-of-magnitude estimate of multipoles in photoexcitation
(Ref. 9, p. 592), namely,

IT2/TeI l_ (26a)

and

IT 1/ v1 c (26b)

(with v being the average nucleon velocity in the nucleus), no longer applies in electro-
excitation for those values of q where qR is no longer small compared to unity.

However, for Eqs. (24) relating to photon transitions, wR is small, and it may thus
be advantageous to consider the expressions of the operators, Eqs. (16) or Eqs. (19), in
the low-q limit. They are obtained simply by using the expansion of the Bessel functions,

(qr)L (27)
ILK/r) (2L+ l)!!

and we find, for example, for the B's, for q -* w<< R- 1:

B(CL, w) 0 ,;2 1<ji fd3r o(r) rLYL(T) IJ0>1 2
, (28a)

2 L 1 3I 2 (28b)B(EL, w) 0 L+ Iw 2<J dri(r) I VIr YLL(r) J J>I ,

and

B L ) 2 L f 3r [rL . + L(, . IJ 2 c
ML, o) - I~j I f Y - (r)(28c)

0L+1lLr YL ]J

the latter two quantities being familiar from the theory of nuclear photon transitions (9).
Note that to this order, only the orbital (i) contribution enters in B(EL, a). This has the
important consequence that in the low-q limit, B (CL, a)) and B(EL, w) may be related to
each other by use of the continuity equation, Eq. (10c). Indeed, one finds

B ( CL, w) % B ( EL, wo), (28d)

a relation known as the Siegert theorem. Its consequence is that if the matrix element
B( CL, c)) has been found experimentally to vanish or not to vanish, the same will then hold
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also for B(EL,wc), and similarly for B(CL, q) and B(EL, q) with small q, thus implying a
connection between transverse and longitudinal form factors.

Note finally that Eq. (28d) is exact (for small q), being based on the exact continuity
equation. The latter contains i, which has contributions both from the well-known
nucleon currents and from little-known (meson) "exchange currents" in the nucleus. In
the low-q limit, by using Eq. (28d) one is able to eliminate B(EL) in favor of B(CL), i.e.,
to express the effect of the little-known exchange currents in terms of the supposedly
better known charge densities, which is remarkable.

Form Factors in Elastic Electron Scattering

In elastic electron scattering, both the initial and final nuclear states are the ground
state. Hence, electron scattering can tell us about the nuclear ground state charge dis-
tribution and (at 180') the ground state magnetic moments.

The selection rules for the case of elastic scattering are more stringent than for the
general case. We have J = J.; therefore, the multipole order L is limited, for the first
and second terms of Eq. (13a), by

0 < L < 2J o  (first), 1 < L < 2J0 (second), (29a)

J 0 being the ground state nuclear spin; further, one has

no change of parity. (29b)

From Eqs. (25), one sees that Eq. (29b) eliminates all odd Coulomb and electric multi-
poles and all even magnetic multipoles, so that in principle CL and EL with L even, and ML
with L odd, should contribute. But considering the behavior under time reversal (26), and
requiring time reversal invariance, one finds that for the elastic form factors, only even
multipoles of CL and odd multipoles of EL and IL should be present. Since these require-
ments are contradictory for EL, it follows that in elastic scattering, only CL and ML will be
present, with even multipoles of CL and odd multipoles of ML. Furthermore, at 1800, the
odd multipoles of ML alone are present. The values of L are limited by Eq. (29a). In the
Born approximation, one has for the elastic cross section (27) (setting ,1 in Eqs. (13)):

dc 72 F(y) 2 (/ (J+l) (2J ±3q) 2

= 72 p+
o  

tan+ -QdI 180 J(2J - -2

+ qt2  
I +_ t an2 () ) [ I J +I /_j 2 (qI) 2

+ 2q
4  (J + 1)(J+ 2)(2, ) 22 , (q) 2} (30)4 4725 J(J - 1) (2J - 1) (

neglecting higher multipoles. The following static nuclear properties enter:

z = nuclear charge,

Q = nuclear spectroscopic quadrupole moment (only present for J > i),

-= nuclear magnetic dipole moment (only present for J > 1/2 ),

22 = nuclear magnetic octupole moment (only present for J > 3/2 ),

etc.
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Each of these terms is multiplied with its appropriate form factor F(q) . Two kinds of
observations are advantageous:

1. Scattering at small angles. Due to the factor q
2 4m2 (m = proton mass) the mag-

netic transitions are negligible here (except for heavy nuclei such as lead) and one can
measure the charge form factor (as done by Hofstadter) and (for deformed nuclei with spin
larger than 1/2) can measure the quadrupole (and higher) moments. These moments,
however, are inseparable from the form factors, and due to Eq. (30) also inseparable
from each other, so that they can be told apart only by assuming a model. It should be
noted, however, that use of an aligned nuclear target would separate the Coulomb moments
in a model-independent way (3). Figure 4 presents measurements by Stovall et al. (28)
on the charge and quadrupole from factors of iB. They are fit by a shell model wave
function with the choice Q = 3.72 fm 2

Fig. 4 - Charge and quadrupole form
factors of 'T B (data from Ref. 28)

F(q'tf)

2 2
e ff F -

0 1 2. 3. 4 5. 6. 7 8

2. Scattering at 180'. Since, as before, aM - o but aM tan 2 (0/ 2) remains finite, one
can here observe magnetic dipole, octupole, etc., moments of nuclear ground states. The
same remark about the impossibility of model-independent separation of the moments
applies. Figure 5 presents measurements of the Orsay group (29) on the magnetic dipole
and octupole form factors of " B, fitted by a shell model.

Quasielastic Scattering

Quasielastic scattering has been mentioned earlier; it gives rise to the broad peak
in the cross section above the giant resonances. It could be hoped that due to this process
of electron scattering by quasifree nucleons imbedded in nuclear matter, one could study
(a) the momentum distribution of a nucleon in the nucleus and (b) the nucleon pair corre-
lation, because the electrons scattered by nucleons located at r i and r 1 in the nucleus
interfere with a phase difference q . (r i - r j) ; thus the variation of cross section with q
should be directly related to the nuclear pair correlation function.
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Fig. 5 -Magnetic dipole and octupole
formfactorsof 11B (data from Ref. 29)

d'G-
d0d dE

Fig. 6 - Schematic spectra of quasielastically scat-
tered electrons, on the basis of a Fermi gas model.
Curve C shows the effect of short-range correlations.

(A) (After D. B. Isabelle, University of Paris Report
LAL 1152, 1966.)

0 P - 01

It turns out, however (30), that the long-range nucleon correlations based on the Pauli
principle dominate the quasielastic peak (curve A of Fig. 6) completely (on the basis of a
Fermi gas model). With a finite nucleus, the upper limit is smeared out (curve B). Only
at this upper limit would short-range correlations modify the picture (curve C), and the
smallness of the effect is obvious. Measurements have been made in only one instance
(31), and are shown in Fig. 7.

Sum rules for quasielastic scattering, i.e., the integral over the quasielastic peak,
have been evaluated by McVoy and Van Hove (32) by summing over all final states and
using the closure relation. It can be shown that in this way (5) magnetic moments of nu-
cleons in nuclear matter may be obtained by 1800 electron scattering.

Coincidence experiments (e, e 'p) have been performed by a group at Frascati (33).
Figure 8 shows as an example their results in 4 0 Ca. The scattered electron energy E
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Fig. 7 - Experimental data on the
quasielastic peak, obtained by
Leiss and Taylor. Calculation by
Czyz (Phys. Rev. 131:2141 (1963)).

ENERGY BELOW ELASTIC PEAK,MeV

Ca
E = 470 MeV

T = 116 MeV

A .p Ps- 0.15 sr

j
d /2 d5 2 Ji 

4
lr. Tr

600 640 670 760 E (MeV)

060 0 68'0 100 120E (MeVj

Fig. 8 - Electron-proton coincidence rate in Ca as
function of the incoming electron energy E0 and of
the missing energy K defined in Eq. (31). (After
Amaldi et al. (33).)

and the proton
varied. There
energy"

energy T are kept fixed, whereas the incident electron energy E 0 is
appear on such a plot several peaks; their position defines a "missing

EM = E0 -E- T,

which may be interpreted as the binding energy of the proton in the various nuclear
shells. One thus obtains binding energies of the i 1/2 shell equal to approximately
80 MeV, of the ip shell equal to approximately 35 MeV, etc., whereas the width of the
peaks indicates the lifetime of a hole in the shell.

(31)

0.10F

0.05H

560

COUNTING
RATE
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EXCITATION OF LEVELS BELOW THE GIANT RESONANCE

Nondynamic Analysis

This subsection on the nondynamic analysis of the excitation of levels below the giant
resonance is mainly based on the work of Willey (1) and Spamer (24). Considering the
electron scattering cross section in the form of Eq. (18a), the question arises as to how
one might best be able to separate experimentally the longitudinal from the transverse
contribution and to determine the multipolarity and the character of the transition (and
thus the parity). This will be described, but it should be kept in mind that much in our
arguments is based on the Born approximation.

We shall first, for a given state of excitation energy w, vary k1 and 0 in such a way
that the momentum transfer q, Eqs. (7), is kept constant. We may rewrite Eq. (18a) in
the form

X(L,q) + (L,q), (32)t(0),/k 2 Vt (0)

where t1 contains B(CL) and t, contains B(EL) or B(ML). The terms t, and t are con-
stant at constant q; but since we vary 0, we may plot the measured quantity X versus the
known function of 0, namely, v, (0)Iv, (0). Such a plot will yield a straight line, as shown in
Fig. 9. In this figure, the quantity X is plotted for the excitation of the 8.56- and 8.93-MeV
levels of ''B. For the former, we have a straight line with slope determined by t I, and
an intercept at the origin t,, ; for the latter we have a horizontal straight line with inter-
cept t, (and a slope t I = 0). We remember that t, contains the Coulomb matrix element
ML and that t, contains electric form factors T1 - T" + 1/I' and/or magnetic form factors
T' - T)71 + Tm1 ; both of the latter ones consist of charge current terms T)J and spin flip
terms T}". What we can learn from this analysis is as follows.

1. If we find t- 0 but , = 0, i.e., the zero intercept at the origin, this means ML o.
From the Siegert theorem, Eq. (28d), one would then find I'c F o, contrary to the fact that

t, - o. The only possibility of this to happen
is for monopole transitions, L = 0, which oc-

do k R 0-7 cur for ML only (L > 0) but not for T, (L > 1).
dQ vt o B11 8.56 MeV Such transitions cannot be seen at 1800,

since there, ?, = o. An example of a mono-
3 pole excitation is discussed by Werntz and

l berall (34), who interpret the 20.4-MeV
state seen by electroexcitation of the a par-
ticle (35) in this way.

2 2. If we find tI I 0 (i.e., X horizontal),
this implies M - o, and from the Siegert
theorem (at small enough q) it follows that
, - = 0, and the transition is either mag-

I netic, 7m, with selection rule ATT (-)L+,
or it is a spin-flip electric transition, YL,
with A77 = (-I)L

3. If we find tI o 0 (x an inclined

(1650 ) (1410) (1290) (1170) straight line), then ML # 0 and from the

0 0.1 0.2 0.3 v/V Siegert theorem, ,1 j o; i.e., we have an
electric transition with AT (_j)L, giving a

Fig. 9 - Angular dependence of the It, 0 (except at L- o). The transition can
inelastic electron scattering cross thus be seen at 0 = 180, the angle at which
section to the 8.56- and 8.93-MeV the transverse excitations show up best, as
levels in ''B. (After Spamer (24).) mentioned earlier.
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4. We see that it is still important to be able to vary the angle 0 (away from the
preferred position of 180') so that we may sort out (to some extent) the character and
parity of the transitions. It is of course true that putting ourselves at 0 = 1800 rids us of
the less interesting Coulomb transitions ML which swamp almost all else at intermediate
angles; so we can see more states (namely, those that have only transverse excitation
strength), especially magnetic ones, at 1800. But the Darmstadt experiments (24) show
that a variation of 9 away from 1800 is useful, since it gives more information, as was
shown, such as whether a transition is completely transverse or not.

We still need means to find out, if possible, (a) the multipole order L and (b) the
parities of the observed transitions. For this purpose, it is now necessary to measure
the q dependence of the excitation strength. Indeed, plots such as Fig. 9 obtained for a
given constant q may be made for several different q's, and the q dependence of tI and
t thus obtained along a vertical line, i.e., at constant 0.

