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ABSTRACT

An analysis was made which provides a theoretical explanation of a
unique radiation torque experiment performed by Allen, in which circularly
polarized (cp) microwave power was used to impart continuous rotary mo-
tion to an object supported within a circular waveguide. Under the action of
the cp wave, an oscillating current was set up in a rod dipole resulting in an
oscillating dipole moment. Part of the energy scattered by the rotating dipole
is frequency shifted. Torques arise from the interactions between the E-field
of the wave and the induced dipole moment, and between the oscillating cur-
rent in the dipole and the longitudinal H-field in the waveguide. The magni-
tudes of these torques were derived for two cases of interest; the open wave-
guide and the shorted waveguide. The magnitudes of the spectral components
of the radiation scattered by the dipole were also derived along with their
characteristic polarizations. A cursory analysis shows that photons are con-
served in such an experiment.
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A MATHEMATICAL MODEL OF A ROTATIONAL
FREQUENCY TRANSLATION DEVICE

INTRODUCTION

In a simple experiment to demonstrate the torque exerted by circularly polarized radiation [Il],
Allen suspended a thin conducting rod at its midpoint so that it was free to turn about the axis of a ver-
tically oriented circular waveguide. With less than a watt of circularly polarized (CP) power at 9000 Mc,
the torque was sufficient to cause continuous rotation of the rod about the waveguide axis. In each in-
stance, the rotating rod would assume a terminal velocity (limited by atmospheric drag) which was pro-
portional to the incident microwave power.

There are two versions of the experiment of particular interest: (a) one in which the circular wave-
guide is terminated in a matched load, and (b) one in which the waveguide is short-circuited one-quarter
wavelength beyond the rod. In the first case, both the transmitted and the reflected components of the
incident wave are found to contain two frequencies, one which is downshifted by twice the rotational fre-
quency of the rod, and the other which is unshifted. In the second case, all of the reflected power is down-
shifted in frequency by twice the rotational frequency of the rod. Once rotating, the rod acts as a passive
mechanism for frequency shifting the microwave radiation.

The present work is a theoretical explanation of the observed results, based on a simple model. This
model has successfully explained the origin of the frequency shift, the distribution of power among shifted
and unshifted spectral components, the characteristic polarizations for these components, and the dynam-
ical origin of torques on the rod, as well as other aspects of the observed results.

THE MATHEMATICAL MODEL

Under the action of the CP wave, an oscillating current is set up in the rod and hence an oscillating
dipole moment. The induced dipole moment and the oscillating current through interaction with the in-
cident CP wave cause a torque on the rod. Eventually an equilibrium is reached in which the torque due to
the incident wave is balanced by the drag torques of the air and pivot. When this occurs, the rod will rotate
at a constant rate. The oscillating current in the rod will radiate producing radiation at the incident fre-
quency and at a component which is downshifted by twice the rotation frequency. The rod is assumed to
have a very high conductivity, vanishing thickness, and length X/2, where X is the free-space wavelength of
the waveguide radiation. It is assumed to be free to rotate in a plane perpendicular to the waveguide axis
(Fig. 1), subject only to friction arising from the pivot on which the rod is supported and to air drag.

A pure circularly-polarized wave cannot be propagated in a waveguide, but a field configuration
which closely approximates a CP wave in a region close to the waveguide axis may be formed in a cylin-
drical waveguide by superimposing two TE11 modes with a 90* phase difference.

In cylindrical coordinates the electric field configuration can be written:

2Eo 2Eo
Er = - sin 0 J, (kr) cos (wot - 3z) + cos J, (kr) sin (co t -z) (1)

kr kr

Note: This analysis was completed in July 1965 while Mr. Sachs was a summer employee at NRL.
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AXIS OF DIPOLE E = 2Eo cos qJ'(kr) cos (coot - 'z)
ROTATION

ROD DPOLE - 2Eo sin pJ'l(kr) sin (coot-3z) (1 cont.)

Ez = 0

CIRCULAR and the magnetic field configuration can be written
WAVEGUIDE WALL

_ = - 2Eo/3
Br = -- J, (kr) cos 0 cos (coot - 3z)

_ AXIS OF DIPOLE

ROTATION 2Eog,
+ W J, (kr) sin 0 sin (coo t - Pz)

S, ROD DIPOLE coO

B ok sin 0 J, (kr) cos (coo t - Oz)
co kr

(2)

+ M2 g cos 0 J1 (kr) sin (coot - Oz)
coo kr

CP

MICROWAVE POWER IN 2Eok

Fig. 1. Rotating rod dipole in a circular oi
waveguide.

