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ABSTRACT

A dynamic design-analysis method developed at NRL for shipboard
equipment requires the use of design-shock spectrum values, which
provide appropriate input data. These design values are derived from
measured data of a number of realistic shock tests. Theoretical and
experimental investigations of the past provided insight which has re-
sulted in a set of design data for use with the design-analysis method;
these are the presently specified inputs, and studies continue to improve
them. The investigation reported here attempts to show the effects
upon design-shock spectrum values of a second mode and a nearby
structure. This is done by comparing the design-shock spectrum value
of a simple, single-degree-of-freedom structure with the design spec-
trum values obtained for a two-mode structure and with the design
value obtained when another simple structure is placed adjacent to the
original one. The results indicate that for a wide range of weight and
frequency parameters the design spectrum value obtained using a sim-
ple model is not greatly sensitive to the effects of multimodes and ad-
jacent structures and, thus, sufficiently defines the appropriate input
value. However, for certain ranges of the weight and frequency param-
eters, gross differences can occur between the design values for the
simple system and those of the more complex systems.

PROBLEM STATUS

This is an interim report; work on the problem is continuing.
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THE EFFECT OF A SECOND MODE AND NEARBY STRUCTURES
ON SHOCK DESIGN VALUES
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INTRODUCTION

Shock Spectra

For many years engineers have used shock spectra as an aid in understanding the
damaging potential of shock and as a tool for stress-checking a structure whose base
was subjected to the transient for which the spectrum was found. The shock spectrum
gives, in convenient graphical form, the maximum responses of single-degree-of-
freedom systems to the applied foundation motion, and these responses are directly
related to the modal responses of multidegree-of-freedom real structures.
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In 1943 Biot (1) attempted to clarify the then-present thinking among engineers
interested in the effects of an earthquake upon large structures by defining a quantity
called "effective acceleration of the earthquake for the period T." This definition helped
the present-day concept of an earthquake spectrum to evolve. Sometime later, in 1948,
Walsh and Blake (2) considered mechanical shock using the concept of an earthquake
spectrum, and the result has generally come to be known as shock spectrum.

Since shock spectrum is a term which various authors have used in different ways,
it is perhaps necessary to state explicitly its meaning as used in this report. A shock
spectrum is the plot of the maximum absolute values of the relative displacements, mul-
tiplied by appropriate scaling factors, of a set of either damped or undamped single-
degree-of-freedom oscillators with negligible mass, which have been subjected to a base
shock motion, the values being plotted as a function of the natural frequencies of the
simple oscillators. These graphs can be constructed with units of displacement, veloc-
ity, or equivalent static acceleration by the choice of the scaling factors unity, W, or w2 /g,
respectively, where w is the angular frequency of the oscillator. The reason these shock
spectra are defined in terms of relative response is due to their ultimate use - the de-
termination of the stresses or stresses or strains in the flexible members of the system.
In this report, undamped shock spectra in velocity units are used.

Since the introduction of this idea, the use of shock spectra has spread, and several
theories for the use of these spectra have arisen.

NRL has developed a Dynamic Design Analysis Method (DDAM) (3) for the calcula-
tion of the stresses and deflections that would be produced in a contemplated equipment
by a shock of assigned characteristics. The equipment of most concern is that which is
impractical to shock test for reasons of weight, shape, size, etc. The DDAM is basically
a modal analysis method with shock design inputs empirically derived from data obtained
during underwater-explosion tests on realistic ship and submarine installations and rein-
forced by information from theoretical and experimental studies in the laboratory. It is
assumed that an equipment and its foundation together make up a system which responds
as a linear elastic structure to an excitation at its base., The modal responses are cal-
culated using the response spectrum technique, with the required spectral inputs speci-
fied by design shock values, which are obtained from the shock spectra of test data.

The design shock spectrum is an array of the input values which enables an analyst
using the DDAM to predict the stresses, etc., in a contemplated structure for a specific
type of excitation, such as depth charge attack. The set of input values from which the
array is obtained is evolved empirically and is composed of appropriate values obtained
from the shock spectra resulting from a number of real shocks to similar equipments.
This spectrum (array) of design values is then a concept rather than a measurable quan-
tity. It should not be confused with the ordinary, "measured" shock spectrum which was
defined previously.

Derivation of the Design-Shock Spectrum Values

Great difficulty has plagued those who have sought to use shock spectra obtained
from realistic shock tests when some sort of combinatorial analysis of these spectra has
been employed to provide design values representing many possible shocks to more or
less similar equipments and bases. A popular type of combinatorial analysis is to first
form classes of shock spectra as to severity of excitation and to subdivide these classes
into groups according to equipment weight and location. For each group the maxima of
its shock spectra are plotted (fly-speck style), and an envelope curve drawn. However,

'Appendix A contains background on this concept.
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this type of analysis is incorrect; it defines a shock input which is extremely severe and
which few structures could withstand. Even though in-place structures survived the field
trials from which the shock spectra were obtained, the design curves derived from these
shock spectra by an envelope-type analysis indicate that they should have failed.

