NRL Report 6557

Discrete Finite Fourier Transforms:
a Tutorial Approach
. AL Swick

Electronies Broanch
Sound Division

June 29, 1967

NAVAL RESEARCH LABORATORY
Washington, D.C.

DISTRIBU TTON OF LHIS DOCUNMENT IS UNEINMULT D



CONTENTS

Abstract
Problem Status
Authorization
INTRODUCTION

THE DISCRETE FINITE DIFFERENCE AND
SUMMATION CALCULUS

ORTHOGONALITY OF THE ATH ROOTS OF UNITY

THE DISCRETE FINITE FOURIER TRANSFORM

DIGITAL ANALYSIS OF CONTINUOUS SIGNALS
APPENDIX A - Fourier Transform of the Sinc Function
APPENDIX B - Efficient Use of "Fast Fourier Transforms"

REFERENCES

ii
ii
ii

10

13



ABSTRACT
A discrete, {inite time series of A points
f e a0, A

often arises, for example, in the sampling of continuous data. This
time series can be expressed as the finite series '

where the coeificients * , to be interpreted as frequency values, are
given by

N
. LN Srikn A .
s 2 S L L I T

Experimental errors inherent in ;7 will, of course, be reflected in
#,. Given the originai time series 7 , however, it is exactly (i.e., with-
out approximation) represented by F, at tue \ points of interest,

These formulas are derived from basic principles, and their rela-
tionship to digital analysis of data sampled from continuous signals is
discusced. In particular, the efficient use of the recently popular al-
gorithms for rapid machine computation of Fourier {ransforms is ex-
plained. Aithough the results obtained are for the most part well known
in the literature, it is felt that the importance of these transforms war-
rants a complete and notationally consistent exposition.
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DISCRETE FINITE FOGURIER TRANSFORMS:
A TUTORIAL APPROACH

INTRODUCTION

Fourier transforms play an important role in the analysis of experimental data as,
for example, in the computation of power spectra (1). If the computation is done digitally
it is naturai to consider the summation ipvolved as an approximation to the integra) of a
continuous Fourier transform. This is not the case. The da:a are inevitubly of finite
extent. I they are given as discrete finite time series, as are those obtained by sam-
pling continous data, no further approximations need be made in the com.putation of a
discrete finite Fourier transform. The relationship of this transform, considered as a
discrete finite frequency series, to the frequency spectrum of the original continuous

data is to be examined.

The derivation given here of the discrete transform pair follows tha: of Hamming (2).
It may be considered as a guided tour or inlerpretation of the pertinent portions of
Hamming's work, with complex exponentials replacing the sinuscidal functions used
there. The transformation is based on the orthogonality of the A distinct Ath roots of
unity over the set of N points. This orthogonality can be established in many ways. The
discrete finite difference and summation calculus is used here in the belief that it pro-
vides a useful insight irtc the meaning of the equations. We shall need only the rudiments
of this calculus; they are given here for convenience and completeness.

THE DISCRETE FINITE DIFFERENCE AND
SUMMATION CALCULUS

The discrete finite difference calculus is analogous to the differential calculus but
lacks :h~ subtlety of the latter, since it does not require the concept of limits which
plagues the student of elementary calculus. Indeed, tie difference operator, to be defined
below, is identical to the first steps in the applicatioa of the usual definition of the

derivative.

In general the difference operator .. and the basic operation of differencing apnlied
to a function f(r) is defined as

AUEY E flz s b)Y - f(2),
where the symbol * means "is equal by definition to'" and 4 is the increment of the inde-
pendent variable 2. We will be concerned with discrete series and with an index (the in-
dependent variable) changing in increments of unity, and we will therefore let 4 - 1. Thus

AfCr) = flr+ 1) - fl2). (1)

If we let f(r) : expi>r), where y is any constant, and apply the difference operator,
we get

or, iiey# 1
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e’ -1

yr -

This result will be ured presently.