2Eok
+ 2 J, (kr) sin cos (coot - 3z)

coo

where

k = 1.84/a

a = waveguide radius

0 = oo/c N1 - (oe/oo) 2

coc = cutoff angular frequency = c(1.84/a)

coo = angular frequency of wave.

The field propagates in the +z direction (Fig. 2).
We can easily see how this configuration approximates a CP wave. Expressing the E-field in vector

form, we have

- 2E0E = r - J1 (kr) sin (coot - Oz + 0)kr

(3)
+ 2Eo J'(kr) cos (coot - O3z + 0)

CYLINDRICAL WAVEGUIDE

where r and are unit vectors in directions of in- Y r

creasing r and @. v
But (Fig. 3) _ z

r= icoso-+ jsino
(4) .

(p = -1 sin q -r-1 cos p. Fig. L. Cdoordinate axis in cylindrical wavegulde.
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Thus, on substitution of Eq. 4, Eq. 3 becomes

2Eo

E [i cos + I sinP] "r J1 (kr) sin (coot - 3z + )

(5)

+ [- 1 sin 0 + / cos 01 2EoJ' (kr) cos (coot - 3z + 5)

If for r << a and kr = (1.84/a)r << 1, the approxima-
tions J1 (kr) ; kr/2 and Y,(kr) 1/2 are used. Then
the E-field becomes

E= iEo sin (coot-z) +jEo cos (coot -3z)

(6)

which represents a CP wave in cartesian coordinates.
Let us now choose our coordinate system such

that the origin coincides with the pivot point of the
metal rod (Fig. 4). Let the waveguide modes propa-
gate in the direction of increasing z. Let the rod rotate
at a constant angular rate co.

Let s be the distance along the rod from the center.

y

-X\4'

Fig. 3. Cylindrical coordinates and unit vector.

For s > 0,

t
'Prod + co 7

and for s <0,

'Prod =2 cot

'rod = --- cot.

Then the E-field along the rod becomes for s > 0,

Er(s, Orod) = -jJ,(kIsl) sin -co cos coo t

+ J,(kIsI) cos (-co sin coot

(7a)

=2E° j(kIs1) sin (coot -cot +)

2Eo
- kI J, (kIs I) cos (coot - cot)

Fig. 4. Position of the rod dipole in the coordinate
system. and for s < 0,

X
4

x.
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Er(S, 'Prod) =
2Eo
k- J1 (kIs I) cos (coOt - Ot).

Experimentally

X = 0.82 cm
4

and a = 1.19 cm,

therefore
kX0o 1.84- (0.82) = 1.27
4 1.19

Thus, the field is not constant over the rod length. The length is

r1e X-
co0  2

Experimentally we know that

coi l 0 cps and 27r 1010 cps.

Hence the rod acts as a half-wave dipole. The current in the rod [2] will be

I = I0 cos (coo s cos (cot- cot).

The charge density in the rod can be determined from the equation of continuity

div j + - = 0. 4
at

Let the rod have a cross-sectional area A. The charge density can be assumed to be uniformly distrib-
uted over the cross-sectional area, i.e., p = p(s, t) and j = I(s, t)/A. The continuity equation becomes

d[ cos c c cos (coot- cot = -a [p(s, t)]. (1
ds[ACos /) at

Then, we obtain

Jo (co-c'
p(s, t) - c sin s sin (coot - cot). (1

We are now in a position to discuss the torques acting on the rod.

TORQUE ON DIPOLE

The force acting on an infinitesimal amount of charge at s is

0)

1)

dF = p(s, t) E(s, t)dV and dV= A ds.

(7b)

(12)
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The moment of this force is

dr = r X dF.

Substituting Eq. 12 for dF, then

dr = (Isl i) X p(s, t) E(s, t)dV

Since the E-field along the rod in vector form is for s > 0,

E s )= r^ E-oJ,(kIs 1) sin (ot -cot + -7) + 2oJ s1 cos (cot- ot+ -)'

and for s < 0,

(15b)E(s, t) =r- 2ETJ (k s) sin ot - t -- + 9 2Eo Jl(k s ) cos o t - t- .

