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ABSTRACT

A new method has been developed for accurate and stable numerical solutions
of ordinary differential equations. Applied to the Schr~dinger equation, the basic
numerical equations are two simultaneous Taylor expansions between space steps
of both the wave function R(p) and the slope of the wave function m(p), where it is
absolutely necessary to use the same number of terms in each expansion, viz.,

R?(p+Ap) = R(p) +m(p)Ap + - m'(p)Ap 2 
+

and

m(p+Ap) = M(P) +m'(p)Ap + r"n(p)Ap 2 +
2

with

2 14 /0 2 P_

for the Coulomb potential. Initial values applicable to the screened Coulomb as
well as to the standard Coulomb potential are derived by (a) an exact series solu-
tion of the Schrbdinger equation and (b) an approximate analytical solution valid
near the origin for all n, to terms of order p2 . For example, using the cubic
terms in the Taylor expansions with Ap = 10- 4 and using a computer that holds ten
significant decimal digits in single precision, accuracies of at least 7 to 9 signifi-
cant figures are obtained in the range p ; 18, and accuracies of about nine or more
decimal places are obtained throughout the range of interest, p :_ 20. For "non-
analytic" potentials such as the screened Coulomb potential, it is important to dem-
onstrate the accuracies to which eigenvalues and eigenfunctions can be obtained by
iteration. Application of the method to the screened Coulomb potential was consid-
ered, and the effects of errors due to round-off, truncation, and loss of significance
were discussed. As far as the author can determine, the present results represent
the first known accurate and stable numerical solutions of the radial hydrogenic
Schrdinger equation. With the present ability to calculate eigenvalues to nine or
more significant figures and eigenfunctions to nine or more decimal places, the
present method becomes an alternative to perturbation and variational methods.
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ACCURATE AND STABLE NUMERICAL SOLUTIONS
TO THE SCHRODINGER EQUATION

INTRODUCTION

This report is specifically concerned with accurate and stable numerical solutions
of the radial hydrogenic Schr'dinger equation. More generally, the method developed
here can be used for the numerical solution of ordinary differential equations of the ith
order, the general form of which can be written as

y (i) = [X, y, y,,'y,, ... , y~i 1 ] 1

where j indicates a given linear or nonlinear function of the independent variable x as
well as the dependent variable y and its derivatives up to and including y(" -I . It is well
known (1-5) that, by introducing new variables, the explicit differential equation of order
i can be replaced by i simultaneous differential equations of first order, viz.,

y n1  (2)

r, : 2  (3)

(X- : ( Y' '" V (4)

We will be interested in using the equivalent of Eqs. (2) and (4) in the numerical solution
of the radial Schrbdinger equation.

Interest in numerical solutions to the Schrbdinger equation is stimulated when one
faces interaction potentials that yield no known analytic functions as solutions - e.g., the
Yukawa or screened Coulomb potential. Since these potentials, as well as the Coulomb
potential, are singular at the origin, the standard numerical approaches (1,2,4,5) (even
with t, the angular momentum quantum number, set equal to zero) cannot be started cor-
rectly without qualitatively derived or approximate initial values (6). If, then, one goes
to extremely small space steps in order to obtain greater accuracy through a minimiza-
tion of the effects of inaccurate initial values, round-off errors (1,4-6) quickly degrade
the accuracy of the numerical solution; i.e., it becomes unstable. Clearly, a new ap-
proach is needed.

A new method is presented for the numerical solution of differential equations, hav-
ing the form of Eq. (1), that is conceptually and mathematically simple and is accurate
and stable - the accuracy being limited only by the number of decimal digits held (or
used) by the computer. The method involves (a) the simultaneous Taylor expansions be-
tween space steps Ax( = x 1 - xj in the standard notation of a subscript index j ) of the
quantities y, ml, ... , mi ,in Eqs. (2), (3), and (4), which are the equivalent of Eq (1), and
(b) the derivation of initial values through either an exact series solution of Eq. (1) valid
at or near the origin, or through an approximate analytical solution of Eq. (1) valid at
least to terms of order xi, expressed as O(xi). In comparison with the Cauchy (or
Euler) method and its variations (1,2,4,5) the Cauchy method effectively uses only the
first term of a Taylor expansion.

In the present report we will discuss the Schrdinger equation, and the sections to
follow are (a) a review of the analytical solution of this equation with the Coulomb
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potential (CP) and the explicit presentation of the present numerical method, (b) a deri-
vation of exact and "approximate" initial values, (c) a discussion of the numerical re-
sults with the CP using the known eigenvalues and a demonstration of how accurately
these eigenvalues can be obtained by trial-and-error iterations, (d) a discussion of the
application to the screened Coulomb potential, and (e) the summary and conclusions.

The reader is referred to Refs. 1, 4, and 5, or other texts on numerical methods,
for critical discussions of the standard numerical methods (and their variations) related
to differential equations.

THE SCHRODINGER EQUATION

The well-known radial Schrbdinger equation for a hydrogen atom (or hydrogenic ion)
is given (2,3,6-10) by

1 d [r (d+(r)1 +1) R(r)+ 2IL [E V(r)]R(r) 0, (5)
r dr[ dr {({+1)2 21r 2

where the symbols have their standard meanings. With the transformations

p 2Zr/na o

and (6)

En -Z
2 --&2/2a n

2

Eq. (5) becomes

Ip d 2 d _S )] + 1 4 + 1) -2 n V(p ) R(p) = 0, (7)
/02d p 02  j

where the 1/4 in Eq. (7) is an arbitrary scale of the energy eigenvalue. Since we will
also be interested in the screened Coulomb potential (11), let us use the symbol b2 in
place of the 1/4, yielding

2 dp [ 02 dR() + - 2 /t2 nV(p) JI(p) = C (8)

as the equation of interest for analytic and numerical solutions, depending on form of
v(p) .

