
NRL Report 6623

Some Basic Aspects of Radar Target Imaging

HENRY A. BROWN

Tracking Branch

Radar Division

November 15, 1967

APPROVED FOR PUBLIC
RELEASE - DISTRIBUTION

UNLIMITED

NAVAL RESEARCH LABORATORY

Washington, D.C.



CONTENTS

Abstract ii
Problem Status ii
Authorization ii

INTRODUCTION 1

FOURIER INTEGRAL REPRESENTATION OF IMAGING 2

POINT SOURCE TARGETS 3

RESOLUTION REQUIREMENTS 7

SAMPLING OF THE FAR FIELD 10

IMAGING INTEGRAL EVALUATION BY LINEAR
INTERPOLATION 12

IMAGING INTEGRAL EVALUATION BY FILON'S METHOD 15

IMAGE PEAK POSITION ERROR 19

PLUS-MINUS PHASE APPROXIMATIONS 21

THE CONSTANT-RANGE AND PLANAR APERTURE
DIFFERENCE 21

SUMMARY 22

ACKNOWLEDGMENTS 23



ABSTRACT

The classical basis of resolution as applied to radar target
imaging has been investigated with reference to point source tar-
gets in one dimension and their associated images. The imaging
process can be represented by a Fourier integral operation on
modified planar aperture data; two methods of evaluating this in-
tegral by a digital computer are linear interpolation and Filon's
method. Curves were prepared which illustrate the aperture-
resolution relationship and the sampling element placement within
the aperture. Image distortion due to finite aperture size and to
approximations of the far-field phase were examined by generat-
ing point source images on a computer and found to be distorted
both in peak position and amplitude for finite apertures. Although
phase correction for the distance between the constant-range
surface and the planar aperture was shown by example to be es-
sential for imaging, useful images can be obtained by such crude
approximations as making plus or minus phase assignments to
alternate lobes of the far-field pattern.
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This is an interim report; work on the problem is continuing.
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SOME BASIC ASPECTS OF RADAR TARGET IMAGING

INTRODUCTION

The problems associated with radar target imaging are quite fundamental and
should be clearly understood before any attempt to circumvent the obstacles is under-
taken. The purpose of this report is to describe the basic imaging problem and to estab-
lish quantitative measures of imaging capability in the microwave region. To concen-
trate on the essential principles we will describe the imaging problem in one dimension
for no relative motion between the target and the data collecting aperture. Once the fun-
damental relationships are established, generalization into two dimensions is only a
matter of mathematical manipulation.

After the appropriate coordinate transformations are performed to account for the
geometry of the situation, the basic problem can be well described by the Fourier inte-
gral. Two methods of evaluating this integral are shown in this report for sampled data
input.

Electromagnetic field theory gives a relation between the target current and the far
field. By the proper manipulation the inverse of this relation yields the target current
as a function of the measured far field. For targets extending many wavelengths the
current intensity roughly corresponds to the shape of the target, so identification is es-
sentially visual after smoothing of the current variations; this is the case of object iden-
tification with coherent light. For targets extending only several wavelengths or less the
correspondence between the current and the geometrical shape of the object is less ap-
parent than for larger targets, and this lack of correspondence will be illustrated in the
target images studied.

The principles studied in this report apply to conventional holographic techniques as
well as to imaging with antenna arrays. Formation of a hologram on a photographic plate
is merely a convenient analog method of two-dimensional heterodyning of spatial frequen-
cies. If the same input information were available to a digital computer, the identical, if
not better, image could be reproduced in time, because the same imaging principles
herein discussed apply. Of course the big "if" here is the matter of input information
form. It would be exceedingly difficult, for example, to measure experimentally the
phase and amplitude of the far field from a small model at light frequencies.

Imaging with microwave arrays has generally taken the form of obtaining from the
coherently processed output of all elements a single output which produces a high-gain,
narrow-beamwidth antenna pattern. The price for this method is high sidelobes for the
narrow beamwidth and the necessity of scanning the beam either electronically or me-
chanically over the target region of interest. An improvement in antenna gain is usually
obtainable by this scanning.

The experimental method described herein of obtaining the far-field data incorpo-
rates no special beamforming, tapering, or supergain technique, thereby permitting con-
centration on the fundamentals involved. Phase and amplitude information is separately
available from each array element, so the end result of the processing is an image with-
out beam scanning. The disadvantage is the reduction in antenna gain from the array
factor to the sampling element pattern factor. Since this is not a system proposal, the
gain-reduction is justified on pedagogical grounds. To illustrate the basic concepts of
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resolution and diffraction limited imaging as clearly as possible targets will be consid-
ered which are isotropic point sources, and the terms "targets" and "sources" will be
used interchangeably.

