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ABSTRACT

The torques on superconducting lead toroids immersed in
various uniform fields were measured and calculated as a func-
tion of angular position. The calculations, based on ideal super-
conducting behavior, agree with experiment for the closed torus,
if persistent current decrease due to critical surface fields is
considered. The recognition of trapped-flux phenomena is needed
to explain the measured results for the open torus, when it has
been cooled in a nonzero field or when a magnetic transition to
superconductivity has been made. The analytical model used
magnetic moments for a torus in an axial field and in a perpen-
dicular field, rigorously calculated elsewhere. These methods of
obtaining approximations to the moments presented may possibly
apply to more general toroidal bodies. The total magnetic mo-
ment (and thus the torque) for arbitrary angular position is found
by superposition, a result not previously obtained.

PROBLEM STATUS

A final report on one phase of the problem; work on other
phases continues.
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NRL Problem EOI-01
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TORQUE ON A SUPERCONDUCTING TOROID IN A UNIFORM FIELD

INTRODUCTION

The results reported here, along with collateral work by Wright and Peterson (1),
cover the principal problems relevant to the torque phenomenon. The underlying
magnetic-moment aspects were originally defined by Shoenberg (2) and deLaunay (3) and
remained undeveloped for more than a decade. Shoenberg qualitatively analyzed the
magnetic behavior for a loop oriented axially coincident with a uniform field; deLaunay
solved the magnetic boundary-value problem for the same configuration. The present
work, including companion reports (1,4,5) generalizes these earlier attempts to explain
magnetization and the consequent torque reaction for the torus and the elongated toroid,
both closed (multiply connected) and split (simply connected), at arbitrary angular orien-
tations of the axis in the field. The restricted case of the torus is treated by a predictive
or analytical model, corroborated by experiment. The more general elongated toroidal
geometry is presented by experimental results, exhibiting qualitatively the characteris-
tics expected from results obtained with the torus.

A departure from the expected torque behavior of a superconducting toroid in a mag-
netic field led to this investigation of effects concerning the magnetic moment and the
torque at arbitrary axial orientations of the toroid. Briefly, two principal, and at first
glance almost anomalous, effects were noted from experiments involving toroidal rota-
tion in the field. These were (a) torque limiting effects, and (b) torque hysteresis effects
incurred in the first rotation. Initially established values of persistent currents would
have produced higher peak torques than those actually experienced if these currents were
maintained at the expected levels. If they were not and if they were permanently reduced
due to effects encountered during the first rotation, both apparently anomalous effects
mentioned above could be explained.

The torque on an ideal, superconducting torus, as it is rotated in a uniform magnetic
field, may be calculated by using and extending the aforementioned magnetic-moment
notions of Shoenberg and deLaunay. In particular, Shoenberg had anticipated the then
unresolved difficulties in deriving the moment for arbitrary orientation in the applied
field and had anticipated the presence of such effects as hysteresis and frozen-in fields
(6). These effects have been encountered in the experiments reported here and have been
resolved by classical methods subject to constraints imposed by superconducting critical
conditions.

Based on the experiments and on the adoption of known superconducting phenomena,
it is possible to formulate a model which describes torque in terms of Meissner mag-
netic moments and persistent-current magnetic moments for various initial field and
cooling conditions. In developing this model the applied field is resolved into components
which remain parallel and perpendicular, respectively, to the torus axis. The magnetic
moments generated by either field may then be determined for specific tori from previ-
ous evaluations (1,3) and may then be combined by superposition. Evaluation of the
parallel-component moments depends upon the results of Shoenberg (2) and deLaunay (3);
for the perpendicular-component moment, the results of Wright and Peterson apply (1).

The torque is described by

T= MxB,



WILSON, KING, AND MILLER

where the total torus moment M arises from either flux expulsion, persistent current,
trapped flux, or a combination of these; B is the uniform magnetic induction in which the
torus is immersed. The details of how these component moments are derived, act in
concert, and are constrained by superconducting critical conditions are discussed below
and in complementary detail by the separate treatment of Wilson and King (4,5). The
basic model is applicable, in principle, to general body shapes, but its use here is re-
stricted to the torus, which serves as a primitive model for electromechanical action,
and for which magnetic-moment and field information is available.

THEORETICAL MODEL

This development of the analytical model proceeds directly to the necessary steps
for evaluating the working relationships and parameters. Much of the ramifying discus-
sion and derivation is deferred to complementary publications (4,5). Only the definitions
and formulas required for the understanding of the remainder of the report are included
in this section.

Figure 1 shows a toroid (which need not have any
particular cross-sectional shape) viewed edge on. The

Y, externally applied magnetic flux density B lies along
the x axis of the unprimed frame, which is fixed in

7space. The axis of the toroid lies along the x' axis of
the primed frame, which rotates with the toroid about

/ the 2' axis. The 2 and ?' axes of the respective coor-,\ dinate frames are colinear.

,/// The magnetic moment of a nonideal, superconduct-
- / ing toroid (a toroid having imbedded normal regions)

I'. which becomes superconducting while oriented so that

M --: i , '{ (K + z'K,1)Bx, -K0 [Bx - B,(e)] -A2KII[Bx,-B,(0)]}

Fig. 1 - Coordinate + , Yi-(l; + AK.)By, (1)
frames showing the mag-
netic flux density and thetoroid orientation where X and i , are unit vectors along the x' and y'

axes, respectively, and where BX, : ix' " B and

By IZ ' " B.