By just looking at the scattered electron spectra at a given angle for different inci-
dent energies, such as the Darmstadt spectra of Fig. 10, for scattering of 40- or 56-
MeV electrons from 9 Be, the relative q dependence of different levels is obvious. The
strength of the 16.97-MeV level decreases with increasing q relative to the strengths of
the 16.65- and 17.50-MeV levels. Theoretically, the q dependence of the B's is involved,
but it simplifies greatly if one works at low enough values of q (< 80-100 MeV/c) so that
only the lowest terms in an expansion of powers of q need be retained; indeed, the power
of q with which the cross section varies indicates directly the multipole order. Such ex-
pansions are given in the literature (1,37); the results are shown in Table 2. Since one
wants to compare the different theoretical predictions with the measured q dependence
of one given state of given parity, one must compare Al L ± to EL, which explains the
last two columns. From the column giving the example of L = 1, one sees that from parity
alone, V2 and El transitions can interfere for one given level, but one may be able to tell
which one predominates (if any) from the different q dependence. From the L = 2 column,
one sees that E2, MI interference is possible, with the same q dependence.

Further statements that can be made on the basis of the q dependence of excitation
strengths are the following:

Counts
PC Eo =56 MeV

8 - 153 0

7 -

6 -

Fig. 10 - Spectrum of inelas-
tically scattered electrons from
9 Be. The inelastic momentum
transfer is q - 0.467 fm-1 in the
upper part of the figure and q -

0.310 fm -1 in the lower part of
the figure. (After Ref. 36.)

12

EX 16.65 MeV 

38 39

E0 =40 MeV
153 0 EX=16.97 MeV

EX  17.50 MeV EX = 16.65 MeV

22 23
Energy of Scattered Electrons (MeV)



H. IUBERALL

Table 2
The q Dependence of Cross Sections in the

Low-q Limit (for Fixed Angle 0)

Examples of q
Cross Section q Dependence Dependence

L = I L - 2

do- (CL) (qfe) 21- ci( C oq2 C2 +oc"q 4

d (EL) * (W/q) 2(qR)2L 1  (0) El- mqO E2 + "q 2

do- (M L - 1) ( q/ M)
2 

(q//) 2L-4 V (A) - ]+ cc q
2

dc7 (M L+ 1) (q/m)2 (qR)2L v (O) M2- - q4  M3+c _q6

*Willey (1) disregards the P9 term which is not generally justified, and

thus obtains here (qm) 2 (qI ) z Lqt(6) . Note that the limits shown in Table
2 are valid for general transitions and not just for the single particle
transitions considered by Willey.

1. For the case t z I o, the transition has an electric part, whose selection rules
are thus known to apply. The q dependence can be measured as was described. Figure
11 shows as an example the excitation of the 4.46-MeV level in I 1B. The quantity x has
been plotted vs v, (0)/v, (A) for three fixed values of q; three straight lines result. The
successive slopes of the three lines measure the q dependence of t I, whereas the three
successive intercepts at the origin give the q dependence of t . If we find iI(q) 2 , the
transition is cv-, so the state is J I - for a J0 = ° + ground state for example; if we find
t(q) q4, the transition is C2+ (Table 2). The q dependence of tt(q), obtained from the
intercepts, must then agree with the second line of Table 2 for the transverse electric
part present, which may serve as a check. But a magnetic admixture may be present in
the transverse part, such as M2- with E-, or Mi + with E2+ (in the former admixture, the
q dependence of t would depend on the mixture).

2. For the case t1  0, t t consists only of TL, or of an electric spin flip term T['.
Figure 12 presents an example of 1 0; X is plotted vs v, /,v, for three values of q for
the 5.04-MeV level of I'B. The q dependence can be read off from the ordinate levels of
the horizontal lines. From Table 2, if -q 4 is found, the transition is M2-; ,q 2 may be
Ml + , or E2 + (spin flip) which cannot be distinguished, so that only the fact that A77 = +I is
established.

The extrapolation of the q dependence of B( L, q) down to y w furnishes the ground
state radiative width of the state, given (3) by

F 87ac L+1 2J i +I c2L+1 B(L,u), (33)[(2L + 1) !! 2 L 2J / + I

which can be independently obtained by nuclear resonance scattering (38), thus providing
a crosscheck. F usually is measured in Weisskopf units (9) Fw, which provide a rough
single-particle estimate for the EL or ML radiative transition. If we find /I'Fw >> , the
transition can be considered collective.

Besides the leading terms in a power series expansion in q as was discussed, one
will of course want to measure the q dependence of the matrix elements further out (24).
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0.22

0.18

do- ki2  
[10-6]

d . T I

0.20rfm-
2

0.10 fm-2

0.14

04 vI/V t

Fig. 11 - Angular distribu-
tions at various constant in-
elastic momentum transfers
q (indicated in the diagram)
for the 4.46-MeV transition
in 1 B. The slope of the
straight lines gives the longi-
tudinal part, and the inter-
section with the ordinate scale
gives the transverse part of
the cross section. (After H.
Artus, P. Brix, H. G. Clerc,
et al., Proceedings of the In-
ternational Conference on Nu-
clear Physics, Gatlinburg,
Tenn., Sept. 12-16, 1966.)

[ B(EL, q)]1 / 2 Ct)B(EL, 0) q

[ B(ML, qt)1 2

B(ML, 0)]

Fig. 12 - Same as Fig. 11, for
the 5.04-MeV transition in I 'B
(same reference)

This provides an additional method of
identification for the multipolarity of the
transition, besides leading to the meas-
urement of a "transition radius" for the
nuclear transition in question. One finds
by expansion (24,37):

B(CL, q) ] / 2_B(CL, 0)]j

q
2 

R 2

1 I +

2( L - 3)

L (L+ 3) r ..

2(L+ 1)(2L + 3)

(Li3)q
2  t2

L + 3) 
.+

2( L+ 1) ( 2L + 3)

(34a)

(34b)

(34c)

Plotting the measured values for [B (q) B(0) ] 1/2 vs q2 , one should obtain a descending
straight line whose slope determines

<r L+2>/ <rL > (35)

For example, consider an M2 transition. If it had erroneously been assumed to be an 4i

transition, the "B" thus determined from the measurement of dg is really the quantity

B11 :4.46 MeV B11 :5.04 MeV

(129*)

0.2

(104' )
0.4 v / vt

and
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q 2 B(M/2, q), which leads to an incorrect slope that increases. If it were taken for an M3
transition, the "B" really is q-2 B(M2, q), which decreases too fast with q2, thus leading to
an unreasonably large R, .. For a concrete example, namely the 8.93-MeV level in 1 Be,
assuming an M2 transition would lead to H', = 33 fm 2, whereas the ground state < r 2 

>0 is
only 5.7 fM 2 (R2, is expected to be close to <p 2>0). This transition therefore must be ii

andwith a 3/2- ground state, this agrees with the J -5/2- assignment of the excited level,
as determined by other methods.

This illustrates (24) how, with a small linac limited in energy range (but with excel-
lent resolution), states may be identified and their spin and parities, ground state radia-
tive widths, and transition radii determined from whatever limited range of variation of
q is available. The excitation of levels in the region below the giant resonances of 2 4Mg
and 2 6 Mg has been studied, and the character of the transitions determined in this way,
by the Darmstadt group (39), as shown in Figs. 13a and 13b. In Figs. 14a, 14b, and 14c
we present 180' electron scattering data obtained by the NRL group (L. W. Fagg et al.,
tobe published) for 2 4 Mg, 2 5 Mg, and 2 6 Mg, which include the giant resonance region.

Dynamic Analysis

This subsection, which introduces a dynamic analysis, is based on Kurath's (40)
analysis of collective magnetic levels below the giant resonance, using sum rule tech-
niques. Strong Al levels (of collective character) are predicted in even 7'- 0 nuclei.

In our expression for the transverse magnetic matrix element,

Tm - - '- + T r/' (36)

the magnetic spin flip part T '"A contains the spin magnetic moment operator

Mg 24

Eo= 51,0 MeV
0 =129 o

,% ;\ Y( '[ \ A v7,63 E
8,37I Ef

I 9,30 E

10.35 9,97M
10.70 E2 M1

10,93 MI(-E)

11.72 145 E2

I ' 13,85
14,30 14,0

14,71 14,48

1 1 12,80 12,47

13.37 13,05

Counts
PC

45

40

35

30

25

15 14 13 12 11
Excitation Energy (MeV)

10 9 8 7

Fig. 13a - Spectrum of inelastically scattered electrons from 2 1 Mg.
The arrows indicate the measured excitation energies in MeV. The
type of transition, k (electric) or M (magnetic) is indicated. (After 0.
Titze and E. Spamer, Z. Naturforsch. 2.la:1504 (1966).)
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1,39~)7,78 E
S 8,22 M
8,57 M

8,91 M
9,25 E

9,58 M

10,20 9,80
10,67 M-(E) M
WoE

t t t 11,76
13,34 12,79 12,26 E-M

M E M

15 14 13 12 11 10 9 8 7
Excitation Energy (MeV)

Fig. 13b - Same as Fig. 13a, for 2 6 Mg (same reference)

180' ELECTRON SCATTERING
BY " Mg

: , E0 559MeV P2I10 72 MeV - 5

-205MeV 4 >

8MeV -4

i 3 'o
17. 1MeV 13.4MeV 996 MeV -

15 0 Me V
I29MoV

20 16
EXCITATION (MeV)

12 8

Fig. 14a - Spectrum of inelastically scattered
electrons at 1800 from 2 4 Mg, including the giant
resonance region. (After L. W. Fagg et al.,
Phys. Rev., to be published.)

/L +H- 2 IP+/J-,L0 +/"L 0 (3 7a)

summed over proton and neutron spins separately, and with proton or neutron magnetic
moments g, = 2.79 or /,, = 1.91. This operator can be written as

(3 7b)
A + -(

s 
)A -t i

3_ _=o i i

Mg 26

Eo= 51,2MeV
G =153 0

Counts
PC

-12

- 11

- 10

.9

8

.7Jo

I
2n?,
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15 10
EXCITATION (Mev)

Fig. 14b - Same as Fig. 14a, for 2 5
Mg

(same reference)

25 20 15 I0
XCITATION (MeV)

5 0

Fig. 14c - Same as Fig. 14a, for 2 6Mg
(same reference)

L = _ Zicrn + 4p 1L'v

7 ,si) ort) (37c)

the first term causing AT = 0 transitions, and the second term causing AT =0, 1 transi-
tions. We shall consider even nuclei with a T = 0 ground state, so the first term excites
T = 0 levels and the second term excites T = 1 levels. Since (0-p + /n)/2 = 0.44 and
(iL - A4n)/2 = 2.35, the excitation of the T = 0 levels is strongly suppressed (the squares
of these terms enter in the probabilities); this is known as Morpurgo's selection rule.
The same rule holds for the total magnetic moment operator which governs all of the Tm
transitions,
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A ]: 17.5 Mev
- d(
2mn 2 3 2 i C3 gd. 1+

C

since the additional orbital motion term also 15.1MQV

contains T 3 , i.e., an isovector transition. We shall 1+

thus, for the I' = 0 nuclei, consider only the strong
'F = 1 level excitations. These levels necessarily 13.4 Mev

lie higher in energy, since the two T = 1, 77= ±1 gd. V

neighbors (Fig. 15 shows this isotriplet in 1
2C)

have higher lying ground states.

Using the shell model for the excited states, T 1, T1 -1 T, 0 T 3 I

such as for the ip shell nuclei, we describe them
by various configurations of the ip 3/2 and ip 1/2
subshells, both unfilled. The interaction 0

gd. 0.

,,+ a 7 s + V (38) TO

12 B  12c  12 N

including a spin orbit force with strength param-
eter (a produces mixed configurations for the var- Fig. 15 - Ground state of 12 C,

ious excited states; parameters are determined by and lowest '= 1 isotriplet of

fitting to the lowest few excited levels of some of levels in 1
2 B, 12C, and 1 2

N

the nuclei in question. This program has been
carried out by Kurath previously (41). With the
wave functions thus obtained, we calculate B (M, w), i.e., the low-q approximation. For
12C the values of B (Ma)) for the four lowest calculated Al levels (all in the range from
about 10 to 15 MeV) are shown in Table 3, for two values of the spin-orbit coupling pa-
rameter a K (lK being a representative integral of the two-body interaction). The value
a, = 4.5 is the one leading to better agreement between calculated and observed level
schemes. One notes that most of the magnetic dipole strength, when the spin-orbit cou-
pling is switched on and mixes the configurations, becomes concentrated in the lowest
level, which might then be called a "giant" (or at least, collective) magnetic dipole reso-
nance. The situation is exactly opposite, as we shall see later, to that of the giant elec-
tric dipole resonance near 20 MeV, where configuration mixing tends to concentrate the
strength in the highest possible level.