FOURIER INTEGRAL REPRESENTATION OF IMAGING

Consider a one-dimensional target with a current distribution /(x) in plane PT which
lies parallel to an aperture plane PA, as shown in Fig. 1. If the aperture plane is in the

far field of the target, the amplitude of the elec-
tric field in the p direction E at point y in the

E, y aperture plane is related to the current in the
target plane by'

(IF "T j607[11 cos (,d
(I E¢(jy) ]6O s] dx, (1)

where [ I] is the retarded target current as seen
at point y in the aperture plane, X is the wave-
length, and o and s are the angle and distance

R shown in Fig. 1. More specifically, this retarded
. current is given by

IN q

PT IP4 [1] I(x) - /  , (2)

Fig. 1 - The geometry of the where 3 = 27/k.
target and aperture planes, PT
and PA If the range Ri is much greater than the tar-

get extent, as is assumed by requiring the aper-
ture plane to be in the target far field, the dis-

tance 3 between target element dx and aperture point y is approximately

s8 /R
2

+y2 - x sin 4). (3)

Under the above assumption the amplitude variation of E with x may be neglected so
that s , r in the denominator of Eq. (1). However, since 13x sin q' may be a significant
phase variation with x, the same simplification cannot be made in the retarded current
exponential of Eq. (2). Thus far the far field expression of Eq. (1) has reduced to

607TIT e /R2 +y (x) ej x si d . (4)
k( 1 2 + y 2 ) PT

Of interest is the component of E. in the PA plane, which is simply

Ey= cos

j6077R2 - j,8 R/
2

/-2+ y
2 

f j X s)in dx (5)
= e I (X) e dz .

RI(2 + y/
2

) PT

For purposes of manipulation, the following substitutions are made:

U = sin q, (6a)

*J. D. Kraus, "Antennas," New York:McGraw-Hill, 1950, p. 140.
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v = XiX, (6b)

G(y) = the integral multiplicative times k, (6c)
and

E(u) = E /G(y) (6d)

Then Eq. (5) can be written as

E(u) f I(v)e
j 2

77t dv, (7)
P T

which is the proper form of the Fourier integral having the inverse

1(v) f 1. (u)e J21'U d. (8)
P-A

Therefore, since the Fourier transform Eq. (7) possesses the inverse Eq. (8), the target
current (w) can be expressed explicitly as a function of the aperture field as follows:

I(x) ]60 I E(y)e dy. (9)
PA

The physical significance of the exponential term in Eq. (9) will be discussed later in
relation to two point sources.

The integral of Eq. (9) can be put into the Fourier integral form of Eq. (8) simply by
letting

R e ?2 2 210E u ())I , (1()
j607 cos

2 ( (

and the integral form of Eq. (8) will be termed the imaging integral. In other words, the
target current (the image) I (x) can be found from the far-field phase and amplitude in
the aperture plane PA by the Fourier transformation if the multiplicative factor in Eq.
(10) is applied before the transformation is taken. Note also that the transformation
variable is u = si n , which is nonlinear with the aperture variable y except for small
values of y compared with range. However, as will be shown later, resolution require-
ments at microwave frequencies demand that the aperture extent be comparable with the
target range, so that the u variable must be retained in the Fourier transformation.

It should also be observed that in the Fourier transform pair as expressed in Eqs.
(7) and (8), if the target extent in plane PT is finite, the aperture extent in plane PA must
be infinite for Eq. (8) to yield exactly the target current 1 () . In any physical case the
aperture is finite in extent, so the inverse Eq. (8) does not yield an exact replica of the
current but rather what is termed a diffraction-limited image of the target. The effect
on the target image of a finite aperture is discussed further under resolution require-
ments.

POINT SOURCE TARGETS

For a basic study of radar target imaging it is convenient and instructive to work
with isotropic point sources, since the far field from these sources can be easily formu-
lated and the imaging integral readily evaluated. As the first example consider two
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E0 y isotropic point sources of equal amplitude and

phase, as shown in Fig. 2. The far field h,'
from this target at a constant range R by 9q.

', (1) is simply

f67 /f3 (I? ±X sin b)

R

2x m

R I

i where (ix) is the Dirac delta function. The
CO 0 amplitude factor does not appear be-
cause the points are isotropic.

Fig. 2 - Two isotropic point The field in the aperture plane is related
sources in the target plane PT in to the field along the constant range surface by
relation to the constant- range far-
field E' and the aperture plane P,F E COS

2  

2V E' (12)R 2 + Y V 2 .

In Eq. (12) the cos t term simply expresses the difference in linear polarization between
E and h1', and the remainder of the multiplicative factor expresses the attenuation and
phase lag introduced by the path length difference between the constant range surface and
the aperture plane.