The K constants, which relate the magnetic moment of a hypothetical, ideal, super-
conducting toroid (a toroid in which there are no normal regions) to the applied magnetic
flux density, are determined by the geometry of the toroid. The subscripts M and c refer
to Meissner and to persistent current effects, respectively. KAL and K. relate the com-
ponents of the Meissner magnetic moment, respectively perpendicular and parallel to the
axis of the toroid, to the components of the applied magnetic flux density respectively
perpendicular to and parallel to the axis of the toroid. K1 relates the parallel component
of the persistent-current magnetic moment to the parallel component of the applied mag-
netic flux density. One could define a constant K1 in an analogous manner. However, be-
cause the projection of the toroid onto a plane parallel to its own axis yields a region
which is simply connected, K- is zero; hence it is not included in the y' component of M
in Eq. (1).

The \K's are correction terms arising because the entire volume of the toroid used
in the experiments is not superconducting. Actually, they are defined by the geometry of
the normal regions imbedded in the toroid in a yet undetermined fashion, but for purposes
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of this discussion their determination is limited to evaluation from actual test data. The
superscripts and subscripts on the K's have the same meanings as those on the K's. It
should be noted that even though K- is zero, AK is not necessarily zero. In effect, ,

recognizes that the projection of the superconducting portion of the nonideal toroid onto a
plane parallel to the toroid's axis and parallel to the axis of rotation is not necessarily a
simply connected region.

The parameters K, nK4, /K and AKj are functions of B, since, in general, as B
increases, the imbedded normal regions tend to grow larger. When B is small (B << Bo),
the AK's are assumed to be small in absolute magnitude compared to the corresponding
K's (with the exception of nK-), but, when B is near B., the imbedded normal regions con-
sume a sizable fraction of the toroidal volume, thus causing the AK's to become compar-
able in absolute magnitude to the corresponding K's (again with the exception of AK ).
Because the geometry of the imbedded normal regions depends on the orientation of the
toroid with respect to the applied magnetic flux density B, the AK's are functions not only
of B but also of 0. In addition, it is likely that hysteresis effects are involved in deter-
mining the AK's. For small values of B, however, the AK's are well approximated by
constants. It should be remembered that the K's, which relate the magnetic moment of
an ideal, superconducting toroid to the applied magnetic flux density, are rigorously con-
stant by virtue of their definition.

The factors B1(0) , B2(0) , and B3 (0) are trapped magnetic flux densities due to the
persistent currents. The trapped magnetic flux density B1(0) results from the net per-
sistent current circulating around the opening of the toroid. The trapped magnetic flux
density parallel to the axis of the toroid due to the persistent currents circulating around
the imbedded normal regions is B2(0) . The trapped magnetic flux density perpendicular
to the axis of the toroid due to the persistent currents circulating around the imbedded
normal regions is B3(0). It is assumed that these trapped magnetic flux densities main-
tain a fixed orientation with respect to the toroid, while the toroid is rotated relative to
the applied, external, magnetic flux density B.

Let 6i be the angle of toroidal orientation when the toroid becomes superconducting
and assume that, after transition to superconductivity, the toroid is rotated in the direc-
tion of increasing 0. Assume that, as 0 increases, an angle is reached at which the mag-
netic flux density, at some region of the toroid through which a persistent current is
passing, reaches the critical value. The affected region then begins to become normal,
thereby tending to reduce the persistent current and its associated trapped magnetic flux
density. Thus, as 0 increases, the trapped magnetic flux densities monotonically de-
crease in a way which prevents the magnetic flux densities in the regions through which
their associated persistent currents pass from ever exceeding the critical magnetic flux
density B. . Therefore, the trapped magnetic flux densities are written as functions of 0.

The detailed functional dependence of B1(0) is obtained by requiring that the mag-
netic flux density at any point on the surface of the toroid not exceed the critical value
B0 , because the persistent current which sustains B1(0) travels on the surface of the
toroid. The magnetic flux density at a point P on the surface of a hypothetical, ideal,
superconducting toroid, where P is a variable having two degrees of freedom, is given by

Bs(P) = m 1(P)(BI(0) - B cos (0)) + n,(P)B cos (0) + pl(P)B sin (0). (2)

The functions m 1(P) , n 1(P), and px(P) are determined by the geometry of the toroid. One
applies the condition that Bs(P) < B. as follows: set B(0) equal to B1 (0) , the initially
trapped magnetic flux density; then attempt, for all 0 > 0i, to find a P such that Eq. (2),
with B.(P) replaced by BC, is satisfied. The smallest 0 > 0. for which one can find a P
to satisfy the equation is defined to be the critical angle 010. This is the angle at which
criticality first arises at some point on the toroid's surface, as the toroid is rotated from
0 = Oi in the direction of increasing 0. If no 010 can be found, then criticality never oc-
curs, and B1 (0) = B2 (0) for all 0.
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Temporarily treating B1 (O) and 0 as independent variables in Eq. (2), one may let
Pmax(0, B) be the point on the surface of the toroid at which B8 (P) is a maximum. Then,
for a given e such that 010 5 a 1 6imi n, B1(0) is defined to be that B, such that this max-
imum P,(P) is equal to Be, where 01min is the smallest angle at which the B1(0) defined
in this way is a minimum. Now that B1 (0) has been specified in this manner, Pmax may
be considered to be a function only of 0.

