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ABSTRACT

A number of methods for ambiguity reso-
lution for use in the Spasur radio interferome-
ter direction-finding system have been derived
and have been studied using both Moate Carlo
and operational daia. Implementations of the
methods in both hardware and software were
analyzed. The conclusion was drawn that the
optimum resolution results can be obtained only
by the joint optimization of the antenna coafigu-
ration and the resolution process to form an
optimum processing system.

PROBLEM STATUS

This is an iaterim report oa one phase of
the problem; work on the problem is continuing.

AUTHORIZATION

NRL: Problem R02-3§
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AMBIGUITY RESOLUTION IN THE S8PASUR RADIO
INTERFEROMETER DIRECTION FINDING SYSTEM

Frank A. Polkinghorn, Jr., and Herbert Farnham#*

INTRODUCTION

The Navy Space Surveillance (Spasur) System was primarily designed to detect the
presence of nonradiating artificial earth satellites. The system consists of three trans-
mitting and six receiving stations in a plane intersecting the southern part of the United
States at about 33 degrees latitude. A continuous-wave signal is transmitted in a thin
beam centered in the Spasur plane, and when a satellite enters the beam, the signal is
reflected to cne or more of the radio interferometer recelving sites. When the received
signal-to-noise ratio excc 2ds a prescribed threshold, an alert is deciared, and the phase
angles {rom the various antenna pairs are sent every 1/20 second to the central computer

at Dahlgren, Virginia.

For each receiving site the data are divided into one phase reading for each antenna
pair, called a frame, and the phase ambiguity is resolved using a parallel ray assumption
(see Appendix A) to yield a simple estimate of the zenith angle. These zenith angles are
collected in data groups consisting of a block of contiguous alerted data frames, and an
estimate of angle and angle rate at the time the satellite crossed the plane is determined.
Such information from two or more stations is compared with predicted zenith angles for
the known satellite population. I the detected signal correlates in both time and angle
with a prediction for one of the known population, it is identified as an observation of that
satellite and stored for future use in updating the orbit. Otherwise this observation is
correlated with other unknown observations to determine if the orbit of a new satellite

can be established.

The Spasur System has many baselines, some shorter than 1/2 wavelength but most
substantially longer. When an interferometer direction-findiag system uses baselines
which are greater than 1/2 wavelength, the abeolute phase difference between two antennas
can only be measured modulo 27, thereby creating a problem known as ambiguity resolu-
tion. This has led to studies of the ambiguity resolution problem, both theoretical and
experimental using both simulated and operational data.

The problem is approached in two steps. First, a theoretical model is developed for
a resolution process whick: would find the statistically most likely resolution. Then an
algorithm is found which is within the computing capability of the processing system and
which comes nearest to giviag the most likely resolution. Using any algorithm, one can
in principle derive what is called an optimum processing system by modifying tke vari-
ous parameters within the processing system to yield a "best” resolution based on any
arbitrary definition of the word best. In all of our sindies a single definition was used:
the resolution is correct i the resolved phase om the lomgest baseline is within » radians
of the true sclution; otherwise it is imcorrect. The problem then reduces to finding whac
g‘rocming technique ylelds the highest percent of correct resolutions for a specific type

*Frank Polkinghorn is now in the intercept Signal Processing Branch, The Electronic
Warfare Division, NRL; Herbert Farnham is sow with The Theory and Analysis Office,
Data Systems Division, Goddard Space Flight Center, NASA.
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Theoretically, one would like to use all the phase readings from each station and
each baseline in an algorithm which would find the most likely orbital parameters all in
one step. Unfortunately, such a system is well beyoad the capebility of the Spasur com-
puter system. Two techniques of ambiguity resolution were studied. The first technique
was to derive the most likely zenith angle from a single frame (one phase reading per
baseline) of data from a single station; we call this frame-by-frame resolution. The
second technique was to use multiframe methcds, using either phase angles or previ-
ously resolved zenith angles.

FRAME-BY-FRAME TECHNIQUE OF
AMBIGUITY RESOLUTION

The theoretical model used for frame-by-frame ambiguity resolution was the maxi-
mum likelihood method, in which basically the phase noise was assumed to be Gaussian
distributed, have a mean of -zero, be independent, and have a predictable variance for
each baseline. The likelihood functica* takes the form

N
L- (217)"”/’(I~7—l') e-{‘g[“r”/%‘] }/2

(=3
i= i

where
z = sine of the zenith angle (the angle from vertical in the Spasur plane),
z; = measured value of the sine of the zenith angle oa the ith baseline,
o, = (Wd4;)o, = standard deviation of =, about the true renith angle,

d; = length of the i th baseline,
o, = standard deviation of the phase angle of the ith baseline about its mean,
N = total number of baselines, and
A = wavelength of the radio signal.
Since L is a morotoaically increasing fuaction of the exponent, remembering that o,
is a (possibly unknown) constant, we may solve the problem by maximizing the exponent.

Of course, the value of - is unknown, but for fixed values of r; we can find its maximum
likelihood estimate 3:

N
2
PIENLA

€= 1

N
2.2
.Z“‘U?i
t=1

The exponent in the likelihood function becomes proportioaal to

#H. Cramer, "Elements of Probability Theory and Some of Its Applications," New York:
Wiley, p. 194, 1955.
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Referring to Eq. (2), when projecting to the next longer baseline we know *, 4,, and 7,,
but do not know =, and z;. K it is assumed that 7, |, ~ z,, then

- !,
M ST Tk Tt T My

The most likely value of m, is the closest integer to =,. This integer is inserted for m,
in Eq. (2) to ¥:nd the most likely value of z,, and the process is repeated for all baselines.

The mathematics for this resolution method are substantially simplcr to work with
than those of the maximum likelihood method. Again we go back to the concept of an op-
timum or matched processing system where the various elements of the system are
mztched to maximize the information throughout. The antenna system, with their param-
eters d; or ¢, '\, are an integral part of this processing system and therefore can be
modified to increase the probability of correct resolution. This is very similar to the
concept of matched filters. The mathematics has been worked out in detail in Appendix
B but will be briefly restated here. These equations yield not only the perfcrmance using
a specific set of baselines but also predict the number and lengths of the baselines in an
optimum set. The basic assumptions used here are the same as those used in the maxi-
mum likelihood derivation. It is important, however, that <16 in the operational sys-
tem or the alert antennas will not detect the presence of the signal. Note also that once
the partial solution exceeds the correct bounds it is considered incorrect forever. This
means the percent of correct solutions reaches a maximum at a finite number of base-
lines.

Let us assume for the purposes of discussion that the true sine of the space angle
r, = sin € =0 and that the baselines are written in monotonically increasing order of
lengthd, <d, < -+- < d,. We make a basic assumption that we have an unambiguous
estimate of r, from the shortest baseline, i.e., iz, | < » 24¢,. The fundamental question
is now, ""Given that [r, | < »'2d, and that r, is chosen such that |-, -r | < X 24,, what is
the probability that -,/ < »'24,?" This probability is given by the integral of the inde-
pen-ent joint normal distribution over the area shown below:
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As one can imagine, the detailed evaluation is complicated even using numerical
methods on a digital computer. We must therefore make another assumption very simi-
lar to our previous assuraptions. The assumption that 7 < 1/6 is equivalent to <, < A'6d;;
hence the error in neglecting the two constraints iz,! < i 24, and iz} < » 24, but retam-
ing the third constraint will be less than 0 003. The integral for tke probabllxty of "walk-
ing up” to the second baseline such that !r,! < 24, is then

. !
1 a4 o .
2, 2 23, 2, 2
1 ~r *i 20 To-r 020,
> - 1 1 2 2
112-27’_3 = e . dz,dz,
—-x

T1oeg
2

whic’ may be transformed into a single integration

by the transformation 2 = r, - r,.

This is equivalent to a well-known theorem which states that the difference between
two independent Gaussian random variables, with means ., and .., and variances ¢ and

, is a Gaussian random variable of mean . ,-.,and variance = ?+ 7. H the phase
noxse is independent on all baselines, the probabxhty of "walking up' through A baselines
is simply the product of the probabilities of "walking up" through each pair:

Ny

\:H Piioy-

-

In the unweighted walkup case where c, = (% d;)c__ this function P . is a relatively
simple function of the baseiine lengths and is maxxmxzed by settmg AP, W, = 0, for

R M- 1, where ¢, and 4, are fixed. For the sake of a more compact solutlon,

it is iurther assamed that *.” = o = constant. This process yields the answer d; = cd, _,
(where ¢“"' = 4. <), which may be restated by saying that the probabilities P, must
be all equal. The weighted walkup case is considerably more difficult, but it can be shown

that the choice of baselines with
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will yield a higher probability of correct resolution than the corresponding probability in
the unweighted case. It is this choice of baselines which is used to 'pseudomaximize"’

the performance of the weighted resolution method.

The problem of maximizing the probability P,y for fixed 4, and 4, with respect to ~
is difficult in integer mathematics. The problem can quite easily be solved by iteration
techniques. The results of this study will be presented in a later section.

Generalized Pattern Method

In the early days of Spasur the ambiguity resolution method used was called the pat-
tern method. This method uses the possible values of the zenith angle as measured on
the longest baseline as trial solutions and selects that trial solution which minimizes the
sum of the absolute values of the phase errors, i.e.,

N-1

2 lay -Fld;,

$=1

where 7 = z,. It i8 coanstructive to consider this method in the light of the maximum
likelibood theory both to present a unified approach and to show a simple method to im-
prove the pattern method.

H one assumes that the variances of the phase errors on eacl. baseline are equal and
takes the limit of the maximum likelihood solution for which 4} >> ¢? for i + A, then the
mean approaches

N
§ (dz; ‘l)

5:——-—.—.an

lv &
2 (d2ix?)