The major assumption employed in this use of experimentally obtained shock spectra
to synthesize a design shock spectrum is that the spectra for the same classes of shock
are unaffected by variations of the stiffnesses of structures being subjected to the shock
as long as the weights of the structures remain reasonably close. Inherent in this as-
sumption is the following idea: the mobility of the base is negligible over the entire fre-
quency range when compared with the structure's mobility. This assumption means that
the dynamic reaction of the structure upon its base is unable to affect the motion of the
base and that dissimilar structures will have to respond to the same input motion. This
assumption is not valid for the shipboard situation, where equipments have relatively
flexible supporting structures. Also, it is assumed that over a wide range of possible
shocks to these structures the most severe condition to which a structure would ever be
subjected is the envelope of the maxima of all possible shock spectra or some lesser
value determined by the use of statistical fiducial limit curves. The design-shock spec-
trum values based on these assumptions are so severe that few structures could with-
stand the shock corresponding to these inputs.

The problem of the overconservatism associated with this type of analysis was in-
vestigated at NRL, and it was noted that the normal-mode theory of dynamic response
requires only the shock spectrum values at the fixed-base natural frequencies* of the
structure in place during the shock motion to compute stresses in that structure. An
examination of individual shock spectra in this regard showed deep valleys in the region
of these fixed-base frequencies. This effect was labeled "shock spectrum dip" and was
investigated (4-7) theoretically and experimentally.

Now, consider again the problem of trying to formulate a set of design-shock spec-
trum values. Theoretically, the only values of a shock spectrum obtained from shock
test data which are meaningful for dynamic response calculations are those which corre-
spond to the fixed-base natural frequencies of the structure which was in place during
the shock motion. However, an analyst requires some shock design value (or values) to
design-check a contemplated structure which has never been subjected to a shock and
for which, consequently, no shock spectrum exists. It would seem that the first step in
obtaining the desired shock design values might be to compare the shock-spectrum mag-
nitude at the fixed-base natural frequencies of structures in place during a measured
shock motion with the magnitudes of the spectrum in general. The knowledge acquired
from this comparison might then allow the designer to obtain input values which could be
useful in future designs. An attempt to do this analysis on an imaginary class of struc-
tures subjected to the same type of shock was the subject of an NRL report (8). The
insight gained from these theoretical and experimental investigations was applied to con-
siderable field data and has resulted in the design inputs (9) presently specified by the
Navy for use with the NRL-developed DDAM. Continuing studies are being performed so
that these design values may be improved as the state of the art advances.

Present Investigation

One of the simple structures analyzed in Ref. 8 "Shock Spectra and Design Shock
Spectra," was used as the basis for this investigation. The analysis demonstrating the

*'A fixed-base natural frequency is the frequency which a structure would have if its base
were infinitely stiff and heavy, so that the base motion would be unaffected by the struc-
ture's reaction.
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difference between the ordinary shock spectrum and the shock spectrum values used for
design is presented again for those who are unfamiliar with the concept. In this report
the design value thus derived for the simple model is compared with (a) those obtained
when the simple structure is replaced by one having two natural modes and (b) those ob-
tained when a second structure is mounted adjacent to the structure of interest. This
comparison is done by computing the ratio of the design value obtained from the more
complex system to the design value obtained from the simple structure and then plotting
this ratio for varying values of appropriate weight and frequency parameters. Observing
the trends of this ratio with parameter variation provides some insight into the sensi-
tivity of design-shock spectrum values to modal effects and effects of nearby structures.

INVESTIGATION OF DESIGN SHOCK VALUES

Basic Problem

To illustrate the difference between ordinary shock spectra and design-shock spec-
trum values, the simple, undamped free-free structure of Fig. 1 was chosen. Al0 is con-
sidered to be the base, and M the mass of the equipment structure. Let /l 0 be subjected
to an impulse 10. The problem is: What is the design-shock spectrum value for the
equipment consisting of Y1 and K for the shock loading 10 ?

The differential equations of motion for the
system are

1 M, MYKY-KZ 0 (1a)
and

-KY+ 0 + KZ 0 , (1b)

K r for which the initial condition at =0 is

10Z= V0 -
Tuneable 0 10

Z MasslessZ47 o Oscillator With the notations

AlM1  /32

X Y-Z, IV 1/8- 2

11 V0 2

Fig. 1 - Undamped free- /K 1 2, K _ 2

free system Mo  / 1  '

and

a
2 

+132 = p
2

the solution of Eqs. (1) becomes

X -L-sin pt. (2)
p

The maximum value of this relative displacement is

x V0  (3)
a 1 +I ,(
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which will be the design parameter. By varying the value of A,, the designer can keep
the relative displacement x within a specified limit for a given initial velocity.

When the displacement is scaled for velocity and made dimensionless, it becomes

Xa 1 1 (4)
V0-V. - -+j

this scaling permits comparison with ordinary shock spectra, which are in velocity units.
This parameter is seen to be independent of frequency; Fig. 2 is a plot which shows how
it varies with the mass ratio /L. Once the mass distribution between the equipment and
its base is known, Fig. 2 may be used to determine the value of xa/Vo, which then be-
comes the design value. Since each of these values is independent of frequency, the
spectra of the design shock values irr the xa/v o - v s - f requency plane would be a family of
horizontal straight lines, one line for each mass ratio. Each of these horizontal lines
would provide design values for systems like Fig. 1 but differing as to A'.