Table 3
Values of B(Ml,w) of the Four Lowest Calculated Ml Levels
in ' 2 C, for Two Values of the Spin-Orbit Parameter alK

B(M1, w)
M Level

alK = 1.5 al = 4.5

Highest (= 15 MeV) 0.2 0.2

1.1 0.3

1.0 0.4

Lowest (1 10 MeV) 1.3 10.0

The 4n + 2 nuclei of the p shell show a similar picture. In 6 Li, a strong Mi state at
low energy concentrates 90% of all the Al strength, and in 14 N, again 90% of the Ml
strength lies in a level near 10 MeV (experimentally, there are two levels, at 9.2 and
10.4 MeV).
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For 2s-ld shell nuclei, no such wave functions were available, so Kurath estimated
M strengths by the use of sum rules. The usual way such sum rules are obtained (e.g.,
Austern and Sachs (42)) is by taking the ground state expectation value of the double
commutator of H with p. and using closure; then

(E,, <0 [ ,(H,)]IO> (39a)

The left-hand side gives the B(MI) strengths, energy-weighted so as to favor the higher
levels; the right-hand side can be evaluated explicitly and is given mainly by the spin-
orbit term proportional to a/K. Kurath in this way determined the fraction of the total
strength quoted for the individual states of the p shell nuclei. An extrapolation of Eq.
(39a) to 2s-ld shell nuclei can be made by again assuming that the lowest state carries
most of the strength, and by setting the right-hand side approximately equal to the result
of the spin-orbit term,

(E 0 -E0 ) (M1) -a (4C
0 

- - + s) <0 1  Is 1 0> (39b)

For a nucleon in the d 5/2 (or d 3/2) shell, we have

I s (2 2-s2) = 1 (or -1) (39c)
2

(setting I :5/2 or 3/ 2, 1 2 , 1/2). This shows that as the ld 5 /2 shell fills up, the
right-hand side of Eq. (39b) should become largest, and should subsequently drop again
as the Id 3/2 shell fills. The strongest M levels should thus be found for nuclei around
28 Si or 32S, and not for nuclei near 160 or 4 0 Ca.

As for experiments, we mention the famous strong Mi levels: 1+ at 15.1 MeV in ' 2 C

and 0 + at 3.56 MeV in Li 6 . Experiments on the 12C level were made by Goldemberg et
al. (43) at Stanford, by Dudelzak and Taylor (44) at Orsay, and by Gudden (45) at Darm-
stadt. Figure 16 presents the Stanford result, showing the peak in the scattered electron
spectrum for various electron energies, at 1800. An analysis of Walecka in terms of a
li-coupling shell model, shown in Fig. 17, gave the right shape of the 7 dependence, but
the theoretical absolute magnitude was about four times too high. Kurath (46), using his
intermediate-coupling wave functions, got the right magnitude in addition to the right
shape (Fig. 18) by adjusting the spin-orbit parameter. The same figure also shows the
data and theoretical fits for the O+, 3.56-MeV level of 6 Li.

THE GOLDHABER-TELLER AND STEINWEDEL-JENSEN
MODELS FOR THE GIANT RESONANCE

The so-called giant resonance was first seen in photonuclear reactions such as
(, n), (y, p), or fn total photon absorption in nuclei (47). The experiments were originally
done using a bremsstrahlung spectrum of photons, but the preferable technique of using
monochromatic photon beams (from positron annihilation) has now been accomplished
(48). Increasing the photon energy (or the bremsstrahlung endpoint, as the case may be),
one first observes the relatively weak and narrow magnetic levels described in the pre-
ceding section, until at approximately 20 MeV for light nuclei (approximately 15 MeV for
heavy ones) the cross section suddenly rises to tens or even hundreds of millibarns and
forms a broad hump of width of several MeV which, depending on the nucleus, may show
considerable fine structure. Above the giant resonance, the cross section falls off again
and shows little structure. Figure 19 presents the giant resonance as seen (49) in the (y, p)
cross section (with varying angles of the emitted proton) for 16 0, and Fig. 20 shows total
photon absorption cross sections (50) for 12 C and 160.
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Fig. 17 - The experimental values
of the quantity(/g

2 ) I<I+I IT aq(,) I 10+>j,

as a function of the momentum
transfer (data from Ref. 43). The
theoretical curve had to be divided
by a factor of 3.8 to fit the data.
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Fig. 18 - The reduced transition probability
B(M, 1- 0) for 12 C and 6 Li as a function of
q 2 . The curves are calculated for different
values of the harmonic-oscillator parame-
ter a= (-i/ma) 1/2, which is given in units of
fermis. (After Ref. 46.)
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Excitation Energy (MeV)

Fig. 19 - Photoproton cross section of 160 obtained at angles of 450,
90', and 12.0 using 26-MeV bremsstrahlung (plots from Ref. 49)

Starting from a 0+, ''= 0 ground state such as in 12C or 160, the giant resonance
must be I-, T = 1, for the following reason: The transition amplitude is given by 'FIM of
Eqs. (16), with q a for photons. The order-of-magnitude estimates of Eqs. (26) hold, so
only the electric dipole can lead to as large a transition strength as is observed. By the
Siegert theorem, Eq. (28d), the q-a limit of TFj(q) leads to the transition probability

B (EL,ac) j2 I<j iI fd 3r p(r) r L 'FL( r) 1 2 (40a)

which for L =1 just becomes the familiar matrix element of o

B(EI,a) - 1<1l f dr 3 p(r)z 100>12 (40b)

and using the transition charge density of Eq. (lOa), we have

A I+T( i)
1+3

B(El,a) - < 0 e o00> 2

A A

1< 1o 1 5 o Ilo o > + < 1 01 i 3 ) 1 ° [
i =I i =]

The first term, which is a A'T = 0 term, vanishes because

2 0
-1=

(40c)

(40d)

(41)
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(a) Cross sections for "2 C. The solid line is the
total photonuclear cross section obtained by the
Lebedev group (Burgov et al., Inst. for Theor. and
Exp. Physics, Moscow, J963 (unpublished)), plotted
using the right-hand ordinate.

-(y, n)
mb

(b) Cross sections for 160. The solid line is the
(y, n)cross section obtainedbythe Livermoregroup
(Bramblett et al., Phys. Rev. 133:B869 (1964)).

Fig. 20 - Total photonuclear cross sections for 1
2 C

and "60 (points from an experiment at NBS (50))
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is the z coordinate of the center of mass. Thus only the second term contributes to the
transition, and it implies AT = 1. (These and other selection rules were discussed by
Gell-Mann and Telegdi (51).) As a consequence, the states excited by dipole photo-
absorption have an isospin

Texc Tgd , Tgd + 1 (42a)

if Tgd 0, or

Texc = Tgd + (42b)

if Tgd = 0 (for
sibility Te xc
usually have

self-conjugate nuclei such as 12C and 16 0). Note that in Eq. (42a) the pos-
Tgd - 1 does not appear, since for the ground states of stable nuclei, we
'T3gdI = Tgd, and since Eqs. (40) involve only -F3, we also have T3,xo = T3gd.

Since for T 0 nuclei, Texc = 1, the giant dipole resonance forms an isotriplet, whose
T3 ± +1 components must lie in the neighboring T= i nuclei. This is shown in Fig. 21 for
12C. Excitation of these "analog" giant resonances can occur by AT3 -1 processes such
as muon or pion capture or neutrino absorption and is discussed in the literature (52).
At this point we only remark that from the higher-lying ground states of the neighboring
T3 = +1 nuclei, it follows that electric dipole states in the T = 0 nucleus will lie only
above the ground state energy of the T = i neighbor, and the states below this region,
which are seen strongly in photon transitions, will be magnetic dipole levels.

T3 = -I

24.0 0-

23.5 1-

20.5 1- i

17.4 _ 2-

13.4 1
-
4

12 
B

T3 =0

26.0 0-
S

25.5 1-

22.5 1-

19.0 2- si

T3 +1
29.0 0-

28.5 1-

25.0 1-

21.5 2- si

17.5 1
+

12 N

0 0+

1 2
C

Fig. 21 - T 1 giant resonance levels in
1

2 C, and their T3 -+l isotopic analogs

in 1
2 B and 12 N. The terminology is

from the generalized Goldhaber-Teller
model.
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The Goldhaber-Teller Model

The large cross section of the giant resonance leaves no doubt that the excitation
comes about by a collective motion

b)
Spin-isospin wave

(s )

of the nucleus, producing as large a dipole moment
as possible. In their original paper (53) Goldhaber
and Teller therefore suggested that the excited
state is a harmonic vibration of the protons of the
nucleus as a whole against the neutrons as a whole
(Fig. 22a). Assuming that the charge density /,(r)

of the ground state, taken to be spherically sym-
metric, gets displaced rigidly (54), one finds

po(r) -+ p(r) -- o (r - I d

1
po(r) - I d' _ p (r )

Spin wove
(s)

Fig. 22 - Collective dipole
vibrations of nuclear matter:
modes of the generalized
Goldhaber-Teller (GT)
model. In mode (a), protons
with both spin up (pt) and
spin down (pi) move in phase
and are indicated collec-
tively as p, whereas in modes
(b) and (c) p T and p.i move
out of phase and are indi-
cated separately.

the oscillator, one has in spherical

(43a)

where d is the displacement vector between the
centers of the neutron sphere and the proton sphere
(we assume Z - N). Satisfying the continuity equa-
tion, V.i - ", one obtains the charge current

I *(r) :- 2 dp (r). (43b)

Now d is considered the coordinate of a harmonic
oscillator, with a Hamiltonian

2 2
p + - I* -2 d2 ;

2m* 2
(44)

its reduced mass is given by * = ( 1/4) Am, where m
is the nucleon mass, and c is its eigenfrequency,
which we must take from experiment. Quantizing

components (with / - i in the present case)

d 2n (ma.l)I) 2 [atm + (- a_ m

and

and the canonical formalism gives the momentum

The Hamiltonian becomes as usual

a C

( a)
Isospin wove

(or CT )

(45a)

(45b)

(45c)

(46)
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if one uses the commutation rules

[alm, a, im [at , ,m'] a 0 (47a)

and
[alm, alm] , , mm' (47b)

between creation operators al and annihilation operators al. m Thus the part of i that
creates one phonon I m, becomes

(m r =) I ia) aimpo() (48a)]' r (r) 2 \2m*/

and the creation part of P(r) becomes

p(ar)(r) -_ (-l) - ( a 2 ) Yim () am 2 (r). (48b)

m

Inserting these in Eqs. (16), we obtain the reduced matrix elements

<1-11M, 110>-A q F(q) (72 )1
/ 

2 (49a)

and

<1- T ey > -z - A aF(q) / 4,T V 2 (49b)
2 4u7 Ama 1 )

for a creation of a 1 dipole phonon. It is remarkable that these transition form factors
have been expressed by the ground state charge form factor,

F(q) - fd3r iq'r p 0(r) = 47 fd'r j 0 (qr) Po(r) , (49c)

but this is a consequence of our assumption that the proton distribution as a whole gets
displaced rigidly. It should also be mentioned that

<0-Tmjjjo> = 0 (49d)

from parity considerations.

But what about contributions from the nuclear magnetization? For photon transi-
tions at q = a, Eq. (24b), it is well known that these contributions are small. For electron
scattering with large q's, however, spin flip terms may come in strongly. In the collec-
tive model with pure charge vibration as described above, there is no possibility for a
spin flip; thus it was stated in Ref. 54 that the Goldhaber-Teller model does not lead to a
transition magnetization density. This is however correct only forthe original version
of the model. To give full account of the experiments, the Goldhaber-Teller model must
be generalized in such a way that spin flip transitions can occur also in the framework of
the giant resonance multiplet. This generalization can be made on the basis of the fol-
lowing consideration. It has been shown that collective vibrations of nuclear matter do
not involve two fluids only, those of protons and of neutrons, but involve four fluids (55-
57), those of protons with spin up (pt), protons with spin down (p), neutrons with spin up
(n t), and neutrons with spin down (ni), and possible modes of nuclear vibrations are given



H. UBERALL

by the in-phase displacement of any two of these four fluids, vibrating 1800 out of phase
against the remaining two fluids. Applied to the Goldhaber-Teller picture, one obtains
three possible modes of collective vibrations, shown in Fig. 22. Part (a), the original
Goldhaber-Teller (GT) mode, will be called isospin vibration (i), part (b) will be called
spin-isospin vibration (si), and part (c) will be called spin vibration (s), for obvious rea-
sons. A mode with all four fluids moving in phase is not possible for the dipole deforma-
tions of Fig. 22, since it would not leave the center of mass at rest. Such a mode does
occur, however, if nuclear matter gets displaced in a monopole or quadrupole deforma-
tion, as will be described.