One of the problems of theoretical physics is that analytic solutions to Eq. (8) exist
for only a limited number of central potentials V(r) (12), most of which are physically
unrealistic. Even the well-studied Coulomb potential for a single electron and nucleus
represents an isolated hydrogenic atom (or ion). When faced with the very interesting
Yukawa or Debye-Hilckel type screened Coulomb potential (13,14), Eq. (8) yields no
known analytic functions as solutions. Since a screened Coulomb potential (SCP) repre-
sents a first-order approximation to the many-body problem at low and high densities
(15), accurate and stable numerical solutions to the Schr~dinger equation with the SCP
would be of fundamental theoretical interest. To this end the Schr~dinger equation will
be studied numerically with the Coulomb potential to demonstrate the accuracy of the
present numerical method. First, however, we will review the well-known analytic
solutions.

Outline of Analytic Coulomb Solutions

In the Coulomb problem the potential energy V(r) =-Ze2/r is substituted in Eq. (5).
This leads to a V(p) for Eq. (8) given by
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CP: V(p) p-P

with (9)

b
2 :1

4

for the standard solutions. With the above, Eq. (8) can be written as

d2 ,1 2 di? [-n I '4+ 1)] 1 = 0 (10)
dp 2  pdp [P 4 j

What follows in the remainder of this discussion can be found in most books on quantum
theory, but it will be repeated for convenience and reference.

Noting that at large p the asymptotic solution to Eq. (10) is 1(p) pS exp (±p/2), only
the negative exponential is of interest, and an exact solution is sought in the form

R(p) = F(p) exp (-p/2) (11)

Substituting Eq. (11) into Eq. (10) leads to

F+ (2 _I)Y' + [A - I Y)] 0, (12)

where the primes indicate derivatives with respect to p. (This will'be true throughout
the remainder of this report except where noted.) Finally, a series solution of Eq. (12)
is sought in the form

F( -) = ps L(p) = pSLakp a. * 0. (13)

The criterion that an acceptable wave function be finite at infinity leads to a termination
of the series, Eq. (13), with n chosen as an integer and n > - + i . The series will then
terminate after n - t terms.

The finite series, now called L(p) in Eq. (13), is related to the associated Laguerre
polynomials and indicated by LI(p) . Now the normalized analytic wave functions are
written as

11_ 3  
n- 

-
1)]

1) +-plen (P) /2 3en
- (- ! 1/ 

/ 2 )  
L 2F+I( )(14)

n, f Lnao/ 2n(n + t) IJ +.F

where the symbols have the standard meanings. Henceforth, we will assume that the
term in brackets is equal to 1.0, and we will refer to the unnormalized solutions as

2e+1
R (p) = Pf e -( p / 2 ) 

L 2f1(P) (15)

with the leading term in the polynomial normalized to 1.0. The first few solutions given

by Eq. (15) are, with their standard designations,

is: R ,0 = e-(P/2), (16)

2s: R20 = -L ( 2 /
2

)
2,0 2 (17)
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2p: H 2, 1 ,e -  j ,  (18)

3s: T 1 _ (6 -6p+p 2
)e

- (
0

/ 2
, (19)

30 6

3p: 1 1 (4 - p)pe
- ( P

/2) (20)

2 -p1/2)( 1
3d: R3, 2 p e 2 (21)

4s: 1, - I (24 - 36p+ 12p 2 - p 3)e-( P 2), (22)
4 ,0 24

4 p: 14,1 20 (20 - lop+ p
2
)pe

- (  !
2), (23)

and

4d: 1 -(6 _p)p2e(P 2) (24)
4,2 6

(See the literature for graphs of these functions Rp as well as p 2 ([1 n) 2.)

The Present Numerical Method

The basic feature of the present numerical method is the simultaneous Taylor ex-
pansions between steps Ax of the terms on the left side of Eqs. (2), (3), ... , (4) of the
first section, viz., y, mi ... I I - not their derivatives - with the same number of
terms. At each step we calculate

y( x + Ax) y(X + m (x)Ax + ( 1/2)n 2 (x)Ax 2 
+ . .. (25)

m1 (x +Ax) = mi(x) + M 2 (x)A x + ( 1/2)m3(x)Ax 2 
+ .... (26)

M +(x+iX) = M _(x) +M _ (r)Ax (,2)m"_ (x)An 2 + (27)

where it is essential to use the same number of terms in each expansion. In Eqs. (25) to
(27) the mi's are used to emphasize coupling between the system of equations. Equation
(4) - the equivalent of Eq. (1) - defines m'_ ,) for the particular differential equation of
interest. The higher derivatives of mi_, are, of course, obtained from this expression
for m-I (x).

Relative to the Schr6dinger equation, second-order ordinary differential equations
such as Eqs. (25) and (26) (equivalent to Eq. (10)) would become

1 228
R(p + Ap) (p) + m(p)Ap + In '(p)Ap +... (28)

2

and

m(p +p) i(p) + m'(p)Ap + I7 in"(p)Ap
2 

+ (29)

with

mp) -2m(p) + [I++± 1) -1(p) (30)P If 2 P

from which m"(p), etc., can be obtained. Note that in Eq. (28) m'(p) and all higher deriv-
atives are known exactly from the differential equation, but /?(p) and M(p) are only avail-
able from the Taylor expansions in the previous step.