1.0
Xa

I 
V0

Xa
V0

0.5 - Design

Fig. 2 - Variation
mass ratio for the
Fig. 1

of the design shock values with
undamped free-free system of

Now, suppose by means of the theoretical tuneable oscillator of negligible mass, an
ordinary shock spectrum is obtained for the motion of M0 . The relative displacement of
this oscillator times the angular frequency divided by the initial velocity of 40 becomes

rw O)/3
2  

sin pt + (ai 2)(

V0  p(W'2 - p2) (C02 - p2)

where w is the frequency of the tuneable oscillator and 7 is the displacement relative to
M0 . This equation can be derived by noting that the theoretical massless oscillator will
not affect the base motion and by solving the Duhamel integral

t Z(t) cos w(t -T) dT. (6
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It is of immediate interest to examine Eq. (5) closely. The oscillation is composed
of two components - one of frequency p (the natural frequency of the system as a whole)
and one of frequency w (the frequency of the massless oscillator). When ( equals a, the
oscillation at this frequency a (that is, the second term in Eq. 5) vanishes, which means
that the massless oscillator undergoes the same motion as the mass M, and in this case
even though the massless oscillator is tuned to the frequency a, it has no component of
this frequency in its motion. It is also seen that ow equals a is the only frequency at which
this occurs.

Since the shock spectrum is the envelope of Eq. (5), it may be written as

- _______ 2+_a
2 

-

I " W,,I _2- W2(7)0 max p(W2 -p2) W
2 

p
2

As the value of w approaches the system is natural frequency p, the shock spectrum
value becomes infinite; however, as a) approaches a, the fixed-base frequency of the
equipment structure, the shock spectrum value, becomes 1/1i _+-. This is exactly the
design-shock spectrum value derived previously for the equipment structure.

Figure 3 contains a superposed plot of
Othe design shock spectrum for some spe-

cific mass ratio and the ordinary shock
spectrum of Eq. (7) obtained for a system
with that mass ratio. The curve labeled
F.S. is the plot of the maximum values of
the s in Wt component of Eq. (5). The de-
sign shock spectrum is a horizontal line of
height 1 /1v+7 _-., while the ordinary shock

Shock \ Shock Spectrum spectrum for the system obtained on the
Spectrum base M0 is below the design shock spectrum

r, to frequency a and then is always above it.
Vo It should be noted that the design shock

spectrum and the ordinary shock spectrum
meet only at one point, the fixed-base nat-

SF.S. ural frequency a of the upper equipment
I Design Shock Spectrum system. The shock-spectrum value at this

I / point is the only one which is applicable to
I /the design of the equipment system. This

+- point occurs where the coefficient of the
frequency term of the massless oscillator
vanishes (curve labeled F.S.). In any sys-
tem with damping the large peak would

a p - have a limit, but it could be several times
higher than the design value.

Fig. 3 - A theoretical shock spectrum
and the design shock spectrum of the Figure 4 includes a sketch of the shock
free-free system of Fig. 1 for a spe- spectra for two systems having the same
cific mass ratio mass ratio. The spring in system 2 was

chosen so that the fixed-base natural fre-
quency of the simulated structure a', coin-
cided with the natural frequency p of sys-

tem 1. Since the two systems have the same mass ratio p., their design spectrum values
are the same, and they lie on the horizontal line in Fig. 4. The envelope line for the two
spectra is marked. This envelope is an example of the envelope obtained for design pur-
poses by combining the shock spectra from a number of shock-tested equipments.
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Now, suppose that at some time in the
future one would have to design-analyze a
system exactly like system 2. The shock Envelope
design value is, of course, /1 T77. How-
ever, if one would obtain a design value by
considering the envelope of the shock spec- System I System 2

tra from equipments shock tested previ- rw
ously, the magnitude of the example enve- V0
lope at w = a' would give a very large
design-shock spectrum value for the sys-
tem a'. It is clear that this very large
value would not be the correct design value. ,//\

If many shock spectra were combined //
in the manner shown and an envelope or -"- //

high fiducial limit curve drawn, it is ap- Design Spectrum

parent that this would represent a totally --

unreasonable approximation to the proper I
design inputs. However, as can be seen in
Fig. 4, if each shock spectrum was read 1+
at the appropriate frequency, the fixed-
base frequency of the equipment system,
these values would constitute an array of a a=p p
the proper design inputs. C--

Fig. 4 - Envelope of the two theoretical
shock spectra for two free-free sys-

Two-Mode Structure terns having the same mass ratio com-
pared with the design shock spectrum

In the preceding analysis the equip-
ment structure was a single-degree-of-
freedom system with a mass M, and a
fixed-base frequency a. A design-shock spectrum value was derived which depended
upon M, A, the ratio of equipment mass to the base mass. Suppose that the equipment
structure had two natural modes instead of one. Then each mode would require its own
design-shock spectrum value. However, it is possible that the only information known
about the equipment would be its total weight and perhaps its fundamental frequency. The
design value accordingly would be the one just developed. The question which arises is:
How does the design value obtained when the equipment structure is considered to be one
mass differ from the values obtained when the modal effects are considered?

A structure may be replaced by a set of simple oscillators such that the force trans-
mitted across the base is precisely the same for the simple oscillators as for the struc-
ture (4,10). These oscillators must have the same fixed-base frequencies as the struc-
ture; so their frequencies must coincide with the normal-mode frequencies of the
structure. Each oscillator must have a mass such that the time variation of the force
exerted upon the foundation is the same as that of the actual structure. Thus the two-
mode in-place equipment system may be modeled as shown in Fig. 5. Here, each mass-
spring system represents one mode; each has a mass equal to the modal effective mass
and a frequency equal to the modal frequency. The sum of the masses mn and m2 is equal
to the total mass M of the equipment system. Let

001

2
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Y?