At this point, we should call attention to the distinction to be observed between the
multipolarity of the nuclear matter deformation (described by 1, the orbital angular
momentum quantum number) and the multipolarity of the electromagnetic transition, L in
Eqs. (13). For example, Fig. 22 depicts only nuclear dipole deformations, 1 =- 1-; never-
theless, as we shall see, part (b) of Fig. 22 gives rise, among other transitions, to a
magnetic quadrupole giant resonance transition, L = 2-, whereas part (a) leads to the
usual electric dipole transition, L = 1-, seen in the photonuclear reactions.

A monopole vibration of nuclear matter, I = o, can be described by, for example,
introducing an oscillating radial scale factor in the ground state charge distribution
analogously to Eq. (43a):

Po(r) -' p(r) = Np o [r(] + )] Npo(r) + 7prNpo(P) , (50a)

and one has to relax the usual assumption of incompressibility of nuclear matter, which
introduces a renormalization factor N to preserve conservation of matter as a whole.
One can show that this leads to

0 (p ) 'p0 (r) + 3 r0- ( p 0 (r) . (5Ob)

The scale factor o (again considered the coordinate of a linear harmonic oscillator which
we quantize) is a scalar and thus corresponds to I = 0+, whereas our previous vector d,
with spherical components

dim V yl ( )I (51)

corresponds to / = I-. Figure 23 shows the four possible modes of nuclear monopole vi-
brations: (a) to (c) are again i, si, and s, respectively, whereas (d) is the mode in which
all four nucleon fluids vibrate in phase. Since monopole vibrations depend on the nuclear
matter being compressible, the eigenfrequencies a in general will lie higher than the
dipole frequencies a. This effect is less pronounced, however, for lighter nuclei. For
example, for 4 He the 0+, 20.4-Mev level seen in inelastic electron scattering (35) (dashed
curve, Fig. 24) could therefore be interpreted (34) as a breathing-mode level, with a
monopole matrix element obtained by using the transition charge density of Eq. (50b),
leading to the cross section

d zI Z (q dF (q) (52)
d- 

=  
R? 2mn A dq

given in terms of the derivative of the ground state form factor. Figure 25 shows a
comparison of this cross section with experiment; -the factor 2 by which the theory is too
high is not unusual for the collective model.

Collective quadrupole vibrations of nuclear matter, 1 2 ', can be described by a
deformation of the ground state charge density according to (58)
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Fig. 23 - Collective mono-
pole vibrations of nuclear
matter: modes of the gen-
eralized Goldhaber-Te ller
model
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Fig. 24 - Excitation functions
of 4He states by inelastic pro-
ton scattering (solid curve) and
electron scattering (dashed
curve). After Ref. 35 (electron
scattering) and L. E. Williams,
Phys. Rev. Lett. 15:170 (1965)
(proton scattering).
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Fig. 25 - Inelastic electron scat-
tering cross section for the 20.4-
MeV level in 4 He: comparison of
experiment with the breathing mode
collective model (34)

2.0

(53)

expanding again, and using Eqs. (45a) and (45b). The corresponding four modes of col-
lective nuclear vibrations are shown in Fig. 26. We encounter vibrations of ellipsoidal
deformations against each other, where for example in the isospin mode (a), the protons
prolate at the same time that the neutrons oblate. Again mode (d), where all four fluids
prolate and oblate in phase, is possible here.

Going back to the dipole deformation of Eqs. (43) and Fig. 22, we now describe how
the Goldhaber-Teller model can be generalized to include spin-isospin vibrations. In
quantum mechanics, matrix elements of an operator o can be rewritten in terms of a
density matrix ¢, such that

<0> - T7, O. (54)

For ML and T i involving p and i, the operator is essentially

P0 I + L d 2M Y 2M(

r I 7n
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O M (1 + -
2 3'

(54a)

for T/1, the corresponding operator is,
ofpi due to Eq. (37c) and Morpurgo's rule,

essentially

0 Cc T 30- (54b)
(0) (b

Isospir Spin - isospin

(d)

In phase

Fig. 26 - Collective quadrupole vibra-
tions of nuclear matter: modes of the
generalized Goldhaber-Teller model

I I (I +T3) a- (  + 2 (

[2 2 1(

Now we can construct transition density
matrices 0 corresponding to the three
dipole modes of Fig. 22. Since (I + T3)/2

describes protons, (1 - T 3 ) /2 describes
neutrons, (1 + -3 ) /2 describes nucleons
with spin up, and (1 - -3) /2 describes
nucleons with spin down; then for the
isospin mode, the density matrices are
simply given by

'ki = ( I + - ) / 0 r d5a

+ I (1 - T3 0 (r +±-
2 3)PO( 2

(55a)

Likewise, for the two other dipole modes,
we find

T-) + (1 )] 0, (I - dl)

+ 2 -T-3) - +a-3) + - + T3) - (1 -3d1 r i- +- )

+a 3 ) Po (Ir - 1dl 1 a 3 ) p0 (r 2+d~

Expanding, we get

4d 14 T 3 d'Vp(r)

4 3 PO (

and

(56a)

(56b)

(56c)

These equations are worth studying. First, we note that the present model is an LS
coupling model, since the orbital angular momentum operators d - Y,(d) and the spin
operators a 3 occur in factorized form. Second, we see that j gives rise to AT = .,
AS : 0 transitions, 8 i to AT = I, AS : i transitions, and , to AT= 0, AS - i transitions,
besides the Al = - transition that is common to all three. The changes in 1 and S will of
course combine to a total angular momentum change AL which gives the multipolarity of

and

1
2

(55b)

(55c)
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the electromagnetic transition. For i, one has therefore AT= 1, AL = 1-; for si, one has
AT= ,AL=O-, I-, 2-; and for s, one has AT=O, AL=0-, 1-, 2-. Starting with 0+, T=0
ground state of a self-conjugate nucleus, one thus arrives at the giant resonance multi-
plet created by a collective dipole vibration, 1 = -, of the nuclear matter shown in Table
4. Here, L is the multipolarity of the electromagnetic transition, but is also equal to J,
the spin of the various giant resonance levels, since J0 = 0. N is the number of states
(including the T 3 = ±1 components in the neighboring nuclei). The entire multiplet of
Table 4, which is degenerate in energy to lowest order, is an example (59) of an SUn
multiplet of Wigner's theory of nuclear supermultiplets (60). If the nuclear forces are
spin and charge independent (which is approximately satisfied in practice), the nuclear
Hamiltonian is invariant not only under the SU2 subgroups of spin and isospin but under
the full Lie group, SU4, in which a vector operator has the 15 components

aF r 2 T . W, (57a)

' = L . a-_, J, (5 7b)

and

S(57c

Table 4
The Giant Resonance Multiplet of a Self-Conjugate Nucleus,
Corresponding to Dipole Vibrations of Nuclear Matter
(Shown in Fig. 22)

Mode T 1 S L -J N

i 1 1 0 1 3

1 1- 1 0-1-2- 9

a 0 1 1 0-1-2- 3

Dimension of supermultiplet: 15

(The factor wi is an arbitrary function of r i ; setting w , we obtain the generators of
SU4.) Our matrix elements of Eqs. (16) are just given by these operators, and the den-
sity matrices of the generalized Goldhaber-Teller model, Eqs. (56), are directly related
to them. The giant resonance states are generated by an application of Eqs. (57) on the
0+ ground state, and are thus degenerate; the values of T a and s, can be used for clas-
sifying the individual levels in the fashion of Table 4. In practice, the nuclear forces are
spin dependent, the symmetry under S U4 will only be approximate, and, as a consequence,
the levels corresponding to the different modes, and also to different spins J, are split
up. The Goldhaber-Teller model does not provide any of the level energies, and these
have thus to be taken from experiment, or from a particle-hole calculation as described
in a later section.

Similar supermultiplets appear for the monopole or quadrupole vibrations of nuclear
matter. They are shown in Tables 5 and 6 respectively. If we now, again for the giant
resonance of dipole vibrations, use the density matrices of Eqs. (56) to calculate our
matrix elements ML and TL, using Eqs. (54), we see immediately that AlL and T'F will re-
ceive contributions from only the isospin mode (i) and that TL will receive contributions
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Table 5
The Supermultiplets of a Self-Conjugate Nucleus, Corresponding

to Monopole Vibrations of Nuclear Matter (Shown in Fig. 23)

Mode IT' 1 S 1L=JIN IDimension

1 0+ 0 0+ 3

si 1 0+ 1 1+ 9 15

0 0+  1 1+  3

(d) 0 0+  0 0+  1 1

Table 6
The Supermultiplets of a Self-Conjugate Nucleus, Corresponding
to Quadrupole Vibrations of Nuclear Matter (Shown in Fig. 26)

Mode T S L -J fN Dimension

i 1 2+  0 2+  3

1 2+  1 1+ 2+ 3+  9 15

0 2+  1 1+ 2+ 3+  3

(d) 0 2+ 0 2+ 1 1

from only the spin-isospin (si) mode. Due to the Gell-Mann-Telegdi and Morpurgo
rules, the spin-wave mode (s) will not appreciably contribute to electromagnetic transi-
tions (and neither to muon or radiative pion capture or to neutrino absorption, which all
contain T,, related to T3 by the Wigner-Eckart theorem, but this mode will and does
contribute to excitations by protons, etc., where no such selection rules apply: cf. the
solid curve in Fig. 24 in which the 22.2-MeV level of 4He, excited by protons, but not
electrons, can be identified as the T = 0, 2- spin wave level). Calculating the spin-flip
reduced matrix elements, we find

<2-11T' 10> = i<l-11T'j0>

qi Ad
1 

- ACn F(q) 2a-\I/
2

m 2 4'u \ma1d
(58)

Comparing Eq. (58) with Eqs. (49), we notice the additional factor (q/m). This factor
causes the spin-flip transitions to be negligibly small for photon transitions, i.e., a
small q = w. However, for electron scattering at 1800 (to remove the dominant Coulomb
transition, given by Eq. (49a), which would mask the spin flip transitions), and increasing
the momentum transfer q to high values, the spin-flip terms, Eq. (58), will rise up
strongly at the same time that the convection-current terms, Eq. (49), actually go down.
In fact, it is by this method that the spin-isospin members of the giant resonance super-
multiplet have first been identified (61). Figure 27 shows (47) the giant resonance in 12 C

from photonuclear reactions (q =- a 25 MeV/c), whereas Fig. 28 presents (61) the same
states as excited by 65-MeV electrons at 1800, i.e., q z 105 MeV/c. One notices the new
state at approximately 19.5 MeV in electron scattering, and also a relatively higher ris-
ing bump at approximately 26 MeV compared to the photonuclear case. The 22.5-MeV
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(-, p) data are from W. R. Dodge and
W. C. Barber, Phys. 127:1746 (1962), 6
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Fig. 2.8 -The giant resonance in 1 2 C, from inelastic
scattering of 65-MeV electrons at 1800 (61)

state, practically the only seen in photoexcitation, is thus explained as the J 1 - isospin
state, the Goldhaber-Teller giant dipole resonance. The new states at 19.5 and 26.0 MeV
are interpreted as the J = 2- and 1- components of the spin-isospin mode of the giant
resonance. The Goldhaber-Teller expressions of the cross sections could be fitted to
these states nicely (62); see Fig. 29, which shows for 1800 electron scattering by I2 C the
relative decrease of the i state and increase of the si states with increase of primary
energy. In this figure the widths of the states were calculated using particle-hole wave
functions of the giant resonance states given by Gillet (63); these particle-hole calcula-
tions will be described in a later section. Noteworthy here is that the particle-hole model
tends to give a similar quantitative picture of the i and si levels in self-conjugate nuclei,
and similar behavior under variations of q (except that the theoretical values are gener-
ally too high by a factor of 2). The 2- level at 19.5 MeV in 1 2C was recently remeasured



H. jBERALL

_ experimental points refer to 65 MeV

17 21
MeV

25 29

Fig. 29 - Electroexcitation cross sec-
tions of the giant resonances in 1 2 C
at 6 = 1 8 0

° and for various primary
energies: (a) k, = 40 MeV, (b) kIc 60
MeV, (c) kI1 

= 80 MeV, and (d) k 1  100
MeV. The curves are from the gen-
eralized Goldhaber-Teller model (62);
the data points are from Ref. 61.
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by the Saskatchewan group, as well as (64) a corresponding 2- level in 16 0; Fig. 30 pre-
sents the first matrix element of Eq. (58) for the latter, calculated by a particle-hole
model and compared with experiments. One sees the rise of the form factor with q, but
a later decline at very high q and a passage through zero (due to the Born approximation).