NRL REPORT 6558

Before solutions to a desired accuracy are possible, it is necessary to know the ini-
tial values of the terms used on the right side of Eqs. (28) and (29). The number of
terms used will also depend on considerations other than accuracy or stability, as will
be discussed in the section on numerical results. In the next section we will first derive
all the initial derivatives, exactly, from a series expansion and then will derive exact
initial magnitudes and slopes of the wave functions and approximate second and higher
order derivatives from an approximate analytical solution.

DERIVATION OF INITIAL VALUES

Exact Initial Values

Since the basic need for numerical methods arises from a lack of analytic solutions,
we will approach the Schrdinger equation with the Coulomb potential independent of a
knowledge of exact analytic wave functions. Equation (10) is of the form

d 2W dc (31-+ p()- q~za 0, (31
dZ

2  dz

and therefore we know (the reader will recall) from Fuchs's theorem that it has a formal
solution (2,7,16) of the form

S'Zak z, ao + 0, (32)

valid near the regular singularity at the origin and where the series Yak ek either termi-
nates or has a nonzero radius of convergence. If the series does not terminate and if
xp(z) and z 2 q(;) are regular when 1I1 < L, then the radius of convergence of the series
is not less than L. (See the references or other texts for the proofs.)

In the present numerical initial-value problem we are mainly interested in any non-
zero radius of convergence; for, once the numerical solutions are started, we can gener-
ate the complete solution through the system of equations, Eqs. (28), (29), and (30).

We will be a trifle more general (anticipating an approximate analytical solution) by
looking for a solution of Eq. (10) of the form

1(P) - p
8 (p). (33)

Substituting Eq. (33) into Eq. (10), we obtain

- + [2(s+1) ' +n ] 1 + [s(s+1) - (t+1)]W - ' :- 0. (34)

Taking s = t, which results from the indicial equation, and dividing by ps
- 1, Eq. (34)

becomes

p +2(t+1) '+n = 0. (35)

We now obtain the exact series solution, valid near the origin, by expressing t as

¢ = 5 k, 0 + 0 (36)

and substituting into Eq. (35). The resulting values of ak are

-1n (37)1l 2(,t+ 1) '°
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with the recurrence relation

-4 t_- > -. (38)
t + 1 ( 1 + 1) (2 ,t+ 2 + t ) ' > .

Before discussing this series further, a slight digression is necessary to prepare for the
initial values from the screened Coulomb potential. The screened Coulomb potential
(11,17) varies near the origin as

v(r) -- + const. (39)

Equation (39) substituted into Eq. (8) leads to

b 2  : (1 4) + const, (40)

with the fraction 1/4 in Eqs. (10), (35), and (38) being replaced by b 2. With b 2 the recur-
rence relation, Eq. (37), becomes

a +-1- - (41)
(~t I + 1) +2)(2+2 + t) '

with a, given by Eq. (37). If we now write /3 n/2('I + 1), the first few terms in the se-

ries are given by

- -/3%, % f 0, (42a)

b 2 +/n %, (42b)
2(21/+3)

2(2t+ 3) b 
2 

8+ b
2
n + /3t

2  (42c)2x3 x(2,+3)(24+4)

and

3(2-t +4) b4 + 2(5{+ 9) b
2 /3n + b2n

2 
+i8n

3

a 4 2 x 3x 4x (2+ 3)(2{+ 4)(2 + 5) . (42d)

Since all symbols in Eqs. (42) are positive, ¢ is definitely an alternating series.

Returning now to the specific Coulomb potential with b 2 : 1/ 4, setting n : 't+ 1 in the
series terms of Eqs. (42) will yield the series for = % e-( P 2) as it should. Another
observation is that the series for ¢ is the equivalent of the product of the series for
exp(-p/2) and the associated Laguerre polynomials L+ 1 (p). (See Eq. (15))

Now with the exact series solution (18) given by 1, = k /0 , it is easy to calcu-
late all the initial derivatives for all n, F . Taking derivatives of 1 and setting p = 0,
we obtain the exact initial values

, ( i j , (43)

with (i) indicating the ith derivative. For i t we set a0 - 1.0, and for i < t we set
a -F 0. With the Coulomb potential the a. are given by Eqs. (37) and (38). With the
screened Coulomb potential the a are given by Eqs. (37) and (41), with the appropriate
value of the constant in Eq. (40).
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Initial Values from an Approximate Analytic Solution

An approximate analytic function valid near the origin can be obtained from Eq. (35).
As p -* 0 Eq. (35) yields

2(t+ 1)¢' +no 0 (44)

when we drop the term (o" - -4 ),o.

Equation (44) readily yields

o,' F 0 exp[- np/2({+ 1)] (45)

or

°, ~Pexp[-np/2('/ + 1)] , (46)

where we set ¢0 - 1.0. The superscript zero on K° , £ will emphasize its validity near
p = 0. Even with the 1/4 in Eq. (35) replaced by b2 (above), Eq. (46) obtains, expressing
the exact initial behavior of wave functions for all n, F relative to the initial magnitude
and slope. By comparing the expansion for exp [-np/2(,{ + 1)] with the series solution,
Eq. (36), with coefficients defined by Eqs. (37) and (38), we note that Eq. (45) is valid to
terms O(p 2), which supports the above statement. In either case the initial values and
slopes of the wave functions are obtained without the usual qualitative arguments to pre-
vent infinite values (6) of m'(0).