Fig. 5 - A two-mode structure replaced
by simple oscillators which have the
properties of the mode frequencies and
effective masses

and

Mo 77.•

Then, the equations of motion of the system may be written as

Y1 + 
1

2 Y-32 Z ,

2 + _y
2 y Z- y2 Z ,

and

Z+ (7y2 +p432 )Z- py2 Y 2- ,L/ 2y = 0,

for which the initial condition at t : 0 is

z = Vo  = Mo
M0

By the usual processes, the frequency equation is

W2{°,4 -. 2 [y2(1 +7) + 82(
1 

+,)] + y2/2( + + )} 0,

so the natural frequencies of the system are

S0 2 + 0

W2,W2 Y 21+ _) + 2 ( + ) + 1 /[y2( +77) + '82 (I+ 4) ]2 4y 2,82( 1 + L+77)

tion
Solv
men

The quantity of interest in deriving a design-shock spectrum valve is a relative mo-
so the relative displacement for each of the mode systems in Fig. 5 is obtained.

ing Eqs. (8) and letting Y1 - z = x, and Y2 - Z = 2 results in the relative displace-
ts

V 2 2 2 2 2

X2- 12 sin CW1 t +-.2 sin W 2 t (10a)

(8a)

(8b)

(8c)

)
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and

V 0- [/3
2 2  2 '8 2

X2 2 s + 2To obtain design shock )2 spctu vaustes ipaemnsaemaiie2byinrnsin W 22t] (lOb)

To obtain design shock spectrum values these displacements are maximized (by ignoring
phase) so that

2  
, [ W 2 2 W I- 0 12 + 2 2 ]

V2 1)2

and

2  
0 2 /32 + )22 /3

(2 .- o 12 )

Since the shock spectra under discussion are velocity (unit)
levels are put in dimensionless form as before to give

X,/3
7

spectra, these design shock

7+'8 1+ +T . r

0 /1 +77 1/ 2(1 + _) + /32(1+/1) + 2y/3 \.l++.

and

X2 Y +'/1 + + /3

V 0 + /1+ +77 12(1+ )77 + /32(1 +p) - 2/3 1+/1+7

Finally, let

7_ m + M2/-Z Mo0
/1+77 & , and 7

where q < 1, since /3 is the lower mode frequency and y the second mode frequency.

Now, the nondimensional design shock spectra may be written as

X1,8

I

1 + q Ji +6
(lla)

I + +1 + W 2qVI+(

and

X 2 y

(llb)
+ 0 +, 2 ( + 0 2+ W I ++-7 tv -2 /"+

The design-shock spectrum value obtained when only the total weight of the equip-,
ment structure is considered is, according to the previous section,

V __7I + - q

V

V

o NT -oV
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m1  + M 2
+ Mo

or
1

(12)

To compare this design spectrum value with those of the two-mode system the ratio of
each modal design-shock spectrum value to the single-mass shock spectrum value will
be used. These ratios are

1 + q \71+0
R1 _ _ (13a)

2+ w (1 + + 2q\-1 7-

and

2  (13b)
1+ 0- 

2 
(++ '9) - 2q -+-

for the design values of mode 1 and mode 2, respectively. Figure 6 shows the behavior
of /?l, and Fig. 7 shows the behavior of R2 for several values of 0.

In Fig. 6 the ratio RII is plotted as a family of curves, which is a function of the
percentage of mass in mode 1 and of the frequency ratio q. R1 is a monotonic function
which always has a value less than 1, which means that the design value obtained from
the one-mass system is greater than that obtained from the multimode analysis. For
small values of 0 there is little difference between the two design values, as is evidenced
by the large area of the plane for 0 = 0.1, where agreement is better than 0.97. The dif-
ference increases as 0 increases, which is evident in Fig. 6d, where 6 = 5. It is apparent
from this graph that for large 0 the ratio is more sensitive to changes in modal weight,
especially when the frequency ratio q is small. When the equipment weight is greater
than the weight of the base, the design value from the single-mass system may be con-
siderably greater than that from the two-mode system. However, for values of 0 less
than or equal to 1, the value of the one-mass system generally is within 20% of the true
value.

The ratio R2 in Fig. 7 is plotted as a function of percentage of mass in mode 2 and
of the quantity (i - q) to give a convenient coordinate. R 2 is double-valued with respect
to the mass parameter and has an extremum at q 1 /\177, the value of which is \ -/V..
Since R 2 is always greater than 1, the value obtained from the single-mass spectrum is
lower than that from the multimode analysis; however, for small 0 the difference is not
usually very large. As 0 increases, the region of large difference also increases. For
smaller values of 0 these large ratios occur in a narrow region, where the two modal
frequencies are nearly equal; for large 0 this region becomes much broader with respect
to q. This series of graphs shows that great differences can occur when the percentage
of mass in the second mode is small, and as e becomes larger such error is more likely
to occur.

The results in these two groups of graphs are partially summarized in Fig. 8, which
presents bounds on the values of le, and l2 as a function of the percentage of mass in the
second mode. The line ? = 1 is an upper bound to the mode-i design spectrum ratio and
a lower bound to the mode-2 ratio. The curves then represent lower bounds on RI,
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(a) 0 0.1 (c) = 1

1.0 1.0 L .