Substitution of Eq. (11) into Eq. (12) gives

F 1207TP R + Y
2  /

N 12 + 
2  

e1co 
3)

Comparison of this expression for the far field in the aperture plane from two point
sources with the general expression for the imaging integral of Eq. (9) reveals a physi-
cal significance for the exponential terms in the imaging integral. The 1 2 + y 2 term
is a geometrical phase factor arising from the planar shape rather than a spherical (or
circular) arc shape of the aperture plane. In an actual experiment this phase factor term
would be 3 ( ,/R 2 

± 2 - U) for a phase reference at the aperture center of y - 0 rather than
at the target center of x o. The xy/ /2 + y 2 term represents the constructive and de-
structive interference rings which occur at regular intervals in the ZI = s in ¢ coordinate
on the constant range surface. This interference pattern can be projected radially onto
the aperture plane in monotonically increasing intervals with y.

In the subsequent discussion the far-field KF along the constant-range surface will
be examined rather than the field in the aperture plane and will be called the constant-
range E-field. This constant-range field can easily be determined from the experimen-
tally measured field in the aperture plane by multiplication of the constant-range correc-
tion factor F(y), which is

F(y) = - V 
2

e + -) (14)

The reciprocal of this factor appears in Eq. (12).
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Of course this constant-range E-field could be measured directly by using a circular
arc aperture which was centered on the target. In such a case, the F(y) factor could be
ignored and the measured data used without correction in the imaging integral of Eq. (8).

The magnitude of the constant-range correction factor is shown in Fig. 3 with the
aperture position variable normalized with respect to the target range. As can be seen
from this figure the constant-range E-field and the planar aperture E-field magnitudes
differ less than 1 db within any aperture whose total extent is less than 70 percent of the
range. This means that the magnitude of this correction factor may be of secondary im-
portance in the imaging process.

100.0

Fig. 3 - The magnitude of the constant-
range correction factor F(y) as a func-
tion of the position in the aperture of
the sample element, normalized with
respect to target range

1.0
APERTURE SAMPLE ELEMENT POSITION

TARGET RANGE

The phase angle of this F(y) correction factor is a different matter entirely, and is
shown in Fig. 4. Since this angle depends on both sample element position within the
planar aperture and on wavelength, three orders of magnitude of range/wavelength are
shown. At X band (X = 0.1 ft) the curves correspond to ranges of 10, 100, and 1000 ft.
Observe that for a total aperture extent of 20 ft and for a range of 100 ft at X band the
correction factor angle varies from 00 at the aperture center up to 18000 at the aperture
extremity. Quite obviously the phase angle of F(y) must be considered in imaging by
Fourier transformation using planar aperture information.

To illustrate the manner of the amplitude and phase variations involved in the
constant-range K-field, consider three isotropic point sources of equal amplitude and
phase in the target plane with a spacing ratio of 1:d. The constant-range far field is then

E j607T -j 8R[ e j8u + -j 8du- e [+e+eJ. (15)

The normalized amplitude and the phase referenced to that at y = 0 of this constant-range
far field is shown in Fig. 5 for three spacing ratios.
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0.01 0.1 .0
APERTURE SAMPLE ELEMENT POSITION

TARGET RANGE

Fig. 5 - The amplitude and phase
of the constant-range far field
from three isotropic point sources
for three spacing ratios
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correction factor F(y) as a function of the
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For equal spacing, d= 1 and the field is simply

j 607 e - 3 ( 1 + 2  o s /3j) (16)
tX

for which the phase (when referenced to the aperture center) is either 00 or 1800. For
any unequal spacing the phase across the spherical constant-range surface is continuous
but may vary quite rapidly with position u. Only because the point sources are of equal
amplitude and phase is the amplitude pattern an even function of position Y and the phase
an odd function of u. In general this symmetry does not exist for more complex targets.

RESOLUTION REQUIREMENTS

In any physical situation the antenna aperture is necessarily finite in extent, which,
when the imaging integral of Eq. (8) or Eq. (9) is applied, results in a diffraction limited
image of the target or object. If the aperture is large enough, the resulting image will
be a recognizable replica of the original object. One quantitative measure of "large
enough" is derived from the concept of resolution.

Consider again the two isotropic point sources of Fig. 2 which produce a constant-
range far field of the form

E' = K cos (Oxe sin 43 (17)

where 2x. is the separation of the two points. It is evident that this far field is simply a
cosinusoidal variation along the constant-range surface in the U = s I n (1 coordinate.
Hence the image is simply the Fourier transform of a finite segment of a cosine pattern,
the length of which is determined by the finite aperture extent. More specifically, the
image will be

( ) 1 fu e 
- j x u 

cos /3xm'adu

si/
3

U( x xm)= 2KU si,3~x . (18)
,8 U ( x ±_ x, )

where the aperture extent along the constant-range surface is 2u. The diffraction limited
image of two points is then the sum of two sinc functions located at x ± xn. (A sinc func-
tion is defined as sinc x = (sin 7m) /ix.)