) ¥

i-1

and the exponent to be minimized approaches

N (:i_';)c Ney

4= 3 = 4 - i: (2, -2 e
=1

iz i 1

H one further assumes that the value of ry which minimizes the sum of the squares of
the phase errors also minimizes the sum of the absolute values of the phase errors, then
the simple pattern method can be justified. The validity of this last statement was stud-
ied (and found to be not true) with what is called the generalized pattern method. Here
the exponent to be minimized was

N-1
A= Z I:r.-—x,”d:. for p,g=1,2.

The simulation runs with » = ¢ = 2 had significantly better success than the runs with

p = ¢ = 1, which in turp had better success than runs with either combination of 1 and 2.
The fact that squaring the phase errors, which requires very little additional running
time, yields consistently better solutions has never been used in the operational pro-
grams. It is interesting to note thot the running time for this program is approximately
2¥! times smaller than the maximum likelihood technique due to the assumption 7 - Ty
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A progrram was also developed called the modified pattern method which is one step
nearer to tte maximum likelihood method. In the modified pattern method, one takes a
possible so:ution on the longest baseline X, and finds the values X, which are nearest to
Xy. These values are combined to find the maximum likelihood estimate 7 of the sine of
the zenith angle. This estimate then replaces X = X, in the regular pattern method witn
p = ¢ = 2. As one might expect and as will be seen in a later seciion, the results of the
modified pattern method were better than any form of the regular pattern method.

Square Wave Combiner Method

The implementation of the resolution techniques in hardware form can use either the
exponent or the likelihood function itself. The function generations required are gener-
ally simpler in the exponent method to be described in the next subsection. The excep-
tion to this rule is the digital square wave combiner, where the (Gaussian) likelihood
function on each baseline i8 approximated by a unit-height square wave of period pr~por-
tional to 4, and phase shifted an amount proportional to the obeerved phase ¢,. 3ince the
product of the individual likelihood functions is just the v input logical AND of the v wave-~
forms, it can be handled very simply using standard digital techniques.

The major problem associated with the square wave combiner i3 the determination
of the value of the duty cycle (gate width) of each square wave. While one would tend to
think that the duty cycle should be proportional to the standard deviation of the phase
errors on each baseline, this is generally not true. Two conflicting problems tend to
make optimum duty cycles hard to evaluate. One would like to make the duty cycles as
wide as possible to maximi=~ the probability that the 'correct’’ solution is an actual solu-
tion, and one would like to make the duty cycles as narrow as possible to minimize the
probability of a false solution. In order to simplify the hardware the {irst solution found
is the only solution reported, which makes the mathematics of optimum duty cycles diffi-
cult to solve. A square-wave-combiner simulator (see Appendix C) was developed where
the duty cycles could be varied, and the “optimum’ duty cycles were determined using
Monte Carlo techniques.

The optimum duty cycle generally differs from baseline to baseline, and small
changes made in duty cycles on ose baseline necessitates changes on all the other base-
lines. The results obtained usirg three different sets of gates are compared with the un-
weighted walkup method of ambiguity resolution in Fig. 1. The duty cycles as indicated
in Fig. 1 are in ter ms of degrees of rotation of the phase meter, 360 degrees being cne
full turn. For this set of baselines the best set uses wide gates on the shorter baselines
and narrow gates on the longer baselines to filter out the multiple solutions.

Gate settings for the combiners installed in the system were selected using opera-
tional data. A series of experiments were run using these data in the combiner simu-
lator. Difierent duty cycle settings were used in each experiment. The duty cycles that
produced the most correct solution for the data sample were installed in the combiner.
The results of the simulation runs were verified by comparing results obtained from the
combiner and unweighted walkup methods of ambiguity resolution for several data sam-
ples. In general the combiner using optimum gate settings has a higher probability of
obtaining the correct solution than the unweighted walkup method. In a typical 281-case
sample of data the combiner got 263 correct resolutions as opposed to 239 correct solu-
tions for the unweighted walkup method.

Squared Wave Combiner
The squared wave combiner uses the exponent of the likelihood functioa:
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Fig. 1 - The effect of duty cycle on the resolution
probability of the square wave combiner

N

A=) =

1=1 z;

(e, -3

where 7 - a+5¢. The squared function (2, - #? can be generated using a periodic
squared wave of period inversely progportional to 4; and phase shifted proportional to the
phase reading on the th baseline. The separate waveforms are then combined using the
weighting function 1/c}. in a summing amplifier, and the absolute minimum of the sum is
measured over one complete scanof z(from 7 = -1 to # = +1). While this system was
proposed several years ago, it has never been built, even though it should exactly dupli-
cate the maximum likelihood technique, which is the best known method of ambiguity
resolution.

MULTIFRAME TECHNIQUE OF AMBIGUITY RESOLUTION

The frame-by-frame methods of amhiguity resolution lead to some nonanalytic prob-
lems when we consider the phase data as a time sequence. Cne method of handling these
problems (to be described later in this section) i8 a process of combining the data by
{irst resolving the angle for a fixed time and then combining the resolved angles as a
function of time. Another method, which is much more likely to be analytic in the zenith
angle and angular rate domain, would be to maximize the likelihoo function of the time
sequence, which is of the form

24
1 -[z‘-,.-z(t’-)] /Zu‘.‘]_

¢
05 VBT o

7

L=

where (¢;), which is assumed to be of the form (¢;) = z(¢ ) +2’j, is the true sine of
the.p&ceangleaaatunctiondtime x.’uapouibleesttmateo(theameo(theangle
measuredonbaseline;attimet andw’ is the variance of that estimate. One would
like to vary both z and = contmoulyonr their ranges of conceivable values to find the
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maximum of the likelihood function. This is eutirely out of the question on a real-time
digital computer, and some approximation methods are necessary.

Appendix D, '""Proposal of a Joint Walkup Resolution and Rectification Procedure,” is
one example of an approximation method. This method maximizes the likelihood function
if we consider one baseline at a time. Suppose there exists at least one baseline of length
less than 1/2 wavelength; then we can calculate an unambiguous least mean square esti-
mate of the mean angle and angle rate. With these estimates we may ‘'rectify" the data
on the second shortest baseline by choosing the ambiguous portion of the space angle on
the second baseline to minimize the difference from the estimate on the first baseline.
With the rectified data -,; we calculate the estimate mean angle - (¢ ;) and angle rate -,
and the maximum likelihood estimate of r(¢ ) and r’ using the information from both the
first baseline and the second baseline. This procedure is continued for all baselines.

Suppose we have 2N+ 1 equally spaced data points symmetric about the time ¢ ; then
the equations for the least mean square fit of independent values . are

L]
-
t
>
=
19
>
+
Zw
=
>
+
]
-

These two coefficients can be combined to predict the value of r at ¢ =¢;:

N
1 IMN+1) +3ji]x,-
-N

LTI T GONY DAY DN .

The variance of the estimate ¥ is

o} NN+ 1) +37)
ot =k (for o, =comstaat).
.r—’- AN+ TN+ DN) €

If we consider only the worst case of of__ , hamely, j = N,
b

. e (N D)
R I
“Ev N+ 1A+ 1)

When the curve :; is projected on the data from the second baseline, it is of interest to
find some statements about the probability that an ambiguity error will occur in the
selection of , :,, the observed value of the Ath point on the second baseline. Coasider the
variable Z = ,#,- 7. We follow the argument developed in the subsection “Generalized
Walkup Method' by saying that |z} < r/2d,, to define a correct rectification to baseline
two of length @,. I o i8 the phase noise of both baselines, then

Ao 2 d;
2 - 2 =1 . 2 (AN+ 1) it 1
o = Tt i 2 [‘ "TNA DN D gt

So rather than plot the solution in four dimensions correspoading 0 N, ¢, d,/d,, and
probability of correct resolution P, let us choose (d,d,)? = 2 and P = 0.997 and plot caly
the critical curve of a, V8 N The condition P = 0.9§7 is equivalent to saying o, = A/ [3(2d,)];

80 solving for o we get
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2 _ ! —_—

0’Q .
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(2N+ DN+ D) dl’

A typical satellite pass might havce 21 data points (N = 10), and one could resolve the
ambiguity if o, < 51.54 degrees with a probability of 0.997 for a single walkup step. For
a long pass the maximum o, approaches 60 degrees. Oue could further improve the
probability of success by observing whether the phase residuals tend to increase and
then decrease, indicating a 360-degree phase error on the extreme ends of the sample.

Once the ambiguity has bees resolved on the frame-by-frame basis, some method
must be devised for smoothing the data. Simple averaging achemes or least-squares fiis
will not suffice, since the resolved angles are nonanalytic functions of the phase angles In
the region where resolution errors occur. The unweighted walkup method in particular
will allow the "walking'' off to a bad resolution as it chooses the reading on the (i + 1)th
baseline closest to the reading predicted from the /th baseline. A very noisy reading on
one of the shorter baselines may cause a wroag reading on the longest baseline. It is also
possible for more than one satellite to be observed in the same data group. The problem
then becomes one of collecting the frames associated with a particular satellite into a
group (cluster) and fitting in the group in order to obtain a smooth observation.

Two methods for casting out bad observations from a cluster have heen tried using
operational data from Spasur. The first checked the difference between the predicted
prase from the i th baseline and the recorded phase from the (i + 1)th baseline. If the
phase difference was greater than some specified tolerance, the resolution process was
stopped. This method was found impractical for two reasons. It was found that the tol-
erance had to be quite large in order not to cast ocut ali observations, and it still required
some cther method of collecting frames in a cluster.