.9 - 9

.88-

.7.7-

2-i

6.26- . .

1.0

0R = I95

0 20 .30 .40 .50 .60 .70 .80 .90 1.00 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
M

I  m
I  E:D

mI +m 2  Ml+m 2

(b) 0 =0.5 (d) 0=5

Fig. 6 - The variation of the ratio of the first-mode design-shock spectrum value
to single-mass design-shock spectrum value (R1) as a function of the percentage
of mass in mode 1 [m,/(m 1 + 2 )], the ratio of the mode frequencies (q), and the
ratio of equipment mass to base mass (0)
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(a) 0 = 0.1 (c) 0 = 1

m
2

mb m2

(b) 0 0.5 (d) 0 = 5

Fig. 7 - The variation of the ratio of the second-mode design-shock spectrum value
to single-mass design-shock spectrum value (Hi2 ) as a function of the percentage
of mass in mode 2 Em2 /(mi + M 2 )], the ratio of the mode frequencies (I - q), and the
ratio of equipment mass to base mass (0)
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IO

9

8

7

CT

I -
nr

W
5-

z
0

3-

2-

MODE 2 UPPER BOUND

I MODE I LOWER BOUNDS

0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00m
2

Fig. 8 The upper and lower bounds on the values of 11i and
R2 as a function of the percentage of mass in the second
mode [m2 / (M I + M2)] and the mass parameter 0

for the various values of 0 (the region where R < 1 ) and the upper bound on t? . The
former occurs at the value of 1, at q = 0 and the latter at the value of 112 at q I/ i+0 .
Note that the upper bound on R2 is independent of the value of 0.

Cross sections of the contour plots in Figs. 6 and 7 are presented in Fig. 9 and
Fig. 10, so that the effects of one of the parameters may be more easily observed. In
Fig. 9 each curve shows the effect on R, or R2 of holding the modal masses constant
while varying the frequency ratio. The values of R1 are, of course, less than 1 and
those of R2 are greater than 1. Figure 10 does likewise for holding the frequency ratio
constant and varying the modal masses. The value 0 = 0.5 was chosen arbitrarily. Note
that the values of R for the second mode increase for increasing q until the critical q is
reached and then begin to decrease. Thus, the curve for q = 0.9 is lower than that for
the critical q (q = 0.8165). From this curve and the preceding one, it is apparent that
the greatest difference between the single-mass design-shock spectrum value and the
modal spectra values lies in the mode-2 ratio, when the percentage of mass in mode 2
is small and the frequency ratio, q is in the region of 1/VYT _+6.

The values of 0 used in computing the preceding series of graphs were arbitrarily
chosen. It is difficult to determine exactly what these values are in the realistic ship-
board situation. Indeed, the model investigated is a very rough approximation to reality.
However, the curves presented do show the trends which occur with variations of the
parameters. It appears that for a wide range of parameters the design spectrum is not
very sensitive to the effects of multimodes. That is, for a reasonable range of difference
(say ±20% in the example presented) the value of the single-mass spectrum is a fairly
good approximation to the true design spectrum values obtained through the multimode
analysis. However, there are ranges of the parameters where the design spectrum is
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2 10

.30,
-

'

.5O

------------ 9

m =.90
.7 ,J+r 2 I I I I I I I

08 .1 .2 .3 .4 .5 .6 .7 .8 .9 10
q 0

Fig. 9 - The variation of R1, and R2 with changes
in the frequency ratio q. For each curve the
modal masses are constant.

quite sensitive to modal effects, especially so for the higher mode design value. In gen-
eral, as the ratio of equipment weight to base weight becomes larger, the modal effects
become much more apparent, and the single-mass design-shock spectrum value may
differ greatly from the true design values.

A Nearby Structure

Another situation somewhat similar to that just examined is one where the equipment-
structure of interest is mounted in a location adjacent to another structure. This other
structure affects the common reference base motion and, therefore, the design shock
values of the equipment system of interest. This situation is shown in Fig. 11, where the
mass-spring system Al-K i is the structure for which a design-shock spectrum value is
desired. The mass-spring system M2-K 2 represents a nearby structure whose natural
frequency may be either higher or lower than that of the first system and which may
weigh more or less than the first system. Since the desired equipment system in place
by itself would be considered, the design-shock spectrum value derived earlier for the
one-mass system would be used. It is of interest to determine how much this design
value differs from that one which would be derived from the modified base motion.

To compare the two design values, the design spectrum for the two-structure sys-
tem must be known. The equations of motion for the system in Fig. 11 will be similar to
those for the two-mode problem of Fig. 5 when the following substitutions are made:

K I
_ /32

All
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+
2

MI + m2

Fig. 10 - The variation of R1 and R2 with changes
in modal masses, specifically with changes in
the second-mode mass m2 / (MI +m 2) . For each
curve the frequency ratio is constant.