0'- 19.08 MeV Level

I0
I Stanford

0 Sask

- /
A I

Serber b4.4fm/

('d /

-Boeker- Brink b-l67fm I

I j

011¢/ 11
/ I

/ I I
e 

4  
, L -L I- r f t I ,_ J ,

40 50 60 75 100 150 200 250 300 350 400

q in MeV/c

Fig. 30 - Squared matrix element for the transition 0 + - 2-
to the 19.08-MeV level in 160. The data are from Ref. 64, and
from Ref. 65 and G. J. Vanpraet and W. C. Barber, Nucl.
Phys. 79:550 (1966).

The 1- si level at 26.0 MeV in 12 C (Fig. 27) still seems to be present in photo-
excitation (q = w), although from the Goldhaber-Teller model it should be practically
absent. (The corresponding 1- si level at 25.0 MeV in 160 persists at q - W to an even
much stronger degree.) The explanation may be the presence of an LS coupling (due to
the spin dependence of the nuclear forces) which mixes isospin and spin-isospin levels
and thus adds an isospin component to the spin-flip state. The particle-hole calculations
which take spin dependence into account, should thus predict a certain photoexcitation
strength of the 25- to 26-MeV 1- levels. For 160 this comes out quite satisfactorily,
whereas for 1

2 C, no strength is yet found (63). In this special case, one has invoked (66,
67) the presence of a coupling of the giant resonance vibration to a collective nuclear
surface vibration (2+); the surface vibration by itself produces for example the 4.43-MeV
2+ first excited state of 1

2 C. A similar 2+ vibration should sit on top of the 22-MeV 1-
giant dipole (i) level, and thus cause the 26-MeV 1- state. What is seen in photoexcita-
tion is thus the latter dipole-surface state and not the 1- si state (which is situated at
about the same energy, and does rise with increasing q in electron scattering). Such
coupled giant resonance, surface quadrupole states have also been discussed (68) for
electron scattering in 1 2C.

An application of the model of collective quadrupole vibrations corresponding to Fig.
26 has been made (58) for the positive parity states in 160. The energies of these states
were taken from a particle-hole calculation (69). It was shown that these collective
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Fig. 31 - Theoretical electroexci-
tation cross sections of collective
dipole (0-, 1-, 2-) and quadrupole
(I -, Z+ ,3+) states in 160 for pri-
mary electron energies of 60 and
85 MeV and e = 1800 (58)
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quadrupole states may attain considerable
strength (Fig. 31), especially at large q, and
may be able to explain the observed fine
structure in the giant resonance region of
160 as observed in 180' electron scattering

(65) (Fig. 32).

The Steinwedel-Jensen Model

The Steinwedel-Jensen collective model
leads to predictions rather similar to those
of the Goldhaber-Teller model, although its
assumptions are quite different. We should
also note that, as in the original Goldhaber-
Teller model, only the isospin vibration,
Fig. 22a, has been considered so far in this
model, but the inclusion of spin and spin-
isospin modes should be straightforward, at
least for the case Z- N.

For the isospin mode, one considers the
two fluids of protons and neutrons (and as-
sumes generally that Z N). They are

59 MeV

I t, I I I

10 15 20 25 3C

0 EXCITATION ENERGY (MeV)

Fig. 32 - Fine structure in the experimental electro-
excitation cross section for 160 in the giant reso-
nance region, with an incident electron energy of 59
MeV and 0 = 180'. (The data are from Ref. 65.)

allowed to move against each other but within the confines of a rigid spherical nuclear
surface (70). The total nucleon density o0 is assumed constant within this sphere (and
zero outside); in the ground state we have

(59a)pP + Pn = Po'

where
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Pa0 -A P0 and p0 =NP0. (59b)

For the state of collective motion, we write the nucleon densities as

P t) p + (r,t) (59c)

and

pn(r,t) =p 
0  - 7 (r, t) (59d)

which still makes them add up to p0 ,

P(r,t) + P,(r,t) 0= o (59e)

but we may have proton or neutron enrichment on opposite sides of the nucleus. The
total density may be normalized such that

477

4Tr p0  1 To = 1.4 x 10
- 1  

cm. (60)3 0

The flow velocities of the p and n fluids are Y p(r, 1) and vn (r, t), and we shall work

with the relative flow velocity

v(r,t) = YP( ,t) - v (rt) (61a)

whereas the velocity of the center of mass must vanish:

/oV n + PPp = 0 (6 1 b )
P0

The usual assumption is to consider the relative velocity to be curl-free, i.e.,

VXV = 0, v = -V(r, t) , (61c)

introducing a velocity potential ¢f(r, t). A reduced density may also be considered,

lop P p"f (61d)
r o p po

since we have introduced relative and center-of-mass variables. Then the kinetic energy
of the collective motion is given by

Tf = d3r mp0V2 + I mprv2)f) =d 3rm 2 (62)

m being the nucleon mass. A potential energy U, whose minimum is given when the pro-
ton and neutron fluids interpenetrate uniformly, may be obtained from the nuclear sym-
metry energy (9)

E, = K (NAZ2(63a)

with an empirically obtained constant K : 24 MeV. This indicates that finite nuclei tend
to have N Z; however, we assume that it is also true for the nucleon densities to tend
toward p, p p, so that a symmetry energy density is obtained:
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K (Pn-P)P
Po

wit anequlibiumvale KpI °)2I/ lo The Lagrangian L = U - T then becomes

L f d3rK P
2 mp7 V I

Using Eq. (61c), Steinwedel and Jensen (70) show that one can express

Pp - Pn m•

p0 4K

(63b)

(64)

(65)

so that the Lagrangian

1[p6m2
L j~dr 6

(66a)p p, (Vr) 2
2j

is now expressed in terms of the variables q and q. A subsidiary condition is provided
by the equation of continuity, which we can write as

-- + P, V 0. (66b)3it

The equation of motion for the
Euler-Lagrange equation,

collective vibration is obtained by subjecting L to the

?3L _ d L

We have

Pr fq V2d3r

so that Eq. (67a) gives

8K /, V2¢ 0.
m P0

Using Pro P NZ/A 2 and the continuity equation, we find

(2 8K ) (rV2 ) ,

(67d)

(68)

which is a wave equation for the excess density T/(r, t). Assuming a harmonic solution

tr 6) fl r) ei 
(69)

and

(67a)

MPr f7V2 d 3 r ,

d -L
8 BK

(67b)

(6 7c)

(69)
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and using the boundary condition v, 0 at r I? r0A/ (since there should be no out-
flow through the rigid spherical nuclear surface), i.e.,

-a 0, (70)
ar r 1R

one finds the set of normal mode solutions labeled by imn:

i nt

Pimr(r~) e him~r)(71a)

and

with a normalization factor

This set of solutions was obtained by setting w,, k 7u in Eq. (69) and inserting it in
Eq. (68), which becomes

(V2 + k ) 0m o (71d)

We then have

2; =9 8I AZ
_ , B 42N (71e)

where, from the definition u = o/k 6I, u may be called the velocity of sound in nuclear
matter. The eigenvalues kI are fixed by the boundary condition,

d 1~)r't-o (72)dT-- ]l (lr =R =  0 (72

which for a given I has roots labeled by n = 0, 1, 2, ..... The complete set of functions,
Eqs. (71), now may be used to quantize the model. We expand the generalized coordinate

in terms of normal modes,

c/(r) I Y l mnYimn(r), (73a)

and likewise, we expand the canonically conjugate momenta

Tn2M om) (73b)7(r) BK-

(where L = f5 dr):

1 11n * ' r) (73c)

The Hamiltonian is given by

H = f(7 - T)d
3

r = fd3r[ 4K 772 + 2 (V(72H J(77(2 J'[ poi0 2 (74)
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The quantization proceeds by postulating the commutation properties

[(r) , r( ')] [17 (r), 77(r') 0

and
[/i(r), 77(r ')1 -- 15(r -r')

If we introduce creation and
namely,

and

annihilation operators a lra and ai in the usual way,

91m77 (2:=t [aim7  + (-l)7 a< -777,
[ 71 . n -

Plrn i 2 alrn _,-)ma-n '

(76a)

with

p PO m2 8K,

we find that they satisfy the usual commutation rules

a,.., a , [n a, an , a, m ,j'

and

[aiton. aO'1'n'n - d ' bram' '77,"

and the Hamiltonian becomes as usual

] 1 a) I7n [a 1 mn aImn +
7n 7I

We introduce a complete system of state vectors on which the
state is designated by jo>, and the excited states are given by

Il n : at

(76b)

(76c)

(77)

a,.,7 operate; the ground

(78a)

The giant dipole state is represented by one collective phonon in the lowest state of ex-
citation, n = 0:

lMO> = a to10> (78b)

having (orbital) angular momentum 1 = -. Its energy
Eq. (72) with 1 = o:

is given by the first node, n = 0, of

IOR = 2.08 .

A' (8KNZ\1/2.
1w0 2. 0B-8 -101? ' A 2 /

Using K -0 24 MeV from the nuclear symmetry energy, Eq. (79b) checks reasonably well
with experimental energies of giant resonances. Note that 7wi 0 behaves like A- I/ as a

(75)

thus

(79a)

(79b)

1 0 __ A U (kJole),R
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function of nuclear mass number. A recent theory of Werntz and Bach (71), which re-
places the sharp nuclear radius of the Steinwedel-Jensen model by a gradual density
falloff, arrives at 1w1 o A1 /6, however, a behavior which seems to fit the experimental
giant dipole resonance energies throughout the entire periodic system.

One may now calculate (72) T 1 (q), the transverse matrix element that governs 180'
electron scattering, using

VP V ,, (80)

with the result

<i- I ( q 0> 2 ( [2K( ) 1 [ ( ) 2 1 (k 1 0 ]2  (81)

This gives the q dependence of the excitation strength of the 1- giant dipole state (iso-
spin mode), as it may be measured in 180' electron scattering. One finds a decreasing
function of q, quite similar to the result of the Goldhaber-Teller mode (isospin mode),
Eq. (49b), and only about 20% lower than the latter. Both curves will be plotted later in
the report, together with the results of the particle-hole model. It is remarkable that
the two collective models, based on rather different assumptions, lead to similar results.

We wish to repeat that the existing version of the Steinwedel-Jensen model includes
the isospin mode of collective vibrations only. An extension of the model to include
spin-isospin and spin modes in the same way as this was done in the Goldhaber-Teller
model is probably quite straightforward for Z = N, but seems difficult for Z N. How-
ever, only in the latter case, namely for heavy nuclei, would this make any sense, since
due to the assumption of a sharp nuclear surface made in the Steinwedel-Jensen model
the applicability of this model to light nuclei seems questionable.

The Steinwedel-Jensen Model for a Deformed Nucleus

The Steinwedel-Jensen model was generalized to the case of deformed nuclei by
Danos (73). The result is that the (isospin) giant resonance gets split into two compo-
nents. One may again solve the wave equation,

(V2 + k 2 )p 0, (82a)

and one may, for the sake of greater generality, introduce friction into the collective
motion via a damping constant F:

k2 (1 -I) . (82b)W2 "

The boundary condition on the nuclear surface is again

n .Vq(r) Isurf - O (82c)

which leads again to the eigenvalues of k. As we saw before, for a spherical surface the
eigenvalue for the lowest dipole mode is kR = 2.08. If Eq. (82c) is applied to a spheroidal
surface, however, described by the equation

16 = IT[' +~~7 Y-a m(?)] ,8d (82d) "
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the eigenvalues will change, and they will also differ among themselves depending on
whether m = 0 or m = ± 1. Geometrically, this means the collective oscillation takes
place along the major, or along a minor, axis. As a function of the deformation parameter

S a
2  -b

2

162 (83)

where a and b are the half axes and R is the radius of a sphere with equal volume,
(R 3 = ab

2
), Danos finds the eigenvalues ka or kb as shown in Figs. 33 and 34. For 'E 0,

both eigenvalues start out at 2.08, of course. They can be approximated by the equation

aWb
Waa- 0.911 -+ 0. 0B9wOb- (84)

The splitting between wb and Wa is thus positive (G% > (-a) for a > b, i.e., for a prolate
spheroid, and negative for an oblate spheroid. This means that in the direction of a
longer axis, the oscillation proceeds more slowly. If the resonance is excited by inci-
dent photons polarized along the a axis, one will see only one peak at the frequency w a;
similarly for polarization parallel to the b axis, a peak at wb is seen. For randomly
oriented nuclei, however, the total cross section is given by

o(E) = 10 (E) + 2 ,
3a E) 3 (85a)

which shows that the b peak
peak heights are given by

contains about twice the area of the a peak; the ratio of the

a) max

( b) max
a

2F b

(85b)

2.14

e.Iz
2.12

2.10

2.08

0 0.5 1.0 1.5 2.C
C

Fig. 33 - Eigenvalue ka inthe deformed Steinwedel-
Jensen model as a function of the deformation c (73)
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Fig. 34 - Eigenvalue kb in
the deformed Steinwedel-
Jensen model as a function
of the deformation e (73)

If therefore the peak with the larger area is found to lie
the nucleus has the form of a prolate spheroid.