The second method checked the difference oetween the resolved cosine on the longest
baseline from ome frame to the next in sequence. I the difference was less than some
tolerarnce, the frame was collected in the ciuster. M the difference was greater than the
tolerance, the frame was cast out of the cluster. Since it is possible to have more than
one satellite in the same data group, the cast-out {rame was checked against the next
frame to see if it belonged to a second cluster. An attempt can be made to connect like
clusters together, thus obtaining a ionger time sequence of data for rate information.

The quality of the data obtained can be coatrolled by using a cluster tolerance of less
than one revolution of the phase meter on the longest baseline, by setting the minimum
number of frames that must exist in a cluster before it is called an observaticn at a rea-
sonable number, or by a combination of both. H too few frames are used in a c.uster and
too large a difference is allowed between frames in a cluster, the preliminary data proc-
essing machinery will be saturated with nonsatellite observations that will be thrown out
later on in the processing sequence. The processing of this nonsatellite data is time con-
suming. Still more important, allowing the data t¢ have such a large variance can seri-
ously affect the determination of rates. X the tolerance is too small or too many frames
are required for a cluster, the loss of observations can be significant.

Some data containing 1109 satellite observations were processed using unweighted
walkup. A minimum of two frames were used in a cluster, and no attempt was made to
connect like clusters. X more than one cluster existed in a data group, the longest was
used as the observation. H there were two or more clusters of equal length, the first
was chosen. The resulis are shown below, where the toierance is given in terms of the
cosine:
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i Observations Percent
Tolerance I Missed Missed

55 I

0.01587
0.00795
0.0035

63
63

;o
“ao

In the above experiment no provision was made to attempt to determine the presence of
more than one sateilite in a data group.

A larger sample of data containing 1268 observations was processed using the un-
weighted walkup method of ambiguity resolution. In this sample extrapolation between
I'ke clusters was used. Again no attempt was made to detect more than one satellite in a
data group. The results obtained are shown below:

Observations Percent

Tolerance Missed Missed

0.01587 I 11 I 0.9
0.0035 20 1.6

In both the above cases the number of actual satellite observations gained by using a
large tolerance is less than 1%.

THE SPASUR SIMULATOR

Before incorporating any of the methods described in the preceding section, a means
was needed to determine which of the methods was best for the system. The 'best' in
this sense, is the method that has a high probabulty of resc' ..g the ambiguity correctly
and can be employed in a real-time system with’a large satellite population. The Spasur
simulator provides a means for running numerous experiments of different sets of pa-
rameters to provide a basis for making this decision.

The Spasur simulator consists of a dozen or so subroutines, each of which is a model
of some part of the Spasur system. These subroutines were written on the NAREC com-
puter, which offers about a thousand-to-one time speedup in the generatioan of data. In
addition to the time factor, the simulator allows for well-controlled reproducible experi-
ments, in which almost every parameter is allowed tc vary within what are considered to
be reasonable limits. With such a large number of variables, only a small number of the
possible combinations were actually tested.

Figure 2 i8 a block diagram of the final version of the Spasur simulator. The sub-
routines which have been programmed include the executive program, the trajectory gen-
erator, the systematic error generator, the Gaussian correlated random noise generator,
frame-by-frame ambiguity resolution programs each with its mauy options, and the sta-
tistical analysis program. The details of these are in Appendixes E through J, but a
brief description of some of them will follow.

The trajectory generator subroutine (Appendix E) assumes that the satellite is
traveling along a path which intersects at right angles to the vertical from the receiver
at an altitude A. The parameters are: /i, the ratio of the satellite velocity to the
aforementioned height; 9, the angle with respect to the vertical from the receiver at the
time of the first data sample; », the sample of data points desired; ¢, the time between
observations; and a list of the baseline lengths measured in units of the transmitter
wavelength. Theomdmemmmemumdmemmmmmum
of the zenith angle in the middle of the interval and the phase rate as measured on 2 1-

wavelength baseline.
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10, SUBROUTINE CONSTANTS EXECUTIVE
PROGRAM
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STATISTICAL

ANALYSIS PRINTOUT

Fig. 2 - Final version of the Spzsur simulator

Two subroutines add typical errors to the phase data. The systematic error sub-
routine (Appendix F) simply adds a systematic error to the phase data in the same man-
prer as the errors due to miscalibration. The second error subroutine is the Gaussian
correlated random noise generator (Appendix G). The white noise appears to have come
through a low-pass filter with a corner frequency 7, , a sampling interval 4¢, and a spec-
ified stardard deviation. This routine allows us not only to run a controlled experiment
because the data has a known standard deviation but also, since this is actually a pseudo-
random generator, to use the identical generated data to test various methods of analysis.

The statistical analysis routine is used to control the number of times that a reso-
lution method is tested. The criterion was chosen that a resolution would be called a
correct one if the measured sine of the zenith angle was within 1/2 phase rotation on the
longest baseline from the correct angle. A reasonable number of test resolutions are
run, and the probability » of getting a correct resolution is estimated by dividing the
number of correct resolutions in the trial run by the number of trials. The standard
deviation of this estimate of the probability of getting a correct resolution is given by
vp(1-p) 'n, where » is the number of trials run and p is the probability of correct solu-
tion which has just been estimated. Prior to the start of the runs an upper limit to this
standard deviation is set, and the runs will continue until this limit has been met.

The common interface for all the subroutines is a list of possible baseline lengths
and a code word to tell which of them are to be used, a list of phase angles in order of
increasing baseline length, and the output, which is a resolved space angle. The maxi-
mum likelihood subroutine (Appendix H) requires a list of the standard deviations of the
phase data. The walkup ambiguity subroctine (Appendix I) requires in addition a table of
the maximum allowable phase residuals both in order of increasing baseline length; if
the phase residual is above the specified tolerance, an indicator is set and the resolution
proceeds. The generalized pattern method subroutine (Appendix J) requires two weighted
numbers » and ¢, which are the powers in the equation to be minimized, i.e.,

N
Az ) |z, -7 247,

t=1
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and stores the maximum likelihood estimate of the sine of the zenith angle and the esti-
mate using only the longest baseline. The maximum likelihood methcd requires the
standard deviations of the phase angles and, because this method is g0 time consuming,
the upper and lower limits of the sine of the space to be tested.

COMPARISON OF THEORETICAL AND EXPERIMENTAL
RESULTS OF AMBIGUITY RESOLUTION

The results to be presented were accumulated over a number of vears during which
the antenna configuration and the operating frequency were changed. When this study was
first started, the frequency was 108 Mc and the baseline lengths were 16, 20, 52, 60, and
128 feet, for which some preliminary results appear in Appendix K. In the walkup method,
baselines of 4 and 8 feet were constructed by differencing the phase measurements for
the baselines of 16 and 20 feet and of 52 and 60 feet. This differencir:g not only introduced
nonindependent phase measurements but also increased the phase vaiiaace o7 by a factor
of 2 on the synthesized baselines (assuming equal variance on the physical baselines).
This fact appears in Fig. 3, where both walkup techniques have generally a smaller prob-
ability of resolving the zenith angle than the other techniques. The actual data points
used to plot these curves of probability of correct solution vs standard deviation of the
phase noise were measured every 5 degrees from 20 to 60 degrees. In the maximum
likelihood case, however, the long running time of the program forced us to use only

00
’o —
) \\
" MAXIMUM LIKELWOOD — (Y
3 MODIFIED PATTERN pe2,q-2
£ PATTERN pe2, q2 !
\
PATTERN prl, qul —————ady
§ 01— Y
- WEIGHTED wWALKUP ‘\‘
S UNWEIGHTED WALKU® R
« Y “\
« LYY
S so}— -
s BASELINES USED:
r 18, 20, 32, 60 ANO 128 FEET
3 sof—
| ]
<
: AN
& R N
‘o .
o\
| A \\
.
N
30 ‘\\
~
\
\
20 i i | | { |
) ") 20 30 « %0 ) ™

RMS PHASE NOISE (DEGREES)

Fig. 3 - Comparison of the six ambiguity resolution
methods for the original baseline set
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three points, at 30, 45, and 60 degrees. The criteria for stopping the Monte Carlo pro-
gram was o, < 0.02; i.e., each plotted point is within +2% or better.

One could rate each of the meihods in increasing order of accuracy (and incidentally
running time). This order would be unweighted walkup method, weighted walkup method,
pattern method with » =1, ¢ =1, pattern method with p = 2, ¢=2, modified pattern method,
and maximum likelihood method. The general order of accuracy depends very strongly
on the number of baselines and their length, so that the above order cannot be extrapo-
lated to an arbitrary antenna configuration. One can only say that the maximum likeli-
hood method will be mcst accurate, that the weighted walkup method will be better than
the unweighted walkup method, and that the modified pattern method is better than the
regular pattern method in the » = 2, ¢ = 2 case, which 'n turn is better than the p=1, ¢=1

case.

Figure 4 demonstrates the value of physical 4 and 8-foot baselines in improving the
probability of success for the walkup techniques. One would expect an improvement on
the other resclution method but not to the degree of improvement gained by walkup meth-
ods. These antennas were consiructed and used operationally prior to the time that the
operating frequency was changed to 216 Mc. Figure 4 also demonstrates the closeness
with which the theoretical calculations for the walkup methods outlined earlier agree with
the Monte Carlo results; the answers are well within the experimental error inherent in
the Monte Carlo calculations. The third item demonstrated in Fig. 4 is the value cf max-
imizing the probability with respect to the number of baselines and in particular the rela-
tive value of the weighted vs the unweighted walkup. Of course it would be impractical

100 ~

s
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(MAXMHZED WITH
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ooL—":"f_::?« LENGTHS AND MO, OF
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FIRST BASELME - 4 FT.
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NO. OF BASELWES = 30)
70 T
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EXPERMIENTAL
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WALKUP ] TO BASELWE LENGTHS AND
" NUMBER OF BASELINES:
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40—
30 \\
DASELWNES USED: \
a0, 12,18, 52, 60, AND 120 FEET
2 l ! | I | I
] 0 20 30 0 (2] [ ) 70

RMS PHASE MO YEGREES)

Fig.4 - Comparison of the probability of correct
resolution for the experimental and theoretical
walkup methods and the theoretically optimum
choize of baselines over the same range
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to use 30 baselines within this rance, but 15 or so would still yield a substantial
improveraent.