In more general applications of the present numerical method it may not always be
possible to obtain a formal series solution. Then an approximate analytical solution
valid near the origin (or, near the initial point of interest) will be useful in generating
initial values for the problem. In the case of a second-order differential equation, it is
essential that the approximate analytic solution at least yield the exact initial magnitude
and slope. Then an initial value for the second derivative can be defined by

R"(0) = m'(0) Mi 0n[11(p), R1 '(p)3, (47)
P- 0

an initial value for the third derivative can be defined by

R"(0) = m"(0)= r 1mM"[1°(p), 1°'(p), W°"(p)], (48)
P_* 0

and so on. In the Schr5dinger equation these definitions lead to excellent numerical re-
sults for cases { = 0, 1, and 2, as will be discussed in the next section.

NUMERICAL RESULTS WITH THE COULOMB POTENTIAL

We will now consider the Schrdinger equation with the Coulomb potential to demon-
strate the accuracy and the stability of the present numerical method. If the well-known
Coulomb wave functions cannot be calculated accurately and with stability, we could
hardly trust the method for potentials with no analytic solutions. We will first use the
known eigenvalues for the first few wave functions (n = 1, 2, and 3), and then we will
start with approximate eigenvalues and search for more accurate values. In the second
case, only the ls and 2s wave functions will be considered.
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Eigenvalues Known

We will consider in detail the first six eigenfunctions given in Eqs. (16) to (21). As
used here, "accuracy" will mean the exact agreement with the Coulomb wave functions to
a particular number of significant figures or number of decimal digits- no percent er-
rors will be used. All the computations reported here were done on the CDC 3600 elec-
tronic computer at Rockville, Md., and the CDC 3800 at NRL (through the Research
Computation Center at the Naval Research Laboratory). In the normal single-precision
mode the CDC 3600 and the CDC 3800 hold ten significant figures, and the present code
format prints out nine. The present discussion of accuracy should be scaled up or down
depending on whether one uses a computer with more or less significant figures in its
normal mode. If a computer is used in the double-precision mode- this usually doubles
the number of significant figures - then the accuracy obtained in the normal mode will be
possible to a greater magnitude of the independent variable. Or, if interested, one can
use double precision with the present method to double the normal accuracy. If any
numerical method leads to instabilities arising from inaccurate initial values or "mis-
matched" calculated quantities, then double precision will not help matters much - one
obtains more precise wrong answers.

The following discussion will be relative to computing with ten significant figures,
printing out nine of them, and using equal space steps Ap throughout a problem, as given.
The numerical results are compared to the exact analytical solutions at p = 0.1, 1, 2, 4,
6, ..., 20. The values for exp(-x) are taken from Ref. 19. For the readers' conven-
ience the Appendix gives values of exp(-x) for x = 0.05, 0.5, 1, 2, 3, ..., 10 to 16 or
more significant figures.

Tables 1, 2, and 3 summarize the results using known eigenvalues with n = 1, 2, and
3. The entries in the tables are the number of significant-figure agreement between the
numerical solutions and the analytic solutions. The ninth "numerical" figure and the
ninth "analytic" figure were compared directly, since we have no information from the
tenth numerical figure to round the ninth figure up or down. In what follows, an expres-
sion like "using the quadratic term" will mean using the terms in the Taylor series up to
and including the quadratic term. Furthermore, "Approximate initial values" will mean
initial values obtained from the approximate analytic solution of the Schrdinger equa-
tion derived as Eqs. (46), (47), and (48). You will recall that these initial magnitudes and
initial slopes are exact for all n, t. The "1-equation" will refer to Eq. (28), and the
"m-equation" will refer to Eq. (29) with mn'(p) given by Eq. (30). Finally, the calculations
reported in this and the next section were carried out in one of seven modes as shown in
Table 4. The results using modes a, b, and c are given in Table 1; results for modes d,
e, and f are in Table 2, and the results for mode g are in Table 3.

A detailed discussion of error propagation in numerical solutions of differential
equations is beyond the scope of this report. The reader is referred to Refs. 1, 4, and 5,
or other texts on numerical methods. Kopal, in Ref. 1, pp. 219 to 231, develops a simple
linear theory of error propagation which is of interest but is not directly applicable to
the present nonlinear numerical method. For our present purposes, only a brief review
of the definitions of the two numerical errors (1,4,5) and stability will be given. The
first error is the rounding error. The difference between the complete sequence of dec-
imal digits that represents a real number and the fixed number of digits available in the
computing device used is defined as the rounding error. The second error, the trunca-
tion error, is defined as the error introduced by the termination of a sequence of steps,
except those errors classified as rounding errors. Using a finite number of terms in a
Taylor expansion is an obvious example. The absolute rounding error is determined by
the number of decimal places retained, whereas the relative rounding error is approxi-
mately determined by the number of significant figures retained.
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Table 1
Accuracies of Numerical Solutions of the Schr~dinger Equation with Exact
Initial Values. Numbers in the Table Give the Significant-Figure Agree-
ment with the Exact Analytical Coulomb Wave Functions with Eigenvalues

Equal to 1, 2, and 3.