If the aperture is such that exactly one-half cycle of the cosine spatial variation is
included within the aperture, i.e., U -- /4x,, the first null of either of the two sinc func-
tions is congruent with the maximum of the other sinc function; this is termed Rayleigh
resolution. In the resultant image, as shown in Fig. 6 (left), the two points are not quite
resolved.

If, on the other hand, exactly one full cycle of the cosine spatial variation is included
within the aperture, i.e., U = k/2xm, the first null of either of the two sinc functions is
congruent with the first null of the other sinc function, and the two points are well re-
solved, as shown in Fig. 6 (right). This case will be termed null resolution because of
the congruency of the nulls and will serve as a useful definition for resolution in this
report.
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Fig. 6 - The image amplitude of two equal coherent
isotropic point sources separated (left) by one Rayleigh
resolution cell and (right) by one null resolution cell

The utility of the Rayleigh resolution criterion is found not in the coherent illumina-
tion case, to which this investigation is restricted, but in the incoherent illumination
case. For two isotropic incoherent sources separated by one Rayleigh resolution cell
the intensity of the image is the sum of the squares of the two sinc functions, as shown at
the left in Fig. 7. The resultant intensity pattern has a saddlL point at the center, there-
by resolving the two points. For the coherent case the intensity is the square of the sum
of the two sinc functions, i.e., simply the square of the total amplitude as shown at the
right in Fig. 7. This image does not have a saddle point at the center, so the separation
of the two points is not clearly defined.

POSITION POSITION

Fig. 7 - The
point sources
cell for (left)
herent case

image intensity of two equal isotropic
separated by one Rayleigh resolution

the incoherent case and (right) the co-

These concepts of resolution using the constant-range surface can easily be trans-
ferred into requirements on the planar aperture through the u = s in 'P coordinate. Since
for Rayleigh resolution only one-half cycle of the cosine pattern need be included within
the aperture, then ,xm. 2U = T or

SYmax 7T
12? m 1x

which can be solved for the aperture required for Rayleigh resolution as

(20)ARayleigh -
2

Ymax
2XR

/16x 2 X

(19)
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It is convenient to define the separation of the two points for this resolution limit as
the resolution cell r' - 2xm, which gives

Ie ayigh 
2

' / 12 _ 2
(21)

According to Eq. (21) this Rayleigh resolution cell cannot be smaller than a half wave-
length, which indeed was the basis of Rayleigh resolution in the first place, as discussed
above in relation to the Fourier transformation.

For null resolution one full cycle of the cosine pattern needs to be included within
the aperture. Hence '3xMU= 7T or

2 t1
Anul 

2 ylnax =

Vr1 '2 _T
(22)

Again the definition of resolution appears in that the resolution cell r cannot be less
than one wavelength.

By normalizing the aperture with respect to range and the resolution cell r 'with
respect to wavelength the aperture-resolution relationship can be shown in the useful
form of Fig. 8 for both the Rayleigh and null resolution criterions. Note that if the

z
I.J
I--x

WZ

I-

a-

0.01 L
0.1 100.0I.0 10.0

RESOLUTION CELL EXTENT --Lr
WAVELENGTH

Fig. 8 - The aperture extent, normalized with respect to target
range, vs resolution cell extent, normalized with respect to wave-
length, for the null and Rayleigh resolution criterion
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resolution cell is greater than about four wavelengths, the required aperture for null
resolution is given approximately by 2, r. For Rayleigh resolution and a resolution cell
greater than two wavelengths the required aperture is approximately I Ir. For example,
at x band and a target range of 100 ft a null resolution cell of 1 ft would require a 20-ft
aperture and a Rayleigh resolution cell of 1 ft would require a 10-ft aperture.

SAMPLING OF THE FAR FIELD

One method of obtaining the far field in the aperture plane is by an odd number of
sampling antennas rigidly fixed along a stable support. Phase can be referenced to the
center element, as can amplitude measurements, or to any other nonzero amplitude posi-
tion. The odd number of elements can conveniently provide the center element as the
zero positional reference. In applying the imaging integral of Eq. (8) it is expedient to
have the samples equally spaced in the u - s in coordinate which, when projected onto
the aperture plane, gives an increasing element separation out from the center of the
array. Letting A; equal the odd number of sampling elements, the constant spacing in the
,s coordinate for null resolution is

,?null - - ) (23)

The i th sampling element in the aperture plane, counting from the center outward,
is located at

i = 0,1 1 2 ... (24)

This equation as a function of the product of the element counter i and the constant spac-
ing A of the u coordinate is shown in Fig. 9. Notice that the spacing is approximately
constant as long as the product of i and Au is less than 0.2. This implies that if the null
resolution cell is greater than five wavelengths, the sampling elements may be equally
spaced in the aperture plane.