At the end of the section on the generalized walkup method it was stated that the
optimum number of baselines could be found by calculating the probability for each suc-
cessive value of N and choosing that value of A which maximizes the probability. These
theoretical results are presented in Figs. 5 and 6 for the unweighted and weighted walkup
respectively with an operating frequency of 216 Mc. It is interesting to note that the
curves peak at a reasonably small value of N, particularly for the unweighted case, and
that the optimum number of baselines depends on the noise level (or noise level distribu-
tion). The value of N at which the curves peak is small because the small increase in
P; ;,, 18 more than overcome by the increase of the value of ¥; therefore the probability
of success P, must approach zero as A gets large. These graphs are in contrast to what
one would expect for the other resolution techniques, where the probability of success
should be a monotonically increasing function of the number of independent phase readings.

30° NOISE

]
|
g

40° NOISE

- 2

E
(-]

PROBABILITY OF CORRECT SOLUTIONS
& 3 & 8 3
|
PROBABILITY OF CORRECT SOLUTIONS

20—
60° NOISE

(1] o 20

ol 1 1L 1 1 1 1 1 1 | ol 1 1 | ot t 1 1

0O 4 8 12 KB 20 24 28 32 B O 4 8 (2 6 20 24 28 32 3 &0

NUMBER OF BASELINES WUMBER OF BASELINES

Fig. 5 - The effect of the number of Fig. 6 - The effect o the number of
baselines and rms phase noise on the baselines and rms phase noise on the
probability of correct resolution in the probability of correct resolution in the
theoretical uaweighted walkup method theoretical weighted walkup method

Figures 7 and 8 are an analysis of two sets of 13 baselines with lengths between 2
and 2000 Zeet for an operating frequency of 216 Mc. The differences between the pro-
posed set and the optimum sets are not great in terms of baseline lengths, but the opti-
mum sets do yield significantly better results. It migit be noted that the gain in proba-
bility by rearranging all the baselines in the unweighted case is essentially the same
gain one would get by simply using the weighted method with the initial proposed set.
Obviously tae latter approach is more economically feasible.

CONCLUSIONS

The maximum likelihood method has been demoastrated to be the best resolution
technique. Since the real time coastraints within the digital computer preclude use of
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and the theoretically optimmum and the theoretically optimum
set using the unweighted walk- set using the weighted walkup
up method method

the maximum likelihood method, the authors propose the construction of an analog com-
biner which is mathematically equivalent to this method. In addition to relieving the
digital computer of the problem of ambiguity resolution, this device would probably yield
significantly better answers than those now realized. Solutions to two additional problems
would also be relatively easy to implement within this device, the problem of bearing er-
ror vs bearing (due to reradiation) and the problem of the clustering of data. In the latter
case, only resolved angles after the second sample (or any other sample) in a cluster
would be transmitted to Dahlgren. H this proposal were accepted, it would seem logical
to spend the time that would be required to derive an optimum baseline set for the maxi-
mum likelihood method.

Prior to the time that such equipment i8 installed one of the other resolution methods
would have to be used. The modified pattern method is then the best but again probably
would cost too much computer time. Of the four remaining methods, the operational sys-
tem has chosen to use the worst possible two methods. The authors recommend running
another simulation run for the current baseline set (perhaps a one-man-week effort) to
find whether the weighted walkup method or the pattern method with » = 2, ¢ = 2 ylelds bet-
ter results. The minor additional amount of computer time required is probably negligi-
ble but could certainly be obtained if the principles of cost/effective computer program-
ming were practicai (machine language programming of the resolution method).
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APPENDIX A
USE OF VERY LONG BASELINES AT THE SPASUR STATIONS

In the processing of phase signals from the Spasur radio interferometer it has been
assumed that the rays from the satellite to the interferometer are parallel. When the
baseline length | . mes appreciable with respect to the satellite height above the tangent
plane, this assumption begins to lose its validity. Several questions about baseline length
have been asked such as: "What is the longest baseline that should be used before the
parailel ray assumption has to be discarded?" "What is the angular and height depend-
ence of these errors?" And ""How does this effect the measurement of phase and phase
rate?"

From the following derivation we have con-
10,000 cluded that the maximum error in difference in
path length is equal to two counts (2/1000 revolu-
PASELINE LENGTH: tion) on a 1-mile baseline, assuming a satellite at
a height 4 of 100 miles (the minimum or worst
height); the angular dependence is shown in Fig.
Al. Figure A2 ghows that the worst-worst case
is # = 100 miles and ¢ = 26°34"; 4 (the baseline
length) is the indepeadent variable.

Yoo

§
-

Of course, the maximum tolerable error one
can use in a resolution system depends upon the
data processing system used. However, in gen-
eral, a dc error of 250 counts plus about 100
counts of random noise is a very rough upper
limit. The figures indicate, therefore, that for
baselines greater than 5 miles a new, nonparallel-
ray-assumption technique of ambiguity resolution
would have to be used, and even then it might be
necessary to know something about the range of
the satellite. Of heuristic interest is thefact that

) the inverse is also true; i.e., given an exact angle
noTe: 1:&2".;‘?..,'.,’&2’:‘.‘.’2 of the satellite (hence a noiseless continuous

ABOUT 0.0 phase system) the range can be calculated exactly.
The practicality of this idea is currently being
studied.

TT Hﬂvrl

T lTll"l‘l

ERROR IN COUNTS (I COUNT = | /1000 REV.

o ] 1 i i ) | .
~90 -80 -70 -60 -50 -40 -30 -20-W0 ©
ZENITH ANGLE (DEGREES)

The error in rate of change of =, the sine of
: the zenith angle, will be derived below, and its
Fig. Al - Angular dependence ’ '
of he Maximtn erren in dite angular dependence is plotted in Fig. A3. In a
ference in path length worst-worst case (4 = 100 miles, ¢ = 0) the phase
rate error is only 1/8% of the true phase rate for
a 10-mile baseline, which according to our pres-
ent standards is negligible. It is important to note that the phase-rate-independent errors
due to phase noise are inversely proportional to the baseline length; hence a long baseline
would be very desirable as far as phase rate is concerned.

Note: This appendixwas aninternal memorandum (5130-34:FAP:yi) from NRL Code 5134
to NRL Code 5131 dated June 28, 1962.
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Fig. A3 - Angular dependence of the error
in the rate of change of z, the sine of the
zenith angle

The calculation of approximate phase error due to use of a very long baseline is as
follows. As shown in Fig. A4,
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Fig. A4 - Geometry used in deriving
the results shown in Fig. A3

z
/‘2*5d sin 6 cos & +-‘£— cos?6

3
d, = cos 6
d!
/h:-ld sin € cos O +—T¢o.=6
d, = cos 6
D, =d sin €.

The error in difference of path length is
D=d,-d,-D,.

Doing a power expansion in terms of 44 one gets

_a¥ . d5 sin 6 costd .2 - s d’
D= e sin £ cos 9#5‘ 128 [3-]0 sin?f + 7 sin 9]’0(15‘).

H d4/A is small (4/2 < 1/10), one is justified in keeping only the first-order term. This
yields a maximum of sia 6 : (1/\5). The results are plotted in Figs. Al and A2.

The calculation of the error in the phase rate due to use of a very long baseline is
as follows. Let = = sia 6 and

1 a4
z, =7(d sia 6 - m sin O cos'@)

2

=z°-d— x1-2%

2
8A2

The true rate of change of the sine of the zenith angle i8 dr/d: and the measured rate is
dz,/dt:

Il d dz
—_c | - -2 -52 az
7 [ o (1 -24¢€1-52 )] It
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dr dz, /dt
ra

d?
1 = =—(1-2(1-522
ITE] z3() -52%)

The percentage phase rate error is

2 _dz
q a0 d s,
dz/dt (109 = . _th (1 =-2z%)(1-52%100.

The results are plotted in Fig. A3.

21



APPENDIX B
WALKUP AMBIGUITY RESOLUTION

The problem of ambiguity resolution has been treated experimentally (5130-1:FAP:
yi). Now a much more satisfactory solution has arisen which not only tells how well this
method will perform using a particular set of baselines but also yields under certain
conditions an optimum choice of baseline lengths (say given the first, last, and total
number of baselines) and also the optimum total number of baselines, assuming that the
walkup ambiguity resolution scheme is used. This solution does have limitations, which
will be evident in the derivation.

First a short review will be given of what walkup ambiguity resolution attempts to
do. Suppose there exists at least one baseline which is less than 1/2 wavelength. On
this baseline there exists a one-to-one mapping of electrical phase to sine of the space

angle, i.e.,
sin £ = 2 =—:—(¢——;—)

where
A = wavelength = 9.105 feet,
d = baseline length (in feet), and
¢ = electrical phase (0 < ¢ < 1) = true phase plus a Gaussian random variable.

Reading only the electrical phase on the shortest baseline gives a rough estimate of the
true sia 6, = 2,. The rms error in  is given by Ao,/d where o, is the rms error in
phase. This has a very definite limitation when =, ~ :1 and 4 ~ A/2. That is to say,
assuming that the satellite is very near one horizon, a small phase error can make the
satellite appear to be on the other horizon. With this rough estimate of - we can find the
possible valve of » derived from the next longeat baseline which is nearest to our previ-
ous estimate. By walking up through all possible baselines, we get an answer which be-
comes more and more precise, with a decreasing probability of accuracy.