Fig. 11 - Two structures located adjacent Z

to each other; the common base motion is
affected by the reactions of both structures L A

M 0

and

7_ /2 ,
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The relative displacement between M1 and M0 for the initial velocity V0 is

V [ C , -+ V22 S 2] (14)
X1 W-02 - W)12 WI s in wl& 0 W2 b l 0 2 t (14

2 1

This displacement must be maximized to obtain the design-shock spectrum value. If
/3 < y, then it can be shown that 0 < /3 < 0)1 < y < O2 , the expression for maximum dis-
placement under this condition is

V 0  
2 W12 2 -)Y2Xl-_ 2 2,

1 
+ 19 2

202 -
2-2  '1 )2

However, if /3 > x, then 0 < y < o </3 < w2, and the maximum displacement becomes

V 0F60
2 

-_/
2  

W 22 - Y2

X 22 - 1 [ +

Letting 8/y z: q, the design value can be made dimensionless as before to give

X, /8 1 +q N/ +/+77 q < 1, (15a)
0 /1+/'+ 7 1+ 7+q2(I+/) + 2q Vl+/I+7

and

X,3- q > (15b)
V0  V1/ + 7) +77 q2 +q2(I+ ) - 2q lV'+ 7+ j - q

If only the equipment system M,-K,, were in place, then its design-shock spectrum
value would be that developed earlier:

1 1T

-+ M

To compare this design value with that which would be used if the effects of the nearby
structure were considered, the ratio of the true design value to the single-equipment
value is used. This ratio for the two regions of q is

s (I +, r- j+7)V-- q < 1, (16a)
,Vl+/ +77 /I++q2(I+L) + 2qN/1+/-+7?

and

S (q + 1) 7 , q >. (16b)

1 ++ / L+ 7V++q 2(-1 +A
)  2qV+ 1+7

Figure 12 presents the ratio as a function of q and 7)/(1-+ 7) for several values of i.

Consider the region where q 1. The function is monotonic and always has a value
less than 1, which means that the single-degree-of-freedom design shock value is con-
servative (is greater than if M 2 had been taken into account) when the equipment natural



NRL REPORT 6676

(a) [1 = 0. 1 (c) /I = 1

(b) it = 0.5

.40 .50
7?

(d) =' 5

Fig. 12 - The variation of the ratio of the design value for the equipment, considering
the effect of the nearby structure, to the design value for the equipment when alone
(S) as a function of the percentage of total loading mass contained by the nearby
structure, [77/(aL + -7)], the ratio of the subsystem frequencies (q), and the ratio of
the equipment mass to base mass (pc)
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frequency is less than that of the nearby structure. As the weight of the nearby struc-
ture increases, the error caused by using the single-equipment design shock spectrum
also increases. For small p there is little difference until the weight of the nearby
structure becomes at least as great as the structure being analyzed. For p- = 0.1 the
adjacent equipment must be about 3 times the weight of the structure of interest for a
difference of 20% to occur. As p increases, the error also increases for any value of p.;
when p = 1 the nearby equipment need weigh about half the weight of the equipment of
interest for a difference of 20% to occur. It is readily apparent that in this region the
ratio becomes increasingly sensitive to the weight of the nearby structure as the value
of ,L becomes larger; this is especially so as the frequency ratio becomes smaller.

In the region where q >_ 1, the design value derived from the single-equipment sys-
tem might be too high or might be too low. For small k. it would probably be too low;
however, for large areas of the function plane the error is not very great. Consider a
20%6 difference, the S = 1.2 contour. For i = 0.1 the area enclosed by the contour is
small compared to the remaining area; for large p this much error on the low side can-
not even be attained. The double-value contours (S > 1) have an extremum with respect
to q at q = ,1 + + 7, the value of which is /f + (p.//) V1--/i +p + p.. As p. co, this quan-
tity becomes /( i +y) /, which is the maximum R that can be attained, and thus is an
upper bound to the difference on the unsafe side between the assumed single-mass design
value and true multistructure design value.

The bounds on S are shown in Fig. 13 for the various values of p. The lowest value
of s for any value of the mass parameter occurs at q = 0. In general, the weight of the
nearby structure must be as large as that of the equipment system of interest before a
very great difference between the two design values results. For small kL the range of
error tends to the unsafe side, and as / increases the error range shifts toward the safe
side.

.10 .20 .30 .40 .50 .60 .70
77

bL + 7

.80 .90 [00

Fig. 13 - The upper bound on S when the ratio q
is greater than one and the lower bound on S
when the ratio q is less one, as a function of the
mass parameter p./(p+ 7) and p.
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Figures 14 and 15 are, in effect, cross sections of the contour maps in Fig. 12 and
show the variation of S with the mass and frequency parameters in a different manner.
Figure 14 shows the effect of varying the frequency ratio q while holding the mass ratio
constant; Fig. 15 illustrates the effect of varying the mass parameter while keeping the
frequency ratio constant. The value of was arbitrarily chosen to be 0.5, but the fami-
lies of curves for other values of u will have the same general shape.

2

.8

I-

cc _

CD

FREQUENCY RATIO. q

Fig. 14 - The variation of S with changes in
the frequency ratio q. For each curve the
mass parameter is constant.

The information in the series of graphs in this section shows that for a wide range
of the parameters there is reasonably little difference between the design value obtained
from the single-mass spectrum and the true design value for the equipment when it is in
place adjacent to another structure. When the ratio of equipment weight to base weight
7is small, the largest difference is likely to occur when the frequency of the nearby
structure is lower than that of the structure of interest, and its weight is greater than
that of the structure of interest. For large JL the greatest difference is likely to occur
when the frequency of the adjacent structure is higher than that of the equipment of in-
terest. Of course, the value of /1 may be difficult to determine for a realistic shipboard
situation. The analysis has shown that for a fairly wide range of parameters of the sim-
ple model the single-mass design shock spectrum is relatively insensitive to the effects
of a nearby structure.