Also, since r X - = 0 and r X = K, dr becomes for s > 0,

dr= io I n(o °  o)sJ'(klsl) [-sin2 (coot- cot)] 2Eods

and for s < 0,

dr=K sI-~ sin (coo co)sJ ' (k sLI) [sin2 (coot- cot)] 2Eo ds.

Integrating over the length of the rod, dr becomes

= - 2Eolo
r(-K)

C

+ (K) 2Eolo
C

= (- ) 4E°I°

C

Xo/4

f o4

0

sIsin (coo s Jl(kIs1) sin2 (coot - cot)
( c

ds Isl sin (co - s J'(kIsl) sin2 (coot - cot)
( c

ds Isl sin (o co) s J'(kIsl) sin 2 (coot- cot).

We next approximate J1 (kisI) by

I ks)
Jl (k Isl) = (klsI) k s k(2 s+

22 12

so that

d [J1(klsI)] 1 3 (k(kss)2 I 5+J (klsI) - (ksI) [ 2 16 8 4 +

(13)

(14)

(I5a)

(16a)

(16b)

(17)

(18)
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Carrying out the integration and averaging over time, we find

c9 k2[ 2] 25 k 4 K')4 -12(2)+ 24]+...}.

(19)

Physically, this torque is due to the tendency of the induced dipole moment of the rod to line up with the
impressed E-field. Since the E-field is rotating, the rod rotates in the same direction. It is, so to speak,
dragged along by the rotating E-field.

Similarly, there is a second torque mechanism which arises from the interaction of the induced cur-
rent in the rod with the longitudinal B-field in the waveguide. The force acting on the induced current at
s is

(20)

The moment of this force is

(13)dr = Isl r X dF.

For s > 0

dr =Ads 1- Is Icos sCos (oot - cot)
A C

dr=Ads- Is cos s cos (co t- cot)
A c

[r X ( + r X B(s,t))]

Now for s > 0

and for s < 0

Also, for s > 0

dr = ds I0 Isl cos

r X [+r X B(s,t)I} = -BO,(s,t)-kBz(s,t)

r-X [-rX B(s,t)I} = +'PB4,(s, t)+ KBz(s, t)

c os co (t - cot) 2E J, (kIsl) sin

k C~ k J L'PcookIsI

(22a)

(22b)

co t - cot +2)

(23a)

- FOk J, (klsI) sin t-W +1

and for s < 0

C 
Y

and for s < 0

(21a)

[r X (- X B(s, t))]. (21b)

dF = j (s, t) X B (s, t) dV
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d- Iscosc scos(coot-cot) cook-- J 1(ksI) sin coot-cot- 2

e(kIsI) sin ot-cot-2)]
COO (

(23b)

If we note that ¢ for s > 0 is in the opposite direction to for s < 0 we see that there is no net torque in
the ' direction. Finally by integrating over the rod, we obtain

2IoEok - Xo/ 4  /coo-co\21= k(-K) ds Isi cos sJ1 (kIsI) cos2 (coot-cot)coO 0  C /

2I0 E0 k - 0/co-o
+ (-K) ds Isl cos s J(kIsI) cos2 (coot-cot)

= 4 0 Eok f ds Isl COS SJl(klsl) cos2 (coot- cot).
co o C

Approximating J1 (k Isi) by

J1 (kIs() =kIsf- I (kIsI) 3 + (s +...
2 1384

and integrating over the rod and averaging over time, we get

(24)

(16)

2EoIok{ k T)

(co-c~ - 2]
_ k3 4 4 k_3

16 (coo c co)s(2 16 (coo c co)5
[3 (i)2 -6]

(25)

384( LAw0 co)y )6  .}

Since co << coo, co0 ; coo - co and the total torque is

FtE(-K) Co + 24

(26)

(-K) Eoo 1
- c(co° -co) 2c [6]

Experimentally, k1 [(coo - co)/c] = coc/(coo - co) (4.65 X 10' 0 /2rr X 1010) ; 0.8, so that the 5 is small.

We note that as the radius of the waveguide increases, 5 -* 0 since cc -+ 0.

wll/o k L~ r xo c (C 21 (C C) 2 ( 12
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RADIATION

We have seen that there is an induced oscillating current and dipole moment established in the dipole
under the influence of the impressed electromagnetic field. We expect that this oscillating dipole moment
will radiate energy in both directions down the waveguide. To calculate this radiated field, let us now con-
sider a somewhat ad hoc algorithm which is justified mainly by the fact that the end results agree with the
experiments.