Wave Significant-Figure Agreement as p Equals Various Values

Function M0.1 1 2 1 4 1 6 1 8 10 12 14 16 18 20

ls a 9 9 9 9 8 9 8 8 8 8 7 6
b - 9 9 9 9 9 8 8 7 6 6 4
c 5 4 4 5 3 3 3 3 3 3 4 4

2s a 9 9 9 9 8 9 9 9 9 8 7 7
b - 9 9 9 8 8 9 9 7 7 6 6
c 4 3 4 5 3 3 3 3 2 2 1 0

2p a 9 9 8 9 9 8 7 7 7 6 5 5
b - 9 9 9 9 9 8 8 8 7 6 6
c 3 3 3 3 3 4 3 3 2 2 1 0

3s a 8 9 8 8 8 8 9 8 8 6 7 7
b - 9 9 8 8 9 8 9 8 9 9 9
c 4 4 5 3 3 4 3 3 3 2 1 1

3p a 9 8 9 9 9 9 9 8 9 8 7 6
b - 8 9 9 9 9 9 9 9 8 8 8
c 2 3 3 4 4 3 4 3 3 3 2 2

3d a 8 8 9 9 9 9 9 9 8 7 7 6
b - 6 6 7 7 7 6 6 6 6 6 6
c- - - - - - - - - - - -

*Mode a: Cubic terms; exact initial values; lip= 10 - 4.
Mode b: Cubic terms; exact initial values; Ap= 10 - 3 ;
Mode c: Linear terms; exact initial values; Ap = 10

- 4

tNot calculated.

p = 0.1 calculated but not printed.

In addition or subtraction the relative rounding error of the result may be larger
than the relative error of either term. According to Alt (5), this loss of significance can
be quite subtle and is one of the main pitfalls of numerical computation.

Finally, instability is defined as that phenomenon whereby a small local error occur-
ring in one place during the computation will cause a much greater error at some later
step.

Since we will be concerned with functions that decrease in absolute magnitude at
large p, it will be impossible to avoid a "loss of significance" in subtraction once we
reach the exponentially decreasing part of the wave function. Consequently, we will call
a solution unstable which exhibits a large decrease in accuracy (the exact agreement to
a number of significant figures with an exact analytic solution) owing to factors other
than the loss of significance which occurs during addition or subtraction. If the accuracy
of a numerical solution is limited mainly by loss of significance, then it is possible,
using a stable method, to increase the accuracy by reducing the truncation error and/or
using double precision. An unstable method or technique will merely yield a more pre-
cise wrong answer with the use of more digits.
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Table 2
Accuracies of Numerical Solutions of the Schrbdinger Equation with Exact
and Approximate Initial Values. Numbers in the Table Give the Significant-
Figure Agreement with the Exact Analytical Coulomb Wave Functions with
Eigenvalues n Equal to 1, 2, and 3.

Wave Significant-Figure Agreement as p Equals Various Values

Function Mode- 0.1 1 2 4 6 8 10 12 14 16 18 20

ls d 9 9 9 9 8 9 8 8 7 6 6 5
e 9 9 9 9 8 9 8 8 7 6 6 5
f 5 4 4 5 3 3 3 3 3 3 4 4

2s d 9 9 9 8 8 8 8 8 6 6 5 5
e 7 7 9 8 6 6 7 8 7 6 5 5
f 4 4 4 5 3 3 3 3 2 2 0 0

2p d 8 8 8 8 8 8 7 8 8 6 5 5
e 8 7 8 8 8 8 7 7 8 6 5 4
f 3 3 3 3 3 4 3 3 2 1 1 0

3s d 8 8 9 8 8 9 8 7 8 7 7 6
e 6 8 7 7 6 7 7 7 7 6 7 6
f 4 4 5 3 3 4 3 3 3 2 1 1

3p d 7 8 8 8 9 8 8 8 9 7 6 5
e 7 8 8 8 8 8 8 8 9 7 6 5
f 2 3 3 4 4 3 4 3 4 3 1 1

3d d 4 5 5 4 5 5 5 5 6 5 5 5
e 4 4 5 4 5 5 4 4 5 4 4 5
ft . . . . . . . . . . . .

'Mode d: Quadratic terms; exact initial values; Alp = 10
- 4

Mode e: Quadratic terms; "approximate" initial values; A 10-4.
Mode f: Linear terms; "approximate" initial values; Alp = 10 - 4

.
tNot calculated.

Table 3
Accuracies of Numerical Solutions of the Schr5dinger Equation with the
Wave Functions and the Slope of the Wave Functions Calculated with Un-
equal Numbers of the Terms in Their Taylor Expansions. The Numbers
in the Table Give the Significant-Figure Agreement with the Exact Analyt-
ical Coulomb Wave Functions with n Equal to 1, 2, and 3, and Equal to
0 and 1, Only.