SUMMARY

A design-shock spectrum value is a design-analysis input which enables an analyst
to design-check a contemplated structure (which has never been subjected to a shock and
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Si

i

0 5
U)
0

.10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

7

Fig. 15 - The variation of S with changes in the
mass parameter. For each curve the frequency
ratio is constant.

for which no measured shock spectrum exists). An NRL report (8) considered the prob-
lem of formulating design-shock spectrum values for several simple structures and
demonstrated the difference between design-shock spectrum values and an ordinary
shock spectrum or the envelope of several ordinary spectra for these structures. A
brief review of this analysis, including the derivation of an ordinary shock spectrum
and the associated design-shock spectrum value for a simple one-mass equipment struc-
ture is included in this report for those unfamiliar with the concept.

This same simple structure was used as the basic model in an investigation of the
sensitivity of design values to other modes and to nearby structures. It was determined
that for a fairly wide range of system parameters the single-mass design-shock spec-
trum value is relatively insensitive to effects of a second mode or effects of a nearby
structure. However, there are certain situations where this quantity does become very
sensitive to these effects. This appears to be especially so in the case of the multimode
equipment system. Although the simple cases analyzed here are only rough idealizations
of reality, the trends observed with the variation of the system parameters should pro-
vide some insight into the problems discussed.



RE FERENCES

1. Biot, M.A., "Analytical and Experimental Methods in Engineering Seismology,"
Trans. ASCE 108:365 (1943)

2. Walsh, J.P., and Blake, R.E., "The Equivalent Static Accelerations of Shock Mo-

tions," NRL Report F-3302, June 1948; also published in Proc. Soc. Exp. Stress
Anal. VI(No. 2):150 (1949)

3. Belsheim, R.O., and O'Hara, G.J., "Shock Design of Shipboard Equipment, Part I -

Dynamic Design-Analysis Method," NRL Report 5545, Sept. 1960; also published as

BuShips 250-423-30, H.B. 5723 (May 1961)

4. Belsheim, R.O., and Blake, R.E., "Effect of Equipment Dynamic Reaction on Shock

Motion of Foundations," NRL Report 5009, Oct. 1957 (Confidential Report, Unclassi-
fied Title)

5. Blake, R.E., and Belsheim, R.O., "The Significance of Impedance in Shock and
Vibration," Colloquium on Mechanical Impedance Methods for Mechanical Vibra-
tions, New York, ASME, 1958

6. O'Hara, G.J., "Effect Upon Shock Spectra of the Dynamic Reaction of Structures,"

NRL Report 5236, Dec. 1958; also published Proc. Soc. Exp. Stress Anal. XVIII(No. 1):
145 (1961)

7. O'Hara, G.J., "Impedance and Shock Spectra," J. Acoust. Soc. Am. 31:1300-1303
(Oct. 1959)

8. O'Hara, G.J., "Shock Spectra and Design Shock Spectra," NRL Report 5386, Nov.
1959

9. BuShips, "Shock Design of Shipboard Equipment, Interim Design Inputs for Subma-

rine and Surface Ship Equipment," NavShips 250-423-31, Oct. 1961 (Confidential
Report, Unclassified Title); superseded by:

O'Hara, G.J., and Belsheim, R.O., "Interim Design Values for Shock Design of Ship-

board Equipment," NRL Memo. Rept. 1396, Feb. 1963 (Confidential Report, Unclas-
sified Title)

10. O'Hara, G.J., and Cunniff, P.F., "Elements of Normal Mode Theory," NRL Report
6002, Nov. 1963



Appendix A

ANALYSIS OF A SUBSYSTEM WITH BASE-MOTION INPUT

In the text it was stated that the shock spectrum to be used in the normal-mode
analysis is one which is valid for the base of the structure. The intent of this appendix
is to demonstrate that the base motion is sufficient to define the input to an in-place
equipment structure.

Consider the structure in Fig. Al; this system is subjected to an impulse at M02
which results in an initial velocity V0 at that mass. The equipment system of interest is
shown in Fig. A2. It will be shown that the response of M2, a point on the equipment, can
be obtained by analyzing the system in Fig. A2, where the input motion Z is the motion Y0
measured at the equipment base M0 in Fig. Al.

Yi 2

0o K,

10

Fig. Al - A structural system subjected
to an impulse load with the equipment
structure in place

Fig. AZ - The equipment structure
removed from the complete struc-
ture and subjected to base-motion
input

Y2

Y, K2

L K

The equations of motion of the system in Fig. Al are

M2Y2 + K2 y2- Y1) - 0 ,

MI 1 + K2 YI- Y 2) + KI(Yi - Yo) - O

and

MoYO + K 1( YO-Y 1 ) = 0.