Thus,

r BI(0i), the initially trapped magnetic flux density, 0
i < 0 =<0

B 0  +

Be +

Mipa(0)ma

n Pmax() BCos(0)-

m1 Pma x(0)]

n lpmax(0)1

mP (a)J. max

Co plPax(e)co ( Pm()
cs()-miPa(9) Bsin (0)} o1mmi

10 = < ii (3)

01 M n0.

A similar method may be used to find B2 (0) and B3 (0). However, the geometrical
structure of the imbedded, normal regions is quite complex, and it is exceedingly diffi-
cult to obtain any detailed information about this structure, either by theoretical calcula-
tions or by direct measurement. Nevertheless, through the consideration of certain
qualitative features of experimental data, and through the application of simplifying as-
sumptions, one may hypothesize the following criticality conditions which B2(0) and B (0)
must satisfy:

Be _ [B2 (0) - B cos (0)] M2 +n nB cos (0)

Be _ [B 3 (0) - B sin (0)] m2 + n2B sin (0)

where m2 and n2 are not to be considered as functions of position. The validity of these
inequalities must be judged on the basis of how well the theoretical model derived from
them fits the experimental data to be presented later. The definitions of 02, ) 92mi n, 030,

and 0
r3min are analogous to those of 01C and 0

1min' One finds that

020~arco[Bo- m2 B 2 ( i)]02 = arceos" Be --- 0i

030 arcsin[Be - r 2 B 3 (0 i )]0 (n arsM ( - )B

B2(0 i) = Bi cos (6

B+ ( n2 oB 209O) = -2 +  2)

M 2 M2)

2min 7 ,

0 37T

), 0
i _ _ 2C

(0), 027 < 00 IT

IT <0

B1 (0)

Pi1max(0 ) Bsin(0),
MiPmax(0)

Then,

and

i
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B3(0 i ) = -Bi sin(0 i ) ,

B0
=+ im3 2

2 B sin (0),

0.o < 0 < 00 3C

2- =0

Note that when B2 (0O) < (B0 /m 2 ) + [1 - (n 2/m 2 )] B, the angle 02C does not exist. This
means that, regarding the currents sustaining B 2(0), criticality never occurs. As a re-
sult, B2 (0) = B 2 (0e) for all 0. In particular, if B2 (o i ) = , then B2 () o . This also
occurs for B3 (0) when B3 (0i) < (B/m 2) + [1 -(n 2 /m 2)]B.

If Bi is the value of B when the toroid becomes superconducting, then B1 (o) = B 2(o)
= Bi cos (0i ) and B3 ( i ) = - Bi sin (0i). Equations (3), (6), and (7) are not valid if B changes
while the toroid is being rotated, although stepwise changes in B (with respect to varia-
tions in 0) may sometimes be accommodated by a suitable adjustment of Oi, B1 ( 0 ),
B2 (Oi), and B3(O ).

The torque exerted on the toroid by the applied field is T = M x B, which may be cal-
culated using Eqs. (1), (3), (6), and (7). The T thus determined constitutes the basic the-
oretical model. The equations comprising the theoretical model are summarized below:

T = -B, {[K4 B,(0) +AKM B2 (0)] Bsin (0)

+ (/ _K; _1 -KI + V; - AKI - AK"I+AKc')B2 sin (20) -/AK-B 3 (0) B cos(0)} (8)

where

B 1(0) = Bi cos (0i) ,

BPmax(0) n I P-max (60) B cos (0)-

n 1 (Pmax()]1 imax~o

0i __<0_a<0,o

p Max (0)
M 1P x(O)

Cs()-P 1 Pna(0)cos(O)Mp (0)1a max(O

B sin (0),

Bsin ( ) 9=0

61C 
- 

10 min

1 0 im in __ .

(a1C and 01 mi n are obtained by the method described in the text between Eq. (2) and Eq.
(3).)

B2 (6 i ) = B i cos (6i) ,

+ (I-__2 B cos(0),

0. < 0 < 0

IT <0

020 n 2B - M2 )~ Bos

B 3 (0) =

B I ( 0) =

B 2 (0) =
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B 3 (0 i ) -B i sin (0 i ), 0 < 0

B + n - )B sin (), 0 < 0 <37

B3(6) m2  2 30- = 2 (7)

B - 1 - B
M2 2  ' 2 =

( a [B + m2 Bi sin(Wi)])

( n 2 -2 m 2 )B

This model is rather general. It applies to toroids of arbitrary cross-sectional
shape, to toroids becoming superconducting at arbitrary initial angles i , and to toroids
made of materials whose properties differ in various degrees from those of an ideal
superconductor. The model is equally valid whether the entry to the superconducting
state is via a thermal or a magnetic transition. However, in the case of a magnetic
transition, Bi may not be so easily ascertained as in the case of a thermal transition.
By setting K1 and B, (0) equal to zero one may even apply Eq. (8) to the case of a split
toroid (a toroid having a thin cross-sectional slice removed).

Nevertheless, there are important limitations on the applicability of the model, due
to various approximations used in the derivation; there are also important limitations on
the model's usefulness, due to the difficulty involved in calculating certain quantities in
the equations. For example, the equations for B 1 (9), B 2(0), and B 3 (0) may be expected to
fail when B is near Be; the relatively simple notions used in deriving these equations are
not true when B assumes values of this magnitude. (It should be recalled that Eqs. (3),
(6), and (7) cannot be used if B varies with 0 or time, except in certain special cases.)
The AK'S in the equation for T may be approximated by constants only when B is small.
A theoretical calculation of the dependence of the AK's on B and 0 when B is large ap-
pears to involve great difficulties. The K's in Eq. (8) and m3 (P), n 1 (P), and p1 (P) in Eq.
(3) can be readily calculated only for toroids having simple cross-sectional shapes. No
simple method has been found for theoretically evaluating the constants m2 and n2 ap-
pearing in Eqs. (6) and (7).

In the remainder of this report the results predicted by the theoretical model are
compared with the results found experimentally in various special cases, chosen to illus-
trate significant features of the relationship between T and 0.