An example of the (y, n) cross section for deformed
the nuclei of holmium and erbium.

in energy above the other peak,

nuclei is shown in Fig. 35, for

In many cases, however, the situation becomes more complicated due to the coupling
between giant resonance and surface collective vibrations as will be discussed in the
next section.

0 Ho

400 0 0 Er

0e

0 a 0

0*0
U)i \ 0 _

I<- 0
0o-

200 ~\

16

E, MeV

Fig. 35 - Neutron yield data for the (-/, n.) reaction in
the deformed nuclei of holmium and erbium. The
solid curve is the sum of two Lorentz lines, the dashed
curve is a fit-by-eye drawn through the data. (After
Ref. 85.)
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COUPLING OF GIANT RESONANCE AND
SURFACE VIBRATIONS

Le Tourneux (74), as well as Greiner and collaborators (75,76) generalized the
Steinwedel-Jensen model further by assuming that the nuclear surface which encloses
the nucleon fluids is not rigid but may undergo (slow) vibrations itself while the nucleon
fluids carry out the giant dipole oscillations. A coupling between the surface and the
dipole oscillations results which often considerably influences the shape of the giant
resonance curves. Greiner et al. call this the "dynamic collective theory." Later on
(65), to treat light nuclei towhichthe Steinwedel-Jensen model does not apply, they de-
scribe the giant resonances by the particle-hole model while they still treat the surface
vibrations collectively. This procedure they termed "collective correlations." Initially
deformed (75) and spherical (76) nuclei have to be treated separately, and we shall here
only sketch the dynamic collective theory for spherical nuclei (76).

It is well-known that many low-lying states of spherical nuclei (Z 100 to 1000 keV)
can be described by collective nuclear surface vibrations (77) in which the originally
spherical nuclear surface becomes

R = ? I + 22 c Y±z(?);
0 1 A

(86a)

in the main, these are quadrupole vibrations with X = 2. The displacement coordinates
aA are, in the classical case, harmonic functions of time. Bohr and Mottelson expand
the Hamiltonian in powers of a, and get

,s . rf I ( 2 I (86b)

since the restoring force is proportional to the deformation and hence to ., while the.2

kinetic energy gives us the square of the velocity, i.e., . If a is taken as a gener-
alized coordinate, the canonically conjugate momentum is given by

(86c)

so that we can also write

lsur f 2 > (BA
R(0,,p) = Ro(I+Z ax,,Yx, (0,,p)).

3 hw, 0,2,3,4,6+

2hw, 0,2,4+

7W, 2+

0+

Fig. 36 - Quadrupole vi-
brational spectrum for
even-even nuclei with a
s p h e r i c a 1 equilibrium
shape (2)

(86d)2 + 12)

This system may be quantized by postulating commuta-
tion relations between 77 and a', and the energy of
the harmonic oscillator is given by

1 = I(CA/BA) 1 / 2 (86e)

Figure 36 shows the possible spectrum. Two phonons
with N = 2+ each can couple to 0+, 2+, and 4+ only,
since in the principal axis system (78), aA+, = 0 (no off-
diagonal moments of inertia exist). In practice, the
levels will not be equally spaced, and the degeneracies
will be removed.

Since %urf < some MeV and wgi. di p. 20MeV,
we see that the giant dipole vibrations proceed at least

7T-A = BA ,AA
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20 times faster than the surface vibrations, and one may make the approximation that
effectively the dipole vibrations proceed in a deformed nucleus whose deformation
changes adiabatically. Using this approximation, one may use a dipole Hamiltonian of a
deformed nucleus, such as in the model of Danos, whose deformation depends on the am-
plitude of the surface vibrations, a Thus, in the Hamiltonian, one will have terms
that depend both on the Steinwedel-Jensen amplitudes a,,, (with 1 - 1) of the giant dipole
vibrations, and the a 2u of the surface quadrupole vibrations, i.e., coupling or "surface-
dipole interaction" terms. The total Hamiltonian is given by

H = Hdi p  + "'surf + Htint, (87a)

where Hdi p describes the free (spherical) dipole oscillations, Hsur f describes the free
surface oscillations, and Hi n L describes the surface-dipole interaction. The interaction
term was worked out by Urbas and Greiner (79); its general form (not in lowest order in
the phonon creation operators!) is fixed by rotational symmetry and parity conservation,
and we have

Hint K 1 (' 2 ala 1 ) + 0 0(2 2 ) (alai) 0 + K2 [(a 2 a 2 ) (alai) 210 (87b)

the subscripts on the parenthesis indicating coupling to these angular momenta. The
constants were found to be

K0 = -0. 70B C1 , (87c)

K1 = -1. 588 C , (87d)

and
K2 = -0.936 C , (87e)

in terms of the parameter C, of the free dipole vibrations,

Hdi 2 [1 (r7T) + C1 ('1'1) 1 . (87f)

There are essentially no free parameters, since we use

-l ](C 1 /B 1 ) 1
/

2 8 0 A- 1 / 3 
MeV, (88a)

iya02  = 1(C2/1B2 ) 1/2 =energy of first 2 +  
level, (88b)

and

B(E2) (5 o 2 12C 2 ) I / 2 (88c)

The only exception is the use of an effective nucleon mass mn -' m* < m in the Steinwedel-
Jensen expression for the dipole operator, and of empirical line widths, F.

If the dipole and the quadrupole vibrations were uncoupled, our nuclear states would
be of the form

IN11 1 ; N2 vl 2 ; JM> (89a)

where

N1 , N2 = number of dipole, quadrupole phonons,

1 12 = total angular momentum of dipole, quadrupole phonons, and

v = seniority (= number of quadrupole phonons that do not couple pairwise to
zero).
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However, the states of Eq. (89a), may be taken as basis states for a diagonalization of
the energy matrix,

<NP I' II llNI~ ...> (89b)

which has off-diagonal elements due to Hin . This matrix was calculated up to six sur-
face phonons, N, 6, superimposed on the dipole phonon, N1 I I. It was diagonalized by

the method of Householder, and the dipole
matrix elements 7'i for photon absorption
were calculated. For a "rigid" nuclear sur-

0.4 . 0face, one expects to find the original giant res-
onance level and, above it, regularly spaced
(by about the same energy as that of the first

0.2 -,2+ excited state) and rapidly decreasing in am-

plitude, a series of satellites corresponding to
0A , N2 = 1, 2, 3, ... ; for a "soft" nuclear surface,

o.4- this picture will no longer hold, dipole and
various numbers of quadrupole phonons becom-

0.2 Iing more and more mixed. Figure 37 bears

this out: dipole strengths are shown for in-
01 , , creasing values of / , - B(E2). Figures 38 and

.39 show some comparisons with experimentaloL G. 0.25o0 results. One notices that the fine structure of
0 1 L 1 1 ] the giant resonance is quite well described by

the dynamic collective theory, and the remark-
02 able fact is that this fine structure is deter-,0. •0.300

_1_I j 5 mined by the parameters which have been ob-
11 6 1h 20 .22 24 tained from the low-energy spectrum of the

E, M v same nucleus.

Fig. 37 - Dipole strengths given
by the dynamic collective model. For a deformed nucleus (75), the coupling
After M. G. Huber et al., Phys. with surface vibrations causes the two vibra-
Rev. 155:1073 (1967). The main ith ace brato ce th o vibra-
giant dipole state and satellites tions along the 6 axes to be no longer degen-
are shown for different values of erate, and provides satellites to each of the
,80 B(E2). three main peaks.

60 I I I

natural Ni

40 -

E

200

16 18 20 22 24 26
MeV

Fig. 38 - Comparison of the dynamic collective the-
ory (Fig. 37) with experimental data on photonuclear
giant dipole excitation in natural nickel. (The data
are taken from G. Baciu et al., Nucl. Phys. 67:178
(1965).)
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40-

6Z (y, 2n

0I I I I , I I I 1
12 14 16 18 20 22 24

MeV

Fig. 39 - Comparison of the dynamic collective the-
ory (Fig. 37)with experimental data on photonuclear
giant dipole excitation in 7 5 As. (Data are taken from
D. S. Fielder et al., Phys. Rev. Letters 15:33 (1965).)

PARTICLE-HOLE MODEL OF THE GIANT RESONANCES

We will now discuss a description of the giant resonances based on the shell model.
Although superficially such a description seems almost diametrically opposed to that
offered by the collective model, the results again are very similar. However, the shell
model does provide a much more detailed picture; in particular it furnishes the energies
of the states, predicts a greater variety of states, and allows a calculation of the widths
of the states from the wave functions using R matrix theory.

The first version of the particle-hole model was given by Elliott and Flowers (80),
with later more detailed versions published by Gillet (63) and by Lewis and Walecka (72).
So far, only closed-shell nuclei have been treated, or those near closed shells.

Prime examples of the application of this model have been the light closed-shell
nuclei 160 and 4 0 Ca, and the closed-subshell nuclei 12 C, 2 8 Si, and 3 2 S, among others,
treated with a spherical shell model. The latter nuclei should perhaps more appropri-
ately be described by a deformed shell model such as the Nilsson model, but this proce-
dure (81,82) applied to 2 4 Mg produced notably bad results.

The independent-particle-model picture of the giant resonance states in closed-
shell nuclei, as originally used by Wilkinson (83), Brown and Bolsterli (84), and Elliott
and Flowers (80), describes the T = 1, J = 1- giant dipole states being created by re-
moving a nucleon from a filled shell and raising it to a higher unfilled shell of opposite
parity, so that a hole stays behind. Depending on which nucleus we consider, and its
configurations, a nucleon can be raised in a variety of ways, as will be discussed below
for the example of 160. The relevant shell-model states are shown in Fig. 40. The
neutrons and protons occupying them may be treated in a completely charge-symmetric
fashion, but this is not a necessary assumption and is sometimes relaxed, as in 4 0 Ca.

It may be noted that for such a shell model with pure configurations as used origi-
nally (83), the total transition probability (integrated photon absorption cross section)
satisfies the classical sum rule of the nuclear photoeffect. For a single-particle transi-
tion at energy Ek, the absorption cross section is given (85) by

(90a)frk dE = (27T) 2 Ek Dk2 ,
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with a (squared) dipole strength

l31 d-

s 212

1 d
52 1w 2s-ld

1 n wo,,
p3

2_: p

(the q -0 limit of our transverse matrix ele-
ment Tel), q being the effective charge (Ne/A

1 M
for proton and -Ze/A for a neutron), introduced
for taking into account nuclear recoil effects
(85). The simple shell model leads to

2 e 2 NZ I
L 2 Amw (9 0c)

so that the integrated absorption cross section
becomes

2 e 2 NZ
f TdE - m A

0 11o.

Harmonic -oscillator
States

1

Spin-orbit
Splitting

Fig. 40 - Harmonic-oscillator
single-particle shell-model states,
and spin-orbit splitting. Occupied
levels for the 160 ground state
are indicated.

nance is at approximately 80A- 1 " MeV.)

NZ
0.06 MeV-barns. (9 Od)

This is precisely the classical dipole sum
rule. It has also been shown (52) that the sum
rule is satisfied (in the limit q -to) by the gen-
eralized Goldhaber-Teller model.

In Eqs. (90), all the transition energies
have been taken as those of the harmonic
oscillator, /w w 41 A-' I MeV. This energy is
approximately 15 MeV in 016, whereas the
observed giant resonance lies at approximately
22 MeV. (For heavy nuclei, the giant reso-
Elliott and Flowers (80) were able to improve

the shell model picture by the following procedure: (a) the single-particle energies are
taken from the observed ground and low excited states of the neighboring closed shell ±1
nuclei, and (b) a "residual interaction" between the raised particle in the higher shell,
and the hole it left behind in the filled shell, is assumed, determined by the empirical
nucleon-nucleon force as obtained from scattering experiments. This interaction mixes
the pure configurations, and by diagonalization of the energy matrix, one obtains new
mixed configurations and correspondingly shifted energy levels.