Let us assume we have walked up to the ith baseline correctly, i.e., |z, - z,| < A/24;.
Consider the random variable z;,, - #;; since z;,, and »; are both Gaussian random
variables of mean z,, z;,, - z; is 2 Gaussian random variable of mean zero on the stand-

ard deviation

%iyri T /a:i” + cz'_ + 2 coviz,,z,) (B1)
where
z ~
R S
il d'.” i+1

Note: This appendix was an internal NRL Code 5130 memorandum (5130-6Z:FAP:y;)
dated October 29, 1962.
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and where 0§,. depends upon the particular method of walkup used, i.e., weighted or un-
weighted. The probability of walking up to the correct lobe on the (: +1)th baseline as-
suming that the value of -, was in the correct lobe is given by the conditional probability

"N"dl’vlciol.i

P fleeas = ool < 52| (= - 1<L)]=—'—I
[ 1" % 2.1(.”),(:. e 2, ‘/_{.,7 N

1% 41,6

e 24r. (B2)

These values for fixed values of the parameters can be looked up in tables. The proba-
bility of walking up through all baselines is then

N-1 }."2d'-' Tier,d
t=1 £}

SPECIAL CASE I

Consider the case of N baselines (independent noise) with an unweighted walkup. Then
c, = Oid)-, and
Ty

L

A
- . = o2 4 — 2
tel,t 2 2
/d:'l Tiel dc T
Furthermore, suppose - =0, = o then
Tiel Vi ¥
1N - 1 d'?”

l,-’Zc_Jlo(d.z’ /d2)
Pilir: -;.]’-_)\._Ilz.—;-l<_l\ :—2- ? Bl
il ¥ 4., [ ° 2, fZ—ﬂT
[}

and the probability of walking from the first base through the last («th) baseline all cor-
rectly is given by

2
e~* /24,

V-1 Ao l/zoap\/h(d'.’”/df)
(/3 I |
iz1 J9

Let us further suppose that 4,, d,, and N are fixed constants and ¢,, 4,, ..., dy_,
are to be chosen to maximize P,. For j +1 or N,

2.
e 24y,

oP,
N.o
)

or
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z/
w2 g2 le

dz 42 3/2
2 j+l 3 j+l
2.2 -80 )| 4 —— d. I 4 ——
J“/ch,vl*(dj /d"_‘) . @ ( d‘l) ] ( d‘z

0

1 9
d.: 2 d.’ 3/2
X -go 2 e 2 o K
nzaw/md,?”!a}’) sog, (14 a, diy \1 i
. - -
= -‘. e~ /2 gz |e

°

which has the solution

Then

dN 1/(N=-1)
dy = cN"‘dl or ¢ :(T)
1

1720, e (dyrd; )2/ (¥-1) .
: @ t
PN max = ]/_37‘[ : e-:’/z dz . (B‘)

Again fixing d, and 4, it is possible to formally differentiate P, with respect to v tc find
the best value of ¥ to maximize P,. However, from a practical standpoint it is probably
faster to try various values cf » in Eq. (B4).

SPECIAL CASE oI

Consider the case of ¥ independert baselines with a weighted walkup, again assum-
ing the noise is constant and independent in all baselines. Suppose we have walked up
correctly to the jth baseline; then we can get an estimate of the mean value of z;, 8ay
;, which has 2 smaller variance than z; by

j j
5 = Z| d,%,,/z d? .

k=1

We may now use *his to walk up to the (; + 1)th baseline, for which Eq. (B1) becomes

And the probability of walking from the {irst to the ath baseline with no error is
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;
YL no(f}”/k[‘“ d,})

2\ ‘
r- 02 |

=1 0

2
et 24z,

Again this can be maximized with respect to the baselines, assuming 4, and 4, are fixed.
H k4 1or N, then 9P,/3¢, = 0. This yields the equation

k-1 |
-l/ﬂoqf [h (d,‘2 Z: d’.’)J
j=t
i e
2[5
172041 (4§ i;] .1’,2 2 - 4 32
e~ % /2 4o Z dz? e S

7= Z d’_z

WL \
N "‘IEUJ 1+ 45 2: d,_’
e 7=1 /

) Z -1 )
Czket ”20‘? 1+ (‘t/Z dﬁ) 0 2 e 3/2
1=t e""zl2 dr ———-l

(BS)

Z d'i2 1+ i
() 7=1 Z d’-’
i=1
The solution to this equation is difficult. However, it was suggested that in the un-

weighted walkup P, could be maximized by taking all the integrals in the product to be
equal. In this case

X-
a2 = ¢ Z d,.’.
i

It can be shown that this is not a solution to Eq. (B5), but it is guaraateed to be better
than the best choice in the unweighted walkup for N > 2.

The integral may be written in the form
2

/20"{’ l+c .
f et /242,

Obviously, the vV method with the smallest value of ¢ yields the maximum value of the
integral. From unweighted walkup

ted"" = apra}
and from weighted walkup

N-2
e+ "= dld}.
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Therefore

So ¢, > ¢, and the resulting weighted walkup will be better than the unweighted walkup.

Under these conditions,

N-1
3 l~'2<-'<?\/loc“' 2
PN = V‘;"j‘ C-’ ‘2 dz
(]

N-
cM1+en) = djdl.

where

This too can be maximized with respect to ¥, and, as before, the quickest solutions can
be found by experimentation.

RESULTS

For the two special cases, the theory agrees very well with experimentation on the
Spasur simulator. There remains much work to be done on the cases of nonindependent
phase reading. The probability of a correct resolution when the phases are all of mean
zero but different standard deviations can be calculated from Eq. (B3); however, any
maximization with respect to baseline lengths or number of baselines requires additional
information (i.e., a function dependence of phase noise to baseline length).



APPENDIX C
THE COMBINER AND THE COMBINER SIMUL..TOR

The principal problem in determining the zenith angle of a satellite passing through
the Spasur fence is that of determining the integer » (as shown in Fig. C1) to add to the
fractional value 7, called a phase reading, which is obtained from the radio interferom-
eter system. The determination of » is made by obtaining phase readings from baselines
of different lengths and using them in various mathematical procedures. One such pro-
cedure is that of the combiner.

; S

Fig. Cl1 - Gecmetry relating the phase
angle ¢ plus the integer n to the zenith
angle -

The combiner is an electronic device for solving the ambiguity problem which arises
in the process of finding the elevation angle of a satellite which has been observed in the
Spasur fence. This piece of equipment was designed by William Alford of the Operational
Research Branch, Applications Research Division. Its method of operation is best ex-
plained by the use of Fig. C2, which illustrates the gates or pulses which exist in the
case of a three-baseline combiner. The center of each gate is given by

where d4; is the baseline length, with i = 1, 2, 3 for the three baselines, \ is the wave-
length of the radiated signal, ¢, is the observed phase angle, and », is one of the inte-
gers which produce values of - in the range -1.067 to 1.067. The proper value of sis 7,

27
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Fig. C2 - Combiner gates in the case of
a three-baseline combiner

where ¢ is the zenith angle of the satellite, i8 obtained by scanning these pulses from
right to left to find the first set of partial gates which cover the same numerical inter-
vals. The middle of the interval on the longest baseline is taken to be sin 4.

The combiner simulator is a NAREC program which has the capability of simulating
electronic combiners wkich possess a wide range of specifications. To {llustrate simply
the resolution process used in the combiner simulator consider what is done to simulate
an electronic combiner which uses three baselines. Three phase readings ¢,, with
i =1, 2,3, are used together with all integers »; which produce sets of values of sin 9,
in the range -1.067 to 1.067. By definition sis 6, = (¢; +a;)\'d, Where ¢, x, d;, andx,
are as previously defined. A gate increment ¢ and gate increment multipliers m,, with
i =1, 2,3, are used to form gates of pulses for the sets of si» 5, readings, a gate being
an interval [sin &, - m G) 2d;, sia 5, + m;G\2a;]. H avalue of sia €, + m;GA/24, in this set
of gates exceeds 1.067, it is replaced by 1.067; likewise if sin 6, - m, G124, is less than
-1.007, it is replaced by -1.067. Figure C2 illustrates these three sets of intervals on
which simulated pulses have been drawn. A solution for si» ¢ exists when a vertical
straight line passes through a pulse or gate on each of the three rows. The resoived sin ¢
is in general the center of the pulse, of this set of three, which came from the longest
baseline, since i the right edge of this pulse is positive, the solution is taken to be the
pulse right edge less ».Gr 24,, while if it is negative, the solution is taken to be the pulse
left edge plus =»,G). 2d,.

The resolution process used in the combiner simulator is the same for » phase
readings for » = 3 through » = 16. The sin ¢ resolution is achieved as follows: Starting
with » phase readings consider » sets of gates formed as described above and examine
the set of » gates formed by taking the gate of each of the » sets of gates which lies
closest to 1.067. I this set of » gates has a common interval, ther a resolution exists
and this solution is stored and tallied. After a resolution has been found, examination is
made of the set of gates formed from the last set by replacing the gate on the longest
baseline by the gate which is one lobe to its left. This new set of gates is then checked
for the existence of a resolution. I a resolution does not exist for this or any set of n
gates, the new set uf gates to be examined is chosen as follows: The gate of the last set
examined which has its rigit edge farthest to the left, called the reference gate, is re-
tained and the remaining gates, unless their left edges lie to the left of the right edge of
the reference gate, are replaced by gates which are displaced by the least possible num-
ber of lobes to the left which do satisfy this condition. Each new set of gates i8 examined
to see if it ylelds a solution. This examination and formation cf new sets of gates con-
tinues until the right edge of some gate is less than -1.087, the electrical horizon.
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To summarize the flexibility of the combiner simulator the following is noted: It
will simulate any combiner whose input consists of interferometer phase readings of
from three to 16 baselines. The lengths of the baseiines as well as the wavelength of the
radiation are completely variable subject to the parameter tape. The gates are individ-
ually specified in multiples of an arbitrary unit, with the arbitrary unit and the multiple
indicators being given on the parameter tape.