TORUS

The constants K1,P Km , and K.", as well as the functions m(P), nI(P), and p1(P), have
been rigorously calculated for a toroid of circular cross section (1,3) and are tabulated
in Table 1 (with Fig. 2 explaining the geometrical quantities involved). The quantities
AKI and (AKA - AKm , - AKI + ,K) are assumed to be small for small B. (It will be shown
in the part of this report dealing with the split torus that this assumption is reasonably
well justified.) So, an approximation to Eq. (8), valid for small B, is

T -e. K,.J B(0)Bsin(0) + - (K;'- KIm -  ) sin (2), (9)

where, for simplicity, 0i has been taken equal to zero (thus making B3 (0) identically
zero). It should be remembered that Eq. (3), which furnishes the B1 (0) used in Eq. (9),
is itself an approximation, valid only for values of B which are not too large.
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Table 1
Calculated Values of the Moment Constants for a

Toroid Having a Circular Cross Section

L-m*(P) n I (P) pP aAt Which
KRr* KV K/V K1V P (P) is

a=0a = 1800 a =0 a 1800 EvaluatedI

1.0 0.163 0.10902 - -

1.1 - 0.10809 - - - -.

1.2 0.16501 0.10818 0.00893 4.743 0.01562 4.743 1.808 1.599 900
1.4 0.16549 0.10881 0.02322 3.569 0.04870 3.569 1.829 1.635 910
1.6 0.16521 0.10966 0.03989 3.094 0.06998 3.092 1.845 1.670 920
1.8 0.16474 - 0.05820 2.837 0.10110 2.830 1.857 - -

2.0 0.16424 0.11138 0.07780 2.679 0.13330 2.666 1.867 1.736 940
3.0 0.16234 0.11437 0.19161 2.403 0.29813 2.324 1.900 1.843 960
4.0 0.16130 - 0.32862 2.384 0.45937 2.209 1.919 - -

5.0 0.16071 0.11691 0.48715 2.436 0.61434 2.153 1.931 1.927 950
6.0 0.16034 - 0.66628 2.517 0.76341 2.120 1.940 - -

7.0 0.16008 0.11790 0.86533 2.611 0.90736 2.098 1.947 1.958 940
8.0 0.15990 - 1.08374 2.712 1.0469 2.083 1.952 - -

9.0 0.15978 - 1.3164 2.818 1.1827 2.072 1.957 -

10.0 0.15968 0.11854 1.5767 2.925 1.3152 2.063 1.960 1.976 930
0.15915 0.11936 - - - - - -

*See Fig. 2 for the definitions of r and R.
tThe K constants are given in Gaussian units, and V is the volume of the
the units of K/Vare dyne-cm/G 2-cm 3 ). K$/V is translated from Ref.
1, and K1/V from Ref. 2.

TThe point Pat which mi, n 1 , and p, are evaluated is chosen to lie in
AA shown in Fig. 2. See Fig. 2 for the definition of a. m 1(P), n I(P)
tained from Refs. 1 and 3.

torus in cm 3 (i.e.,
3, Kn/V from Ref.

the section plane
and p,(P) are ob-

Fig. 2 - Geometry of
the torus

AXIS OF ROTATION

SECTION AA

'Pa

R

The experiments against which Eq. (9) was tested were performed with a well-
annealed torus constructed of lead having 0.9999 purity. The dimensions of the torus are
B = 0.875 in. and r = 0.125 in. (Fig. 2).
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Figure 3 shows both the empirical and the theoretically predicted torques for an ex-
periment in which the externally applied magnetic flux density B is initially 200 G while
the torus is being cooled into the superconducting state with 0 = 0i = 0, is then reduced
to 100 G, and is maintained at 100 G while 0 is increased from 0 to 47. The portion of
the graph for which 27 T 0 < 477 is superposed on the portion for which o < 9 < 277, so
that the hysteresis effects due to the occurrence of criticality may be more clearly seen.
The agreement between the measured torques and the theoretically predicted torques is
seen to be fairly good. The existing discrepancy, especially in the ranges - < 0 S 277 and
3 0 < 47, is probably due to the experimental error involved in measuring B, B , and
Bc, because the torque predicted by Eq. (9) is fairly sensitive to variations in these quan-
tities. For example, if the B and B1(0) used in the theoretical calculations are each de-
creased by only 10 G from their measured values of 100 G and 200 G respectively, and if
the B used in these calculations is increased by 50 G from its "handbook value" of 540
G, then the theoretical and empirical curves agree very well (5).

7

6

5

4

3

-2 '~ - EXPERIMENTAL

-3- 0 0!-s-3600
- [c 3601 < 7200

--- CALCULATED
-5- a 0aes360'

b 360' 0 57200-6 //6o , o

-7

-8I I I I I
0 30 60 90 120 150 180 210 240 270 300 330 360

360 390 420 450 480 510 540 570 600 630 660 690 720

& (DEGREES)

Fig. 3 - Torque for the torus cooled with B 200 G
and 0 = 0, and rotated with B = 100 G

Figure 4 shows the predicted and measured torques for a continuation of this experi-
ment. The torus is kept in the superconducting state and remains at the angle 0 = 0 (for-
merly denoted by 0 = 477) while B is increased from 100 G to 200 G. Then the torus is
again rotated in the direction of increasing 0, through a total angular displacement of 477
radians, while B is held constant at 200 G. One would intuitively expect that this higher
value of B would make the effects of criticality more prominent than they were in that
part of the experiment portrayed by Fig. 3. This expectation is confirmed by an exami-
nation of the experimental curves of Fig. 4. The difference between T(0) and T(O + 277) in
the range 0 _ 0 < 7T is much greater with the 200-G applied magnetic flux density (Fig. 4)
than with the 100-G applied magnetic flux density (Fig. 3). The theoretical curves of Fig.
4 are again calculated using Table 1 and Eqs. (9) and (3), but in this case Bi is set equal
to the B1(O imin found for that part of the experiment for which B = 100 G (0i :: 0, as be-
fore). The predicted and measured curves agree reasonably well, but the agreement can
be improved by again changing the B and the B0 used in the calculations from 200 G and
540 G, respectively, to 190 G and 590 G, respectively (5).
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- bbI

% 0 - -
cD I

- -2 -.

