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ABSTRACT

A discrete, finite time series of . points

f,. n f. 1.2 ... . \ I.

often arises, for example, in the sampling of continuous data. This
time series can be expressed as the fin-ite series

. I

" b'At" .' I,, 
'

/I " . i. 2 . .. . % I.

where the coefficients .', to be interpreted as frequency values, are
given by

I - :-- ., \I. - / ,,,
.," I...!" .... I.

Experimental errors inherent in i., will. of course, be reflected in
FA.. Given the original time series f,, , however, it is exactly (i.e., with-
out approximation) represented by /.*. at the \ points of interest.

These formulas are derived from basic princip.s, and their rela-
tionship to digital analysis of data sampled from continuous signals is
discussed. In particular, the efficient use of the recently popular al-
gorithms for rapid machine computation of Fourier transforms is ex-
plained. Although the results obtained are for the most part well known
in the literature, it is felt that the importance of these transforms war-
rants a complete and notationally consistent exposition.
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DISCRETE FINITE FOURIER TRANSFORMS:
A TUTOMIAL APPROACH

INTRODUCTION

Fourier transforms play an important role in the analysis of experimental data as,
for example, in the computation of power spectra (1). If the compitation 4s done digitally
it is nturai to consider the summation involved as an approximation to tfie integr2l of a
continuous Fourier transform. This is not the case. The da:a are inevitLbly of finite
extent. 11 they are given as discrete finite time series, as are those obtained by sam-
pling contin-ous data, no further approximations need be made in the computation of a
discrete finite Fourier transform. The relationship of this transform, considered as a
discrete finite frequency series, to the frequency spectrum of the original continuous
data is to be examined.

The derivation given here of the discrete transform pair follows tha: of Hamming (2).
It may be considered as a guided tour or interpretation of the pertinent portions of
Hamming's work, with complex exponentials replacing the sinusoidal functions used
there. The transformation is based on the orthogonality of the .% distinct .%th roots of
unity over the set of N points. This orthogoiality can be established in many ways. The
discrete finite difference and summation calculus is used here in the belief that it pro-
vides a useful insight ir.te the meaning of the equations. We shall need only the rudiments
of this calculus; they are given here for convenience and completeness.

THE DISCRETE FINITE DIFFERENCE AND
SUMMATION CALCULUS

Th,. discrete finite difference calculus is analogous to the differential calculus but
lacks J.-, subtlety of the latter, since it does not require the concept of limits which
plagueb the student of elementary calculus. Indeed, tae difference operator, to be defined
below, is identical to the first steps in the application of the usual definition of the
derivative.

In general the difference operator .L and the basic operation of differencLng applied
to a function f (x) is defined as

-..f/(.,) /t: (z /,) -1( ,)

where the symbol A means "is equal by definition to" and 1, is the increment of tile inde-
pendent variable x. We will be concerned with discrete series and with an index (the in-
dependent variable) changing in increments of unity, and we wil therefore let ;, .. Thus

Af(x) f(. x+ 1) -f ( ). (1)

If we let f(x) - ep(- ,), where y is any constant, and apply the difference operator,
we get

02', 1
" t

-' ' "
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This result will be ured presently.

The surnmation calculus, similarly, is analogous to integral calculus but lacks the
subtlety. As with the difference calculus we need only the basic results.

Let x be a discrete variable assuming integral values only. Using Eq. (1) we have

h-I b-I

Z -() = E f(. ) -(
za roa

= ((a + I) -f +a) +f(a +2) -((a + I) +... +f(U) - (b- 1)

f() -f(a).

Thus, by analogy to the fundamental theorem of calculus in the form

d f ( .e )
,Ii = f(b) -f(a),

we have what may be termed the "fundamental theorem of discrete calculus":

E Alix) = fM -f ).

If Eq. (2) is summed over A' discrete values of the parameter, we have

,V- I ,V- Y Z•- ' 'I -

YZ
o 

- ]

0 t "U

.V- I
I .

We now apply the "fundamental theorem," Eq. (3) with (I 0 and b = .\ to get

.N-

Z;O

I ey 'v - I
C r c 7 -_ (e e.V - ) = - -

eY - e I

This is, of course, simply the sum of a geometric progression of , terms,

2 .V- r

with r : '. This sum could have been used as a starting point. To have done so, how-
ever, would have partia!ly obscured the relationship between the discrete tra'nsforms to
be developed and continuous Fourier transforms.