Wave Significant-Figure Agreement as p Equals Various Values

Function', 0.1 1 2 4 6 8 10 12 14 16 187 20

Is 7 6 5 5 4 3 1 2 0 0 0 0
2s 6 5 4 4 3 3 2 3 2 2 1 0
2p 6 4 3 4 4 4 2 3 2 1 1 0
3s 6 5 4 3 4 3 3 3 3 2 1 1
3p 5 4 4 4 5 4 3 3 3 3 1 2

'All calculations in mode g: R-equation quadratic and m-equation linear; exact initial
values; Ap = 10-4.
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Table 4
Definitions of the Seven Modes by Which the Numerical
Solutions to the Schr~dinger Equation Were Obtained

Mode J H and in Equation Terms Initial Values lip

a cubic exact 10-4

b cubic exact 10-3

c linear exact 10-4

d quadratic exact 10-4

e quadratic approximate 10-4

f linear approximate 10-4

R-eq. quadratic exact 10-4
n-eq. linear

Returning again to the results in Tables 1 and 2, the present method is clearly sta-
ble when the same number of terms are used in the R and m equations -this is true even
with the "approximate" initial values. On the other hand, mode g in Table 3 demon-
strates the instability resulting from the use of mismatched calculated quantities in the
R-equation: at the start mode g has the accuracy of the quadratic system (mode d) but
this quickly degrades to the accuracy of the linear system. (The same degradation oc-
curs with a linear R-equation and a quadratic rn-equation.)

As for accuracy itself, mode a generally has almost maximum absolute accuracy
(decimal places) obtainable, holding ten digits in single precision for states with = 0, 1,
and 2. Mode b has about the same accuracy - more or less - for states with ', = 0, 1 but
requires an order of magnitude less computing time. At large distances, however, there
is not much choice between modes a, b, d, or e for t = 0, 1, or 2, as far as accuracy is
concerned.

Note also that the linear systems, modes c and f, and the quadratic systems, modes
d and e, yield essentially the same accuracy throughout the range, demonstrating that
the approximate initial values of the second and higher derivatives defined by Eqs. (47)
and (48) add a negligible error to the system of equations. Any other nonexact values of
m'(o) and rn"(O) will not necessarily work. For example, the 2 p wave function was at-
tempted in the quadratic mode e with m'(o) = -2.0, as derived by Sherwin (6) but yielded
no increase in accuracy beyond that given by the linear mode f.

In planning numerical computations it is usually stated that the problem should be
executed in a manner minimizing the cumulative effects of round-off errors and trunca-
tion errors (1,4,5). The stability of the present method seems to be independent of the
truncation errors in the R- and rn-equations. It also appears that the cumulative effect of
the round-off error is not simply a function of the number of steps in the range of calcu-
lations but also depends on the nature of the solution.':" Compare modes a and b in Ta-
ble 1. If the round-off error is always proportional to the number of steps, then the ac-
curacies at large p in mode b should always be greater than those of mode a. The
accuracies in the ls and 2s states, however, are greater for mode a than for mode b at
large p. (In both modes a and b the truncation errors are less than 10-12, whereas the
round-off errors are in the tenth decimal place.) These results definitely suggest that

'A guarded qualitative generalization of the results from an example by Kopal (1) of er-
ror propagation during the numerical integration of d 2y/dx2 

+ y = 0 would support this
observation.
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the cumulative round-off error is not only a function of the number of steps, but it also
depends on the cumulative effect of the number of sign changes in the calculated func-
tion's slope. It appears that, in adding the terms of the R-equation, the effects of the
random magnitudes of the digits in the eleventh decimal place tend to cancel as the de-
rivatives change sign. If there is no sign change in the slope as in the ls state, then the
larger truncation error of mode b appears to have a greater effect than the order of
magnitude decrease in the number of steps.

The results for the 3d wave function require additional comments. We note that
171(0) M m 3 2 (0) - R' (0) = 0. Hence, in the R andm equations, Eqs. (28) and (29), the
initial significant figures are carried by the linear and/or quadratic and/or cubic terms,
etc., depending on the number of terms used in each Taylor series. For = 2, even the
linear term in the R-equation is initially zero. The resultant "conservation of signifi-
cance" is demonstrated in Tables 1, 2, and 3 in the results for the 3d wave function.

Clearly, in order to calculate wave functions for t > 3 with the accuracies of modes
a or b, it will be necessary to either (a) increase the number of terms carried in the R
and rn equations, or (b) use the series solution to calculate values at a small value of P
and then start the numerical analysis from that point.

In order to check the effect of double precision, the ls state was calculated in mode
a to p = 40. To p = 20, 13 to 15 significant-figure accuracy was obtained: 13-figure ac-
curacy in exp(-p/2) at p = 20 represents 17-decimal-place accuracy! At p = 40, six-
figure accuracy resulted, and this was the accuracy obtained in single precision at P = 20.

The results contained in this subsection suggest that instabilities and/or inaccura-
cies formerly attributed to round-off and/or truncation errors may have possibly been
due to (a) the numerical method itself in which "mismatched" calculated quantities are
used, and/or (b) poor approximate initial values where exact initial values were not
available.

Iteration For Eigenvalues

We will now discuss a method of iterating for unknown eigenvalues. We will again
consider the Coulomb potential because it affords us a test of the method's accuracy.
Here, however, only the ls and 2s states will be of interest. We will start with "guessed"
eigenvalues and with "guessed" upper and lower limits. In addition, the range of p will
be varied. The resulting eigenvalues and eigenfunctions will be compared to the known
exact values.