The summation calculus, similarly, is analogous to integral calculus but lacks the

subtlety. As with the difference calculus we need only the basic results. -

Let r be a discrete variable assuming integral values only. Using Eq. (1) we have

b= b1

Z[\.f(:) Z (fte v 1) -flr)]

r=a T=a

]

[Cavl) =fla) +fla +2) - flu+ 1) +... +f(b)~-flb-1)

"

f(8) - rla).
Thus, by analogy to the fundamental theorem of calculus in the form

L

f "’d‘:’ dr = (b)) - fla),

we have what may be termed the '"fundamental theorem of discrete calculus'

h-i
D0 D) = f(B) - fia).

L=a

If Eq. (2) is summed over A discrete values of the parameter, we have

N- N- ‘ N-

. et 1 y
z e’ = E " = '-*7— E Ao .
r=o 0 ¢ 1 e’-1 =%

We now apply the "fundamental theorem," Eq. (3) with « =9 and 5 = v to get

N

v 1 R S
Z e s — (e”V-e7Y) = =
rev e’/ -1 e’ -1

This is, of course, simply the sum of a geometric progression of A terms,

\ 2 AY
NEE QY A S A N 4 = ,

with » = ¢”. This sum could have been used as a starting point. To have done so, how-

(2)

3)

(4)

ever, would have partially obscured the relationship between the discrete transforms to

be developed and continuous Fourier transforms.

ORTHOGONALITY OF THE ¥TH ROOTS OF UNITY

With Eq. (4) and the fact that

eapl2a=i) oo 2nc - sin a0 = |
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for any integer », we wish to establish the orthogonality of the & distinct Ath roots of
unity of the form exp(2-4;.8). T

In the sequel the indices #, n, m, etc. will be restricted to the » integral values 0, 1,
2,...,N-1., However, to enabie us to write the equaticas in complete generality (to in-
clude # > A) we need the concept of congruence modulo N (3). We say that £ *m (mou V)
(to be read # is congruent to », modulo A) if and only if # - m = jN for some integer j = :1,
+2, ... . This is an extension of the equality concept, since if j - 0 we have k==, It is
useful because if # = m (mod N), expl2~i(& - m/A) = exp(2j7i) = 1 forj =0,1,2,... . Thus
if either ¥ = m» or, more generally, if ¥ *m (mod A) we can write

expl2mi(k - m)e/N) = expl2mije) = 17 = 1
for all integral values of z, and
N1 N

Z e2mithk-mzsN z 1T =N, k=m or k=m(mad N). (53)

r=0 =0

H%imand £ ¥m (mod N) we let ¥ = 27i(k-m)/N + 0 in Eq. (4) to get

N-1 N-1 . ez'ri(k-ml -1

Z e?% = Z e2Tilk-rmiz/V - o, (5b)
e2ritk-m /N _

r=¢ z=0

since £ - m is an integer while (£ - ») ‘N is not.

Equations (5a) and (5b) can be combined to give the desired orthogonality of the ¥
distinct Ath roots of unity over the set of ¥ points in the succinct notation

N-1

Z ezﬂikz/.\' c(zn:‘m:,ﬁ') - Nskm (mod M, (50)
r=)
where
I, ‘f k-m = jN, for some j =0, 1, 22, ...
8y m (mod N) =

0, if k-m¢t jN, for any j =0, tl, £2, ...,

and the asterisk denotes the complex conjugate.

THE DISCRETE FINITE FOURIER TRANSFORM

Equation (5¢) enables us to represent any f{inite discrete function (e.g., time series)
of N points in terms of the orthogonal Nth roots of unity as & basis. Thus, given an arbi-
trary discrete finite time series of v points

foe n=0,1,2,..., N-1,

let us assume that f, can be expressed as the finite series

Towp(:r'ki,»'N) is an Ath root of unity for 4 =0,1,2,..., N-1, since [exp(27ki /A) R exp(2nki)
= 1, Of course, & can take on additional integral values, but these will not yieid distinct
roots.
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ALS
[ - » l"k "lvyikn .\" as0,1,2,..., N-1. (6)
k=v

For this to be the desired representation we must determine the A coefficients #, such
that this series is exactly equal to the original function at the A given points. (The value
of Eq. (6) for » not equal to one of the v points is, as yet, undefined.)