APPENDKX D

PROPOSAL OF A JOINT WALKUP RESOLUTION
AND RECTIFICATION PROCEDURE

Suppose we have a time sequence of phase readings ¢;(~,) from a radio interferom-
eter with baseline lengths d,, 4,, ..., dy. Suppose further that the shortest baseline ¢,
is less than 1/2 wavelength long. Then there exists a one-to-one mapping of electrical

phase to sine of the space angle given by the relationship
sin 8,07 = a1y = [¢,(r,,) --;-]
t

and it is posasible to do a least mean square {it in the r(-) domain of the form z, = 4, + B,7.
Let us further suppose the phase readings on all baselines are taken at the same time se-
quence; we can say that oy, = cq0,, and o, = cgo;;, Where now c, and c, are constants
independent of the baseline. Now we may approximate z,(7) by Z,(r) = z (r); then

d,z (1)
A

~

+ 3= 0,00) .

Choose m such that |¢,(7) + m- ,(7)| < 1/2 and do a least mean square fit of
32(1'1 = .‘!2 fBzT.
We can now form

2
z (d‘zv/"-z) x5 (7)

c=1

2
Z (d2/a;2)
t=}

£ =

We now have three choices of s;?:

1. We can set all s;? - « except the one associated with the longest baseline, and we
get Z,(7) = 2,0,

2. We can set s;> = constant, and we get

2
Z: df = (7)

[ X1

2
L4

i=z1

3. We can take s;2 to be the mean squared phase residual on the respective base-
lines, which yielis the equation

. (7) =

Note: This appendix was an internal NRL Code 5130 memorandum (5130:FAP:yi) dated
November 2, 1962.
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We now project z,(7) to the third baseline and repeat the procedure until all baselines
have becn used.

NRL REPORT 6603

x,(7)

o)

2
L= 02

Ix

t=1

“-

(r) =

Ny
S
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APPENDIX E
TRAJECTORY GENERATING SUBROUTINE

1. Purpose: The purpose of this subroutine is to generate typical phase data for a set of
baselines to be used in the Spasur simulator.

2. %@ This program is available in NAR 1B symbolic language on Tape
S4331. Cc addresses used: all those beginning with tgs plus tgtl to tgt8. The sub-
routine i8 written in fixed point and requires the fixed point subroutine Tape 4400-3d70.

3. Statement: This program assumes a satellite is initially at an angle 6, relative to the
local station vertical (positive ¢ is east) and traveling at a velocity » along a path paral-
lel to the tangent to the earth at the station in the fence. The path passes at a height 4
vertically above tne station. The equation for the phase on a baseline of length 4, (wave-
lengths) at the jth sample is

(sin 6, + jlvh) AT cos 6) 1
t5+m

d""' =d

" Veos6, + (sin 6, + j(wh) A7 cos 6,07

where » is chosen to be an integer such that 0 < ¢;; < 1; »4 = the velocity-to-height
ratio (sec - !), with positive velocity to the east; and A+ = time between data samples (sec).

The sine of the space angle in the middle of the interval is given by

sin 3° + ('; l) vA AT cos 9°

sin Oipyy/a = =
/20939. + [-i- 6y + (“;l) vA AT cos 90]

The phase rate on a 1-wavelength baseline in the middle of the interval is given by

sia 6, + (n/2)(vA) AT cos 6,

‘;(n-n/z o
A7l os?6, + [sin 5, +(n/2)(vh) AT cos 8,12

sin 6, + (';l) (oA) AT cos 6,

. -1 2
cos?8, + [-u 6, + ("2 ) (vA) AT cos 9°]
4. Instructions for Using the Subroutine
a) Additional Symbolic Addresses

1) stho sine of the space angle at ¢ = 0 (times 10~ converted)

Note: This appendixwas an internal memorandum (5130-52:FAP:yi) from NRL Code 5134
to NRL Code 5130 dated October 18, 1962,
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2) vh
3) delt
4) one

5) ndw

6) blo

7) blew

b) Entrance
s:
s+1:

¢) Output
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the velocity-to-height ratio (sec-!) (times 10-3 converted)
time between data samples (sec) (times 10-* converted)
1x10-? converted

left address count which equals the number of data phases desired per
baseline (in hexadecimal)

symbolic address of the shortest baseline (first address of the table of
16 possible baselines). Baseline lengths are placed in the table in units
of wavelengths times 10-3 coaverted.

A hexadecimal word which tells which of the baselines are to be used in

the subroutine. A one in the 2-** bit means that the shortest baseline in
the table blo to blo + 15 is to be used. A one in the 2-4¥ bit means the

second shortest baseline (location blo + 1) is to be used, etc. Any com-
bination of baselines is valid.

sA Lo TGSR

return

1) The appropriate phase readings ¢ are place location 1000 through [1000 + (ndw)
(number of baselines) - 1] first in order of increasing baseline length and second
in order of increasing time.

2) The sine of the space angle in the middle of the interval is left in symbolic loca-
tion TGT2, scaled 10~ in hexadecimal.

3) The phase rate on a 1-wavelength baseline in the middle of the interval is left
in symbolic location TGT3, scaled 10-? in hexadecimal.



APPENDIX F
SYSTEMATIC ERROR SUBROUTINE

1. Purpose: The purpose of this subroutine is to add to the Spasur simulator data a sys-
tematic time-independent error plus a systematic dependent error, to see how the simu-
lator will perform with systematic errors.

2. e Used: This program is available in NAR 1B symbolic language on Tape

S4437. addresases used: all those beginning with gs, g19, g20, g21, syex. In
addition to internal working locations it uses locations 3ICDO-3CEF. The subroutine is
in fixed point and requires the fixed point subroutine Tape 4400-3d70.

3. Statement: This subroutine adds to the Spasur simulator phase data locations'a sys-
tematic error of the form

T -T.72
- 2 0
Ejj =ai+d; [ D2 ]

where
¢, = time of the center of the signal,
¢; = time of the jth sample,
D = duration of the signal,
_a; = dc offset of the signal, and
5; = maximum time-dependent offset.

4. Instructions for Using the Subroutine

a) Additional Symbolic Addresses
1) one 1x10-3 converted

2) nbl left address counter which equals the number of baselines to be used (in
hexadecimal)

3) ndw  left al;d:erm counter which equals the number of data phases desired per

4) syet the systematic error table stored in a compact form. The first word of
the table is o, ¢, a, where each «; is contained in four hexadecimal char-
acters, one for the sign and three for the phase error in revolutions, the
second word in the table 18 o, «, a,, etc. The sixth word in the table is

Note: This appendixwas an internal memorandum (5130-53: FAP:yi) from NRL Code 5134
to NRL Code 5130 dated October 22, 1962.
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s 0, b,; the seventh is 5, b b, etc. The eleventh (last) word in the
table isé,, 6, X The desired errors are to be put in the order of in-
creasing length of the baselineg used.

b) Entrance
8: sA Lo SYER
8+ 1 return

¢) Output

The appropriate E, ; are added to the phase data locations (1000 to 1000 + (ndw)
(nbl) - 1) in the Spasur simulator.



APPENDIX G
GAUSSIAN CORRELATED NOISE GENERATOR SUBROUTINE

1. e: This subroutine adds a Gaussian correlated random variable of specified
correlation and standard deviation to the phase data locations in the Spasur simulator.

2. Language Used: This program is available in NAR 1B symbolic language on Tape
4745. Symbolic addresses used: all those beginning with gcr, and gesa, gesb, and gesc.
It is written in fixed point and requires tape 4400-3d70.

3. Formal Statement: This program does what is called the "throw away method" to
select Gaussian random numbers. First two flat distributed random numbers are gen-
erated by multiplication of a constant times the last random aumber, and the low order
product is taken as a flat distributed random variable, and the process is repeated. Let
us say two such numbers are z, and z,. Then z, is said to be a Gaussian random varia-
ble, of mean zero and standard deviauon o, provided that

_'22 1202
x, <e

-z 02
Since =, 18 assumed to be flat distributed, the probability of selecting =, is «~** /2,
Then the relative frequency of a set of random numbers obeys the Gaussian law, provided
of course that -, and z, are {lat distributed.

This program also will generate Gaussian correlated random noise assuming that
two consecutive numbers are joint Gaussian distributed, with correlation coefficient o,
where by definition

r 2T ety | ay

j et )1 ar

p:

where

1

2
I()l S ————
wtf 1+ (/)¢

That is we assume noise appears to have come through an RC low-pass fiiter of corner
frequency 7,, where A7 is the time between sampled data. Then

—3wf, Ar
p=e s

i’Againﬂ <, and z, are jointly Gaussian, then the conditional probability of =, given
L4

Note: This appendixwas an internal memorandum (5130-51: FAP:yi) from NRL Code 5134
to NRL Code 5130 dated October 17, 1962.
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2
. [(zz-pzl) /onl-pz]/z
E", J1-p? .

Assuming that -, and z, have mean zero and standard deviation o, let

Ple,/z)) =

Y .tz-p:l
12 © -
o, V1 - 02

Then Y,, has mean zero and standard deviation one and

- T3
2, 20, Y1-p" ¥yt ez,

Suppose we let

- _ 7y
2, = O, fl-p )ol

2, = o, 1-p2 yz‘-:.:’ + pr;_; for i 22.
This program discards the first eight numbers -, r,, ..., r,, 80 that -, is almost inde-
pendent of the assumption that z, = 0. It then adds r, to storage location 1000, =, to
storage location (1000 plus number of baselines used in the program), etc. For the sec- -
ond baseline, we start another sequence r, = 0, r,, z,, ..., z, and add the new r, to Joca-
tion 1001, =, to location (1001 plus number of baselines used), etc.