Letting

a 
2  K1 M2  M and- , , - 7
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the Laplace transform of these equations is

(S 2
+ a 2

)Y 2 - -2YP : 0

-cc
2
y" 2 + (S

2
+/'2 +ca 

2
)Y _- 1 2o 0,

and

-7/3
2

Y + (S
2 

+ 77 /3
2

)Y 0 = V 0

By the usual processes, the frequency equation of the three-mass free-free system is

0 - S
2

(S
2

+0 1
2

) (S
2 

+ W02) 
= 2 

{S
4  

+ 
2

[(1 + 77) /32 + (1 +/) c
2

] + a
2
/

2
( 1 + 7 + 77)}

so that the complete system natural frequencies are

0 2  
, 0 ,

0)2 0)2 _(1 +n)2 + (1+7)c 2  1 I[I f)/2 + 17 c2
-4c

2 3(+772 +/[ -f)8 + + )0 1 + 77 (3 1 + L) a2 4 a2/82( I + 7 +//7
1,W2 2 -+2

The Laplace transforms of the responses of interest become

Vo a
2 '8

$2(S
2 

+ W1
2

) (S2 + ) 2
2

)

and

V 0 [( S2 + a
2

) ( S2 +/3
2 

+ /-La
2
) - /7ca

4
]

S
2

( S2 + C12) ( S
2 

+ C 22 )

Thus, the response of M2 is

VO0 a2/82 V 0 a o
2 /

8
2

Y - - -- -- [ sin W It + - sin 0)t + c tc .

°2 - )12 1 2 - 2

Now, consider the equipment system in Fig. A2. Its equations of motion are

M2 Y 2 + K 2 (Y 2 - Y1 ) - 0

and

MY 1 + K2(Y 1 -Y2) + KItY 1 = KiZ.

Making the same substitutions as before, the Laplace transform of these equations
becomes

(S
2 

+a 2
) Y 2 - c2Y1 = 0

and
_ ta2Y 2 + (S

2 
+ /2 + 

2
)Y1  /3

2 Z

The system's frequency equation is

0 
=

(S
2

+ 1
2

)(S
2

+§ 2
2

) . (S
2

+a
2

)(S
2

+/3
2

+ca
2

) - aa
4

],
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so the fixed-base natural frequencies of the equipment system are

12,¢ - (1+7L) a' + /3 + /[( + )c
2 

+ /32]2 -
2

I ' 2 2 - 2 [(I+Ij,

The Laplace transform of the response of M2 is

2 (S2 + ¢12) ( S2 + A22)

and if the motion at M0 is used as the input, then this expression becomes

a2_ 2 02V[(S 2 +a 2 )(S 2 +/3 2 +a
2 ) u 7 a 4 ]

2 (S
2 

+ /i2) (S
2 

+ q2) S2 ($2 + )2) (S2 + 0)2)

which reduces to

V0 c
2 

/32

2 $2( S2 + W)1
2

) (s2 + W2 
2

)

This transform is exactly the same as that obtained previously in the complete system
analysis, so that the response of M 2 in this case is equal to that response given earlier.
This is so even though two different systems were analyzed, one being the complete sys-
tem having the natural frequencies 0)0, W ,, and w2 and the other being the equipment sys-
tem which has the fixed-base natural frequencies (1 and (2.

Of course, the analysis could be carried further. The motion of M1 obtained from
either of the above systems could be used as the input to the one-mass system M2-K 2,
which has the fixed-base frequency a. The response of M 2 would again be the same as
that derived above.



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Naval Research Laboratory Unclassified

Washington, D.C. 20390 2b. GROUP

3, REPORT TITLE

THE EFFECT OF A SECOND MODE AND NEARBY STRUCTURES ON SHOCK
DESIGN VALUES

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

This is an interim report; work is continuing.
5. AUTHOR(S) (First name, middle initial, last name)

G.J. O'Hara and L.P. Petak

6. REPORT DATE 7e. TOTAL NO. OF PAGES 7b. NO. OF REFS

April 5, 1968 28 10
8a. CONTRACT OR GRANT NO. go. ORIGINATOR'S REPORT NUMBER(S)

NRL Problem F02-05
b. PROJECT NO. NRL Report 6676
SF013-10-05-11655

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy (Office of Naval
Research and Naval Ship Systems
Command), Washington, D.C. 203 60

13. ABSTRACT

A dynamic design-analysis method developed at NRL for shipboard equipment
requires the use of design-shock spectrum values, which provide appropriate input
data. These design values are derived from measured data of a number of realistic
shock tests. Theoretical and experimental investigations of the past provided in-
sight which has resulted in a set of design data for use with the design-analysis
method; these are the presently specified inputs, and studies continue to improve
them. The investigation reported here attempts to show the effects upon design-
shock spectrum values of a second mode and a nearby structure. This is done by
comparing the design-shock spectrum value of a simple, single-degree-of-freedom
structure with the design spectrum values obtained for a two-mode structure and
with the design value obtained when another simple structure is placed adjacent to
the original one. The results indicate that for a wide range of weight and frequency
parameters the design spectrum value obtained using a simple model is not greatly
sensitive to the effects of multimodes and adjacent structures and, thus, sufficiently
defines the appropriate input value. However, for certain ranges of the weight and
frequency parameters, gross differences can occur between the design values for
the simple system and those of the more complex systems.

DD NOvo 1 4 7 3  (PAGE 1) UNCLASSIFIED
S/N 0101-807-6801 25 Security Classification



UNCLASSIFIED
Security Classification

14 LINK A LINK B LINK CKEY WORDS

ROLE WT ROLE WT ROLE WT

Dynamic design
Shock design
Shock design values
Design shock spectrum
Shock spectrum
Multimode structures
Adjacent structures
Dynamic structural interaction
Sensitivity of shock design values
Shipboard equipment

DD ,mv 691473 A)
(PAGE, 2)

UNCLASSIFIED
Security Classification