The position of these sample elements in the aperture plane may also be expressed
less generally by fixing the number of sample points and by letting the element counter
divided by the resolution cell extent i r be the independent variable; the expression then
is

(2 )

This relation is shown in Figs. 10 and 11 for several sets of sampling points. Note that
sample element taper is significant only out toward the ends of the array and, of course,
is symmetrical about the center. For example, for 37 sample points the spacing is con-
stant up to i r = , (see Fig. 10), which means that the resolution cell should be greater
than 4.5 wavelengths or about 5 wavelengths as stated above from Fig. 9.

The resolution capability of an aperture is determined by the total length of that
aperture. In other words, the longest spatial period of the constant-range A-field which
will fit into an aperture determines the resolution.

If a target is composed of several equally spaced point sources, the spacing of these
sources determines the lowest spatial frequency in the far field. At the other end of the
scale the extent of such a target determines the highest spatial frequency in the far field
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10.0

1.0

w

01

0.01

0.001
0.001 .01 0.1

ith ELEMENT TIMES SPACING (i xAu)

Fig. 9 - The sampling element position within the aperture, normal-
ized with respect to target range, vs the ith sampling element
times spacing, where i = 0, 1, 2, ... and1 ±= sin )

and thereby establishes a lower limit on the sample element spacing. This maximum
spatial frequency for a target composed of'these equally spaced points is L/2XR cycles
per meter in the aperture plane, where L is the target extent.

For a target composed of any unequally spaced points the situation is much more
complicated. For instance, observe the complex field from three such point sources as
shown in Fig. 5. Where for equal spacing the field consists of an average component of
relative magnitude 1 and a cosinusoidal spatial component of magnitude 2, for the partic-
ular unequal spacings shown an additional spatial harmonic appears. The spatial fre-
quency components coresponding to the three spacings in Fig. 5 are shown in Fig. 12.
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0.1

z

0.01

0.001
0.0 I 10.00.1 1.0

i th ELEMENT
RESOLUTION CELL EXTENT

Fig. 10 - The sampling element position within the aperture, nor-
malized with respect to target range, vs the ith sampling element,
normalized with respect to the null resolution cell extent, for five
sets of total sample points

Only because the point sources are located at integer multiples of the Rayleigh resolution
cell does a finite number of spatial frequencies appear in the constant-range far field.
For instance, if the spacing ratio were 1:1.4, spatial frequencies at all integer multiples
of the fundamental (2-!aperture extent) would exist, as can be shown from Eq. (15).
Hence, it is difficult to derive a relation for the maximum spatial frequency (and thereby
the sampling rate) in the constant-range far field of a general target beyond that stated
above of L 2,,. for a line of equally spaced point sources.

IMAGING INTEGRAL EVALUATION BY
LINEAR INTERPOLATION

If the imaging process operates on the constant-range far field of a target which has
been sampled at a finite number of points, it is necessary to adapt the imaging integral
of Eq. (8) to operate on such input data. As previously discussed, range, aperture extent,
and wavelength all influence the resolution obtainable and appear in the expression for the
image. Since all these parameters are accounted for in the [Ny) factor of Eq. (14), the
entire imaging integral can be scaled such that only the number of sample points v' needs
to be considered along with the phase and amplitude of the constant-range far field.
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I0.0

Il
Z

1.0

0

1.0 10
i th ELEMENT

RESOLUTION CELL EXTENT

Fig. 11 - The sampling element position within the aperture, nor-
malized with respect to target range, vs the i th sampling element,
normalized with respect to the null resolution cell extent, for five
sets of total sample points

This scaling is easily accomplished by the substitutions

N-1

: 2Uv,

(26a)

(26b)

where 2U is the total aperture extent in the u coordinate. When Eq. (26) is used and a
multiplicative constant is dropped, the imaging integral of Eq. (8) reduces to

N-1

1'( ) - - 2IV
27

-'i 2 (27)

The integrator now assumes the form of the integer element counter i as used in the
discussion of sample element position. For example, for 37 sample points - takes on all
the integer values between - 18, inclusive, and the fundamental spatial frequency is 1/36.
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COSINE COMPONENT
AMPLITUDE

I

2 3 4
HARMONIC

SINE COMPONENT
AMPLITUDE

EQUAL
SPACING

1:1.5
SPACING

1:2
SPAC ING

i i I I I

0 I 2 3 4
HARMONIC

Fig. 12 - The Fourier components of
the constant-range far field from three
isotropic point sources for three dif-
ferent spacing ratios. The fundamental
frequency is 27/(aperture extent).

The image plane variable is also conveniently scaled by Eq. (26), since one null reso-
lution cell equals unity in this coordinate regardless of the actual aperture, range, or
wavelength.