4. Instructions for Using the Subroutine

a) Additional Symbolic Addresses
1) delt time between samples of data in seconds times 103 (converted)
2) BNDW bandwidth of the correlating low-pass filter in cycles per second times
10-3 (converted). A negative bandwidth will yield a zero correlation
coefficient.

3) sig standard deviation of the phase errors in revolutions times 10-3
(converted)

4) nbl a left address counter which equals the number of baselines to be used
(in hexadecimal)

5) ndw a left address counter which equals the number of data words to be
used per baseline (in hexadecimal)

6) one 1x10-% converted
b) Eatrance
8: sA 1o GCRN

s+1 return
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c) Output: A Gaussian correlated random number is added appropriately to locations
1000 to [1000 + (nbl) (ndw) - 1]. There is no printout directly from this subroutine.

d) Special Features
1) Since this program generates pseudorandom numbers, unless the program is
reset after each time the program is read into the machine, it will generate the
same sequence of random numbers (or multiples thereof). In order to obtain an
essentially independent sample on a repeated trial, read out the contents of sym-
bolic location gcr0 at the end of one trial and put that number back into ger0 before
starting the next trial.

2) A Gaussian random number of mean zero and standard deviation 1/4 by the
entrance

o 8sA Lo gere
s+ 1 return
The resulting random number is left in the A register.
3) A flat distributed random variable 0 < » < 1 can be gotten by entrance
s: sA 1o geri
s+1: return

The resulting random number is left in the A register.



APPENDIX H

SUBROUTINE FOR THE MAXIMUM LIKELIHOOD
METHOD OF AMBIGUITY RESOLUTION

1. Purpose: The purpose of this subroutine is to perform a maximum likelihood resolu-
tion of Ee phase data in the Spasur simulator.

2. e Used: This program is available in NAR 1B symbolic language on Tape
54476. Symbolic addresses used: max1, mlx, milai, hr0-hr70, hy0-hy45, hn0-hn21, and
hly. In addition to the location within Tape §4476, the program uses locations 3C60-
3CCF.

3. Formal Statement: The basic hypothesis of the maximum likelihood method of am-
biguity resolution is that the "best" estimate of the sine of the space angle 7 is that which
maximizes the Gaussian likelihood function

i1 VIT o
[
N 12
N \ -[Z(:i-fh’v‘.‘J%
- n )e i=1
(!’=l V!;ozl.

where z; is a possible choice of the sine of the space angle observed on the ith base and
oy, = (Mdg) oy, is the standard deviation of the sine of the space angle measured oa the
ith baseline (of length d;); ,, is the standard deviation of the phase error on the ith
baseline.

Since o, i8 just a number, maximirzation of the likelihood function is equivalent to
the minimization of the sum

or

Setting 24/9r = 0 we get

Note: This appendixwas an internal memorandum (5130-54:FAP:yi) from NRL Code 5134
to NRL Code 5130 datsd October 23, 1962.
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2. 2
PIEEES Te;
i=1

FETN

2,2
Z d; ‘aai

iz

The program selects one choice of the sine of the space angle on the longest base-
line 7, (say the smallest possible value of z,); it then finds the two closest values of z;
for the baselines : =1 to N-1. It then computes the maximum likelihood estimator for
2¥-1 possible combinations of z;'s and computes the appropriate value of 4. The pro-
gram coatinues to choose each possible value -, in succession until the largest permis-
sible value of », has been used in this computation, at which time it chooses that sequence
of 2, z,, ..., z,, which has the minimum value of 4 and declares that value of the maxi-
mum likelihood estimator 7 to be the "best" solution.

4. Instructions for Using the Subroutine
a) Additional Symbolic Addresses

1) mla  the smallest allowable value of the sine of the space angle as measured
oa the longest baseline (scaled 10-3 converted)

2) mib  the largest allowable value of the sine of tiie space angle as measursd on
the longest baseline (scaled 10-2 converted)

3) half (1/2)x10-3 converted

4) one 1 x10-2 coaverted

5) hun  190x10-3 converted

6) bio symbolic address of the first element in a table of baseline leagths. The
baselines are put in order of increasing length, in terms of number of
wavelengths, scaled 103 converted.

7) blew A hexadecimal word which tells which of the baselines are to be used in
the subroutine. A one in the 2-** bit means that the shortest baseline in
the table blo to blo + 15 is to be used. A one in the 2-43 bit means that
the second shortest baseline (location blo + 1) is to be used, etc.

b) Additional Information Needed

1) The phases (in revolutions) which are to be resolved are to be placed in order

of increasing baseline length starting in location 3DBO. They must be scaled 10-3

and converted.

2) Corresponding to the above phases, a table of standard deviations of phase o4

are to be placed in a table beginaing with location 3CCO, with the condition

0 < e, < (1/2) x 10-3. They must be converted.

¢) Eatrance

s sA 1o MAXL

8 +1: return
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d) Output
1) There is no direct printout from this program

2) The maximum likelihood estimator # which minimizes the function 4 is left
in symbolic location mix and is scaled 10-3.

3) The actual minimum value of 4 is left in symbolic location mlai and is
scaled 10-3,



APPENDIX I

SUBROUTINE FOR THE GENERALIZED WALKUP
METHOD OF AMBIGUITY RESOLUTION

1. Purpose: The purpose of this subroutine is to perform one of the walkup methods of
ambigulty resolution of the phase data in the Spasur simuiator.

2. age Used: This program is available in NAR 1B symbolic language on Tape
w%addrems used: walk, hibs, hgl-hgll, hm0-hm19, hs1-hs27, ht0-ht15,
hwl-hw10, hx0-hx30, werr, and wux. 'nns program is in fixed point In addition to the
locations within Tape S4427 the program uses locations 3CFO through 3DCF.

3. Formal Statement: The resolution program starts out by assuming the reduced phase
on the shortest hase (¢,) equals the unreduced phase (there is no loss of generality here,
provided that the sbortest baseline is less than 1/2 wavelength). The sine of the space
angle .ucasured on this baseline is then

and the phase on the second baseline is taken to be that which is closest to ¢,. That is,
= 18 chosen such that

i®, *n-$|<-l'

where ¢,, = ¢, +m - ¢, is defined to be the phase residual on the second baseline. If this
is greater than a present tolerance, an error indication cccurs and the resolution con-
tinues. The program now gets an estimate of the true sine of the space angle by

where the terms 5,2 and ;.2 are preset constants equal to the variance of the phase noise
on the respective baselines and ¢ is either 1 or 0. X ¢ =0, the walkup technique is ¢ lled
unweighted walkup and 7, = z,. X c=1, the walkup techmque is called weighted walkup
and the corresponding value of 7, is the maximum likelihood estimator of the sine of the
sme angle if z, and =, are lndependently distriputed. To generalize after % + 1 projec-

k-1 2, 2.
_ Z d: dF ay . dkz
T = € s ? + 2—/c: et —,
i=1 9 *x i=1 % %
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After walking up to the rth (last) baseline 7, is formed and this is taken to be the re-
solved angle.

4. Instructions for Using the Subroutine

a)

b)

c)

Additional Symbolic Addresses (externally supplied)
1) one 1x10-3 converted
2) half (1/2)x10-? converted

3) wub a constant which equals the maximum (and negative of the minimum)
value that the sine of space may have on the longest baseline. If a.
resolution on any baseline goes beyond either bound, the value of the
sine of the space angle for that bageline is set equal to the bound.

4) wycw  walkup cod: word. N the first hexadecimal character is a zero, c =0 is
to be used in the resolution (unweighted walkup). H the first hexadeci-
mal character is a one, ¢ = 1 is to be used (weighted walkup). The right
address of this word contains a hexadecimal counter which equals the
number of consecutive baselines to be used.

Externally Supplied Constants

1) Phase data in revolutions, scaled 10-3. The phase for the shortest baseline to
be used is placed in location 3CFO; the remaining phases are put in the table in
crder of increasing baseline length.

2) Baseline lengths in wavelengths scaled 10-? in order of increasing baseline
length in a table starting with location 3d10; their number must be less than or
equal to 32.

3) A table of standard deviations s, of phase noise in revolutions, converted and
scaled 10-3. The table :nay contain up to 32 elements starting with location 3d30.

4) A table of maximum allowable absolute phase residuals converted and scaled
10-% and in order of increasing baseline length.

Entrance

s8: sA Lo WALK
s+1: return

Output

1) The maximum likelihood estimate of the sine of the space angle i, is left in
symbolic address WUX.

2) The error indicator is left in symbolic address WERR. Rs left address is a
hexadecimal counter which tells the number of times in the resolution that a phase
residual is above the prescribed tolerances. The right address is a hexadecimal
counter which tells the number of times the closest value of the sine of the space
angle i8 in absolute value greater than the maximum allowable value.



APPENDIX J

SUBROUTINE FOR THE GENERALIZED PATTERN
METHOD OF AMBIGUITY RESOLUTION

l;‘%e_: The purpose of this program is to perform one of the pattern methods of
a resolution on the Spasur phase data.

2. e Used: This program is available in NAR 1B symbolic language on Tapes
S44 -A. Symbolic addresses used: pat, pmak, pmxk, pmxb, hb0-hb9, hbal,
hbt, hcO-hef, hedl, hdO-hde, and h1-hlll.