-
4 

- \

-6"- EXPERIMENTAL \

-o "' ..... 0" 0O_ -3600 ' ,
-8 0 360o- 0<720o it

0 - --- CALCULATED
a Os ! 3600

-12- b 360o < e5 720
°

-14 I I I I I I 1 I I
0 30 60 90 120 150 180 210 240 270 300 330 360

360 390 420 450 480 510 540 570 600 630 660 690 720

8 (DEGREES)

Fig. 4 - Continuation of Fig. 3. At 8 = 0, B is raised
to 200 G; the torus is then rotated with B = 200 G.

It should be noted that when B is 100 G (Fig. 3) the torque exhibits a predominantly
sin (0) angular dependence, and when B is increased to 200 G (Fig. 4) the torque exhibits
a predominantly sin (28) dependence for 0 _ -T. In terms of Eqs. (3) and (9) this altera-
tion in the form of the angular dependence may be explained by an increase in B in Eq.
(3) causing a decrease in B1(0) , and a decrease in B, (0) causing the sin (0) term in Eq.
(9) to become smaller relative to the s in (28) term. In addition, the sin (28) term in Eq.
(9) contains B2 , while the sin (8) term contains B. The fact that Eqs. (3) and (9) predict
the fundamental change in the character of the angular dependence of the torque when B
is increased from 100 G to 200 G attests strongly to the overall correctness of these
equations for values of B which are not too large.

Figure 5 shows additional experimental data obtained in an extension of this experi-
ment. Immediately after the completion of the portion of the experiment illustrated by
Fig. 4, 8 = 0 (denoted in Fig. 4 by 0 = 477) and B = 200 G. The magnetic induction is then
increased to 300 G and held at this value while the torus is rotated through 47T radians.
Finally, while the orientation of the torus is maintained at 8 0 (formerly denoted by
8 = 477), B is increased to 400 G. B is held at this value while the torus is once more
rotated through 47T radians. The theoretical predictions of Eq. (9) are not shown in Fig.
5, because, even without plotting them, one can readily see from Eq. (9) that the torques
which it predicts differ substantially from the torques actually observed. One can see
from Fig. 4 that the sin (0) term is almost negligible compared to the sin (28) term,
even with B as low as 200 G. Therefore, one is certainly safe in ignoring the s in (6)
term when using Eq. (9) to make estimates of the predicted peak-to-peak amplitude of
T(O) for B = 300 G and for B = 400 G. Equation (9) indicates that the peak-to-peak ampli-
tude of the curve T(0) for B = 300 G should be approximately 9/4 of the peak-to-peak
amplitude of the curve T(O) for B = 200 G. However, comparing the experimental curves
in Figs. 4 and 5 shows that, in reality, the peak-to-peak amplitude of the curve T(6) for
300 G is approximately 3/4 of the peak-to-peak amplitude of the curve T(6) for B = 300 G.
Similarly, it can be seen that Eq. (9) predicts a peak-to-peak amplitude of the curve T (8)
for B = 400 G which is approximately 20 times too large.
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I I I I

EXPERIMENTAL POINTS
B = 300 GAUSS
0 0!58<3600
o 3600<__< 7200
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v 0< 3600
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Fig. 5 - Continuation of Fig. 4. At 8 = 0, B is raised to 300 G;
the torus is then rotated with E = 300 G and with B = 400 G.

The failure of Eq. (9) at high values of B is probably due primarily to failures in the
approximations used in deriving Eq. (9) from Eq. (8). One cannot neglect AKI with re-
spect to K1 or (AK, - AKll - AKII +z/K-j) with respect to (K; - K.,, - K1) when B is near B0 .
Of course, Eqs. (3), (6), and (7) are unreliable for large B, but the terms in Eq. (8) which
contain BI(O) and B2(8) are negligible for large B. (Note the indiscernability of hyster-
esis effects in the experimental curves shown in Fig. 5.)

By inspecting the experimental curve T(8) for B = 300 G in Fig. 5, one can see that

lfT
T (6) dO

is substantially greater than zero. Thus, if the experimental curve T(8) for B = 300 G is
to be believed, a net amount of energy is put into the system during the rotation of the
torus from 8 = 2-u to 0 = 47T . However, no sink for this energy is apparent. Therefore,
if the conservation-of-energy law is not to be violated, one is forced to the conclusion
that some systematic experimental error has caused the line T = 0 to shift from its cor-
rect position. A similar, though smaller, shift seems to have occurred in the data cor-
responding to B = 400 G.

TOROID OF ELONGATED CROSS SECTION

Figure 6 shows the geometry of the toroid of elongated cross section used in these
experiments. The toroid is made of well-annealed lead having 0.9999 purity.

Equations (3) and (9) apply in this case, provided B is small enough. However,
Table 1, which applies only to toroids of circular cross section, cannot be used. The
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Fig. 6 - Geometry of the toroid
of elongated cross section

SECTION AA

4i

problem of rigorously computing K , K1, K1, m (P), n 1 (P), and p1 (P) for a toroid havingM (P) C)(P 1n ,P o oodhvn

a geometry like that shown in Fig. 6 has never been solved, and no one has yet found any
practical method for theoretically approximating these quantities accurately.