Part (a) of this procedure immediately raises the energies of some of the 1- states
into the observed giant resonance region. The dipole strengths, however, remain con-
siderable even for lower lying states, contrary to observation. Part (b), however, rem-
edies this by not only moving the states somewhat farther up again, but mainly by con-
centrating the dipole strength into the highest levels exclusively, providing a picture
that checks with experiment semiquantitatively. This is illustrated below for 160.

The energy levels of 150 and 110, from which the single-particle (and hole) levels
for part (a) of our formalism are obtained, are shown in Fig. 41 as given by Gillet (85,
86) (who made extensive applications of the particle-hole model to I 2 C, 16 0, 

40C a, and
208 Pb). A variety of particle-hole configurations may be obtained by promoting one
particle, and coupling it with the remaining hole to T = 1 and J = 1- (or J = 0-, J = 2-);
e.g., 1- can be obtained by the five configurations shown in Table 7, column 1. The "un-
perturbed" particle-hole energies E 0 "), taken from Fig. 41, are given in the second col-
umn, the squared dipole strengths D, Eq. (90b), based on the corresponding pure con-
figurations are shown in the third column. One observes that at this stage, the main
dipole strengths are still located at 16 to 18 MeV, too low compared to the experiments,

3 -hw -2p-If

D2
= q2 f3;z , IdT 2 (90b)
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Is,/-

Fig. 41 - The energy levels
(MeV) in 1O and 170 from
which the independent-particle
shell model levels are calcu-
lated (86)

Giant Dipole States

IP%2 ~

IP

50

21.80

15.65

3 +

0 F45 +

17 5/2+

I d 312,

2s,/,

Table 7
T= 1, J1- in 160, Particle-Hole Model (85)

which give a large peak at approximately 22 MeV (1- GT in the Goldhaber-Teller model),
and a second sizable peak at approximately 25 MeV (1- si).

If the nuclear wave functions using the pure configurations of Table 7, column 1, are
designated as Di, the actual wave functions of the different states may be written as
linear combinations,

IJi - 22 ~( 6 )i~. (91a)

Using these, the energy matrix

(91b)</ I HIj>

may be calculated, where the interaction is simply

Configuration E0 (MeV) D 0
2 () E (MeV) D2 (%

(I ~P2> (2s8.2 18.53 11 19.6 2

(I 'p 1) (1ld) 17.65 50 22.2 73

(I +Y (ld ) 16.58 28 18.1 1

( 'p ± 12.38 5.5 13.5 4

( 'p _ (1,1 (3 22.73 5.5 25.2 20
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19 20 21 22 23 24 25
Excitation Energy, MeV

Fig. 42 - A comparison of th
sults of the particle-hole cal
tions of Elliott and Flowers
with the measured (N. A. B
et al., Zhur. Eksptl. i Teor.
43:70 (1963); Soviet Phys.
16:50 (1963)) total photoabsoi
cross section for 160.

Hayward (47).)

figuration ( 1p 3/2) ( ld 3/2) i]

H= E
( ' ) 

+ L._, -Vr0 e (91c)

where the residual particle-hole two-body in-
teraction Vr es is taken from the nucleon-
nucleon scattering experiments. It leads to

foff-diagonal terms in the energy matrix, Eq.
(91b), which matrix is then diagonalized. This
diagonalization leads to new energy levels E"6)
given in the fourth column of Table 7, moved

up farther from the unperturbed values Eh1' ).
It also determines the configuration-mixing
coefficients c I r) in Eq. (91a), which turn out
to be quite small, except for the previously
pure main configuration. However, in spite of
this small configuration mixing, the ampli-
tudes of the admixed configurations add co-
herently in such a way that an important
change in the dipole strengths is produced

26 27 (Table 7, last column): the state at 22.2 MeV
now has 73% of the dipole strength, and the
state at 25.2 MeV has 20%. This agrees very

e re- well with experiment (Fig. 42). The upper
cula- part of the figure shows these two states (with

(80) arbitrary widths), the lower part the experi-
.rgov mental total absorption cross section (87).

.Fiz.
JETP
ption Due to the coherent addition of configura-
After tions, these states may be considered collec-

tive states. They may be identified with the
two prominent 1- states of the Goldhaber-
Teller model, 1- GT (22.2 MeV) and 1-si (25.2
MeV), the latter being justified since the con-

nvolves a spin flip. That the 1- si state is excited by pho-
tons in the particle-hole model, whereas such an excitation is negligible in the Goldhaber-
Teller model, is because the latter model is based on the assumption of spin independence
of nuclear forces, whereas the residual nuclear force Vr es employed in the particle-hole
model is usually assumed spin dependent (although weakly); this leads to some mixing of
the 1- GT and si states in the particle-hole model, and thus to a certain excitation strength
of the spin-flip state even for photons. In the Goldhaber-Teller model, such a mixing
could also be produced by phenomenologically introducing an L-S spin-orbit coupling
interaction.

It should be noted that in the preceding example we restricted ourselves to one par-
ticle, one hole configuration only, and excitation energies of one oscillator quantum,
1 &Ow0. This is known as the "Tamm-Dancoff approximation." Going a step further, the
introduction of more than one particle-hole pair, together with ground state correlations,
can be done by a Green's function expansion ("Random Phase approximation"), cf. Gillet
(63). This procedure leads to little new, and its value has been questioned.

Total absorption cross sections obtained by the particle-hole model surpass the
experimental ones by about a factor 2 in magnitude: first, the classical sum rule is sat-
isfied to 50 to 75% only for light nuclei (85), and further, the configuration mixing in-
creases the value of fJ dE beyond that given by the sum rule, Eq. (90d). Such a factor-2
discrepancy is not uncommon in the collective models also. The reason is that both shell
models and collective models describe only long-range correlations between nucleons,
not short-range ones. The latter are present, however, and roughly speaking lead to the
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presence of "quasi-deuterons" in nuclear matter, which produce a considerable amount
of dipole strength in photoabsorption at higher energies (> 30 MeV); this strength is thus
sapped away from the giant resonance at approximately 20 to 25 MeV, in such a way that
the total dipole strength exhausts the sum rule.

The particle-hole model was applied to giant resonance excitation in inelastic elec-
tron scattering by Lewis and Walecka (72) and deForest (88) for ' 2 C and 16 0. The first
reference obtained the T = 1, 1- GT, and 1- si states; the second reference added the
2- si state. As a function of momentum transfer q, it is found that just as the 1- GT
state decreases in the generalized Goldhaber-Teller model, the 1- and 2- si states in-
crease with q. If (in spite of their energy separation) one superposes the contributions
of these states (as must have been suggested by the poor energy resolution in the early
experiments), one obtains a curve with a minimum. This is shown in Figs. 43 and 44,
which plot the squared matrix elements T' and T' (Fig. 44 adds the contribution of the
2- si state to that of the 1- states of Fig. 43, for 12 C). The minimum, and the important
effect of the 2- state, are clearly visible. In Fig. 43, curves for the squared matrix ele-
ments of Te for the Goldhaber-Teller and Steinwedel-Jensen model are also shown. It
should be pointed out, however, that these curves include only the charge vibrations (GT
or isospin), since it was not realized at the time that the Goldhaber-Teller (as well as
the Steinwedel-Jensen) model was amenable to a generalization (as was carried out in
the subsection "The Goldhaber-Teller Model") which included the spin-isospin vibrations.
Indeed such a generalization must be carried out, and then the collective models do de-
scribe electron scattering correctly, in particular predicting the rise of the spin- isospin
state cross section with rising q, as discussed in Ref. 62, and herein. Indeed, such a
rise occurs for all models, as has been shown by Czyz et al. (89) in a model-independent
way, using sum rules.

The fact that in Fig. 43 the particle-hole model curve lies as low as the experiments,
and the collective-model curves are higher by a factor 2, has its origin in the fact that

the particle-hole matrix elements used
by Lewis and Walecka (72) contain a mul-

ooldhobr -Teller.Modeltiplicative factcr o the energy pa-
rameter of the oscillator potential. In

05-. 'the limit q 0 o, however, it is shown (Ref.
72, Eqs. (52) and (53)) that the Siegert

o0 Sleinwedel- Jensen Model
0.00

- 0.002 - -

0.001 Brown Model 0.004 CONTRIBUTION OF
I-AND 2- STATESA

00 20 40 60 80 100 120- r-

0 0. 0.2 0.5 0.4 0.5 0.6 C."I

Momenlurn Tronsfer q 0.002-

" C ONTRI BUTI ON

Fig. 43 - Sum of squared transverse OF I-STATES
matrix elements for the transition 0.001-
0+ -  I- (giant resonance) in 1 2 C, plotted
vs momentum transfer q. The curves
labeled Brown model represent results 0O 20 410 6O eo o 120 140

of the particle-hole modelwith various q (MeV/c0
residual interactions. The Goldhaber-
Teller and Steinwedel-Jensen curves Fig. 44 - Same as Fig. 43, but
were calculated for charge vibrations with the added contribution of the
only. After Ref. 72. 0+ - 2- transition (88)
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theorem is satisfied only if instead of wosc the energy of the dipole levels E" ) had been
used. Since the Siegert theorem, an exact relation, must be satisfied, the particle-hole
curves in Fig. 43 should have been multiplied by (E" ) / wsC) 2 2, which makes them
lie as high up as the collective model results. The fact that all models then lie above the
experiments by a factor 2 need not worry us particularly, since, as was pointed out, this
discrepancy is explained by short-range correlations which none of the models contain.
Unfortunately, Fig. 43 has been reprinted (5,90) in later review articles, without noting
the above objections attached to it.

Similar calculations have been carried out (91-93) for the giant resonance states in
1 2 C 160, 

2 8 sip 3 2S, and 40 Ca. Figures 45 and 46 present, as functions of q, the squared

matrix elements for electroexcitation of the 1- and 2- states in 2 8Si; Figs. 47 and 48 pre-
sent the corresponding quantities for 32S; and Figs. 49 and 50 present those for 4 0 Ca.
The energies of the states (found by diagonalization) are labeled along the curves. It is
seen that in all these cases, there is a prominent 1- state which decreases with q and
may be interpreted as the collective 1- GT state; another 1- state that increases with q,
representing the collective 1- si state; and also a prominent 2- si state. The latter, for
12 C and 160 situated at 19 to 20 MeV (see Fig. 28), now moves down for the nuclei in
question: to 14.3 MeV in 28 Si (Fig. 46), 13.5 MeV in 3 2S (Fig. 48), and 16.35 MeV in 4 0 Ca
(Fig. 50). These states could be found if looked for in 1800 electron scattering with

0 100 200 300

q (MeV/ci

Fig. 45 - Transverse electric form
factors (squared) vs momentum trans-
fer, for the 0+ - I- giant dipole transi-
tions in 2 1 Si, based on the particle-hole
model (93)
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0

100 200

q (MeVc)

Fig. 46 - Transverse magnetic form
factors (squared) vs momentum trans-
fer, for the 0+ - 2.- giant resonance
transitions in 2 0 Si, basedonthe particle-
hole model (93)

momentum transfers extending to q z 100 to 150 MeV/c, and there are indications (94)
that such a 2- state at approximately 14 MeV has been seen in 28 Si. Recent spectra of
inelastically scattered electrons at 180' from 28 Si in which a state at 14.6 MeV shows up
have been obtained by the NRL group Fagg, Bendel, Tobin, and Kaiser (Fig. 51).