Muitiplying both sides of Eq. (6) by e\vp(-2+imn N) with 0 < m < A -1 and summing
over n, we get, with the aid of Eq. (5¢),

A -1

/"e-zvtmn Ay z: "k Z‘ 2vithk-min. N

n=y n=o

-

-

Fk ‘\A:.km =\ ["m '

ks

where the fact that these sums are finite permits us to interchange the order of
summation.

We have, therefore,

Ve
. _!\_ Z [".o—z-ulm Yor=o0,0.2...0.00 N- L. (7)

n o

It remains to be shown that the assumed series, Eq. (6), with coefficients given by

Eq. (7) does in fact exactly represent the original function [, for a 0o V-
We can, of course, rewrite Eq. (7) as
-1 e
R I S P A S 1 P SRR e (8)
170

1 Ny N ki v P
— g ~2nikf o 2aihkn N
/n B T L /) ¢ ¢
k=0 j=u
| N-d N-i
-y ooy -f ) A "
-4 i v ot fin=jii N
Il ]

a
1

[

t

J

Making use of Eq. (5¢) this becomes

A
-1\7 Z /i AY .hj' (mad \N) = /".
I i

which was to be verified.

Equations (6) and (7) together constitute the discrete finite Fourier transform pair
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and (9)

A

IO | ] avikn N . »
R DI I R AL
no

0

Motice that this derivation is exact in the sensc that these sums are not approxima-
tions to integrals. Given the original time series /, it is exactly represented by the
transform #, at the A points of interest. Naturally, if there are experimental errors in
the time series f,, as will arise from sampling errors (4), these will not be eliminated

but will be reflected in the F,.

DIGITAL ANALYSIS OF CONTINUOUS SIGNALS

J.et us assume that the discrete {inite time series 7, has been obtained by sampling
a continuous time function f(¢). We assume further that y(;) is band-limited. In other
words, if #(.) is the Fourier transform of s(¢):

T

Fla) = J ey e,

there exists W >0 such that
F(o) = 0 for i“i > (= .2'*"’;

or, in words, the spectrum of /() vanishes outside the frequency band - ¥ « f <, where

wo= 2nf,

If the sampling rate - greater than 2% samples per second (with ¥ given in hertz)
the continuous function s..) is completely determined for all 1 by the sequence {f(»n 20)}.
In fact, Shannon's sampling theorem (4-7):

_ i n ) sin 20 -(n M)
reer = ’(-’z’ic’) Wi -(n 2T (10)

-T

yields f(¢) explicitly in terras of the /(n 2W).

As Eq. (10) indicates, an infinite number cf samples are required for an exact rep-
resentation of 7(¢r). U f(s) is smail outside an interval of 7 seconds, however, and is
sampled at a rate of 2 samples per second for these 7 seconds, there are \ : 247 sam-
ples in the range in which the function has appreciable value.

The function 7(/) cannot be both time-limited and band-limited, but it is possible to
keep the spectrum within the band ¥ and to have the time function sufficiently small out-
side the interval T so that f(/) can be satisfactorily approximated by the \ - 247 sam-
ples. We will assume that this is the case. The rapid attenuation of the sampling func-

tion (6)

cosan 200
sine 2W7 e 11
sing Py ( )
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imglies that the effect of any term in Eq. (10) will be of consequence only within a small
number of intervals in the neighborhood of the corresponding sample p-int (7).
Thus we have the discrete time series
fpo =f(n. 2. n=0,1,2,..., Nl 20T~ 1,
where, approximately,

2T

fte) - Z f,, sinc (2i¥e - n). (12)
n=0

That the coefficients 7, are in fact equal tc the sampled values may be seen from Eq.
(12) by first changing the dummy index and taen letting ¢+ = ». 21 as follows:

N- A
n \_ sin(m) (a-j) _ 0 . ) 13
’(2WI" Zu i waspy T Lu I %5 * fur (13)
)z j=

where S, is the Kronecker delta (unity when » = and zero when » ;).

We are interested, usually, not so much in s(¢) as in #(.), its Fourier transform, or
in its power spectrum, the Fourier transform of the autocorrelation function of f(¢} (1).
We seek the relationship, if any, between the "spectral content” of 7, as indicated by its
finite Fourier transform ¢, and the "spectral content' of /() as indicated by its (con-
tinuous) transform #(»). In other words we want f(-), but we can get #,. How are they

related?