Figure 7 shows the experimental results when the toroid of Fig. 6 is cooled into the
superconducting state with the applied magnetic flux density B equal to 200 G and with
the orientation angle 6 equal to zero. Then B is reduced to 100 G and maintained at this
value while the toroid is rotated through 47T radians. The small difference between T(6)
and T(8 + 277) in the range 0 _5 8 _ 77 indicates that the effects of criticality are essen-
tially negligible in this case. Thus, to a good approximation, B1(8) may be taken to equal
B1 (0) = B, for all 8. Then the coefficients of sin (8) and sin (28) in Eq. (9) are inde-
pendent of 8. Experimental values may be assigned to these coefficients by least-square
curve fitting, using the experimental data points for 0 9 8 < 27 shown in Fig. 7. It is

I I -T- - - - I0

0 EXPERIMENTAL POINTS FOR 0-<8-3601

00

80

6

CD4

-2

CD 0

-2

- 4
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Fig. 7 - Torque
section cooled
rotated with B =

of the toroid of elongated cross
with B = 200 G and 8 = 0, and
100 G
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found that K" B (0)B = 8.886 X 104 dyne-cm and that 1/2 (K. K1- Ki)B = 2 1.609 104 dyne-
cm. Thus, since B = 100 G and B1(0) = 200 G, it follows that

S4.443 dyne-cm/C 2 and IL-K= 1.225 dyne- cm C2

Although, as previously stated, no relatively simple method for theoretically approx-
imating K and K1 accurately has been developed, one can obtain rough theoretical esti-
mates of these quantities by using an ellipse of appropriate size and shape to approximate

the toroid's actual cross section. The hypothetical toroid
of elliptical cross section used in this estimation is il-
lustrated in Fig. 8. It has been determined that if b << R
and c << ?, then, to a good approximation, the Meissner

R- constants for this type of toroid are given by

2b K';Kzb_: I + b)and + 1

24 2- _

-1 kc where V is the volume of the toroid and KA/V and K))/V
are expressed in units of dyne-cm/G 2 cm 3 (1). Then

Fig. 8 - Geometry of a
hypothetical toroid of K1 - K1 = (b2 - 2 2)

elliptical cross section M n
to approximate the
cross section of the where KL and K, are in units of dyne-cm/G 2 and l, b,
toroid shown in Fig. 6 and c are in units of centimeters. One is faced with the

problem of choosing R, b, and c so that this equation,
which approximates (K. - K/ ,) for the hypothetical toroid,

will apply with acceptable accuracy to the actual toroid of elongated cross section.

One simple approach is to choose R equal to the corresponding dimension of the
toroid of elongated cross section and to choose the width and length of the elliptical
cross section to be respectively equal to the width and length of the elongated cross sec-
tion of the actual toroid; that is, one would set R = 7/8 in. = 2.223 cm, b = 3/8 in. =
0.9525 cm, and c = 1/8 in. = 0.3175 cm. This choice yields 1.232 dyne-cm/G 2 as the
theoretically predicted value of (K,4- Ks), providing good agreement with the experimen-
tally obtained value of 1.225 dyne-cm/G2.

One may estimate K11 fairly easily. The projection of the toroid of elongated cross
section (Fig. 6) onto a plane perpendicular to its axis is identical to the corresponding
projection of the torus described earlier (Fig. 2 with B = 7/8 in. and r = 1/8 in.). There-
fore, the K1 for the toroid of elongated cross section should be roughly the same as the
K1 for the torus. Using Table 1, one finds that, for the torus, K1 = 3.827 dyne-cm/G 2 .
This value is indeed reasonably close to 4.443 dyne-cm/G 2 , the experimentally deter-
mined value of K1 for the hypothetical toroid.

Figure 9 shows the results of a continuation of the experiment to which Fig. 8 per-
tains. While the toroid is held so that 0= o (denoted by 0 47T in Fig. 8) B is increased
from 100 G to 200 G. Then the toroid is rotated through 877 radians while B is maintained
at 200 G. It is evident from a comparison of Figs. 7 and 9 that the effects of criticality
are much more severe when the toroid is rotated with B = 200 G than they are when the
toroid is rotated with B = 100 G. Thus, BI(M) can no longer be taken equal to B1(0) for
all 8, as it was when the rotation of the toroid was carried out with B = 100 G. Instead,
one must use Eq. (3) to theoretically determine B1 (0). However, due to the toroid's
relatively complicated cross section, there is no reasonably simple theoretical method
for determining the functions m(P), n 1 (P), and pI(P) appearing in this equation. There-
fore, no attempt is made to quantitatively relate the predictions of Eqs. (3) and (9) to the
T(O) obtained experimentally.
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Fig. 9 - Continuation of Fig. 7. At 8 = 0, B is raised to
200 G; the toroid is then rotated with B = 200 G.

SPLIT TORUS

Figure 10 shows the geometry of the split torus used in the experiment. The split
torus is made of well-annealed lead having 0.9999 purity.

For the split torus, which can have no net current around its central opening,
B1 (8) - o, and K11 0. The constants K;, and K'' are given, to a good approximation, by
the values in Table 1, because the cross-sectional slice which has been removed is small.

Let Ax AK;+ AK- - AK.1. Then Eq. (8) becomes

11 BA BB2 (8) sin (8) + - K;-KM - AKC +A ' )Bsin (28)],

where, as before, B 2(8() is given by Eq. (6), provided B is small enough.

AXIS
OF

ROTATION

A A

L A

Fig. 10 - Geometry
of the split torus

-0.125"
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If the split torus becomes superconducting with B = 0, then B2(6) will be 0 for all 8,

and Eq. (10) predicts that T will exhibit a pure sin (28) dependence upon 8. Figure 11,
which presents the results of an experiment in which the split torus is cooled below the
superconducting transition temperature while B is maintained at 0 G, confirms this pre-
diction. However, the theoretically predicted amplitude of T(O) is significantly greater
than the amplitude actually measured (compare the theoretical and experimental curves
in Fig. 11). The most likely cause of this disagreement is a systematic error in the
measurement of B, because B appears to the second power in the sin (28) term of Eq.
(10). If the B used in Eq. (10) is decreased by 10% from its measured value, then, the
theoretical curve T(8) agrees closely with the experimental curve T(O) (5).