ORTHOGONALITY OF THE .\TH ROOTS OF UNITY

With Eq. (4) and the fact that

v \. 1) 2n.-i) - c . 2n "" i % in 21 li - I
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for any integer n, we wish to establish the orthogonality of the ,? distinct Ath roots of
unity of the form ep(,.2-.ki.,N).t

In the sequel the indices k, n, m, etc. will be restricted to the N integral values 0, 1,
2, ... , ,N - I. However, to enable us to write the equatlics in complete generality (to In-
clude k ? A,) we need the concept of congruence iodulo .x (3). We say that k - , (mou N)
(to be read k is congruent to m, modulo A) if and only if k - ,n = iN for some integer i = _ i,
t2, .... This is an extension of the equality concept, since if j 0 we have k- i. It is
useful because if k i, (mod N), xp.12.i(k - /) /N] exp(2ri) - I for J = 0, 1, 2.... .Thus
if either k = in or, more generally, if k n m (mod .) we can write

exp[2-ri(k- N) c/N] = exp(277ijr) I = 1

for all integral values of x, and

N- I
21i(k-m)/.N = I' = N,

.r

(5a)k =m, or k =m (nmod N).

If kfm and ktm(riod N) we let = 27ii(k- m)/.V f 0 in Eq. (4) to get

V- ,V- I

E 0 e ) = -E e2 i (k-m) z/.V

.r"= ( ZZO

e2-i (k-m)
= 0,

e 271i (k-m)/V 1
(5b)

since k - m is an integer while (k - rr,) ,N is not.

Equations (5a) and (5b) can be combined to give the desired orthogonality of the N
distinct %th roots of unity over the set of N points in the succinct notation

N- i

E. e2-i kz.' m( Ir = .V) N : , (mod ,X)• Akm (5 c)

where

(mod N) = 0~, :f k-in j,V for

10, if k - m t j ,, for

home j =0, ±1, ±2.

any j =0, ±1. ±2,

and the asterisk denotes the complex conjugate.

THE DISCRETE FINITE FOURIER TRANSFORM

Equation (5c) enables us to represent any finite discrete function (e.g., time series)
of N points in terms of the orthogonal Nth roots of unity as a basis. Thus, given an arbi-
trary discrete finite time series of V points

f .. n=0, 1,2 ... , N- I.

let us assume that fn can be expressed as the finite series

ex 'p(2rk i,.'N) is an A'th root of unity for k = 0, 1, 2 ...... %-I, since [exp(27rki ,A) 1V: exp(2nki)
= I. Of course, k can take on additional integral values, but these will not yield distinct
roots.

z-Il
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.'- I
f ' ,?r .k i N. 1,'2 ..... . k' 67

k =

For this to be the desired representation we must determine the A' coefficients '. such
that this series is exactly equal to the original function at the A' given points. (The value
of Eq. (6) for , not equal to one of the x points is, as yet, undefined.)

Multiplying both sides of Eq. (6) by ,.,p( -2.'in N' with 0 ,, 1 . and summing
over n, we get, with the aid of Eq. (5c),

'-I V'- I .- I
N:. L2i k-mn.,N

ta 
= 
o kt -"0 o 0

X' -

/C o)

where the fact that these sums are finite permits us to interchange the order of
summation.

We have, therefore,

.V- I

fi t 0- 
2, o ik- . k = 0.1.2 ...... V- I. (7)

It remains to be shown that the assumed series, Eq, (6), with coefficients given by
Eq. (7) does in fact exactly represent the original function /,, for 0. 1. 2. v- I.
We can, of course, rewrite Eq. (7) as

.N- I

- f C . k - 0. - 1. 2..... .. -1. (8)

Substituting Eq. (3) into Eq. (6) we get

NV- I - I
f I - %--I ,-2' ikJ V -, ik, "

k --o j=,1

X- I NV- I

Making use of Eq. (5c) this becomes

.V- I

which was to be verified.

Equations (6) and (7) together constitute the discrete finite Fourier transform pair
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VN- I

f = bk '  . n = .1. ' I
k o

and (9)

.' Ik ., z /,, " . A - O .. 2. . . . . .... I .

"

Notice that thi; derivation is exact in the sense that these sums are not approxima-
tions to integrals. Given the original time series f,, it is exactly represented by the
transform b'. at the %, points of interest. Naturally, if there are experimental errors in
the time series f,,, as witl arise from sampling errors (4), these will not be eliminated
but ,vill be reflected in the F,'.