The imaging integral of Eq. (27) can be further reduced to a finite summation, if
some assumption is made as to the variation of F;(N) between sample points. Suppose
that the field can be represented by linear interpolation between sample points in ampli-
tude and in phase. This makes the integrand E(7 ) in the imaging integral a piecewise
linear function between the integers in the range ± (A' - 1) 2. As a result of taking the
kth segment of 1(rj), the center of which is located at - + ( I /2), and using the shift
theorem of Fourier transforms, the image produced only by this segment is

_j27,

e-
(T, k 

27fA,+- Y -- ?

Since superposition is applicable here, the imaging integral of Eq. (27) may be eval-
uated by summing the products of the Fourier transform of each of the linear segments,
the centers of which are shifted to the origin by the shift factor

2 7T
-__ (k '2 )

A'- i

By some laborious manipulations the imaging integral can be put in the form

(29)

/V-

~q-2k '( 1 0 =  L.

2

-J 2-7T-- (k + ) -I_)d k s n /2 +2 _ _ / 2 0os- (30a)
e --i- J, I Is-- - ( a

(28)

I I
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N- I

= L k I =  Bk ,  (30Ob)

k V- 2

where

27T (31)
kmk N-

and the slopes and slope intercepts of the kth shifted segment are

V / - A :k , 
M
k = ag Ek I - arg r k (32a)

Ek hk b k  =I (arg Ek + 
+ 

arg Ak) (32b)
P 1 -5(~ + , - (aug

Although this form is seemingly more complex than the integral form it is particularly
well suited for evaluation by a digital computer.

The accuracy of this linear interpolation method as a function of the number of sam-
ple points was checked by computing and uniformly sampling in the u coordinate for 37,
19, 13, and nine points the constant-range far field from two isotropic point sources
separated by one null resolution cell. The true diffraction limited image of these two
point sources is

sji ( + 1)
s) ( in 1) 

(33)

and was compared with the image computed from the linear interpolation formula of Eq.
(30). For 13 sample points or more the error was less than 1 percent for i < -.
Beyond I = : the image is more than 11 db down, and the image is beyond the third
sidelobe of the sinc function. Here the percent error loses much of its meaning except
as an order of magnitude. For nine sample points the error was less than 6 percent for

< 6.

This error as a function of the number of sample points depends greatly upon the
target. If the constant-range far field from a three-point-source target with a 1:1.5
spacing ratio is nine point sampled as shown in Fig. 13, a fairly erroneous image results
as compared with the exact image, as shown in Fig. 14. Even though this sampling rate
was sufficient to produce an accurate image for the two-point target, it was not sufficient
when an additional source 1.5 null resolution cells away was added. Even though the
highest frequency component in the constant-range far field is 3 and sampling is at 9(,
the distorted image results not from aliasing but from truncation to a finite number of
samples. Since the single spatial frequency from two points was well represented by 13
samples, a rule of thumb would be to sample the constant-range far field at least 10
times the highest spatial frequency within the sampling aperture.

IMAGING INTEGRAL EVALUATION BY
FILON'S METHOD

Another method of evaluating the imaging integral is to obtain the Fourier coeffi-
cients of the constant-range far field which provide linear weighting values for the sum-
mation of sinc functions in the image plane. First the sufficiency of the Fourier coeffi-
cients for imaging integral evaluation will be shown.
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POSITION IN APERTURE
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-40-
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Fig. 13 - One-half of the symmetrical
constant-range far field as measured
from the aperture center from three
isotropic point sources with a 1:1.5
spacing ratio, showing the approxima-
tion of linear interpolation between
nine sample points

POSITION IN IMAGE PLANE

Fig. 14 - The image amplitude of three isotropic point
sources resulting from nine-point linear interpolation
of the constant-range far field of Fig. 13 along with the
true diffraction limited image and the original objects
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Since the constant-range far field magnitude and phase are known, it is a simple
matter to express the field in complex form as

E(7 7 ) - Er(7) + j Ei ( 7 )

and the real and imaginary components of the field in complex Fourier series form as*

Er (7) Cr e
k= -C

k= -o

These complex Fourier coefficients are obtained from

(35a)

(35b)

-77/ W
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7
7 d

Ej-0e-jwk q 7

and are related to the more familiar real Fourier coefficients by

16C =2 (a c-jbck k: % Jk)'

1
C k = 2 a 0

ck :-I (ak +jbk)

Substitution of Eq. (35) into Eq. (34) gives

O

k = -coD

which when substituted into the imaging integral gives

-I f (C + jc i ) eJ -kc e

Csin 
7m(k-

Lc c i ) ( k )k+ -o

j -w ( 7 d7

(39)

*R. W. Hamming, "Numerical Methods for Scientists and Engineers," New York:McGraw-

Hill, p. 302, 1962.
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which is simply the summation of sinc functions located at integer positions in the image
plane and weighted by the complex Fourier coefficients of the constant-range far field
within the finite aperture.