4
I \ I 0 a

3 /0 a

S/ a2-

-0 o o < 36o
I 360
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e <_7200

I I

-l - - T H E O R E T IC A L \ ,

-4" I I .
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Fig. 11 - Torque for the split torus cooled with
B = 0 and 8 = 0, and rotated with B = 200 G

The results of another experiment in which the split torus becomes superconducting
with B =0 are shown in Fig. 12. After cooling, B is increased to 100 G, and the split
torus is rotated through 2-f radians with B held at 100 G. Then B is successively in-
creased to 200 G, 300 G, 400 G, and 500 G, and the split torus is rotated through 2-U ra-
dians for each value of B.

From this figure one can see qualitatively the effects of criticality on T() at rela-
tively high values of B. No analytical examination of the experimental data represented
by these curves was attempted.

As in Fig. 5, some systematic experimental error seems to have shifted the zero
reference of T(O) in Fig. 12 from its proper position. The shift appears to be different
for each of the curves corresponding to a different value of B.
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Fig. 12 - Torque for the split torus cooled with
B = 0 and 0 = 0, then successively rotated through
3600 with B = 100 G, 200 G, 300 G, and 500 G

If B is not equal to zero when the split torus becomes superconducting, then B2 (e) is
not identically zero; therefore, the sin (8) term in Eq. (10) may not be omitted. Substi-
tuting Eq. (6) with 8i = 0 into Eq. (10), one obtains

T e

where

C3 = AK11 B Bi

C4 = - - -

[C 1 sin (8) + C 2 sin (26)1, 0

z [C 3 sin (8) + C4 sin (20)], 6

[C5 sin (8) + C6 sin (28)] , j

C 2 (K - K AK K + AX)B 2 ,

n2 AK" + AX B2,
M 2

e2 =< 0 2_< Cr

250

<8

Ah' 11 B BC o
C 3 m2

(11)

05 B (1 )B2 ] LKI7n 12 12

6 2

and

2 C arccos P-n -2 j .

However; no one has yet derived a theoretical calculation that will give reasonably accu-
rate values for AK', AX, M2 , and n 2 . Thus, the six c's and 020 cannot be determined
theoretically. The only check on the theoretical model under these circumstances is to
see if Eq. (11) has a form consistent with the experimental data, that is, to see if the
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constants C1, ... ,I C6 and 82C can be found such that the theoretical curve T(O) generated
by Eq. (11) is a good fit to the empirical curve. When one has obtained C" ... ,. C6 and
820, one can solve for AK, AX, M2, and n . Note that only four of the constants cI ... , 06
and 820 are independent, because interrelations among these seven constants are pro-
vided by the equations: C2 = C6 ; 2C2 + C 3  2C4 + C5; and 820 arccos [(C3 - C1) 2(C2 - C4 )]

"

One finds that

AK f AX =C 2 + K - K +I K
C BB. B 2  i

(K. and K; are found from Table 1),

Be C1M 
2  - Bi C 3 '

and

2B C02 -C4
n 2 M 2 B Ca

Figure 13 shows the experimental results when the split torus becomes supercon-
ducting at B = 200 G with e8 = o and was then rotated through 47T radians while B was
maintained at 200 G. Applying least-square curve fitting to the portion of the curve be-
tween :o and 0 = 27T, one finds that the constants C = 5295 dyne-cm, 02 = - 3102 dyne-
cm, c 3 =5130 dyne-cm, c4 =-3013 dyne-cm, 05 = 4953 dyne-cm, 06 = - 3102 dyne-cm,
and 820 = 21.21 0 give a reasonably good fit to the experimental data and simultaneously
satisfy the three equations furnishing interrelations among Ci,.., C6, and 820. Using
these constants one calculates that AK/I = 0.1324 dyne-cm/G 2 , AX 0.1638 dyne-cm/G 2,
m2 = 2.787, and n2 = 2.694. Note that the values obtained for AKl and AX support the as-
sumption used in deriving Eq. (9).

8 1 1
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Fig. 13 - Torque for the split torus cooled with
B= 200 G and 8 = 0, and rotated with B = 200 G
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Figure 14 illustrates the experimental outcome when the split torus becomes super-
conducting by reducing B from 1000 G to 200 G with : o while being maintained at the

liquid-helium temperature. It is then rotated through 4-T radians while B is maintained
at 200 G. To a first approximation the only difference between this experiment and the
preceding experiment is in the value of Bi. Because the split torus becomes supercon-
ducting through a magnetic transition, it is not obvious what Bi should be in this case.
However, Eq. (11) is still applicable, with c, .... , C6, and 82, defined as before. Then,
subject to the constraints c2 C6, 202 + C3 : 2C4 + C5 , and a2C = arccos [( C3 - CI) 2(W 2 -C 4 ) ],
the least-square fit to the experimental T-versus-8 data displayed in Fig. 9 is given by
C, = 6625 dyne-cm, C2 = - 3043 dyne-cm, c3 = 5566 dyne-cm, c0, = - 2346 dyne-cm,
C 5= 4172 dyne-cm, c6 = - 3043 dyne-cm, and 820 = 40.570. Assuming that ? 2 is the
same as in the previous experiment (call it m2 pr ev) one calculates

B0  CI
Bi - C 230.6 G.

The split torus is in the intermediate state when Bo/n 1 (P o ) < J81 < B., where P0 is a
point in the section-plane AA shown in Fig. 2 and having a = o. Thus, for the split torus
used in this experiment, Table 1 indicates that the approximate B at which a transition
between the pure superconducting state and the intermediate state should occur is
540 G/2.098 = 257 G. The closeness of this value to the value of Bi suggests that, as the
absolute magnitude of B is lowered, flux trapping takes place when B is equal to the value
at which a transition between the intermediate and the pure superconducting states is
predicted. Certain researches conducted by others tend to support this view (7,8).