3. Formal Statement: The pattern method of ambiguity resolution tries to imitate the
maximum likelihood method along with having a substantial time savings. First it as-
sumes that the phase noise on all baselines is Gaussian, of mean zero, and constant
standard deviation 7,. The generalized pattern method looks for the sequence of possi-
ble values of the sine of the space angle on each baseline =, «,, ..., z, which minimizes
the expression

N

A=) g -3 a8

i=1

where » and ¢ are 0, 1, or 2 and d; is the length of the ith baseline in units of wave-
lengths. The value of z is obtained in one of two ways. Tape S4411 assumes that the
possible sine of the space angle measured on the longest baseline (2, ) is a "'good enough"
estimate of the L-ue sine of the space angle (i). Tape S4411-A, however, insists that the
maximum likelihood estimate

N
Z d?z;

iz

N

2 4
izl
is a "better" estimate of ;. The program selects a possible value of the sine of the
space angle on the longest baseline », (say the smallest allowable value of z,). It then
chooses the nearest values of the aine of the space angle on all other baselines and cal-
culates the appropriate value of ; (that is z, on Tape S4411 or 7 on Tape S4411-A). The
results are substituted into the equation for 4. The next larger value of -, is chosen in
turn, and its value of 4 is calculated, and the process is continued until after the largest
allowable value of z, has been used. The sequence z,, z,, ..., z, which minimizes the
value of A is used to compute the maximum likelihood estimator of the sine of the space
angle 7, and this is taken to be the resolved angle.

F =

Note: This appendixwas an internalmemorandum (5130-57: FAP:yi) from NRL Code 5134
to NRL Code 5130 dated October 25, 1962.
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4. Instructions for Using the Subroutine

a) Additional Symbolic Addresses (externally supplied)

1) pma

2) pmb
3) half
4) one
5) hun

6) pmcew

7) blo

8) blcw

the negative ot the smallest allowable value of =,, scaled 10-?
converted.

the largest allowable value of :, scaled 10-* converted
(1/2)%10-3 converted

1x10-3 converted

100x10-3 converted

the pattern method code word. The left address of this word con-
tains the address of the first element in the phase data table. The
eighth hexadecimal character is the value of » to be used, and the
sixteenth hexadecimal character is the choice of ¢ to be used.

the symbolic address of the first element of the baseline table (i.e.,
the address of the shortest baseline)

A hexadecimal word which tells which of the baselines are to be
used in the subroutine. A one in the 2-** bit means that the
shortest baseline in the table blo to blo + 15 is to be used. A one
in the 2-*3 bit means that the second shortest baseline (Jocation
blo + 1) is to be used, etc.

b) Additional Information Needed

The phases (in revolutions) which are to be resolved are to be placed in order of
increasing baseline length, and the first address of this table is placed in the left
address of pmcw. They are to be scaled 10~ and converted.

¢) Entrance

s:
8+ 1

d) Output

Lo PAT

return

1) There is no direct printout from this program.

2) The value of the sine of the space angle on the longest baseline :,, associated
with the minimum value of 4, is left in symbolic location PMXK. It is scaled 10-3.

3) The associated maximum likelihood estimate of the sine of the angle 7 is left in
symbolic location PMXB.

4) The minimum value of 4 is left in symbolic location PMAK and is scaled 10°3 x

277,



APPENDIX X

EVALUATION OF POINT-BY-POINT AMBIGUITY RESOLUTION
METHODS BY NAREC SIMULATION

PROBLEM DESCRIPTION

In Spasur the east-west angle between the local zenith and the vector from a Spasur
station to a satellite as it passes through the Spasur beam is measured by the use of a
radio interferometer operating as follows: Phasemeters are attached to the outputs of
several antenna pairs having various spacings, and the phase difference of the received
signals between two antennas is measured (modulo one cycle). Long baselines provide
fine readings and short baselines provide coarse readings. The phase angle ¢, in cycles
measured on the ith baseline is related to the zenith angle ¢ by the equation

Ofabk:;‘f'sinB-n,‘ +%<1
where », is the modulus, d, is the baseline length, and A is the wavelength (8.107 feet).
The data from all the antenna pairs are combined, but due to both sky noise and errors
in the receivers the various phasemeters will nct in general agree exactly. Because the
various readings do not have exactly the correct relative values, it is difficult to infer
the precise value which should be assigned to the combined output of the system. This
problem is known as the "ambiguity resolution problem," that is, the problem of the
proper number of integral revolutions to assign to each phasemeter associated with a
long baseline such that the resultant phase angles derived from the various phasemeters
most nearly agree.

This brings up the question, Ly what criterion does one measure how well the phase
angles agree? Three different criteria have been programmed for NAREC evaluation by
simulation techniques, and a sample of 36 sets of phasemeter readings was tested using

each program.

COMPUTER SIMULATION

The data for this experiment were generated by assuming a true target angle of 0
degree (target at zenith). To the corresponding phase angle for each baseline, an uncor-
related Gaussian random variable of zero mean and specified standard deviation was
added. The same value of standard deviation was used for each baseline inthe set. Sepa-
rate runs were made for standard deviationa corresponding to 30, 45, and 60 degree phase
noise on all baselines. Here, 30-degree phase noise means that, assuming Gaussian noise
with mean zero, 68% of the noise measurements were in the range -30 to +30 degrees.
These data were used in the three programs, and the number of correct resolutions was
counted. A resolution was defined to be correct if the unambiguous phase on the longest
baseli~~ was estimated correctly within 1/2 cycle. In all the programs, baselines of 16,
20, 52.8, 30.8 and 129.6 feet were used.

Note: This appendix was an internal Code 5130 memorandum (5130-1:FAP:ywi
March 20, 1962. ¢ ywi) dated
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RESOLUTION METHODS

The most successful resolution method was the maximum likelihood method, derived
by Dr. J. J. Freeman. A variable z, is defined related to the measured phase =, by the
relation

A 1
W g (o)

This method states that, for each possible set : of n,'s the best estimate of resolved
phase angle z; is given by
J_:i = ; dkzzk/kz dkz

where 4, is the length of the ith baseline. It is assumed in these experiments that the
standard deviation of the noise (which equals the rms value) is the same on all baselines.
The desired set of »,'s is found by evaluating the relation

Z‘Et' -l'k)zdkz
t

5,2

A, =

for each of the sets of n,'s and choosing the set which minimizes 4,. s is the standard
deviation of noise on all baselines. 7; is then the maximum likelihood estimate of the
resolved phase angle. In determining the minimum value of 4,, a large number of per-
mutations in the n, should be tried. However, this would require an excessively long
computation time on the NAREC; therefore, approximate methods are used which pro-
duce adequate results.

The pattern method, which is a simplication of the maximum likelihood method, as-
sumes that the phase of the longest baseline ¢ is exactly correct. Each of the possible
resolutions is tested by the criterion

A,‘ = z*: ‘zl"tb! d§

and the value of 2, is chosen such that 4; is a minimum. In this case for each possible
value of z,, only the =, are chosen which lie closest to z,. The appropriate value of =,
i8 said to be the estimate of the resolved phase angle.

In the walkup method of ambigunity resolution it is necessary to first have an unam-
biguous estimate of the phase angle. This is achieved by differencing phasemeter read-
ings from two baselines whose lengths differ by less than /2 feet (where A is the wave-
length of 108 Mc, i.e., 9.107 feet). Such a baseline was obtained by differencing the phase
angle from the 16- and 20-foot baselines to obtain a synthetic 4-foot baseline. Similarly,
an 8-foot baseline was obtained from the 52.8 and 60.8 foot baselines. Using as the ini-
tial estimate the resolved phase angle on an unambiguous baseline, the estimate for the
next longer baseline is taken to be that possible value which is closest to the initial esti-
mate. The estimate for the third baseline is taken to be that one which is closest to the
value selected for the second, etc. There were two optioas in this program; one uses 4-
and 8-foot baselines, obtained by differencing, in addition to the five physical baselines
previously mentioned. The other option used the five physical baselines and the ten pos-
sible baselines wkich can be synthesized through forming positive first differences of the
physical b: selines (i.e., 4, 8, 32.8, 36.8, 40.8, 44.8, 68.8, 76.8, 109.6, and 113.6 feet).
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RESULTS

The results obtained are plotted in Fig. K1. They are coasidered preliminary. The
results are limited in that they apply only to point-by-point resolution methods without
smoothing. It should be noted that the percent of correct solutions obtained in Fig. K1 is
ounly indicative of the probability of a correct resolution from a single set of data points
having the level of rms error indicated. M many resolutions are to be combined into a
single result, it is to be expected that the probability of a correct final result will be in-
creased above that indicated in the figure.
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Fig. Kl - Comparison of point-by-point
methods of ambiguity resolution

The error distributions occurring with each resolution method for the 36 sets of
phasemeter readings are shown in Figs. K2, K3, and K4. In each figure, three separate
histograms are plotted side by side, corresponding to the three levels of noise simulated.
In all cases, no errors were made when there was no noise. It is interesting to note that
certain values of error seem to be preferred by all three methods. A similar effect can
sometimes be seen in plots of point-by-point resolutions produced by the NORC using the
pattern method on actual Spasur data. It is also interesting to note that the pattern method
shows no superiority over the walkup method except at high noise levels.

FUTURE PLANS

The present computer simulation programs have the following major program limi-
tations: (a) they do not permit smocthing of the data, either before or after ambiguity
resolution, (b) they do not provide simulation of a changing phase angle or of a phase rate,
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(c) they do not simulate noise having as narrow a bandwidth as that usually experienced -
in the present Spasur system, (d) they do not simulate systematic as well as random er-
rors between individual phasemeter readings, (e) they have very limited flexibility in
choice of baselines, etc., and (f) they are not suificiently fast.

A set of NAREC programs i8 nearing completion which remove these limitations.
They will be used to invastigate the effects of noise level, bandwidth and choice of base-
lines on the determination of phase angle and phase rate. The ultimate purposes of this
work are to evaluate present ambiguity resolution methods and to provide algorithms for
future developments.
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