Taking the (continuous) Fourier transform symbolized by 't/ -} of both sides of Eq.
(12), we get

N
FUO o= Ffa) ) = Z f, $isinc (20t -m)}. (14)
n=a
It is shown in Appendix A that
Fisinc(2We-n)} = (1-2W)e 0% 2V roey (o iz, {15a)
where (6)
NG T SRR 1y
rect (o AWy { (15b)
0. if at > W

Using this result in Eq. (14) we get

N
e )

or
Lo

- ERET IS NIRRT

Pl SWL["(. Cif o 20

no

0 .if oo 2l
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In terms of the frequency 7/ = - 2~ (not to be confused with the continuous function s(¢)
or the discrete time series 7, ) we have

N
Fipy = 2o T emzmiin 2V (f] < w. (186)

g

%70

Remembering that ¥ = 247, if we let 7 = #'T in Eq. (16) we have
AT R anikn, N
TARED WA ISR an
n=3a

where F, is given by Eq. (7).
Equationé (13) and (17) are subject to simple interpretations. From Eq. (13)
fn = [(n°20) = f(aT'N).

That is, if ¢ is an integral multiple of 7N (¢ = 2T &), thens(t) =1, r» Which means that
ft¢) is equal to the sample if ¢ is the time at which the sample was obtained - a not too

surprising result.
From Eq. (17) #, = (1:T) F(&:T), OF
F(8) = TFp,

if 7 is an integral multiple of 1:7 (f = #-7). That is, the continuous spectrum #(f) is
equal to T times the discrete finite Fourier transform of /, if / is a harmonic of a fun-
damental frequency /, defined as the reciprocal of the total sampling duration:

fo = VT = 2WN.

For example, if 1000 samples of a continuous time function having no frequency
component greater than 1000 Hz are collected at a rate of 2000 samples per second,
T =1.2 sec. A digitally computed finite Fourier transiorm will then represent the 'true"
Fourier transiorm at multiples of 2 Hz. Intermediate values could be computed using
Eq. (16). Resolution of 0.1 Hz without interpolation would require a data length of
T = 10 sec.

The fact that |f| < & = N-2T imposes a restriction on the discrete values r,, namely,
E/T < N2T, or & <N'2.
Only the first A/2 coefficients obtained f-om Zq. (7) are distinct; the remaining ones

can be obtained by symmetry. (Ii imposes no burden in practice to require that ¥ be
even, and we shall assume this henceforth.) If in Eq. (7) we replace x by A - &, we have

N-1
N 24Nk N
F.V-k - E Z ,n e

n=0

_’l\_ Z A e27ikn N _ .. (18)
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if 7/, is real. We have again made use of ¢\p(-2a-/) « 1. Notice that though 7  is real,

#, is, in general, complex; £, = Re {#,} + ilm (£, ).

In a conventionai application of Eq. (7) one need compute only those coefficients #,
that are desired. Equation (18) may be used to obtain others. Efficient algorithms for
tne machine computation ef Eq. (7) nicknamed "Fast Fcurier Transforms'' have recently
become popular (8-11). The popularity of these algorithms is due to the appreciable
saving in computer time that they afford. Straightiorwara application results in compu-
tation of all v coefficients, however. For real time series this is wasteful, as can he
seen in Eq. (18). Bingham et al. (10) present two schemes for the efficient use o. the fast

algorithms. These will be explained in Appendix B.



APPENDIX A
FOURIER TRANSFORM OF THE SINC FUNCTICH

The inverse Fourier transform, symbolized by ¥ !{-}, is given by

T

FHECH)Y 2 ofny -;l-- [ Flo) ef“l do.
In general,

~T

FUF(de ) = -,'—J Fe) D% g o 11 -a) (A1)

‘when : is any constant.

Follnwing Woodward (6) we have defined rect ¢ 4-1) in Eq. (15b). If we take the
inverse Fourier transform of this function, we have

2-h

-1 ‘ « {_ 1 i.t . _ sin 2zWe . e
¥ {rcn W}- 57 l.c diz = — 2W sinc 2W2, (AZ)

using Eq. (11).
Applying the results of Eq. (A1) with . = a 2w to Eq. (A2), we get
F ' frectCa pmiie ™™ 2 s oW sine (200 - ).
Since F{¥'[F(:)]} = F(«), it follows that
Flsinc(2We-n)} =. (1 W) expl-inw 2W) rect (w t7W),

which is Eq. (15a).