DIGITAL ANALYSIS OF CONTINUOUS SIGNALS

Let us assume that the discrete finite time series fr, has been obtained by sampling
a continuous time function f(t ). We assume further that f(t ) is band-limited. In other
words, if H, is the Fourier transform of 1It):

there exists w > 0 such that

F(,-) = 0 for 2 7 11%

or, in words, the spectrum of f( ) vanishes outside the frequency band - ;I, f , Jr, where

If the sampling rate greater than 21 samples per second (with w given in hertz)
thr' continuous function / . ) is completely determined for all t by the sequence /(n '2W)).
In fact, Shannon's sampling theorem (4-7):

f( ) sin 2-,1r[f - (n 2W)] (10)
S, L,- -I2n2-( IV) I

yields f(t) explicitly in terms of the f(n 21).

As Eq. (10) indicates, an infinite number of samples are required for an exact rep-
resentation of f(t) . If f(t) is small outside an interval of 7 seconds, however, and is
sampled at a rate of 2W samples per second for these r seconds, there are . - 2W? sam-
ples in the range in which the function has appreciable value.

The function f (t) cannot be both time-limited and band-limited, but it is possible to
keep the spectrum within the band 11 and to have the time function sufficiently small out-
side the interval 7 so that f(t) can be satisfactorily approximated by the \ 2111' sam-
pies. We will assume that this is the case. The rapid attenuation of the sampling func-
tion (6)

in<, 2l11# . (11)2 -. i t
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implies that the effect of any term in Eq. (10) will be of con. equence only within a small
number of intervals in the neighborhood of the corresponding sample tv-i-t (7).

Thus we have the discrete time series

In = I(n 211). it = 0.1 ,'2 . .. . . .V -- I .: 21VT -- I,

where, approximately,

hI T- I

I() - 21 inc (2We - i). (12)

n =0

That the coefficients 1n are in fact equal to the sampled values may be seen from Eq.
(12) by first changing the dummy index and then letting t n. 211 as follows:

V- X -
( ) sin (,7) (n -i -

( -- - L. j 11

where S, is the Kronecker delta (unity when n = j and zero when n . .).

We are interested, usually, not so much in I(t) as in h.), its Fourier transform, or
in its power spectrum, the Fourier transform of the autocorrelation function of f(t (1).
We seek the relationship, if any, between the "spectral content" of f,, as indicated by its
finite Fourier transform b ' and the "spectral content" of f t) as indicated by its (con-
tinuous) transform klrw;). In other words we want '), but we can get Fk. How are they
related ?

Taking the (continuous) Fourier transform symbolized by '. of both sides of Eq.
(12), we get

'a- I

,.' ) E s i ne (21- . (14)

It is shown in Appendix A that

Y' sinc (21't - )} (1 2W) e- in 3' re c - (15a)

where (6)

, { 1, if !. : 2-:3,

r, ', ' ,: fc:i)f 2-1 (15b)

Using this result in Eq. (14) we get

I~ ~ r ie.'2

.V In

or

!. , B. . f" e "-if " - '

0 . if ' 2 -11
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In terms of the frequency f = , 2- (not to be confused with the contInuous function/ (t)
or the discrete time series f,,) we have

N I
F N , I.-2,'/ra 2W wit If W. (16)

Remembering that N 211,. if we let f k'T in Eq. (16) we have

_- = i -E'Ef (17)n N

where Fk is given by Eq. (7).

Equations (13) and (17) are subject to simple interpretations. From Eq. (13)

In = f(n.'2W) f(nT'N).

That is, if t is an integral multiple of TIN (I a T N), then f(t) = Ic f , which means that
1i ) is equal to the sample if t is the time at which the sample was obtained - a not too
surprising result.

From Eq. (17)r' = Tl) Flk,'T), or

F(f) = TFr

if I is an integral multiple of i, r (1 = k.. r). That is, the continuous spectrum F(f) is
equal to r times the discrete finite Fourier transform of f,, if f is a harmonic of a fun-
damental frequency f. defined as the reciprocal of the total sampling duration:

SIT = 2W1N.

For example, if 1000 samples of a continuous time function having no frequency
component greater than 1000 Hz are collected at a rate of 2000 samples per second,
T = 1.'2 sec. A digitally computed finite Fourier transform will then represent the "true"
Fourier transform at multiples of 2 Hz. Intermediate values could be computed using
Eq. (16). Resolution of 0.1 Hz without interpolation would require a data length of
T = 10 sec.

The fact that If I < It' = N 2T imposes a restriction on the discrete values 'k' namely,

k.'T < V2T. or k <A,'2.