First we calculate the magnitude of the induced dipole moment 1pi in the rod by integrating over the
length of the rod:

+xo/4
pl= JXo/4 sp(s, t)A ds

Using Eq. 10,

C sin (fot- ct) s sin oo -C dsc -xo/4

(27)

_.o sin (co t -cot) [sin co co(o- Co s 1coo- co\1+XO/4.
c coo - 2co i c ) C c _o/

Since co << coo and since (coo - co)/c(+Xo/4) = +7r/2 and (coo - co)/c(-Xo/4) = -7r/2, Eq. 27 reduces to

_I = 210 sin (coot - cot) (28)

C 
2

C

We define a unit vector h directed along the dipole direction as

n = i sin cot + I cos cot. (29)

The dipole moment is then

p=ih IpI (30)

And by substituting Eqs. 27 and 28, the dipole moment becomes

p = (i sin cot + j cos cot) C (coot-cot) (31)

We now assert, without rigorous justification, that on the waveguide axis the E-field radiated by the dipole
is given for z > 0

Erad(Zt)a[p'(t- )X(+k)] X (+k) (32a)
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and for z < 0

Eradl(Z, t) =a Ip P t- 1-\ x (-k) x (--0 (32b)

where

and v is the phase velocity in the waveguide. Since ( X K) X k = -jand (i X K) X K = -i, when z = 0

p'(t) = -D J(i sin cot + j cos cot) 21 11-
Dt L(oo-o)2 sin (oot-ot)j1

[ 2cIo 2cI0 co 1
= I (COo - co) sin cot cos (coot- cot) + (oo -o) 2 sin (coot- cot) cos cot] (33)

+ [ 2cIo cos cot cos (coot - cot)- 2cI-o)2 sin (coot - cot) sin wt
L(COO - co) (co -co)2 o]

We neglect each term containing sin (coot - cot) since co << coo. Thus,

pt)]2Clo sin cotcos (coot-cot) + 2Clo

p'(t) s icos cot cos (coot- cot). (34)
co0 -Co o - o

Using the substitutions

cos (coot- cot) cos cot = -1 [cos coo t + cos (coot - 2cot)] (35a)

1
sin cot cos (coot - cot) = 1 [sin co t - sin (coot - 2cot)] , (35b)

p'(t) becomes

'(0 cos oo+t+ isincoot)+ [I cos (coot- 2cot)-- isin (coot-- 2cot)] .
(oo - o) (coo -co)

(36)

Substituting the value for p'(t) into Eq. 32 to find the E-field radiated, we find for z = 0

Cl 0 a CIo a
Erad(Z, t)= co - [isin coot +jcos coot] c [--t sin (coot- 2ct) +j cos (woot- 2wt)]

(o - W) (coo - co)

(37)

and for z = 0
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Erad(Z, t) = - ooj--aco[sin

Cfo_____a F_ s
cl0 a .

coo (t - ) +cos . (t- V)]
in [(coo - 2w) (t --- + Cos [(coo- 2co)(t- IZi)]}

The total E-field for z > 0 is the sum of the incident plus radiated E-fields,

Etot = Einc + Erad.

Then, by substituting Eq. 38

Etot = (E oo- C0 O) [I sin coo

coao { sin (co - 2c) t- ) +fCos (coo - 2c)t

and for z < 0,

c 0a s
Erad(Z, t) = co i sin

co - co I
co (t +L) + Cos W.o0

(t +z)]

Cfoao i--si [si2co) t+z) +jcos (w0-2co) t+z

We have two unknown quantities in the equations, a and Io. To determine these, we can apply the con-
servation of energy and angular momentum. Losses in the waveguide walls will be neglected.

Let us consider a cylindrical volume V defined by the waveguide walls and two cross-sectional areas,
A1 and A2 , A 1 in front of the dipole and A 2 behind the dipole (Fig. 5). No energy or angular momentum
flows through the cylindrical walls. Let the incident field carry power K(Eo)2 across A1 into V. Flowing
out of V across A, is the radiated power from the dipole, 2K [clo a/(coo - co)] 2. At A2 the power trans-
ported out of V is

CIRCULAR K (E 0  CIoa _
WAVEGUIDE \ - (

INCIDENT DIPOLE
POWER

Al A2

Fig. 5. Lengthwise cross section of the circular
waveguide.