PHENOMENOLOGICAL MODELS

The great variety of levels below the giant resonance, both charge-type and mag-
netic, which are seen in electron scattering at 1800 and at other angles, cannot possibly
all be described by a detailed model such as the shell model. The amount of labor in-
volved in such a description is warranted only if the level has special significance (e.g.,
in the case of the giant resonance levels, or prominent Mi levels such as the one at 15.1
MeV in "2C). Simple phenomenological models are needed which describe the q depend-
ence of the excitation strength, and can be used by the experimenter to fit his curves
without excessive labor, providing him at the same time with a meaningful result such as
a transition radius, and perhaps a surface thickness. Two such models will be briefly
described.
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Fig. 47 - Transverse electric form fac-
tors (squared) vs momentum transfer,
for the 0+ - I- giant dipole transitions
in 3

2 S, based on the particle-hole model
(91)

q (Mev/)

Fig. 48 - Transverse magnetic form
factors (squared) vs momentum
transfer, for the 0+ - 2- giant res-
onance transitions in 32S, based on
the particle-hole model (91)

q (MeV/c)

200 300
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Fig. 49- Transverse electric form fac-
tors (squared) vs momentum transfer,
for the 0+ - I- giant dipole transitions
in 4"Ca, based onthe particle-hole model
(92)

Helm's Model and its Generalization

Helm (95) has given an expression for the Coulomb matrix element by assuming the
transition charge density to be concentrated on a shell about the nuclear radius, in the
form of a S function smeared out by a convolution,

p(r) = pPo(r -r') pl(r') d
3

r' (92a)

The charged shell is given by

p 0 (r) = Z 8(r -R) (92b)

with R a position vector of length equal to the charge radius, over whose direction we
will average later. The smearing is taken as

p (r) -- (2 7g 2) e- 2/2 q (92c)
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I00 200
q 'MeV/c)

300

Fig. 50 - Transverse magnetic form
factors (squared) vs momentum trans-
fer, for the 0+ - 2- giant resonance
transitions in 4 °Ca, based on the particle-
hole model (92)

with some surface thickness g. By the convolution theorem, the Fourier transform of
p(r) is just the product of the Fourier transforms of p0 and p,,

where

(93a)

(93b)

(93c)

and
/.( 

2
q 

2 
/2

The Coulomb matrix element, Eq. (16a), can easily be shown to be given by

MLAI(q) = (4 7.L)- j'F(q) YLO,(9) ( (94a)

( = q/9 ), and inserting from Eq. (93a), one has

F (q) -f P3 r e i q '*, P ( r )-- f 0( q) f, (I ) ,

[f( q) : Z e iq.-R
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1800 ELECTRON SCATTERING BY Si'2

E0 55.9 500

11.4 MeV - 400

0
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15 14 13 12 II 10
EXCITATION (MeV)

Fig. 51 - Spectrum of electrons scattered at
180' from 2

8Si (L.W. Fagg, W. Bendel, R. A.
Tobin, and H. F. Kaiser, NRL, to be published)

MLM(q )  = Zf(q ) WLqR) YLM(k). (94b)

This gives for the reduced matrix element

10 <j ML(q) J0 > - /3L 0 f1q) j (qR)(95a)

with a parameter to be fitted to experiment,

/° -l z <JjYL(1) "o>av (95b)

This is the result of Helm.

We now extend this procedure (37) to the calculation of TLM k for this purpose, we
need corresponding expressions for i(r) and pL(r). The current can be found by solving
the continuity equation, Eq. (15), which we show can be done in a unique way. First, we
note that with p(r) written as in Eq. (92a), we also have

i(r) =fio(r -r') pl(r') d3r" (96)

which follows from Eq. (10c) by taking Fourier transforms. At the same time, i0(r)
must satisfy

V.j 0 (r) = iwp 0 (r), (97a)

and using Eq. (92b), we have

V i 0 (r) iwZr 2 S(r-1) 22 * M)(97b)V•or = iw rY M(/?) YLM(F).

LM

The basic assumption will be that i0 is of the form

(98a)io(r) = P2(r)V,
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with
3Z/4v ,~e 'r < I?

P2 (r) = (98b)
O, r>1 ,

and with the flow of nuclear matter being irrotational,

VXV -- 0, (98c)

which is an assumption that is commonly made (70,72). In Eq. (97b), we have to treat the
monopole separately from the higher multiples,

I,(r) =~ 0)(r) + j( l)(r), (98)

where i( o) satisfies

V.j(o
)  iwZ S(r - )/47r

2

3 -w 6 dr (99a)

It was shown in a paper (34) that for the monopole, conservation of matter requires a
modification of the right-hand-side expression, namely

] 4[o j P3 ](99b)
0 r dr 2(

Further, only a radial velocity is possible (which is curl-free), and the solution is
uniquely

( °(r) rrp2 )• (100)

For the higher multipoles L > 1 , one makes the ansatz

jI l1(r) =p 2(r) 1 Y;(R) A/(P) L + q(r) YL (101)
L>l , L, +

being also a multipole expansion in 1/, as required by Eq. (97b). The only other multi-
pole term in ?, YjL(T), is then ruled out by parity. The corresponding velocity is essen-
tially the bracket in Eq. (101), and if one requires its curl to vanish, one obtains one
equation for A and B (taking / and g to be known for the moment); two further equations
arise from inserting Eq. (101) into Eq. (97b) and comparing the coefficients of p 2 and p.
These three equations for two unknowns are soluble only if the rank of the three-by-
three matrix of coefficients (including the column of absolute terms) is less than three,
and it turns out that this is not the case unless one of the unknowns vanishes. If B = 0,
one finds further that

(r) Cr O 
- L-2

which gives a singularity at r 0 and is thus not permissible. With A = o, one finds

Oq(r) CrL,

which is the permissible case. The expansion of the current thus contains r L- yL- ()
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only; this choice has also been made in a paper (58) on giant multipoles in the general-
ized Goldhaber-Teller model. The final solution is then

r -iw1-- p() 7T)? Y2M() L,_L(). (102)
L>I ,M

As for the magnetization density, this can simply be assumed to be of the form

IL ( r) FL f TO(r - r P r ' 3 7~, (103a)

with ju0 being some constant vector containing the nucleon spins and anomalous moments,
and with

70(r) - A S(r -R) (103b)

and
2 -2

P(r) 2 (27T2)
- 3 /

2 e-r 2 (103c)

A different nuclear radius 1 and surface thickness 9 will in general be needed here,
since the magnetization density is based on the nucleon distribution rather than on the
proton distribution, and it is well known that these two differ.

With the current and magnetization density of Eqs. (96) and (103), one may then cal-
culate the transverse matrix elements of Eqs. (16d) through (16g) in a straightforward
manner, and one can factor out again the functions f 1 (q) and

f 1 (q) := e
- 

q 2 (104)

respectively, by using the relation

]L(q ')YLM(r) = (47iL)-l f ez.r YM( ) d . (105)

The monopole does not contribute to any transverse matrix elements. We find

YIL ( q) - o, (106)

due to the absence of the term Mjj( ) in the current. This operator also vanishes in the
Goldhaber-Teller model (8,62). For the other reduced matrix elements, one obtains

e(,) j > (L+I )
1 / 

2 Jo J J J q) (107a)It0-1<JI T11 )[g = 0/ 8o - )L (91e )  + -yLo f I q); e )
L 2m'

and

J0
" 1 

<J IT~
m

(
]
) I > - 2+ 1(9) (2'q L) 2 1 L+(q ) .+ (21-) 2jl. (1 ) (107b)

with m = nucleon mass, where we introduced the parameters

7 L\ = 2mi'AAo <J o L, L+A (k)I 0  v, (108)

(0 0, ±1). Since the reduced matrix elements, when multiplied by iL, are real (26), and
since different multipoles do not interfere, all our (dimensionless) parameters ,3L and
-L are real.
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Equations (107) represent our generalization of the original Helm model of Eq. (95a).
Both transverse matrix elements depend on two parameters which can in principle be
obtained by fitting to the "photon point" at q = w (this is determined by /8L or ,L-, re-
spectively) and to the experimental slope of the data vs q2 (this will fix ILO or Y,,, re-
spectively), whereas , B, g, and g- can be taken from the known ground state charge and
matter distribution. In any case, the latter four parameters should not vary from level
to level, whereas /3L and 'ALA are characteristic for a given level. Equations (107) then
predict the q dependence of the form factors for higher values of q. In the transverse
electric case, however, one can do better, since the first parameter /3L, due to the
Siegert theorem, is the same one appearing already in the Coulomb matrix element,
Eq. (95a), and can be independently obtained there, as one can experimentally separate
(24) B(CL, q) from B(EL, q). The second term containing 7LO is called "electric spin flip
transition" and has no longitudinal counterpart.

We have used the generalized Helm model
I< 1for a description of the 15.1-MeV MI level in

q2 15.1 -VM LE IO0
3

F
2
1 12 C. Figure 52 shows the results. A satis-

,5, MeV Ml LEVEL oF 'C factory fit to the experiments was obtained for

the squared matrix element T7, with the fol-

lowing parameters used: T 2 1. 04 F2

16 1.25A / 3F; 1 9 _l = 0.995, and Il+, 1.37,
o DUDELZAK y_ and y, , being relatively positive.
& GOLDEMBERG

BARBER
6 SCHMID AND SCHOLZ

The Helm model, as applied here and
in the original papers (95,96), is success-
ful because in practically every model the

4 t transition densities representing the over-
lap of ground state and excited state wave
functions are large only in the vicinity of
the nuclear radius. (In the Goldhaber-

2- Teller model, for example, this is clear

q
2 

(F-
2

) from the fact that the transition density
__- is given by the derivative of the ground

state density.) All the Helm model does
b .2 .4 .6 .8 1.0 .2 is to state in a phenomenological manner

that the transition densities are large near

Fig. 52- Momentum transfer de- the nuclear radius. But as said before,
pendence of the transverse Mi this is sufficient for providing us with the
form factor for the 15.I-MeV 1+  simple formulas of Eqs. (95a) and (107),
level in 1

2 C, fitted by the gener- suitable for rapid fitting to experimental
alized Helm model (37) points. They may also be useful for de-

termining multipolarities in such a way
that a good fit may be obtained for one

value of L only if le should come out with a reasonable value.

Tassie's Model

A phenomenological model, somewhat less crude than Helm's, was proposed by
Tassie (97), based on the hydrodynamic model of the nucleus. It will here be discussed
for only the charge vibrations.

The charge density is assumed to undergo oscillations as an incompressible, irro-
tational fluid. An element of charge (and mass) moves from r 0 to r without alteration
of the volume it occupies, i.e.,



NRL REPORT 6729

p(r) po(ro) . (109a)

This means that from the assumption of incompressibility the total time derivative of the
charge density vanishes:

p(r) - po(ro)
(109b)

Since hydrodynamically, the total time derivative is

-+ V'Vp,

we have

-Vo

(109c)

(1 09d)

The second assumption is that of irrotationality,

VX V 0,

which implies

V = V(D.

Considering the continuity equation

V • (pV) + -

and using Eqs. (109d) and (110b), we find

V2q) = 0 ;

(111)

(112a)

i.e., the velocity potential q) is a solution of Laplace's equation, which is given by

4)(r) IL T 131 Y>*(r)
1M

The meaning of the expansion parameter is simply /31m = AIM

harmonically varying expansion parameter of a surface,

(112b)

-iwo., where -, is the

r ro 1 + aL .r r 2 Y ( o)0 7n M17 
0 1

(112c)

which is generated out of an originally spherical surface in the course of the hydrody-
namic collective oscillation.

The transition density for charge oscillations may now be obtained using the con-
tinuity equation, Eq. (111). We have

(113a)

(11Oa)

(11 Ob)

P / r(r) - I V "- [1)( )v]iwo
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where on the right-hand side the ground state charge distribution 1(r) may be used,
since v itself already contains 18, to first order. Inserting Eqs. (110b) and (112b), we
finally obtain

tr(r) - IL V[r' Y* (P)] "Vp(r). (11 3b)

This transition charge may then be used for obtaining the Coulomb matrix element, Eq.
(16a). Tassie has applied the model to the excitation of the 2+ , 4.43-MeV level in 12C;
the satisfactory fit is shown in Fig. 53. The model was used extensively later on, espe-
cially by the Duke group (19).

. 324

b
0"020 ........... C

d 1. ,9

2.04

2"20

0 0 16 2 2 0

"Ila
0-012

0.008 /
2"47

0"004 /

0 02 0"4 016 0"8 1-0 1.2 1
q IN UNITS OF 1013 CM

- 1

Fig. 53 - Ratio of cross section for the
0 + 2+ excitation of the 4.43-MeV level to
point charge scattering cross section of
S

2 C. The theoretical curves (for different
choices of parameters) are from the model
by Tassie (97); the data points are those
of Fregeau and Hofstadter (Phys. Rev.
99:1503 (1955)).
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CONCLUSION

In the preceding review, we have discussed a variety of topics covering, fairly
broadly, electron scattering and, partly, photoabsorption by atomic nuclei. We have
tried to present a picture of the excitation of nuclear levels by electrons (and photons);
we have pointed out what information can be obtained from this process, and we have
described a number of models for the excited states whose validity may be established
by the electron scattering experiments. It will have become clear that the technique of
electron scattering represents a new, powerful tool for the study of nuclear states, both
ground and excited, which at present, in spite of considerable work already done, still
stands only at the beginning of its application. Important developments are expected to
proceed rapidly with the completion of more and better high-intensity electron linacs.
At the same time, the theory of excited nuclear states, both giant resonance and lower
levels, also rests in a quite preliminary stage and will undoubtedly be advanced speedily
in the near future as the experimental electron scattering data come in. Thus in the
years ahead, an exciting development of this subject may be expected which, with the
help of electron scattering techniques, will far surpass the original advances of photo-
nuclear physics.
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