Only the first A'2 coefficients obtained f:om :q. (7) are distinct; the remaining ones
can be obtained by symmetry. (It imposes no burden in practice to require that N be
even, and we shall assume this henceforth.) If in Eq. (7) we replace k by N - k, we have

f e - 2 i i .%'- k In N "

n=0

N-I

n= e2.tkn *,, (18)
n-0
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if /,, is real. We have again nade use of ,.,p i-i 1. Notice that though /,, is real,
k is, in general, complex; Fk L Ile ,Fk , i,,, W,

In a conventional application of Eq. (7) one need compute only those coefficients bk
that are desired. Equation (18) may be used to obtain others. Efficient algorithms for
tne machine computation of Eq. (7) nicknamed "Fast Fcurier Transforms" have recently
become popular (8-11). The popularity of these algorithms is due to the appreciable
saving in computer time that they afford. Straightlorwara application results in compu-
tation of all '. coefficients, however. For real time series this is wasteful, as can be
seen in Eq. (18). Bingham et al. (10) present two schemes for the efficient use oi the fast
algorithms. These will be explained in AppendLx B.



APPENDIX A

FOURIER TRANSFORM OF THE SINC FUNCTICV1

The inverse Fourier transform, symbolized by "Y- I {. }, is given by

,f-' 1F(,*) - f(() .1. f .F(:,&) c'' do.

In general,

whe L Jsfany constant.

when -. is any constant.

Fol nwing Woodward (6) we have defined ret (,,. trW) in Eq.
inverse Fourier transform of this function, we have

{ a:I =11 _,_ f2
r e v rIV .)- 2_"'.

(15b). If we take the

(A2)

using Eq. (11).

Applying the results of Eq. (Al) with n 211' to Eq. (A2), we get

I t ( -1re . . I; ) c - ' , 2 21r1' sine (21VI ii).

Since Y{iJ' [F(:)] } = F(i, it follows that

{s inc( 211t - )} (1 211) xp(- in w'12) rect ( V 711)

which is Eq. (15a).

(Al)

e' ' t  1:, i- - 21' sinc 21'/
-7t



APPENDIX B

EFFICIENT USE OF "FAST FOURIER TRANSFORMS"

Let {.z,} and {yn I be real time series of N points each. From Eq. (9) the finite dis-
crete Fourier transforms of these series are

,N-I

.yk N ." e p ( -2,-ikn/, . k = 0. . 2 . . - (Bla)

and

N-
Y= ' Z y, exp (-2+rikniA). k =0l.2. N- I.lb

As in Eq. (18) we have

X; and _n-k = ('32)

As pointed out by Bingham et al. (10), efficient use of the fast computational algo-
rithms requires computation of only the N/2 distinct coefficients for each series. They
suggest combination of the two real series into one complex series, transforming the
latter, and then separating the transform.

To do this we let z. =.,, t +Y, be a complex time series, where rn and y,, are the
original real series. Equation (9) is still applicable, but Eq. (18) is not. From Eqs. (9)
and (B1) we have

'- I

Zk 1- E~~ zn exp ( -2-nikn/N)IV

.= I

n=0

.Yk+ +iYk. k=0,l.2 ... N-I. (B3)

if in Eq. (B3) we replace k by N - k, we have

-V-k = "'V-k + I Y\V-k ' - )'k  (B4)

where we have made use of Eq. (B2). Taking the complex conjugate of Eq. (B3), on the
other hand, gives us

whZch =hs- i

which shows that 4,V-k ~4
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By separating the real and imaginary parts of Eqs. (B3) and (B4), we obtain four
equations in the four unknowns: lie .k}, Ill ,,.k}, Ile(Yk) ,lim Yk. From Eq. (B3) we have

Ile{ 7- =Ile{(A'k #_'Y

SIle Il. ['k] + ji. I.'Vk] + l ' k' -Re [Yk] rk

- IkiXk} -
1

"il k (B5)

and

lin,,, Itr f ,.V+, i Y, }

- In ' I .["'k + fil . .k I+ i e [I - lm I k I

= Iri{. k} * Ile {).} (B6)

Similarly, from Eq. (B4) we have

liefZV- k = ite{x; + i Y}

lie {Ito [. k ] - ih, [.XI + ilb 1i'I 1 + 'M [k

-le {Ak} + 1111 )k (B7)

and

- , Ie [c . ] - ;ih [fill 1 . ;I + , l Y. f + fi, '
- [in , X'<k + fiei (B8)

Adding Eqs. (B5) and (B7) we get

lie{.'} = le{( Zk + ZVk),2}. (B9a)

Subtracting Eq. (B8) from Eq. (B6) gives

Ih{i } = In1{( Zk - Z?k) "2} (B9b)

Similarly we have

!{Y }= Im {(Z k + Z%,k),'2} (B10a)

and

i,, ( k (e Z(Z._ k - 4) 2 }. (B10b)

Thus V,, and )'k are completely determined by zk and V-k .