APPENDIKX B
EFFICIENT USE OF "FAST FOURIER TRANSFORMS"

Let {z,} and {y,} be real time series of ¥ points each. From Eq. (9) the finite dis-
crete Fourier transforms of these series are

N-1

v Y zpexp (-2mikn/M. K=0,1.2,..., N-1 (Bla)

X,‘ =T

n=0

and

N-1
Y, = -:TZ Y, exp (~27ikn/A), k=0,1,2,..., N-1. {Blb)

n=0

As in Eq. (18) we have
X =X and ¥, , = V;. ('32)

L3

As pointed out by Bingham et al. (10), efficient use of the fast computational algo-
rithms requires computation of only the ~/2 distinct coefficients for each series. They
suggest combination of the two real series into one complex series, transferming the
latter, and then separating the transform.

To do this we let 2, = z_ +iy, be a complex time series, where r and y, are the
original real series. Equation (9) is still applicable, but Eq. (18) is not. From Egs. (9)
and (B1) we have

Zk =L Z 2, exp (~-27ikn/N)

=1 Z (z, +iy,) exp(-27ikn/N)

= X, +iY. k=0,1.2,..., N-1. (B3)
d in Eq. (B3) we replace & by & - k, we have
Zyg = Xyt i¥y o = N ril, (B4)

where we have made use of Eq. (B2). Taking the complex conjugate of Eq. (B3), on the
other hand, gives us

Zp = X -i T

which shows that Z,_, ¢ 7.

10
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By separating the real and imaginary parts of Eqs. (B3) and (B4), we obtain four
equations in the four unknowns: Re (X, }, Im{X,}, Re{Y,}, Im {Y,}. From Eq. (B3) we have
Re{Z,} = RedX, +iY,}
= RedRe [N ] + idm [N, ] + iRe (¥, ] - Im[Y,]}
= Red¥,} - tm{Y,} (B5)
and
{7} = ln{X, +iv,)
= ImiRe [N ]+ ilm [N, 1+ iRe (Y, ) - Im[Y,])}
= ImiX,} ¢ Re (¥, ). | (B6)
Similarly, from Eq. (B4) we have
Re{Zy_ .} = Re{X; + iV}
= RedRe [N, ] - ilm [N #iRe [V, ] +Im [V, )}
= RedX,}+ I {Y,} (B7)
and
Im{Zy ,} = Im{X, +i¥}
2t {Re LY, ] - ilm [N +iRe (V) + Im [V, ]}
= -l (X} + Re (¥, ). (B8)
Adding Eqs. (B5) and (B7) we get .
Re {¥,} = Re{(Z, +2Z, )72} (B9a)

Subtracting Eq. (B8) from Eq. (B6) gives

Im{X,} = Im{(Z, - Z_,) 2} (B9b)
Similarly we have

He{¥,} = Im{(Z, + Zy_p) 2} (B10a)
and

Im{Y,} = Re{(Zy_, - %) /2} (B10b)

Thus \, and Y, are completely determined by 2, and Z,_,.

The preceding technique amounts to what might be termed a "'one-cent sale'' — two
computations for (almost) the price of one. Bingham et al. (10), following Danielson and
Lanczos (8), describe an additional technique which permits efficient computation for a
single series. Only half as many Fourier coefficients as there are data points are com-
puted, but more pre- and posttransform analysis is required. To use this method the
given real series of length v is split into two series of length v 2 each. These two shorter
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series are then combined into a single complex series of length A’2; the analysis is then
similar to that of the previous technique.