The criterion that is applied at large p for an acceptable wave function is one that
decreases exponentially as p o. Since it will be impossible to carry numerical solu-
tions to p = o, we are left with testing the variations of the solutions within a finite range
of the independent variable p __ Pmax* Clearly, .ax has to be chosen so that if an eigen-
function is possible it will be well into the exponential decline at p = Pnax" If this actu-
ally is true, then the error due to this truncation of the numerical solution can be made
negligible by making pmax as large as practical. This will be illustrated by starting with
"guessed" eigenvalues in error by one unit in the third and fourth significant figures and
then iterating for solutions with different values of pmax*

However, it will generally be necessary, by several trials, to determine two nearly
equal values of n in Eqs. (7) or (8) such that one value will yield a solution at large p that
varies as + exp(p) and the other as - exp(p). With nearly equal values of n the shapes of
the two solutions will be similar up to the point of divergence. (See texts by Sherwin (6)
and Slater (20) for graphs of such variations.) These two trial values of n will represent
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upper and lower limits to the exact eigenvalue. Once these limits have been determined
the automatic search for the more accurate eigenvalue can begin, as described below.

We will label the larger of the two limits nu (the upper value of n) and the other nL
(the lower value of n). Those values causing the variations of ± exp(p) will be determined
from the trials. In the is state nL will cause the + exp(p) variation at large p, whereas
for the 2s states nU will cause the + exp(p) variation. We will now consider the Is state.
Any value between nu and nL is taken as the first guess for n, call it no, in the numerical
system of equations. As the calculations proceed, the sign of the slope m and the sign of
the function R are tested. If, before p - Pmax, either in becomes zero or positive (nG too
low); or 11 becomes zero or negative (nG too high), the calculations are stopped, a new
lower or upper limit is stored, and the calculations are started again with a new value of
nG- now always taken as the mean value of the upper and lower limits. Or, generally,
one tests for the number of nodes and then for the exponential tail of the solution.

Tables 5 and 6 present results of a search for eigenvalues of the Is and 2s Coulomb
states, respectively, calculated in mode b. In trial 5 of Table 5 the maximum value of p

attempted was pmax = 30.0. However at p = 28.812, the upper and lower limits converged
to equal values of 1.0; i.e., they filled the registers in single precision. The results
given in the lower part of this column were taken from Table 1, mode b.

The tables are self-explanatory except for the normalization integral N. This is
commonly taken as

co

%jg =f0 P2 [ (p) ]2 dp (49)

For our purposes we compare the exact integral to p = 20, and we compare the nu-
merical integral calculated by the Trapezoidal Rule to p = 20. The exact integral of the
is Coulomb state* is given by

20 P2 e-Pdp 2.0 - 0.9 x 10
-

3

- 1.9(8). (50)

Note in Table 5, trials 1 and 2, that although the approximate numerical solutions lose
significance at p = 20, the normalization integrals are still accurate to four significant
figures. Also note the improvements in the eigenvalues and eigenfunctions as pmax is
increased. With double precision both the eigenvalues and eigenfunctions can be im-
proved even more. Similar remarks hold for the results in Table 6 for the 2s wave
function.

Note also in Tables 5 and 6 that the accuracy of the final result is directly related to
the number of iterations. Hence, if time permits, it is better to make a poor initial
guess of the eigenvalue.

We will now consider briefly the application of the present method to the screened
Coulomb potential. The more complete extension of the author's preliminary results
given in Ref. 11 will be reported elsewhere.

*It was shown in Ref. 11 that all Coulomb s-states (f - 0), if started with R(0) -1.0,

yield exact normalizations of 2.0.
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APPLICATION TO THE SCREENED COULOMB POTENTIAL

For a concrete application of the present analytical and numerical analysis to the
Schrbdinger equation with a "nonanalytic potential," we will consider the complete
screened Coulomb potential (CSCP) (11,13,14). The standard CSCP resulting from a
D-H-type ion atmosphere is given for a hydrogenic atom (or ion) by

Vi(r) - Ze
2 

1 
1  0 < r < a

7,0 (r d + a

V(T) :- (51)

Vo(r )  _ Ze 2  d exp[(a-r) d] T > a
V 0 d-+a ' = a

where d is the screening length and a is the mean minimum radius of the ion atmosphere.
The dielectric constant of the medium is given by 730. For the present report we will
consider 70 - i. 0 everywhere. The extension of the results with mo > i in Ref. 21 will
also be considered elsewhere. The transformation of V(r) in Eq. (51) as given in the
second section of this report yields

t ~ < <__a,
V(p) ( d'+ a')'

V(p) - (52)

V() d' exp 1( a' -p)/d']
Sp p a',

where a' and d' are the values of a and d in p-space. In what follows the primes will be
dropped, for it will be obvious that we will be solving the problem in p-space. In the ac-
tual calculations we use Eq. (7) with V(p) given by Eq. (52), using V, (p) or v 0 (p) in the
appropriate ranges of p.

However, in the derivation of initial values Eq. (8) is of interest with V(p) = -1/p and
b2 = (1/4) + [n/(d + a) ]. [cf. Eq. (40).] The analysis proceeds as was outlined in the sec-
tion "Derivation of Initial Values" with the 1/4 replaced by b 2 in Eq. (35). Clearly, the
series solution, Eq. (33) with c given by Eqs. (36), (37), and (41), is exact for 0 S p < a.
Consequently, all the initial derivatives of the wave functions are exactly given by Eq.
(43) with b2 = (1/4) + [n/(d + a)] in the coefficients of the powers of p as given by Eq.
(42), etc. Consequently, the series solution can be used to calculate all values at P = a
to the maximum number of significant figures available in the computer and then pro-
ceed from this point numerically. However, unless the series converges rapidly it may
be just as convenient to start all the numerical solutions from p 0. Nevertheless, as
indicated in the preceding section, for states with -t > 3 it may be necessary to start at
some small value of p in order to obtain the maximum number of significant figures in
the numerical calculations.