+K( CI a 2

(o - co
(40)

In V, the mechanical power developed is

I E0 f0[1-]
t (C o 2 (41)

The conservation of energy states that the power flowing
into V is equal to the power flowing out plus the me-
chanical power developed in V, i.e.,

K(E \0)2 = -3K (
\co - co

cIoa 2 Eolo [I - 51
+ cK Eo C (cooc) (42)

CJO -CO)¢

(38)

( zV )

(39a)

(39b)

t --Z) + ]co CO o

(42)
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Solving for Io, we find

Io 4Kca 2 [o(1 - 8) - 2Ka(coo - o)]. (43)

Let us now consider the conservation of angular momentum. A pure circularly polarized wave of fre-
quency co carries across a unit area per second an amount of angular momentum ILI = ISI/cjo where S is the
Poynting vector. This angular momentum is a vector which is directed either parallel or antiparallel to the
direction of propagation, depending on the sense of polarization. If the wave propagates toward the ob-
server, and the E vector rotates in the clockwise direction, the angular momentum vector is directed anti-
parallel to the propagation direction. For counterclockwise rotation, the angular momentum vector is
parallel to the propagation direction.

In a waveguide the situation is the same in all respects except that

ILl = IS

where ' is a numerical factor which depends on the modes involved. For our problem [3] y = 0.994. We
will let ^f = 1 in the following.

Consider now the waveguide situation. At A1 , the angular momentum flow into V is

Win K (44)Wo

Flowing out of V at A I is

WA-- =-RK Cf oa l )2( (45)
\'A1  cooo J coY ~coo -c o o- 2o) (5

Flowing out of V at A2 is

(L)A2 =_K E- C._.1oa '1+ ( Cl_ )( 1 
Wo - W/COo k-o /- oW o-2co" (46)

As derived earlier, the torque on the dipole is

Ft=_k Eo/o(1 -8)
S-K (cO co)2. (26)

Conservation of angular momentum says that

Win - (L)A1 - (L)A2 = r. (47)

and substituting Eqs. 26, 44, 45, and 46, we have

_[K(Eo) 2 o- C 2 1 - ( coa 2 1(-) +K K )---( 2K ---
co co -co/ co \coo - w (o - 2co)

(~ a cIo Eo
+ ~) (F -co__iaco)

2  1=(_1 ) CIE (1--).
+ (/k) K Eo _k)- (Coo - ) 2
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Solving for a we find

a 2- (48)

Then from eq. 42 we have

Io = E -K (coo - 2co).
C(1 8)

Finally, substituting for a and Io our results are for z > 0 and kr << 1

Etot = (1o )[[sin coo (t--)+I cos coo (t-)]

(49a)

Eo2 (\o-){isin [(coo--2o) (t-z)] +cs [(oo- 2co)

and for z < 0, kr<< 1

Erad =- ° ( 2-t) [ 1sin coo (t+ +1 cos oo t +

(49b)
Eo (o°-2cj 1-isin [(co-2co)(t+)] +7cos [(oo- 2co) (t +)]}.

Physically, the transmitted radiation, i.e., for z > 0, consists of two components of equal amplitude (recall
co << coo), one at frequency co which is circularly polarized in the same sense as that of the incident wave,
and one at a frequency coo - 2co which is circularly polarized in the opposite sense to that of the incident
wave. The reflected radiation, i.e., for z < 0, also consists of two components of equal amplitude. The
component at co is polarized in the opposite sense to that of the incident wave, and the component at
co - 2co is polarized in the same sense as the incident wave.

Finally, the time averaged torque on the dipole is

t K(coo - 2co)(Eo)2  ( K(Eo) (power)in (50)

(coo - co)2  COO COO

If the dipole is turned (for example by a motor) in the sense opposite to that of the incident wave, co is re-
placed by -co in the above equations. In this case, one gets frequency-shifted radiation at coo + 2co.

If we set co equal to zero, which corresponds physically to fixing the dipole along the y-axis, we see
that in Eq. 48a and 48b for z > 0

Etot = IEO sin coo (t , (51a)

and for z < 0

Erad Eo cos coo (t+). (51b)

That is, only the radiation perpendicular to the dipole is transmitted, while the radiation parallel to the di-
pole is completely reflected.
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THE REFLECTION CASE

Let us now consider the same problem as before, except that the waveguide is terminated by a per-
fectly conducting plate at a distance Xg/4 behind the dipole, where Xg is the waveguide wavelength. In this
case the field acting on the dipole will be the incident field plus a component which has been reflected by
the termination. Hence we might expect the current to be different; although it turns out that this is not
the case.