The original series cannot simply be divided in half, however. I this is attempted,
the resulting summations would extend from 0 to (A72) - 1 and thus would not be in the
form of Eq. (7). The subsequent analysis would not be applicakble. Instead, we divide the
given series (7.} into its odd and even terms, getting the two series

/0' ,2'/4 ----- /N-‘l (Blla)

and
Ry T - (B11b)

For the even terms we can let n = 2m, and for the odd terms we can let n = 2m+ 1.
Then, if = ranges over the N/2 points 0, 1, 2, ..., (N/2) - i, all the terms in the original
series are present and accounted for in one of the two new series of Eq. (B11). Equation

(7) can therefore be written in the form

N-1}
21 -2nikn/N
VRS DI
n=0
1 (N72y -1 m v I (N72) -1 " v
~ymtkm | -2mtk(2m+y)
N Z lame© + N Z [ amer ©
m=0 mz0
) (N/72)-1 -2ntkm 1 (N, 2)-1 ~27ikm .
. Ns2 ~2mik/N N2
Y Z [ime te ! N Z [ames © (B12)
m=0 m=0

We now relabel the terms in Eq. (B12) letting/,,, = 2, /omes = ¥m» ¥ = W2, with

m=0,1,2,..., ¥#-1, Equation (B12) becomes
| M- 1 N M-1
. -2athkm M 1 sknioM L -2mikm/ M
Fe = 55 0. #m tye W2 Ime
m:=0 m:=y
= % (X, +exp(-kmi/M) Y], (B13)
where
LS
- —amikm M, -
.\'k—ﬁz;rmc 2mikm £=0,1,2,..., 2M0-1, (Bl4a)
m:=0
and
)
- A 2tk Y -
Ve = 4 2L Ym e BTN E=0.1,2,.... 2M-1. (B14b)
mz=0

Equations (Bi4) are in the form of Eqs. (B1), but although ¥ values of  are still
required, only ¥ = A/2 computational operations are required for each 4. This saving is
reflected in the computation of 7,, Eq. (B3), and affects the analysis leading to Egs. (B9)
and (B10) only in the replacement of Z,_, by 7y, 2y-x]+ After computing z,, Egs. (B9)
and (B10) can be used to obtain X, and Y,; #, is then obtained from Eq. (B15) as follows:
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- k . . Tk ]
[“("..“ DTN S Re<¥, 2 4 ~in Tl lmllk}] (B15a)

Re (87

of—

and
. V[ koo Y
SR TRV P [lm‘.\‘,.‘ s tes = lnl‘.)k) - sin T "t"l)',,.’J (BISD)
Finully, substitution of Eqs. (B9) and (B10) with A replaced by A 2 in Eq.(B15} yields,
in terms of the \ computed values of 7,

EY o "
iy |m'(lk EN 2)_,‘__l) 15

Re ¢ I'", ? Re i Z’-‘, . A( \ Iy

_,‘_‘_:) 1P ¢ (o

. Lk o ,
¢ san T ""‘J'{:_..\’ 2x-kj - A’{'

and

||n‘-l"‘,' - |'l.'lZA, '7';.\ ! 1Y s cus —\— Ht".!z..‘.\- ookl Zk) )

- sin -~ hu'(Zk #Z{,_v s k1) bh
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Ve ALiCTRACT

A discrete, finite time series of A points
fa n=0,1.2..... N-1.

often arises, for example, in the sampling of continuous data. This time series
can be expressed as the finite series

o

2 ) E TN a2 N,
k=u
where the coefficients ., to be interpreted as frequency values, are given by

N-1 :
T e N P Sl N T N P IO N- 1

ez

Experimental errors inherent in /, will, of course, be reflected in #,. Given
the original time series 7, , however; it is exactly (i.e., without approximation)

represented by #, at the V points of interest.
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Fourier transform
Discrete finite tiime series
Discrete finite frequency series
Discrete transform pair
Orthogonality

Summation calculus
Difference vperator
Continuous signals

Power specirum
Autocorrelation function
Algorithm

These formulas are derived from basic principles, and their relationship
to digital analysis of data sampled from continuous signals is discussed. In
particular, the efficient use of the recently popular algorithms for rapid ma-
chine computation of Fourier transforms is explained. Although the results
obtained are for the most part well known in the literature, it is felt that the
importance of these transforms warrants a complete and notationally con-

sistent exposition.

DD ‘FNOOR:AU*]&?B (BACK) 16

(PAGE: 2)

Security Classification GPO 90f.521