The preceding technique amounts to what might be termed a "one-cent sale" - two
computations for (almost) the price of one. Bingham et al. (10), following Danielson and
Lanczos (8), describe an additional technique which permits efficient computation for a
single series. Only half as many Fourier coefficients as there are data points are com-
puted, but more pre- and posttransform analysis is required. To use this method the
given real series of length .\ is split into two series of length N 2 each. These two shorter
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series are then combined into a single complex series of length N'2; the analysis is then
similar to that of the previous technique.

The original series cannot simply be divided in half, however. If this is attempted,
the resulting summations would extend from 0 to (N/2) - I and thus would not be in the
form of Eq. (7). The subsequent analysis would not be applicable. Instead, we divide the
given series (!n 1 into its odd and even terms, getting the two series

and

'o '2' 4' / V. -2

f/' 3"/ S' /.v- I

For the even terms we can let n = 2 m, and for the odd terms we can let n =
Then, if in ranges over the N/2 points 0, 1, 2, ... , (N/2) - i, all the terms in the
series are present and accounted for in one of the two new series of Eq. (B11).
(7) can therefore be written in the form

(BlIa)

(BlIb)

2m + 1.
original
Equation

N-

1 -n
n= 0

NI2) -I

N E
m.-, 0

- trrikm V 1.-

(N/ 2) - - 2,', ikm
1 E f 2

m  
NI2 + e-277ik/.V .V

Sn= 0

- 2 rik( 2m+I) ",V
12 1.+, e

(N'2)-I21
L -0

-2 (B12)
/ 2 '7i+ I

We now relabel the terms in Eq. (B12) letting! 2 , , /, /2,+ 1 Yin,
m = 0. 1, 2 ...... - 1. Equation (B12) becomes

J-I MV- I
Fk Zi 2I .C ik~M' + -kri'Y l. 2rim,.

Fk - L k e 27Y- i Tkk
y  e -

Mri 0 Mt=

= I (IXk  + e xp( -i /r3) Yk I
2-

If - N/ 2, with

(B13)

where

M- I

] Z -2,ikm. N

mn= 0

Yk ym -2- ikt,,

M= 0

k = 0,1,2. 2M/- 1,

k =0. 1,2. 231- 1.

Equations (B14) are in the form of Eqs. (B1), but although N values of k are still
required, only 11 = N/2 computational operations are required for each k. This saving is
reflected in the computation of 7,, Eq. (B3), and affects the analysis leading to Eqs. (B9)
and (BlO) only in the replacement of zVk by 1(,, 2)-k]. After computing Z,, Eqs. (B9)
and (B10) can be used to obtain Xk and Y1,; rk is then obtained from Eq. (BlS) as follows:

and

(Bl4a)

(Bl4b)
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- H - Y21 1/
Sin-'k

It 1111 1) (B15a)

(B15b)
I r ..,. .A.'

F k -iT ',,,k - .,,sin i He )"

Finally, substituti.on of Eqs. (B9) and (BI0) with . replaced by N 2 in
in terms of the .% computed values of 7,.,

Eq. (B151 yields,

lH .F .H' .
1
. . .' , ' ,,I..

2--.k
. -, . _ ) I

He . . j • ! - k

Illn ..'. - l . 1'* ZA. , * . .,,% . - A
.I.'].

I 4 " , . -- . - Z
. xt -. * kZ

.--A.- .,4 i'r l111(') 4 Zr
ft 2-kI XAA
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A discrete, finite time series of .% points

f, n = 0.1.2....... N'- I.

often arises, for example, in the sampling of continuous data. This time series
can be expressed as the finite series

N- I

f : 1 . it .\ n S 0. 1. 2........- I
-- j

where the coefficients /'., to be interpreted as frequency values, are given by
.V- I

/" .. k :- 0 . 1 .',.. . I.-- / A ... 1......... -I

Experimental errors inherent in f,, will, of course, be reflected in "k . Given
the original time series f,,, however, it is exactly (i.e., without approximation)
represented by -'- at the \ points of interest.
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Fourier transform
Discrete finite time series
Discrete finite frequency series
Discrete transform pair
Orthogonality
Summation calculus
Difference operator
Continuous signals
Power spectrum
Autocorrelation function
Algorithm

These formulas are derived from basic principles, and their relationship
to digital analysis of data sampled from continuous signals is discussed. In
particular, the efficient use of the recently popular algorithms for rapid ma-
chine computation of Fourier transforms is explained. Although the results
obtained are for the most part well known in the literature, it is felt that the
importance of these transforms warrants a conpleLe and notationilly con-
sistent exposition.
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