These complex coefficients of the complex field representation of 1,('0) are related
to the real Fourier coefficients by

(! + t, J C [a. + bi + j  ai - b,)] k>0;(0a

1
C,, + JCi 2 [ar + 1ai] k =0; (40b)

+ jrC =- [a - a +br)] k 1<0. (40c)

The a's are the cosine components of the real (r) and imaginary (i) components of E(0),
and the b's are the sine components of the corresponding components of E(7 ).

Examination of Eq. (40) reveals that the image is a real valued function if and only if
ai 7 br = o. This is to say that the real part of the field Er must be an even function of
position 77 and the imaginary part of the field /. must be an odd function of position rela-
tive to the aperture center for the image to be real. If the equations are viewed in polar
form, it is seen that the magnitude must be even with position and the phase must be an
odd function with position. Furthermore this requires all the points on the planar target
to be in phase. Since this cannot be expected to hold in general, capability of imaging in
the complex domain must still be maintained.

The real Fourier coefficients a and b may be numerically obtained for the real and
imaginary parts of the constant-range far field by Filon's method.* In essence this
method assumes quadratic interpolation between sets of three adjacent points and there-
upon evaluates for the Fourier coefficients. Since the adaptation of Filon's method to the
problem at hand is straightforward but quite lengthy, only the final results will be given.
For either the real or imaginary part of the constant-range far field the complex Fourier
coefficients are

(N-k)cc E N(1 )c E) E( _ -1 /3( ) E + E A- )
A' - I L 2_k

L ( + 7
T 

((2n
-n -

2) -j-(2-L

+2n E( ---- -) e ,1 (41)

where the limits of summations and the coefficients are

L N- 1 (42a)2 '

N + 1-2 I 
(42b)

277k (42c)
N-1

*L. N. Filon, "On a Quadrature Formula for Trigometric Integrals," Proc. Royal Soc.

Edinburgh, 49:38, 1928-29.
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_ r] 2 'sin cos -2 sin 2
] (42d)

0 , (42e)

2
-0 6 (l1 bcs ) - 2 sin cs o ] (42f)

2 (42g)
'0 3'

4 [sin - 7os , (42h)

0 4 (42i)

In the relation for the Fourier coefficients (Eq. (41)) the first summation is over the odd
numbered sample points and the other summation is over the even numbered sample
points. The a, 3, and y coefficients provide the quadratic weights.

To compare the accuracy of Filon's method with the linear interpolation method of
imaging integral evaluation the constant-range far field from two isotropic point sources
was sampled at 37, 19, 13, and nine points and the image obtained by Filon's method
compared with the true diffraction limited image for the same aperture as was done with
the linear interpolation method. For 37 sample points the percent error was less than
0.1 percent, for 19 samples the error was less than 1 percent, and for 13 samples the
error was less than 10 percent for I < 7. However, for the nine-sample-point case, a
considerably larger error occurred around two of the zero crossings of the sidelobes,
as shown in Fig. 15. This error can be directly ascribed to the Fourier analysis of the
far field, since a coefficient of -0.0162 was computed by Filon's method to exist at ±3
and similarly another coefficient of 0.0124 to exist at = ± 5. The only coefficients that
should exist are at = - 1, the target source positions. Nevertheless, this percent error
is rather unimportant in this particular case because of the very small value of the
image around these points.

Also shown in Fig. 15 is the percent error in the two-point-source image that is
produced by nine-point linear interpolation. Again the 70 percent error at = 6. 9 is
unimportant because of the small value of the image at the fifth sidelobe. However,
since the error is shifted further away from the region of interest, the linear interpola-
tion method may be slightly more preferable than Filon's method.

IMAGE PEAK POSITION ERROR

It should be observed that the positions of the peaks of the true diffraction limited
images do not correspond to the exact positions of the objects which they represent. In
Fig. 14 the exact image of the three unequally spaced point sources has two peaks slightly
to the right of the true source positions and the third peak slightly to the left of the source
it represents. A similar distortion of the peak position occurs for the two-point-source
image as seen in Fig. 15, where the image peaks lie outside the sources. This position
displacement is due to both the finite length of the sample aperture and to the position of
the periodic constant-range field with respect to the aperture center.

As an example of image peak position error consider the constant-range far field
from two isotropic point sources, which is a cosinusoidal spatial pattern within the
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Fig. 15 - One-half of the true diffrac-
tion limited image of two isotropic
point sources with the percent error
in the images of these points as pro-
duced by Filon's method and by linear
interpolation of the imaging integral,
each using nine sample points

aperture. Suppose many sample points are available at a spacing corresponding to 5 0 of
the cosinusoid. This would mean that 37 adjacent sample points would cover exactly one-
half cycle of the pattern. When starting with a single half cycle centered in the aperture,
observe what happens to the image as two sample points at a time are added onto the ends
of the aperture in two ways. When both points are added to the same side, the result is a
cosine pattern from -7T/2 to 3 7/2 after 36 extra points have been added. The resulting
image has its two maxima about 17 percent on the inside of the true object positions.
When one sample point is added to each end of the aperture, the result is a cosine pattern
from -7 to 7T after 36 extra points have been added. The resulting image has its two
maxima about 12 percent to the outside of the true object positions. As more of the extra
points are added in either of these two ways the positions of the image pattern peaks will
oscillate in a decreasing manner about the true object positions, as shown in Fig. 16.