One will note that in the standard use of perturbation and/or variational methods
with the CSCP it is assumed that a =0 and only V (r) in Eq. (51) is used. This is what
is referred to as the screened Coulomb potential (SCP), but it is not complete at the
origin. It can be shown (17,22) that the potential at the origin from the SCP due to the
charges of all the other ions is +Ze 2/q 0d, the same as that given by V (r) in Eq. (51) with
a = 0. (Fowler (17) uses o for 70 and K for i/d.) Consequently, for the SCP the exact
initial values are those derived above for the CSCP with a : 0, or b2 = 1/4 + n/d. With
these starting values the numerical approach has to always be started at the origin.

In passing it should be noted that for the CSCP, if a _ pm.., the series solution is ex-
act throughout the range of interest. It will still be necessary, however, to iterate for
the eigenvalues, as described above.
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In Ref. i1 the search for solutions with the CSCP begins with the assumption that the
wave functions probably have the same shapes as the Coulomb wave functions. Then the
search for eigenvalues proceeds as described in the subsection of "Iteration For Eigen-
values." Although the results in Ref. 11 were calculated with the linear system, mode f,
calculations during the present study with the cubic system, mode b, have verified that
the eigenvalues determined in Ref. 11 are indeed correct to four significant figures - just
as the author expected.

Therefore, the numerical method of this report will lead to accurate and stable bona
fide solutions to the radial hydrogenic Schr~dinger equation.

SUMMARY AND CONCLUSIONS

A new method has been presented for accurate and stable numerical solutions of
ordinary differential equations. Applied to the Schrbdinger equation the two essential
features of the method are (a) simultaneous Taylor expansions between space steps Zip of
the wave function R(p) and the slope of the wave function m(p), and (b) the derivation of
initial values through either an exact series solution of the Schr~dinger equation valid at
or near the origin, or through an approximate analytical solution valid for all n and 't to
terms of order p 2 - 0(p 2 ).

It has been shown that for a given np, to increase the accuracy and stability beyond
that given by the linear terms of the Taylor expansions, it is necessary to use at least
the quadratic terms in the expansions of both ie and m: the use of the quadratic term in
the R-expansion and the linear term in the rn-expansion (or vice versa) is less stable than
the use of the linear terms alone in both equations. In this case the initial high accuracy
quickly degrades to the accuracy of the linear system, or less.

Through a series solution of the Schr~dinger equation- without exp(-p/2) factored
out - exact initial derivatives of all Coulomb and screened Coulomb wave functions have
been obtained. It is also shown that numerical results obtained using initial values from
an approximate analytic solution derived here are essentially equal in accuracy to nu-
merical results obtained from the exact initial values.

Using the Coulomb potential, the accuracy with which eigenvalues and eigenfunctions
can be obtained through iteration has been demonstrated. This is essential for problems
with "nonanalytic" interaction potentials- the reason for interest in numerical methods.

The present results suggest that the cumulative round-off error does not simply de-
pend on the number of steps in the range of calculations but also depends on the cumula-
tive effect of the number of changes in sign of the derivatives of the function calculated.
And, more important, the present results suggest that instabilities and/or inaccuracies
of other numerical methods that have been attributed to cumulative round-off and/or
truncation errors, may have possibly been due to (a) the numerical method itself in
which "mismatched" calculated quantities are used and/or (b) poor approximate initial
values when exact initial values were not available.

The present results represent the first known - as far as the author can determine -

accurate and stable numerical solutions to the radial hydrogenic Schr6dinger equation.
The new method used (a) has the conceptual and mathematical simplicity of the Cauchy
(or Euler) method (1,4,5) without the instability of the Cauchy method due to round-off
errors when high accuracy is sought through small space steps; and (b) the present
method has - depending on the space step and the number of terms used in the Taylor
series - accuracy equal to or greater than that obtainable from the Runge-Kutta method
(1,4,5) without the relative complexity of the R-K method, when used for two or more
simultaneous differential equations, nor the R-K instability that will result unless all
terms can be calculated with equal accuracy. With the present ability to calculate
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eigenvalues to nine or more significant figures and eigenfunctions to nine or more deci-
mal places, the present method becomes an alternative to approximate perturbation and
variational methods for the screened Coulomb and other nonanalytic potentials.

In addition to accuracy and stability, a very practical aspect of the present method
is that it is capable of a reduction in computation time of several orders of magnitude
relative to a linear method that uses extremely small space steps - and double preci-
sion - for the same accuracy. This reduction can easily be seven or more orders of
magnitude.
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Appendix

VALUES OF THE EXPONENTIAL FUNCTION
TO 16 OR MORE SIGNIFICANT FIGURES

For the readers' convenience values of the exponential function used here are given
to 16 or more significant figures. The numbers are from the work of Zucker.*

-R. Zucker, "Elementary Transcendental Functions," in "Handbook of Mathematical
Functions," M. Abramowitz and I.A. Stegun editors, New York:Dover, 1964.

X e
- x

0.05 0.95122 94245 00714 009

0.50 0.60653 06597 12633 424

1 0.36787 94411 71442 32160

2 0.13533 52832 36612 69189

3 0.04978 70683 67863 94298

4 0.01831 56388 88734 18029

5 0.00673 79469 99085 46710

6 0.00247 87521 76666 35842

7 0.00091 18819 65554 51621

8 0.00033 54626 27902 51184

9 0.00012 34098 04086 67955

10 0.00004 53999 29762 48485
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