We may analyze the situation in the following way. Suppose the waveguide is not shorted. By Eq.
38a the transmitted wave for z > 0 and kr << 1 is

E o _ ---ao) sin Icoo - ) (t] cos coo (t-- ) ]
co-W co 1 (V1+t l

where Io and a are now to be considered as unknown. Suppose that the waveguide is shorted, then the
transmitted wave will undergo a 1800 phase change at the short and propagate back toward the dipole.
When this reflected wave reaches the dipole, the total field acting on the dipole for kr << 1 will be

E(z =0, t) =Einc(z =0, t) -- Etot (Z = 0, t- -v (52)

or

E(z 0, t) =Eo (i sin coot + cos coot)

- (Eo cIa I sin oo(t- 2)+ Ccos oo t-2Xv)]

Co a,[+ sin [coo - 2co) (t +1 +Cos [(coo -2) Xco -W co 1t 2v1

We know -coXgI2v =-ir and (coo -
2 co)[-(XgI 2 v)] = -7r + 27Tco/co ;t -77. Hence,

E(z =0, t)= 2Eo - co a (i sincoot +jcoscoot)

(53)
O C - -a i sin (coo - 2co)t + 7 cos (coo - 2co)t].
coo - co

For kr << 1, the E field along the dipole is

E(z = 0, t)'h =E(z = 0, t)'(i sin cot + / cos cot)

(2E __o___.)(sin coot sin ot + cos o t cos cot)

(54)
[- sin cot sin (coo - 2co)t + cos cot cos (coo - 2co)t]

coo - co

Cfo a r=2(Eo c/O - c) [ cos (coot - cot)].
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Hence again the current in the dipole is of the form

io( 0-c
cos (coot - cot).

Note that although a CP wave at coo - 2co is acting on the dipole, the current in the dipole oscillates at
coo - co.

Torque on Dipole (Reflection Case)

We now consider the torques acting on the dipole in the reflection case. The E field in cylindrical co-
ordinates for kr << 1 is

E(z = 0, t) = 2Eo -[ r sin (coot + )+ cos (coot +)]

(55)
co a {- sin [(coo - 2co)t - 0] + ¢ cos [(o - 2co)t-

coo - co[

At the dipole, i.e., when 0 = 7r/2 - cot for kr << 1, for s > 0

E(z = 0, t) = Eo [r cos (coot- cot)] - 2Eo ¢ sin (coot- cot) (56a)

and for s < 0

E(z = 0, t) = - (2Eo
Cf- O)_ i cos (coot- cot) + 2Eo sin (coot- cot).

co0 - co / (56b)

Referring back to our derivation of the torque due to the induced dipole moment, Eq. 19, we can see that

2_Eo I2o

C (coo C co)
9 (cok 7) T [()2 -2]

+ 25 ( k

(57)

This is the torque due to the induced dipole moment in the reflection case.
Similarly, the torque due to the interaction between the induced current and the longitudinal B

field is

2EoIo
coo-co

WO \ [(2Y - 1]

f(( C/

<coI o)
- 12 (-E) 2 + 24]

The total torque will be

2Eolo l

F(-)C (Wo W) \2~
k~o 'c ) [(72 2]-8 :o e-co +8(-24) (o'CO)

(58)

[(-)y

-12(-)
2

+ 24] +.

(59)
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We now consider the radiation field which propagates in the -z direction. For z < 0, this field will
consist of the field radiated by the dipole plus the field reflected by the short. For z < 0 and kr << 1,

= (Eo CI°o a no (t ) +-z\]
Erefl W0  - )[O s co t COS +J o o -)

(60)
CIO a 2) tz
Woa -- i sin (coo - 2co) (t + )+ cos (coo -- 2o)

The radiated field is

cIoa z
Er Wo'°a -W 1sinwoo to-

(61)
Cf0 a 7

o0 coI°L { i sin (coo - 2co) (t +)] + cos [(coo - 2c) (t+-)]}.

The total field is

Etot = Erefl + Erad

(Eo 1 sin coo (t+) +I cos coo (t +A)] (62)
coo -C

2cIoa [
co - CO [ Lsin ( -2 co)t +!) +1cos (co -2co) (t+ )J

We can now determine Io and a by applying conservation of energy and angular momentum. Consider a
volume defined by a cross section A of the waveguide at some point z < 0, the waveguide walls, and the
terminating wall. No energy or angular momentum passes through the waveguide walls or the short. Energy
and angular momentum is transported only through the cross section A.