The utility of the null resolution concept in the coherent case again appears in Fig.
16. Note that for ten or less extra sample points divided equally between both sides a
-100 percent error occurs. This means that the image has only one peak and that one at
zero; i.e., the two point sources are not resolved. The aperture must include more than
one-half cycle of the lowest spatial frequency of the constant-range far field in order to
resolve the closest pair of points which are producing this spatial frequency in the target.
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Fig. 16 - The percent error in the
image maxima position of two isotropic
point sources as a function of the num-
ber required for Rayleigh resolution.
The spacing between sample points
corresponds to 50 of the cosinusoidal
constant-range far field.

PLUS-MINUS PHASE APPROXIMATIONS

If it were possible to measure only the magnitude of the constant-range far field and
make some approximation to the phase across the aperture, considerable experimental
simplification would result. Again, the validity of the approximation depends entirely
upon the target under measurement. As an example, take the three-isotropic-point-
source target with a 1:1.5 spacing ratio which produces the amplitude and phase far-field
patterns shown in Fig. 13. If one has available only the magnitude information, a rea-
sonable approximation to the phase might be to assign a zero phase to the first lobe about
the center, a 1800 phase to the second lobe, and a zero phase to the third lobe. The re-
sult of such an approximation is shown in Fig. 17 along with the true image and actual
object. Since the approximated image is symmetrical about the center position, it can-
not be determined that the spacing between the point sources is unequal. Otherwise, in
a qualitative sense, the phase approximation yields an acceptable image.

THE CONSTANT-RANGE AND PLANAR
APERTURE DIFFERENCE

Throughout this discussion the constant-range far field has been used. This field is
obtained by applying the F(y) factor of Eq. (14) to the field measured in the planar aper-
ture. This F(y) factor takes into account the reduction in amplitude and the phase delay
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Fig. 17 - The image amplitude of three isotropic point
sources resulting from a plus-minus phase approximation
of the constant-range far field alongwith the true diffraction
limited image and the original objects

introduced by the distance between the constant-range surface and the planar aperture.
Both range and wavelength must be known in order to determine this factor. Since the
aperture must be quite large to obtain a reasonable resolution at microwave frequencies,
this F(y) factor cannot be neglected.

To illustrate the importance of the F(y) factor, the image of three points with a
spacing ratio of 1:1.5 was computed directly by application of the Fourier integral to the
planar aperture information without correction with the [(y) factor. The wavelength was
0.1 ft (X band) and the target range was 100 ft. The resulting image was complex and
bore no resemblance to the true object or true diffraction limited image, as shown in
Fig. 18. No improvement in image quality should be expected if the range were increased
unless the aperture extent were also increased to maintain a constant resolution capability.

SUMMARY

The method of examining the radar target imaging problem in this report has been
to consider a simple physical situation for obtaining far-field information. The hypotheti-
cal experimental arrangement was not chosen to optimize any particular parameter but
for an appreciation of the consequences of the classical definition of resolution. These
consequences are amply illustrated from the nature of the Fourier integral, which is the
imaging operator utilizing far-field amplitude and phase to obtain the target current.

After defining the criterion for resolution on the basis of point source images, the
aperture, range, wavelength, and resolution interrelationship can be established. Other
factors such as the constant-range and planar-aperture differential distance and the
sampling element separation were related to the hypothetical experimental arrangement.
The images resulting from unequally spaced point sources were found and related to the
demands placed on the experimental measurement technique. Two methods of evaluating
the imaging integral by a digital computer were given and compared. It was also noted



NRL REPORT 6623

POSITION IN IMAGE PLANE

Fig. 18 - The image amplitude of three isotropic point
sources resulting from image processing without the F(y)
correction factor to the measured far field along with the
true diffraction limited image

that the image was distorted both in peak position and amplitude for finite apertures.
Although phase correction for the constant-range and planar aperture differential dis-
tance was shown by example to be essential for imaging, useful images can be obtained
by such crude approximations as making either plus or minus phase assignments to
alternate lobes of the far-field pattern.

The classical Rayleigh resolution criterion was originally deduced from empirical
evidence; its exact analytical basis was given in this report. The Rayleigh criterion
provides a useful working rule for determining resolution capability and system require-
ments and expresses an arbitrary but practical limitation of resolution to the radar tar-
get imaging problem.
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