_ I II - - I T - F I--
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Fig. 14 - Torque for the split torus cooled with
B = 1000 G and 8 = 0, and rotated with B = 200 G
(magnetic transition)

SPLIT TOROID OF ELONGATED CROSS SECTION

Figure 15 shows the geometrical features of the split toroid of elongated cross sec-
tion used in the experiments. Except for the thin cross-sectional slice which has been
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'0.005"

Fig. 15 - Ge
of the split
of elongated
section

ometry
toroid

cross

are the same size and

removed, this split toroid is identical in size and shape to
the toroid of elongated cross section illustrated in Fig. 6
and is also fabricated of well-annealed lead having 0.9999
purity.

Figure 16 shows the experimental results when the
split toroid of elongated cross section becomes supercon-
ducting with B o and 9= o. Then B is raised to 100 G,
and the split toroid is rotated through 27T radians while B is
kept at 100 G.

Equation (10), with B2 (e) identically zero and with
(AX - AK/) negligible compared to (K, - i1),is applicable
in this case. In other words, the equation

T --e,(1/2) (Km - K1) B
2  

sin (28)

should fit the data points fairly well. The application of
least-square curve fitting yields a value of 4510 dyne-cm
for ( 1/2) (K - K") B2, from which it follows that (K- K) =

0.9020 dyne-cm/G 2 . This value is reasonably close to
1.225 dyne-cm/G 2 , the experimentally determined value of
(K; - K11) for the toroid of Fig. 6. The reason that the
toroid of elongated cross section, described in Fig. 6, and
the split toroid of elongated cross section, described in
Fig. 15, have roughly the same (KI- K1) is that both

shape, with the exception of the small cross-sectional slice
which has been removed from the split toroid.

8 (DEGREES)

Fig. 16 - Torque for the split toroid of elongated
cross section cooled with B = 0 and 8 = 0, and
rotated with B = 100 G
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A CASE WHERE 89 j: 0

All the experiments discussed thus far have been arranged so that 8i 0 o, largely
because the interpretation of the experimental results in the light of the theoretical model
is significantly more difficult when 8i  o than when 8i = o. (If a3 f o, then the B3 (8) in
Eq. (8) cannot be taken to be identically zero.) However, substantial simplification re-
sults if one restricts oneself to situations in which B is always kept small enough to in-
sure that criticality never occurs. In such situations B2 (8) = B Bi oos (8 ), and
B3 (8) = B3 (0) = -Bi sin (8) for all 8. If a split toroid is used, B1 (8) 0 for all 8, and
K" = o. Then Eq. (8) becomes

I 1 , iI
T e [ KllBBj cos (89) sin (8) + I(K' K,1) B2 sn (28) + AK0 BB. s '8~o Cos(ae AK 2 C IC -~i~ G) (12)

(As in the derivation of Eq. (9), the approximation (AK - A/K - AK + AK) 0 for small B
has been used.)

Figure 17 shows the results of an experiment in which the split toroid of elongated
cross section becomes superconducting with Bi = 100 G and O9 = T/4 and is then rotated
through 47T radians with B = 100 G. Data points in the range -T/4 < 8 5 9TT/4 are shown.
Figure 12 also shows the curve T(8) = - [ C1 sin (8) + C2 sin (2 8 ) + C3 cos (

8
)], where C,,

c2 , and c3 have been determined by the application of least-square methods to the ex-
perimental data points. One finds that C, = 581.0 dyne-cm, 0 2 = 4304 dyne-cm, and
C 3= -6636 dyne-cm, from which it follows that AKI = 0.08216 dyne-cm/G 2 , AK- = -0.9384
dyne-cm/G 2 , and (KL - K7,,) = 0.8606 dyne-cm/G 2 . This value of (Kj - K.) agrees rea-
sonably well with 0.9020 dyne-cm/G 2 , the value found from an analysis of the experimen-
tal data pertaining to Fig. 16.
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Fig. 17 - Torque for the split toroid of elongated cross
section cooled with B = 100 G and 8 = 45', and rotated
with B = 100 G
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SUMMARY

The torque on a toroid arbitrarily oriented in a uniform field may be explained in
terms of magnetic-moment components produced by persistent currents, and the
Meissner effect. The essential feature of this determination has been the evaluation of
the total moment as a function of moment components parallel to and perpendicular to
the torus axis. The mathematical model describing the torque matches the measured
results to within experimental error, if incipient critical fields on the torus surface are
considered.

It is notable that, once having occurred, these fields result in a hysteresis whereby
torques experienced at specified angles in the first 2- toroidal rotation differ in magni-
tude from those of the second rotation. In the first rotation the moment components due
to persistent currents or trapped fields effectively adjust themselves at the onset of
critical surface fields to maintain superconductivity or flux exclusion in the toroid. Once
this adjustment is made on the first rotation, torque variations on the second and subse-
quent traversals are repetitive. It is significant that the determination of critical sur-
face fields is much more tenuous for the more general toroidal configurations than for
the torus, and this tenuity must be resolved if the analytical model is to be useful in the
torque problem when criticality is encountered.

In applying the analytical model it was found that a critical field B0 of about 590 G
allowed a closer matching of calculated torques with measured torques than did the ex-
pected value of 540 G. Specimen properties and conditioning are known to effect this B0 ,
upon which the torque calculations are dependent. Therefore, a determination of B0 for
the particular material used is advisable in order to gain the best results from the model.

It was possible to treat the effects of trapped or pinned fields only qualitatively and
to show their consistency with experimental behavior and their nature as a body-type in-
clusion. The relatively high purity (0.9999) lead used in these experiments exhibited
significant trapping.
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