Conservation of energy implies

(power)in - (power)out = I co (63a)

(power)in = K(Eo)2  (63b)

(power)out = K  o + 4K cloa 2 (63c)
\ o -Wo co - Co)

Substituting the value for IftI from Eq. 26 we find

2coCE (o
I:t IC- (coo-co) (64)

Conservation of angular momentum implies

(L)in - (L)out = r

and since
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Wi n = (-K) K
coo

and

-K (E 2Cfoa )2 - (2Cfoa \
oL0  .=.(-K) - F0  +kK (65)CoO co -co/ Wo - co/ o - 2co

and
2cloEo (1- ).

t t (-3(coo - co)2

Solving the conservation equations for a and Io we find

(1-8)
a = (- ) (66)

2K

and

= KEo (coo - 2co) (67)
(1 -8)

Our results for z < 0 and for kr << 1 are then

Etot= co' o I [sin co (t+.) +Jcosw coo

(cio - 2co)
- (coo -co) isin (coo - 2co) + + cos (coo - 2co) (t + . (68)

Since co/(coo - co) 10', practically all the radiation is frequency shifted. The frequency shifted com-
ponent is polarized in the same sense as the incident field. The torque is

- (Eo)2 (coo - 2co) , (-- (power)in (69)

=(-K) 2K ( Coo - (O2;-K)2 (9(coo - co)2  coo

We note that this torque is twice the torque for the open-ended waveguide case.

PHOTONS DISCUSSION

Using these results, it will now be shown that the number of photons going into the waveguide is the
same as the number coming out (within the validity of the approximations which have been made). The
number of photons entering the waveguide is

nin = (power)in _ K(E°)2  (70)

vhcooA vhcooA

where v is the velocity of the photons in the waveguide, h is the Planck's constant, and A is the cross-
sectional area of waveguide. The number of photons of frequency coo leaving the waveguide is
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K(Eo) 2  c o2
too vhw~oA (wo - co) 2  (71

At coo - 2w,

nout _ K(Eo)2  (c00 - 2co) 2  (72)
woo- 2w (oo - 2o)vhA (oo - o) 2

and since

n°=nU t+n°Ut K (Fo)2 [( (coo - 2o)2  + co2  K() 2 1 (73)
-o oo" 2w vhA [(oo - 2co)(coo - co) 2  coo(coo - co) 2  = vhA c'-7o 3

we find

nOut = nin. (74)

SUMMARY

We have considered a mathematical model which describes the effects of a circularly-polarized wave
incident upon a freely rotating half-wave dipole in a waveguide. We have found that the dipole will be sub-
jected to a torque which arises from two distinct effects. One part of the torque is due to the interaction of
the induced electric dipole moment with the transverse electric field; and the remainder arises from the
interaction between the induced current and the longitudinal magnetic field in the waveguide. This torque
turns the dipole in the direction of rotation of the incident electric vector. If the waveguide is terminated
in a matched load, the torque is

i = (power)in
co0

where coo is the frequency of the incident wave. If the waveguide is terminated with a perfectly conducting
metal plate, the torque is just twice that of the open-ended case.*

In the open-ended waveguide case, one half of the transmitted power is downshifted in frequency by
twice the rotation rate and is polarized in the opposite sense to that of the incident CP wave. The remainder
is unshifted and is polarized in the same sense as the incident wave. One half of the reflected power is down-
shifted in frequency by twice the rotation rate and is circularly polarized in the same sense as the incident
wave. The other half of the reflected power is unshifted and polarized in the opposite sense to that of the
input power.

If the waveguide is terminated with a conducting plate, all but a very small amount of the reflected
power is downshifted in frequency by twice the rotation rate. The unshifted power is probably experi-
mentally undetectable, since it is down by a factor of 10-18 as compared to the shifted component, for
dipole rotation rates on the order of 10 cps.

We have shown also that the number of photons entering the waveguide is the same as the number
leaving.

Finally, we have shown that energy and angular momentum are conserved in all cases considered.

*The descrepency between this conclusion and experimental results [ 1, in which a ratio of 2.8:1 was obtained, has not
yet been satisfactorily explained.
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